Poisson-Dirichlet statistics for the extremes of log-correlated Gaussian fields

Louis-Pierre Arguin
Université de Montréal
joint work with
Olivier Zindy, Paris VI

Random combinatorial structures \& Stat Mech, Venice, May 2013

Outline

1. Log-Correlated Fields

- Hierarchical cases (Polymers on tree, BBM)
- Non-Hierarchical cases (2DGFF, MRM)

2. Main Result: Poisson-Dirichlet Statistics of the Gibbs weights (Gibbs measure is supported on extremes)
3. Ideas of the Proof

- Multiscale Decomposition
- Tree approximation: Bolthausen, Deuschel, Giacomin
- Spin Glass tools: Ghirlanda-Guerra Identities, Bovier-Kurkova Lemma

4. Beyond the Gibbs measure: the Extremal Process
5. Examples of log-correlated fields

An example: Gaussian Field on a binary tree

- Consider a binary tree with n generations.
Let \mathcal{T}_{n} be the leaves $\left|\mathcal{T}_{n}\right|=2^{n}$.

An example: Gaussian Field on a binary tree

- Consider a binary tree with n generations.
Let \mathcal{T}_{n} be the leaves $\left|\mathcal{T}_{n}\right|=2^{n}$.
- Let $\left(g_{e}\right)$ be i.i.d. $\mathcal{N}(0,1)$ on each edge e.
Consider $X=\left(X_{v}, v \in \mathcal{T}_{n}\right)$

$$
X_{v}=\sum_{e: \emptyset \rightarrow v} g_{e}
$$

An example: Gaussian Field on a binary tree

- Consider a binary tree with n generations.
Let \mathcal{T}_{n} be the leaves $\left|\mathcal{T}_{n}\right|=2^{n}$.
- Let $\left(g_{e}\right)$ be i.i.d. $\mathcal{N}(0,1)$ on each edge e.
Consider $X=\left(X_{v}, v \in \mathcal{T}_{n}\right)$

$$
X_{v}=\sum_{e: \emptyset \rightarrow v} g_{e}
$$

- $\mathbb{E}\left[X_{v}^{2}\right]=n$ $\mathbb{E}\left[X_{v} X_{v^{\prime}}\right]=$ time of branching

An example: Gaussian Field on a binary tree

- Consider a binary tree with n generations.
Let \mathcal{T}_{n} be the leaves $\left|\mathcal{T}_{n}\right|=2^{n}$.
- Let $\left(g_{e}\right)$ be i.i.d. $\mathcal{N}(0,1)$ on each edge e.
Consider $X=\left(X_{v}, v \in \mathcal{T}_{n}\right)$

$$
X_{v}=\sum_{e: \emptyset \rightarrow v} g_{e}
$$

- $\mathbb{E}\left[X_{v}^{2}\right]=n$ $\mathbb{E}\left[X_{v} X_{v^{\prime}}\right]=$ time of branching
- For any $0 \leq r \leq 1$

$$
\#\left\{v^{\prime}: \mathbb{E}\left[X_{v} X_{v^{\prime}}\right] \geq r n\right\}=\frac{2^{n}}{2^{r n}}
$$

An example: Gaussian Field on a binary tree

- Consider a binary tree with n generations.
Let \mathcal{T}_{n} be the leaves $\left|\mathcal{T}_{n}\right|=2^{n}$.
- Let $\left(g_{e}\right)$ be i.i.d. $\mathcal{N}(0,1)$ on each edge e.
Consider $X=\left(X_{v}, v \in \mathcal{T}_{n}\right)$

$$
X_{v}=\sum_{e: \emptyset \rightarrow v} g_{e}
$$

- $\mathbb{E}\left[X_{v}^{2}\right]=n$ $\mathbb{E}\left[X_{v} X_{v^{\prime}}\right]=$ time of branching
- For any $0 \leq r \leq 1$

$$
\#\left\{v^{\prime}: \mathbb{E}\left[X_{v} X_{v^{\prime}}\right] \geq r n\right\}=\frac{2^{n}}{2^{r n}}
$$

- Correlations are hierarchical: two correlations of a triplet $v, v^{\prime}, v^{\prime \prime}$ must be equal.

Log-correlated Gaussian fields

- Consider a Gaussian field

$$
\left(X_{v}, v \in \mathcal{X}_{n}\right)
$$

indexed by 2^{n} points in Euclidean space, say $[0,1]$.

