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Single Species Expansions

Context of a Classical Interacting Gas

Cluster and Virial Expansions are reasonably well understood

Represent cluster coefficients as weighted connected graphs . . .

. . . and virial coefficients as weighted 2-connected graphs or
irreducible integrals

Main work done in the 1930’s and 40’s by Mayer
J. E. Mayer, M. G. Mayer, Statistical Mechanics New York,
John Wiley and Sons Inc. (1940)

But what happens if we have a mixture of different particles?
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Single Species Expansions

Context of a Classical Interacting Gas
We have the pair potential φ(xi − xj)
The Grand Canonical Partition Function

Ξ(z) :=
∞∑
n=0

zn

n!

∫
Λ

· · ·
∫
Λ

exp

(
−β

∑
1≤i<j≤n

φ(xi − xj)

)
dx1 · · ·dxn, where

z is the fugacity parameter
In the Thermodynamic Limit |Λ| → ∞, we have the pressure
βP = lim

|Λ|→∞
1
|Λ| log Ξ(z)

Expansion for pressure P in terms of fugacity z is the cluster
expansion
We have ρ = z ∂

∂z
P, the density

The virial development of the Equation of State is the power series

P =
∞∑
n=1

cnρ
n called the virial expansion.

Cluster and Virial Expansions are reasonably well understood
Represent cluster coefficients as weighted connected graphs . . .
. . . and virial coefficients as weighted 2-connected graphs or
irreducible integrals
Main work done in the 1930’s and 40’s by Mayer
J. E. Mayer, M. G. Mayer, Statistical Mechanics New York,
John Wiley and Sons Inc. (1940)
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Finitely Many Species - Early Ideas/Formulae

Imagining why we would want to generalise to many different types
of particles is easy

Considering how to implement such a model was studied by Fuchs
K. Fuchs, The Statistical Mechanics of Many Component
Gases, Proc. R. Soc. Lond. A., 179, (1942)

Initial difficulty: going from a single type particle to two different
types gives 3 degrees of freedom (one for each of the ‘single types’
and one for the mixture)

Paper implicitly uses Lagrange-Good Inversion and Tree-like
relationships

Notion of generalised Radii of convergence (Borel)
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Combinatorial Tools

Approaching the Multispecies Cluster Expansion, we come armed with
tools developed in Combinatorics:

The Lagrange-Good Inversion
I. J. Good, The generalisation of Lagrange’s expansion and
the enumeration of trees, Proc. Cambridge Philos. Soc., 61,
499-517 (1965) provides the way in which we can invert power
series of form:

ρ(z) = z +
∑
n≥2

nbnz
n (1)

The Dissymmetry Theorem for Connected Graphs (and also trees)
F. Bergeron, G. Labelle, P. Leroux, Combinatorial Species and
Tree-like Structures, Encyclopaedia of Mathematics and its
Applications, Vol. 67, Cambridge University Press, Cambridge,
U.K. (1998)
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Combinatorial Tools

The notion of coloured graphs and an extension of the Dissymmetry
Theorem - Application of this to the multivariate virial expansion
W. G. Faris, Biconnected graphs and the multivariate virial
expansion, Markov Proc. Rel. Fields 18, 357–386 (2012)

There is a lack of attention on the convergence of such expansions -
only as formal power series
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Statistical Mechanics

The context of the work is on the multispecies generalisation of the
paper by Poghosyan and Ueltschi
Poghosyan, S. and Ueltschi, D., Abstract cluster expansion
with applications to statistical mechanical systems, Journal of
Mathematical Physics, 50, 5, (2009)

We begin with a collection of fugacity parameters {zi}i∈N with zi
being the activity of the species i

We assume the achievement of a ‘cluster expansion’ for the pressure
and understand conditions to achieve a convergent virial expansion

We start from the ‘formal’ power series representation (Cluster
Expansion):

P(z) =
∑
n

b(n)zn (CE)
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Statistical Mechanics

P(z) =
∑
n

b(n)zn (CE)

We may formally define:

ρk := zk
∂

∂zk
P (R1)

or via the power series:

ρk :=
∑
n

nkb(n)zn (R2)

We wish to invert (R2), substitute for z in (CE) to obtain:

P(ρ) =
∑
n

c(n)ρn (VE)
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Convergence Conditions

Theorem (Jansen, T., Tsagkarogiannis, Ueltschi)

Assume that there exist 0 < ri < Ri and ai ≥ 0, i ∈ N, such that

p(z) converges absolutely in the polydisc
D = {z ∈ CN | ∀i ∈ N : |zi | < Ri}.∣∣∣log

∂p

∂zi
(z)
∣∣∣ < ai for all i ≥ 1 and all z ∈ D.∑

i≥1

√
ri
Ri

<∞ and
∑
i≥1

ria
2
i

Ri
<∞.

Then there exists a constant C <∞ (which depends on the ri , Ri , ai ,
but not on n) such that

|c(n)| ≤ C sup
z∈D
|p(z)|

∏
i≥1

(eai
ri

)ni
. (C1)
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Convergence Conditions

The estimate for c(n) guarantees convergence of the series
∑

n c(n)ρn

for all ρ in the polydisc

D ′ =
{
ρ ∈ CN | ∀i ∈ N : |ρi | < rie

−ai ,
∑
i∈N
|ρi |

eai

ri
<∞

}
.
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Lagrange-Good Inversion

Theorem

Let z(ρ) be a summable collection of power series and G(ρ) be a
collection of formal power series, such that ∀i ∈ N

zi (ρ) = ρiGi (z(ρ)) (LI1)

Let J = {i ∈ N | ni 6= 0} and n ≥ k, then we have that:

