Extending the Khintchine-Meinardus probabilistic method to general funcions

Dudley Stark

Queen Mary, University of London

Random Combinatorial Structures and Statistical Mechanics Venice, Friday 10 May Joint work with Boris Granovsky.

・ 同 ト ・ ヨ ト ・ ヨ ト

Mathematical set-up and motivation

We are interested in the asymptotics of some sequence c_n . For example, let c_n be the number of interger partitions of n. We can write 3 as

$$3 = 1 + 1 + 1 = 2 + 1 \quad \text{so } c_3 = 3.$$

$$\sum_{n=1}^{\infty} c_n z^n = (1 + z + z^2 + \cdots)(1 + z^2 + z^4 + \cdots) \cdots$$
$$= \prod_{k=1}^{\infty} (1 - z^k)^{-1}$$

▲□→ ▲ 国 → ▲ 国 →

Mathematical set-up and motivation

We are interested in the asymptotics of some sequence c_n . For example, let c_n be the number of interger partitions of n. We can write 3 as

$$3 = 1 + 1 + 1 = 2 + 1 \text{ so } c_3 = 3.$$

$$\sum_{n=1}^{\infty} c_n z^n = (1 + z + z^2 + \cdots)(1 + z^2 + z^4 + \cdots) \cdots$$

$$= \prod_{k=1}^{\infty} (1 - z^k)^{-1}$$

Theorem (Hardy-Ramanujan, (1918))

$$c_n \sim \frac{1}{4n\sqrt{3}} \exp\left(\pi \sqrt{\frac{2n}{3}}\right)$$

- In combinatorics, c_n is the number of decomposable structures of size n.
 - integer partitions of *n*.

- In combinatorics, c_n is the number of decomposable structures of size n.
 - integer partitions of *n*.
 - More generally, weighted partitions, for which there are b_k types of parts of size k.

 b_k could be the number of types of parts of size k or the number of primes in an arithmetic semigroup.

- In combinatorics, c_n is the number of decomposable structures of size n.
 - integer partitions of *n*.
 - More generally, weighted partitions, for which there are b_k types of parts of size k.

 b_k could be the number of types of parts of size k or the number of primes in an arithmetic semigroup.

$$\sum_{n=1}^{\infty} c_n z^n = \prod_{k=1}^{\infty} (1-z^k)^{-b_k}$$

Generally, we will have

$$b_k \asymp k^{r-1}, \quad r > 0.$$

- In physics, a partition is an assembly of particles such that its full energy is *n*.
- Define the generating function $f(z) = \sum_{n=1}^{\infty} c_n z^n$.

- (日) (日) (日) (日) (日)

- In physics, a partition is an assembly of particles such that its full energy is *n*.
- Define the generating function $f(z) = \sum_{n=1}^{\infty} c_n z^n$.
- We assume f(z) is of the form (Vershik, 1996)

$$f(z)=\prod_{k=1}^{\infty}S_k(z).$$

Examples:

• Unrestricted partitions, i.e. Bose-Einstein statistics:

$$f(z)=\prod_{k=1}^{\infty}(1-z^k)^{-b_k},$$

◆□> ◆□> ◆目> ◆目> ◆日 ● の Q @ >

Examples:

• Unrestricted partitions, i.e. Bose-Einstein statistics:

$$f(z)=\prod_{k=1}^{\infty}(1-z^k)^{-b_k},$$

• Partitions having no repeated parts, i.e. Fermi-Dirac statistics:

$$f(z) = \prod_{k=1}^{\infty} (1+z^k)^{b_k},$$

・ 回 と ・ ヨ と ・ ヨ と

Examples:

• Unrestricted partitions, i.e. Bose-Einstein statistics:

$$f(z)=\prod_{k=1}^{\infty}(1-z^k)^{-b_k},$$

• Partitions having no repeated parts, i.e. Fermi-Dirac statistics:

$$f(z) = \prod_{k=1}^{\infty} (1+z^k)^{b_k},$$

Assemblies (labelled combinatorial objects),
 i.e. "Maxwell-Boltzman" model, let c_n → c_n/n!, b_k → b_k/k!,

$$f(z) = \exp\left(\sum_{k=1}^{\infty} b_k z^k\right) = \prod_{k=1}^{\infty} e^{b_k z^k},$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

伺下 イヨト イヨト

Assume that

$$\mathcal{S}_k(z) = \sum_{j\geq 0} d_k(j) z^{kj}, \quad k\geq 1.$$

(4回) (4回) (4回)

Assume that

$$\mathcal{S}_k(z) = \sum_{j\geq 0} d_k(j) z^{kj}, \quad k\geq 1.$$

For $\delta > 0$ fixed, define Y_k , $k \ge 1$ to be integer valued random variables

$$\mathbb{P}(Y_k=jk)=rac{d_k(j)e^{-\delta kj}}{S_k(e^{-\delta})}, \hspace{1em} j\geq 0, \hspace{1em} k\geq 1$$

(日本) (日本) (日本)

Assume that

$$\mathcal{S}_k(z) = \sum_{j\geq 0} d_k(j) z^{kj}, \quad k\geq 1.$$

For $\delta > 0$ fixed, define Y_k , $k \ge 1$ to be integer valued random variables

$$\mathbb{P}(Y_k=jk)=rac{d_k(j)e^{-\delta kj}}{S_k(e^{-\delta})}, \hspace{1em} j\geq 0, \hspace{1em} k\geq 1$$

- For unrestricted partitions, $\frac{1}{k}Y_k \sim \text{NegBinomial}(b_k, e^{-\delta k})$.
- For restricted partitions, $\frac{1}{k}Y_k \sim \text{Binomial}\left(b_k, \frac{e^{-\delta k}}{1+e^{-\delta k}}\right)$.
- For assemblies, $\frac{1}{k}Y_k \sim \text{Poisson}(b_k e^{-\delta k})$.

• Define
$$f_n(z) = \prod_{k=1}^n S_k(z).$$

• Define
$$Z_n = \sum_{k=1}^n Y_k$$

Then, we have the following representation, true for any $\delta > {\rm 0},$

Fundamental Representation

$$c_n = e^{n\delta} f_n(e^{-\delta}) \mathbb{P}(Z_n = n)$$

Proof

Let $z^{-\delta+2\pi i\alpha}$, $\alpha\in[0,1]$ and let δ be a free parameter. Then

$$c_n = e^{n\delta} \int_0^1 f(e^{-\delta + 2\pi i\alpha}) e^{-2\pi i\alpha n} d\alpha$$

= $e^{n\delta} \int_0^1 \prod_{k=1}^n \left(S_k \left(e^{-\delta + 2\pi i\alpha} \right) \right) e^{-2\pi i\alpha n} d\alpha$
= $e^{n\delta} f_n(e^{-\delta}) \int_0^1 \prod_{k=1}^n \left(\frac{S_k \left(e^{-\delta + 2\pi i\alpha} \right)}{S_k(e^{-\delta})} \right) e^{-2\pi i\alpha n} d\alpha$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

We choose $\delta = \delta_n$ such that $\mathbb{E}(Z_n) = n$, so that if Z_n is asymptotically normal, we can expect that

Local Limit Lemma

$$\mathbb{P}(Z_n = n) \sim \frac{1}{\sqrt{2\pi \operatorname{Var}(Z_n)}}.$$

Estimating $e^{n\delta_n}$ and $f_n(e^{-\delta_n})$ involves approximating δ_n up to order $o(n^{-1})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

Meinardus (1954) invented a method for the asymptotic enumeration of weighted partitions. We have adapted his method to estimate δ_n and to prove the Local Limit Lemma in the three examples above (unrestricted partitions, partitions containing at most one part of a given size, and assemblies).