- $\mathbb{E}\left[X_{v}^{2}\right]=n$ and for $c\left(v, v^{\prime}\right):=\mathbb{E}\left[X_{v} X_{v}^{\prime}\right]$

$$
\frac{1}{2^{n}} \#\left\{v^{\prime}: c\left(v, v^{\prime}\right) \geq r n\right\}=\frac{1}{2^{r n}}
$$

Log-correlated Gaussian fields

- Consider a Gaussian field

$$
\left(X_{v}, v \in \mathcal{X}_{n}\right)
$$

indexed by 2^{n} points in Euclidean space, say $[0,1]$.

- $\mathbb{E}\left[X_{v}^{2}\right]=n$ and for $c\left(v, v^{\prime}\right):=\mathbb{E}\left[X_{v} X_{v}^{\prime}\right]$

$$
\frac{1}{2^{n}} \#\left\{v^{\prime}: c\left(v, v^{\prime}\right) \geq r n\right\}=\frac{1}{2^{r n}}
$$

- Thus, $c\left(v, v^{\prime}\right)$ must be log-correlated

$$
c\left(v, v^{\prime}\right) \sim-\log \left\|v-v^{\prime}\right\|
$$

where $\left\|v-v^{\prime}\right\|$ is the Euclidean distance

Log-correlated Gaussian fields

- Consider a Gaussian field

$$
\left(X_{v}, v \in \mathcal{X}_{n}\right)
$$

indexed by 2^{n} points in Euclidean space, say $[0,1]$.

- $\mathbb{E}\left[X_{v}^{2}\right]=n$ and for $c\left(v, v^{\prime}\right):=\mathbb{E}\left[X_{v} X_{v}^{\prime}\right]$

$$
\frac{1}{2^{n}} \#\left\{v^{\prime}: c\left(v, v^{\prime}\right) \geq r n\right\}=\frac{1}{2^{r n}}
$$

- Thus, $c\left(v, v^{\prime}\right)$ must be log-correlated

$$
c\left(v, v^{\prime}\right) \sim-\log \left\|v-v^{\prime}\right\|
$$

where $\left\|v-v^{\prime}\right\|$ is the Euclidean distance

Non-hierarchical example: 2D discrete GFF

- Consider a box $\mathcal{V}_{n} \subset \mathbb{Z}^{2}$ with 2^{n} points.
- $\left(X_{v}, v \in \mathcal{V}_{n}\right)$ Gaussian field with

$$
\mathbb{E}\left[X_{v} X_{v^{\prime}}\right]=E^{v}\left[\sum_{k=0}^{\tau_{\partial V_{n}}} 1_{\left\{S_{k}=v^{\prime}\right\}}\right]
$$

$\left(S_{k}\right)_{k \geq 0}$ SRW starting at v.

- The field is \log-correlated

$$
\begin{aligned}
\mathbb{E}\left[X_{v}^{2}\right] & =\frac{1}{\pi} \log 2^{n}+O(1) \\
\mathbb{E}\left[X_{v} X_{v^{\prime}}\right] & =\frac{1}{\pi} \log \frac{2^{n}}{\left\|v-v^{\prime}\right\|}+O(1)
\end{aligned}
$$

Figure by Samuel April

Non-hierarchical example in 1D

We focus on a particular representation based on Bacry \& Muzy '03 Multifractal Random Measure.
They consider a random measure μ on $[0,1] \sim \times[0,1 / 2]$ such that:

Non-hierarchical example in 1D

We focus on a particular representation based on Bacry \& Muzy '03 Multifractal Random Measure.
They consider a random measure μ on $[0,1]_{\sim} \times[0,1 / 2]$ such that:

1. $\mu(A) \sim \mathcal{N}(0, \theta(A))$

Non-hierarchical example in 1D

We focus on a particular representation based on Bacry \& Muzy '03 Multifractal Random Measure.
They consider a random measure μ on $[0,1]_{\sim} \times[0,1 / 2]$ such that:

1. $\mu(A) \sim \mathcal{N}(0, \theta(A))$
2. $\theta(A)=\int_{A} y^{-2} d x d y$

Non-hierarchical example in 1D

We focus on a particular representation based on Bacry \& Muzy '03 Multifractal Random Measure.
They consider a random measure μ on $[0,1]_{\sim} \times[0,1 / 2]$ such that:

1. $\mu(A) \sim \mathcal{N}(0, \theta(A))$
2. $\theta(A)=\int_{A} y^{-2} d x d y$
3. $A \cap B=\emptyset \Leftrightarrow$ $\mu(A) \perp \mu(B)$.