[ρn]z(ρ)k = [zn−k]
∣∣∣δi,jGi (z)ni − zj

∂Gi

∂zj
Gi (z)ni−1

∣∣∣
i,j∈J

(2)
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∂P

∂zi
(R)

S. J. Tate Multispecies Virial Expansion



Background and Motivation
The Problem

Main Results and Ideas
Conclusions, Open Questions/Further Problems

Lagrange-Good Inversion

Theorem

Let z(ρ) be a summable collection of power series and G(ρ) be a
collection of formal power series, such that ∀i ∈ N

zi (ρ) = ρiGi (z(ρ)) (LI1)

Let J = {i ∈ N | ni 6= 0} and n ≥ k, then we have that:

[ρn]z(ρ)k = [zn−k]
∣∣∣δi,jGi (z)ni − zj

∂Gi

∂zj
Gi (z)ni−1

∣∣∣
i,j∈J

(2)

Recall that:

ρi (z) := zi
∂P

∂zi
(R)

So we have that Gi = 1
∂P
∂zi

S. J. Tate Multispecies Virial Expansion



Background and Motivation
The Problem

Main Results and Ideas
Conclusions, Open Questions/Further Problems

Lagrange-Good Inversion

Theorem

Let z(ρ) be a summable collection of power series and G(ρ) be a
collection of formal power series, such that ∀i ∈ N

zi (ρ) = ρiGi (z(ρ)) (LI1)

Let J = {i ∈ N | ni 6= 0} and n ≥ k, then we have that:

[ρn]z(ρ)k = [zn−k]
∣∣∣δi,jGi (z)ni − zj

∂Gi

∂zj
Gi (z)ni−1

∣∣∣
i,j∈J

(2)

This gives us the Lagrange Inversion Formula:

[ρn]P(ρ) = [zn]P(z)

∣∣∣∣∣∣δi,j
(

1
∂P
∂zi

)ni

− zj
∂

∂zj

(
1
∂P
∂zi

)(
1
∂P
∂zi

)ni−1
∣∣∣∣∣∣
i,j∈J

(LI3)
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Lagrange-Good Inversion

This gives us the Lagrange Inversion Formula:

[ρn]P(ρ) = [zn]P(z)

∣∣∣∣∣∣δi,j
(

1
∂P
∂zi

)ni

− zj
∂

∂zj

(
1
∂P
∂zi

)(
1
∂P
∂zi

)ni−1
∣∣∣∣∣∣
i,j∈J

(LI3)
We rearrange this to:

[ρn]P(ρ) = [zn]P(z)
1(

∂P
∂z

)n ∣∣∣∣δi,j + zj
∂

∂zj
ln
∂P

∂zi

∣∣∣∣
i,j∈J

(LI4)
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Lagrange-Good Inversion

We rearrange this to:

[ρn]P(ρ) = [zn]P(z)
1(

∂P
∂z

)n ∣∣∣∣δi,j + zj
∂

∂zj
ln
∂P

∂zi

∣∣∣∣
i,j∈J

(LI4)

Recall the bound we have:

|c(n)| ≤ C sup
z∈D
|P(z)|

∏
i≥1

(eai
ri

)ni
. (C1)
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Lagrange-Good Inversion

We rearrange this to:

[ρn]P(ρ) = [zn]P(z)
1(

∂P
∂z

)n ∣∣∣∣δi,j + zj
∂

∂zj
ln
∂P

∂zi

∣∣∣∣
i,j∈J

(LI4)

Recall the bound we have:

|c(n)| ≤ C sup
z∈D
|P(z)|

∏
i≥1

(eai
ri

)ni
. (C1)

We can therefore see where the bound comes from - the C as uniform
bound on determinant, the final product from bounds on the derivative in
the assumption
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What are the Virial Coefficients?

We now have some good ideas on the convergence of such series, but
would like to understand whether we have the same interpretation of
the virial coefficients as 2-connected (irreducible) graphs

Requires notion of coloured graphs - each node has a colour, which
represents the species of the particle with the given label

The dissymmetry theorem can be generalised to this case, but we
still have issues in considering block-multiplicative weight-functions

The dissymmetry theorem gives us a relationship between connected
and two-connected graphs via rooted connected graphs
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The Dissymmetry Theorem

The dissymmetry theorem for connected graphs gives us the relation:

C + B•(C•) = C• + B(C•) (D1)

There is a combinatorial interpretation of what each term means:

C is a connected graph

C• is a rooted connected graph

B•(C•) is a connected graph rooted at any block, vertex or
articulation point except for one

B(C•) is a connected graph rooted at a particular block
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The Dissymmetry Theorem

The Dissymmetry theorem relies on the connection with B′-enriched
trees

The idea is to view connected graphs as being made up of ‘trees of
2-connected graphs’

This extra structure adds more to the interpretation of what we get
from Lagrange Inversion
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Conclusions and Open Questions

We have obtained convergence conditions for infinitely many species
in the virial expansion

Lagrange-Good inversion generalises precisely what one needs to do
to get a virial expansion from the cluster expansion in the
multispecies case

The explanation of the virial coefficients representing 2-connected
coloured graphs is possible in some circumstances

There are some difficulties in applying some of the conditions and
the dissymmetry theorem to particular examples. The issue relies on
understanding how to gain appropriate lower bounds on the
derivative.
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Further Work/Open Questions

Langrange Inversion and the Dissymmetry Theorem run in parallel to
provide in the former case a method of computing coefficients
exactly and in the latter case an interpretation of the coefficients in
terms of combinatorial structures

Further work could be done in understanding what models can
precisely fit the requirements of our paper

There are notable difficulties in considering such a problem from an
implicit-function theorem point of view
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