マロト イヨト イヨト ニヨ

Meinardus (1954) invented a method for the asymptotic enumeration of weighted partitions. We have adapted his method to estimate δ_n and to prove the Local Limit Lemma in the three examples above (unrestricted partitions, partitions containing at most one part of a given size, and assemblies).

There are three Meinardus conditions:

Meinardus (1954) invented a method for the asymptotic enumeration of weighted partitions. We have adapted his method to estimate δ_n and to prove the Local Limit Lemma in the three examples above (unrestricted partitions, partitions containing at most one part of a given size, and assemblies).

There are three Meinardus conditions:

(1) The Dirichlet generating function $D(s) = \sum_{k=1}^{\infty} b_k k^{-s}$ is meromorphic in a domain containing the half plane $\{\Re s \ge 0\}$, with a pole ρ_r on the real axis.

Meinardus (1954) invented a method for the asymptotic enumeration of weighted partitions. We have adapted his method to estimate δ_n and to prove the Local Limit Lemma in the three examples above (unrestricted partitions, partitions containing at most one part of a given size, and assemblies).

There are three Meinardus conditions:

- (1) The Dirichlet generating function $D(s) = \sum_{k=1}^{\infty} b_k k^{-s}$ is meromorphic in a domain containing the half plane $\{\Re s \ge 0\}$, with a pole ρ_r on the real axis.
- (11) D(s) grows at most polynomially as $|\Im s| \to \infty$.

Meinardus (1954) invented a method for the asymptotic enumeration of weighted partitions. We have adapted his method to estimate δ_n and to prove the Local Limit Lemma in the three examples above (unrestricted partitions, partitions containing at most one part of a given size, and assemblies).

There are three Meinardus conditions:

- (1) The Dirichlet generating function $D(s) = \sum_{k=1}^{\infty} b_k k^{-s}$ is meromorphic in a domain containing the half plane $\{\Re s \ge 0\}$, with a pole ρ_r on the real axis.
- (11) D(s) grows at most polynomially as $|\Im s| \to \infty$.
- (*III*) Let $\tau = \delta + 2\pi i \alpha$. Let $g(\tau) = \sum_{k=1}^{\infty} b_k e^{-k\tau}$. There are constants $C_2 > 0$, $\varepsilon > 0$, such that

$$\Re(g(au))-g(\delta)\leq -C_2\delta^{-arepsilon}, \hspace{1em} |rg au|>rac{\pi}{4}, 0
eqlpha\leq 1/2.$$

Improvements:

 We weaken Condition (III) to Condition (III)': For δ > 0 small enough and any ε > 0,

$$2\sum_{k=1}^{\infty} b_k e^{-k\delta} \sin^2(\pi k \alpha) \ge \left(1 + rac{
ho_r}{2} + \epsilon\right) \mathcal{M} |\log \delta|,$$

 $\sqrt{\delta} \le |lpha| \le 1/2, \quad i = 1, 2, 3,$

for a constant \mathcal{M} .

▲圖▶ ★ 国▶ ★ 国▶

Improvements:

 We weaken Condition (III) to Condition (III)': For δ > 0 small enough and any ε > 0,

$$2\sum_{k=1}^{\infty} b_k e^{-k\delta} \sin^2(\pi k\alpha) \ge \left(1 + \frac{\rho_r}{2} + \epsilon\right) \mathcal{M} |\log \delta|,$$

$$\sqrt{\delta} \le |\alpha| \le 1/2, \quad i = 1, 2, 3,$$

for a constant \mathcal{M} .