Example in 1D

We construct a field ($X_{v}, v \in \mathcal{X}_{n}$) on 2^{n} points.

Example in 1D

We construct a field ($X_{v}, v \in \mathcal{X}_{n}$) on 2^{n} points.

- $\mathcal{X}_{n}: 2^{n}$ equidistant points on $[0,1]$.

Example in 1D

We construct a field ($X_{v}, v \in \mathcal{X}_{n}$) on 2^{n} points.

- $\mathcal{X}_{n}: 2^{n}$ equidistant points on $[0,1]_{\sim}$.
- $X_{v}=\mu\left(A_{n}(v)\right)$ cones of slope $1 / 2$ truncated at 2^{-n}

Example in 1D

We construct a field ($X_{v}, v \in \mathcal{X}_{n}$) on 2^{n} points.

- $\mathcal{X}_{n}: 2^{n}$ equidistant points on $[0,1]_{\sim}$.
- $X_{v}=\mu\left(A_{n}(v)\right)$ cones of slope $1 / 2$ truncated at 2^{-n}

Example in 1D

We construct a field ($X_{v}, v \in \mathcal{X}_{n}$) on 2^{n} points.

- $\mathcal{X}_{n}: 2^{n}$ equidistant points on $[0,1]$.
- $X_{v}=\mu\left(A_{n}(v)\right)$ cones of slope $1 / 2$ truncated at 2^{-n}

$$
\begin{aligned}
\mathbb{E}\left[X_{v}^{2}\right] & =\int_{A_{n}(v)} y^{-2} d x d y=n \log 2+O(1) \\
\mathbb{E}\left[X_{v} X_{v^{\prime}}\right] & =\int_{A_{n}(v) \cap A_{n}\left(v^{\prime}\right)} y^{-2} d x d y=-\log \left|v-v^{\prime}\right|+O(1)
\end{aligned}
$$

Example in 1D

We construct a field ($X_{v}, v \in \mathcal{X}_{n}$) on 2^{n} points.

- $\mathcal{X}_{n}: 2^{n}$ equidistant points on $[0,1]_{\sim}$.
- $X_{v}=\mu\left(A_{n}(v)\right)$ cones of slope $1 / 2$ truncated at 2^{-n}

Correlations are not hierarchical :
For a triplet $v, v^{\prime}, v^{\prime \prime}$, equality of two correlations is not ensured.
2. Main results: PD statistics

Correlations and Extremal Statistics

Goal: Understand the statistics of the high values (extremes) of the log-correlated field $\left(X_{v}, v \in \mathcal{X}_{n}\right)$

- Gaussian fields considered have strong correlations, of the order of the variance (\sim spin glasses).
- The problem of determining fine statistics (law of the maximum, point process of extremes) is typically very hard.
- A more robust approach, but coarser, is through the Gibbs weights.

Correlations and Extremal Statistics

Goal: Understand the statistics of the high values (extremes) of the log-correlated field ($X_{v}, v \in \mathcal{X}_{n}$) as $n \rightarrow \infty$.

- Free energy: $\beta>0, Z_{n}(\beta)=\sum_{v \in \mathcal{X}_{n}} e^{\beta X_{v}}$

$$
f(\beta):=\lim _{n \rightarrow \infty} \frac{1}{\log 2^{n}} \log Z_{n}(\beta)
$$

- Gibbs measure: Measure on \mathcal{X}_{n} concentrating on extremes as $\beta \rightarrow \infty$

$$
\langle\cdot\rangle_{\beta, n}=\frac{\sum_{v \in \mathcal{X}_{n}}(\cdot) e^{\beta X_{v}}}{Z_{n}(\beta)}
$$

- Overlap distribution: Normalized covariance $q\left(v, v^{\prime}\right)=\frac{\mathbb{E}\left[X_{v} X_{v}^{\prime}\right]}{\mathbb{E}\left[X_{v}^{2}\right]}$

$$
x_{\beta, n}(r):=\mathbb{E}\left[\left\langle 1_{\left\{q\left(v, v^{\prime}\right) \leq r\right\}}\right\rangle_{\beta, n}^{\times 2}\right]
$$

Extremal Statistics for IID variables (REM model)

Suppose $\left(X_{v}, v \in \mathcal{X}_{n}\right)$ are IID of variance $n \log 2$.

Extremal Statistics for IID variables (REM model)

Suppose ($X_{v}, v \in \mathcal{X}_{n}$) are IID of variance $n \log 2$.

- Free energy: a.s. and in L^{1}

$$
\lim _{n \rightarrow \infty} \frac{1}{\log 2^{n}} \log Z_{n}(\beta):= \begin{cases}\log 2+\frac{\beta^{2} \log 2}{2} & \beta \leq \beta_{c}:=\sqrt{2} \\ \sqrt{2} \log 2 \beta & \beta \geq \beta_{c}\end{cases}
$$

Extremal Statistics for IID variables (REM model)

Suppose ($X_{v}, v \in \mathcal{X}_{n}$) are IID of variance $n \log 2$.

- Free energy: a.s. and in L^{1}

$$
\lim _{n \rightarrow \infty} \frac{1}{\log 2^{n}} \log Z_{n}(\beta):= \begin{cases}\log 2+\frac{\beta^{2} \log 2}{2} & \beta \leq \beta_{c}:=\sqrt{2} \\ \sqrt{2} \log 2 \beta & \beta \geq \beta_{c}\end{cases}
$$

- Overlap distribution: Normalized covariance $q\left(v, v^{\prime}\right)=\delta_{v v^{\prime}}$

$$
x_{\beta}(d r):=\lim _{n \rightarrow \infty} \mathbb{E}\left[\left\langle 1_{\left\{q\left(v, v^{\prime}\right) \in d r\right\}}\right\rangle_{\beta, n}^{\times 2}\right]= \begin{cases}\delta_{0} & \text { if } \beta \leq \beta_{c} \\ \frac{\beta_{c}}{\beta} \delta_{0}+\left(1-\frac{\beta_{c}}{\beta}\right) \delta_{1} & \text { if } \beta \geq \beta_{c}\end{cases}
$$

- Gibbs measure: For $\beta>\beta_{c}$, the Gibbs weights

$$
\left(\frac{e^{\beta X_{v}}}{Z_{n}(\beta)}, v \in \mathcal{X}_{n}\right)_{\downarrow} \longrightarrow \operatorname{PD}\left(\beta_{c} / \beta\right)
$$

The REM is said to exhibit 1-RSB.

Main results: Free energy

The Gaussian field ($X_{v}, v \in \mathcal{X}_{N}$) (cones) is 1-RSB:

Main results: Free energy

The Gaussian field $\left(X_{v}, v \in \mathcal{X}_{N}\right)$ (cones) is 1-RSB:

Theorem (A-Zindy '12)
The free energy is the same as the REM:

$$
\lim _{n \rightarrow \infty} \frac{1}{\log 2^{n}} \log Z_{n}(\beta)=\left\{\begin{array}{ll}
\log 2+\frac{\beta^{2} \log 2}{2} & \beta \leq \beta_{c}:=\sqrt{2} \\
\sqrt{2} \log 2 \beta & \beta \geq \beta_{c}
\end{array} \text { a.s. and in } L^{1}\right.
$$

Main results: Free energy

The Gaussian field $\left(X_{v}, v \in \mathcal{X}_{N}\right)$ (cones) is 1-RSB:

Theorem (A-Zindy '12)
The free energy is the same as the REM:

$$
\lim _{n \rightarrow \infty} \frac{1}{\log 2^{n}} \log Z_{n}(\beta)=\left\{\begin{array}{ll}
\log 2+\frac{\beta^{2} \log 2}{2} & \beta \leq \beta_{c}:=\sqrt{2} \\
\sqrt{2} \log 2 \beta & \beta \geq \beta_{c}
\end{array} \text { a.s. and in } L^{1}\right.
$$

- This was shown for BBM (hierarchical) by Derrida \& Spohn '88 based on the work of Bramson '78.

Main results: Free energy

The Gaussian field ($X_{v}, v \in \mathcal{X}_{N}$) (cones) is 1-RSB:

Theorem (A-Zindy '12)
The free energy is the same as the REM:

$$
\lim _{n \rightarrow \infty} \frac{1}{\log 2^{n}} \log Z_{n}(\beta)=\left\{\begin{array}{ll}
\log 2+\frac{\beta^{2} \log 2}{2} & \beta \leq \beta_{c}:=\sqrt{2} \\
\sqrt{2} \log 2 \beta & \beta \geq \beta_{c}
\end{array} \text { a.s. and in } L^{1}\right.
$$

- This was shown for BBM (hierarchical) by Derrida \& Spohn '88 based on the work of Bramson '78.
- The result for non-hierarchical field was conjectured by Carpentier \& Ledoussal '00.