 We also allow D(s) to have multiple poles on the real axis. This allows us to consider weights b_k = (^{k+l}) for l ≥ 2. The corresponding function D(s) has poles at integers 1,2,..., l+1. (Benvenuti, Feng Hanany, He (2007) J. High Energy Physics)

To get an asymptotic equation for δ_n , we use the Mellin transform of the Gamma function

$$e^{-u}=rac{1}{2\pi i}\int_{v-i\infty}^{v+i\infty}u^{-s}\Gamma(s)ds,\quad\Re(s)=v>0$$

to get

$$\sum_{k=1}^{\infty} b_k e^{-k\delta} = \frac{1}{2\pi i} \int_{\nu-i\infty}^{\nu+i\infty} \delta^{-s} \Gamma(s) D(s) ds,$$

for v in the half-plane of convergence of D(s). Suppose D(s) has exactly one pole at ρ_r . Shifting v to $\Re(v) < 0$ and taking the derivative of the preceding expression and setting it equal to -n gives

$$\sum_{k=1}^{\infty} b_k e^{-k\delta} = A_r \delta^{-\rho_r} \Gamma(\rho_r) + O(\delta^{C_0}),$$

where A_r is the residue of D(s) at $s = \rho_r$.

- 本部 とくき とくき とうき

In the case of assemblies, (for which $\frac{1}{k}Y_k \sim \text{Poisson}(b_k e^{-\delta k})$). taking derivatives with respect to δ and replacing δ by δ_n gives

$$n = A_r \Gamma(\rho_r + 1) \delta_n^{-\rho_r - 1} + O(\delta_n^{C_0 - 1}).$$

Therefore,

$$\delta_n = \left(\frac{n}{A_r \Gamma(\rho_r + 1)}\right)^{\frac{1}{\rho_r + 1}}$$

伺下 イヨト イヨト

We restrict to

$$f(z) = \prod_{k=1}^{\infty} S(a_k z^k)^{b_k}$$

for a function S(z) and sequences a_k , b_k .

• We assume a_k and b_k grow at most polynomially in k.

▲圖▶ ▲屋▶ ▲屋▶

We restrict to

$$f(z) = \prod_{k=1}^{\infty} S(a_k z^k)^{b_k}$$

for a function S(z) and sequences a_k , b_k .

- We assume a_k and b_k grow at most polynomially in k.
- We assume $\frac{d^2}{d\delta^2} \log S(e^{-\delta}) > 0$.

(4月) (3日) (3日) 日

We restrict to

$$f(z) = \prod_{k=1}^{\infty} S(a_k z^k)^{b_k}$$

for a function S(z) and sequences a_k , b_k .

- We assume a_k and b_k grow at most polynomially in k.
- We assume $\frac{d^2}{d\delta^2} \log S(e^{-\delta}) > 0$.
- We assume $\log S(z) = \sum_{j=1}^{\infty} \xi_j z^j$ with radius of convergence 1.

・吊り ・ヨン ・ヨン ・ヨ

We restrict to

$$f(z) = \prod_{k=1}^{\infty} S(a_k z^k)^{b_k}$$

for a function S(z) and sequences a_k , b_k .

- We assume a_k and b_k grow at most polynomially in k.
- We assume $\frac{d^2}{d\delta^2} \log S(e^{-\delta}) > 0$.
- We assume $\log S(z) = \sum_{j=1}^{\infty} \xi_j z^j$ with radius of convergence 1.

Define

$$\Lambda_k = \sum_{j|k} b_j a_j^{k/j} \xi_{k/j},$$

so that

$$\log f(z) = \sum_{k=1}^{\infty} \Lambda_k z^k.$$

・吊り ・ヨン ・ヨン ・ヨ

Define

$$D(s) = \sum_{k=1}^{\infty} \Lambda_k k^{-s}.$$

Theorem

Under three Meinardus conditions on D(s) and Λ_k ,

$$c_n \sim Hn^{-\frac{2+\rho_r-2A_0}{2(\rho_r+1)}} \exp\left(\sum_{l=0}^r P_l n^{\frac{\rho_l}{\rho_r+1}} + \sum_{l=0}^r h_l \sum_{s:\lambda_s \leq \rho_l} K_{s,l} n^{\frac{\rho_l-\lambda_s}{\rho_r+1}}\right)$$

for constants A_0 , H, h_l , P_l , $K_{s,l}$ where the poles of D(s) occur at the ρ_l and the λ_s are distances between the ρ_l .