Main results: Free energy

The Gaussian field ($X_{v}, v \in \mathcal{X}_{N}$) (cones) is 1-RSB:

Theorem (A-Zindy '12)
The free energy is the same as the REM:

$$
\lim _{n \rightarrow \infty} \frac{1}{\log 2^{n}} \log Z_{n}(\beta)=\left\{\begin{array}{ll}
\log 2+\frac{\beta^{2} \log 2}{2} & \beta \leq \beta_{c}:=\sqrt{2} \\
\sqrt{2} \log 2 \beta & \beta \geq \beta_{c}
\end{array} \text { a.s. and in } L^{1}\right.
$$

- This was shown for BBM (hierarchical) by Derrida \& Spohn '88 based on the work of Bramson '78.
- The result for non-hierarchical field was conjectured by Carpentier \& Ledoussal '00.
- The result follows from the works on 2DGFF of Bolthausen, Deuschel \& Giacomin '01, and Daviaud '06.

Main results: 1-RSB and PD weights

Theorem (A-Zindy '12)
The joint distribution of overlaps is the same as the REM: for $\beta \geq \beta_{c}$

Main results: 1-RSB and PD weights

Theorem (A-Zindy '12)
The joint distribution of overlaps is the same as the REM: for $\beta \geq \beta_{c}$ 1.

$$
x_{\beta}(d r)=\lim _{n \rightarrow \infty} \mathbb{E}\left[\left\langle 1_{\left\{q\left(v, v^{\prime}\right) \in d r\right\}}\right\rangle_{\beta, n}^{\times 2}\right]=\frac{\beta_{c}}{\beta} \delta_{0}+\left(1-\frac{\beta_{c}}{\beta}\right) \delta_{1}
$$

Main results: 1-RSB and PD weights

Theorem (A-Zindy '12)
The joint distribution of overlaps is the same as the REM: for $\beta \geq \beta_{c}$ 1.

$$
x_{\beta}(d r)=\lim _{n \rightarrow \infty} \mathbb{E}\left[\left\langle 1_{\left\{q\left(v, v^{\prime}\right) \in d r\right\}}\right\rangle_{\beta, n}^{\times 2}\right]=\frac{\beta_{c}}{\beta} \delta_{0}+\left(1-\frac{\beta_{c}}{\beta}\right) \delta_{1}
$$

2. Let F be a smooth function of the overlaps of s points.

$$
\mathbb{E}\left[\left\langle F\left(\left\{q\left(v_{k}, v_{l}\right)\right\}\right)\right\rangle_{\beta, n}^{\times s}\right] \rightarrow E\left[\sum_{i_{1}, i_{s}} \xi_{i_{1}} \ldots \xi_{i_{s}} F\left(\left\{\delta_{k l}\right\}\right)\right]
$$

where $\left(\xi_{i}, i \in \mathbb{N}\right)_{\downarrow}$ are $P D\left(\beta_{c} / \beta\right)$.

Main results: 1-RSB and PD weights

Theorem (A-Zindy '12)
The joint distribution of overlaps is the same as the REM: for $\beta \geq \beta_{c}$ 1.

$$
x_{\beta}(d r)=\lim _{n \rightarrow \infty} \mathbb{E}\left[\left\langle 1_{\left\{q\left(v, v^{\prime}\right) \in d r\right\}}\right\rangle_{\beta, n}^{\times 2}\right]=\frac{\beta_{c}}{\beta} \delta_{0}+\left(1-\frac{\beta_{c}}{\beta}\right) \delta_{1}
$$

2. Let F be a smooth function of the overlaps of s points.

$$
\mathbb{E}\left[\left\langle F\left(\left\{q\left(v_{k}, v_{l}\right)\right\}\right)\right\rangle_{\beta, n}^{\times s}\right] \rightarrow E\left[\sum_{i_{1}, i_{s}} \xi_{i_{1}} \ldots \xi_{i_{s}} F\left(\left\{\delta_{k l}\right\}\right)\right]
$$

where $\left(\xi_{i}, i \in \mathbb{N}\right)_{\downarrow}$ are $P D\left(\beta_{c} / \beta\right)$.

- This was shown in the hierarchical case by Bovier \& Kurkova '04.

Main results: 1-RSB and PD weights

Theorem (A-Zindy '12)
The joint distribution of overlaps is the same as the REM: for $\beta \geq \beta_{c}$ 1.

$$
x_{\beta}(d r)=\lim _{n \rightarrow \infty} \mathbb{E}\left[\left\langle 1_{\left\{q\left(v, v^{\prime}\right) \in d r\right\}}\right\rangle_{\beta, n}^{\times 2}\right]=\frac{\beta_{c}}{\beta} \delta_{0}+\left(1-\frac{\beta_{c}}{\beta}\right) \delta_{1}
$$

2. Let F be a smooth function of the overlaps of s points.

$$
\mathbb{E}\left[\left\langle F\left(\left\{q\left(v_{k}, v_{l}\right)\right\}\right)\right\rangle_{\beta, n}^{\times s}\right] \rightarrow E\left[\sum_{i_{1}, i_{s}} \xi_{i_{1}} \ldots \xi_{i_{s}} F\left(\left\{\delta_{k l}\right\}\right)\right]
$$

where $\left(\xi_{i}, i \in \mathbb{N}\right)_{\downarrow}$ are $P D\left(\beta_{c} / \beta\right)$.

- This was shown in the hierarchical case by Bovier \& Kurkova '04.
- This shows the Ultrametricity Conjecture for the field considered: Correlations not hierarchical for finite n, but are in the limit $n \rightarrow \infty$!

Main results: 1-RSB and PD weights

Theorem (A-Zindy '12)
The joint distribution of overlaps is the same as the REM: for $\beta \geq \beta_{c}$ 1.

$$
x_{\beta}(d r)=\lim _{n \rightarrow \infty} \mathbb{E}\left[\left\langle 1_{\left\{q\left(v, v^{\prime}\right) \in d r\right\}}\right\rangle_{\beta, n}^{\times 2}\right]=\frac{\beta_{c}}{\beta} \delta_{0}+\left(1-\frac{\beta_{c}}{\beta}\right) \delta_{1}
$$

2. Let F be a smooth function of the overlaps of s points.

$$
\mathbb{E}\left[\left\langle F\left(\left\{q\left(v_{k}, v_{l}\right)\right\}\right)\right\rangle_{\beta, n}^{\times s}\right] \rightarrow E\left[\sum_{i_{1}, i_{s}} \xi_{i_{1}} \ldots \xi_{i_{s}} F\left(\left\{\delta_{k l}\right\}\right)\right]
$$

where $\left(\xi_{i}, i \in \mathbb{N}\right)_{\downarrow}$ are $P D\left(\beta_{c} / \beta\right)$.

- This was shown in the hierarchical case by Bovier \& Kurkova '04.
- This shows the Ultrametricity Conjecture for the field considered: Correlations not hierarchical for finite n, but are in the limit $n \rightarrow \infty$!
- Open questions: What about other test-functions ? Conjectured in Duplantier, Rhodes, Sheffield \& Vargas '12

3. Some ideas of the proof

Ideas of the Proofs

The method of proof is robust and is applicable to other log-correlated fields

- Bacry \& Muzy construction on $[0,1]^{d}$ (Multifractal Random Measure)
- 2D discrete Gaussian free field

We restrict to the 1D case for simplicity.

Ideas of the Proofs

The method of proof is robust and is applicable to other log-correlated fields

- Bacry \& Muzy construction on $[0,1]^{d}$ (Multifractal Random Measure)
- 2D discrete Gaussian free field

We restrict to the 1D case for simplicity.