<ロ> (四) (四) (三) (三) (三)

Example: Gentile statistics

Gentile statistics interpolate between Bose-Einstein and Fermi-Dirac statistics. They allow no more than $\eta - 1$, $\eta \ge 2$, repetitions of a part of any size. For Gentile statistics,

$$S(z) = 1 + z + z^2 + \cdots + z^{\eta-1} = \frac{1-z^{\eta}}{1-z},$$

 $a_k=b_k=1.$

Example: Gentile statistics

Gentile statistics interpolate between Bose-Einstein and Fermi-Dirac statistics. They allow no more than $\eta - 1$, $\eta \ge 2$, repetitions of a part of any size. For Gentile statistics,

$$S(z) = 1 + z + z^2 + \cdots + z^{\eta-1} = \frac{1-z^{\eta}}{1-z},$$

$$a_k = b_k = 1.$$
 $c_n \sim \sqrt{rac{\kappa}{4\pi\eta}} n^{-3/4} e^{2\kappa\sqrt{n}},$

where $\kappa = \sqrt{\zeta(2)(1 - \eta^{-1})}$ as predicted by Tran, Murthy Bhaduri (2004) Ann. Physics.

 $\sum_{n=1}^{\infty} c_n z^n = \prod_{k=1}^{\infty} (1 + b_k z^k) \text{ enumerates the number of partitions with at most 1 part of any given size. Suppose <math>b_k \sim y^k k^{-q}$. We take S(z) = 1 + z, $a_k = k^{-q}$ for q > 0, $b_k = 1$.

 $\sum_{n=1}^{\infty} c_n z^n = \prod_{k=1}^{\infty} (1 + b_k z^k) \text{ enumerates the number of partitions with at most 1 part of any given size. Suppose <math>b_k \sim y^k k^{-q}$. We take S(z) = 1 + z, $a_k = k^{-q}$ for q > 0, $b_k = 1$.

• For 0 < q < 1, we can apply our theorem. D(s) has poles at $1 - q, 1 - 2q, 1 - 3q, \ldots$

 $\sum_{n=1}^{\infty} c_n z^n = \prod_{k=1}^{\infty} (1 + b_k z^k) \text{ enumerates the number of partitions with at most 1 part of any given size. Suppose <math>b_k \sim y^k k^{-q}$. We take S(z) = 1 + z, $a_k = k^{-q}$ for q > 0, $b_k = 1$.

- For 0 < q < 1, we can apply our theorem. D(s) has poles at $1 q, 1 2q, 1 3q, \ldots$
- For q = 1 (polynomials over finite fields) $c_n \sim e^{-\gamma}$, where γ is Euler's constant (Knuth, Greene).

 $\sum_{n=1}^{\infty} c_n z^n = \prod_{k=1}^{\infty} (1 + b_k z^k) \text{ enumerates the number of partitions with at most 1 part of any given size. Suppose <math>b_k \sim y^k k^{-q}$. We take S(z) = 1 + z, $a_k = k^{-q}$ for q > 0, $b_k = 1$.

- For 0 < q < 1, we can apply our theorem. D(s) has poles at $1 q, 1 2q, 1 3q, \ldots$
- For q = 1 (polynomials over finite fields) $c_n \sim e^{-\gamma}$, where γ is Euler's constant (Knuth, Greene).
- For q > 1, our method does not apply, but by elementary methods we get

$$c_n \sim V(q) n^{-q}$$

for a constant V(q).

Based on

- J. London Math. Soc. (2006) B. Granovsky and D. Stark
- Adv. Appl. Math (2008) B. Granovsky, D. Stark and M. Erlihson
- Comm. Math. Physics (2012) B. Granovsky and D. Stark
- Work in progress with B. Granovsky

Thank You!

Dudley Stark Extending the Khintchine-Meinardus probabilistic method to ge

・ロン ・回 と ・ ヨン ・ ヨン

Э