1. Spin glass: GG Identities and AC Stochastic Stability
2. Multi-scale decomposition
3. Spin glass: Bovier \& Kurkova technique '04
4. Tree approximation (Bolthausen-Deuschel-Giacomin '01, Daviaud '06)

1. Gibbs Measures of Gaussian Fields

Theorem (Panchenko '10)
If the free energy is differentiable at $\beta>0$, then the field concentrates:

$$
\frac{1}{\log 2^{2}} \mathbb{E}\langle | X_{v}-\mathbb{E}\left[\left\langle X_{v}\right\rangle_{\beta, n}\right]| \rangle_{\beta, n} \rightarrow 0 .
$$

1. Gibbs Measures of Gaussian Fields

Theorem (Panchenko '10)
If the free energy is differentiable at $\beta>0$, then the field concentrates:

$$
\frac{1}{\log 2^{n}} \mathbb{E}\left\langle\mid X_{v}-\mathbb{E}\left[\left\langle X_{v}\right\rangle_{\beta, n}\right]\right\rangle_{\beta, n} \rightarrow 0 .
$$

In particular, by integration by parts, for any smooth F,
$\mathbb{E}\left[\left\langle q\left(v_{1}, v_{s+1}\right) F\left(\left\{q\left(v_{i}, v_{j}\right)\right\}_{i, j \leq s}\right)\right\rangle_{\beta, n}^{\times s+1}\right]$

1. Gibbs Measures of Gaussian Fields

Theorem (Panchenko '10)
If the free energy is differentiable at $\beta>0$, then the field concentrates:

$$
\frac{1}{\log 2^{2}} \mathbb{E}\left\langle\mid X_{v}-\mathbb{E}\left[\left\langle X_{v}\right\rangle_{\beta, n}\right]\right\rangle_{\beta, n} \rightarrow 0 .
$$

In particular, by integration by parts, for any smooth F,

$$
\begin{aligned}
& \mathbb{E}\left[\left\langle q\left(v_{1}, v_{s+1}\right) F\left(\left\{q\left(v_{i}, v_{j}\right)\right\}_{i, j \leq s}\right)\right\rangle_{\beta, n}^{\times s+1}\right]= \\
& \frac{1}{s} \mathbb{E}\left[\left\langle q\left(v_{1}, v_{2}\right)\right\rangle_{\beta, n}^{\times 2}\right] \mathbb{E}\left[\left\langle F\left(\left\{q\left(v_{i}, v_{j}\right)\right\}\right)\right\rangle_{\beta, n}^{\times s}\right]
\end{aligned}
$$

1. Gibbs Measures of Gaussian Fields

Theorem (Panchenko '10)
If the free energy is differentiable at $\beta>0$, then the field concentrates:

$$
\frac{1}{\log 2^{2}} \mathbb{E}\langle | X_{v}-\mathbb{E}\left[\left\langle X_{v}\right\rangle_{\beta, n}\right]| \rangle_{\beta, n} \rightarrow 0 .
$$

In particular, by integration by parts, for any smooth F,

$$
\begin{aligned}
& \mathbb{E}\left[\left\langle q\left(v_{1}, v_{s+1}\right) F\left(\left\{q\left(v_{i}, v_{j}\right)\right\}_{i, j \leq s}\right)\right\rangle_{\beta, n}^{\times s+1}\right]= \\
& \frac{1}{s} \mathbb{E}\left[\left\langle q\left(v_{1}, v_{2}\right)\right\rangle_{\beta, n}^{\times 2}\right] \mathbb{E}\left[\left\langle F\left(\left\{q\left(v_{i}, v_{j}\right)\right\}\right)\right\rangle_{\beta, n}^{\times s}\right] \\
& \\
& +\frac{1}{s} \sum_{k=2}^{s} \mathbb{E}\left[\left\langle q\left(v_{1}, v_{k}\right) F\left(\left\{q\left(v_{i}, v_{j}\right)\right\}\right)\right\rangle_{\beta, n}^{\times s}\right]+o(1)
\end{aligned}
$$

1. Gibbs Measures of Gaussian Fields

Theorem (Panchenko '10)
If the free energy is differentiable at $\beta>0$, then the field concentrates:

$$
\frac{1}{\log 2^{2}} \mathbb{E}\langle | X_{v}-\mathbb{E}\left[\left\langle X_{v}\right\rangle_{\beta, n}\right]| \rangle_{\beta, n} \rightarrow 0 .
$$

In particular, by integration by parts, for any smooth F,

$$
\begin{aligned}
& \mathbb{E}\left[\left\langle q\left(v_{1}, v_{s+1}\right) F\left(\left\{q\left(v_{i}, v_{j}\right)\right\}_{i, j \leq s}\right)\right\rangle_{\beta, n}^{\times s+1}\right]= \\
& \frac{1}{s} \mathbb{E}\left[\left\langle q\left(v_{1}, v_{2}\right)\right\rangle_{\beta, n}^{\times 2}\right] \mathbb{E}\left[\left\langle F\left(\left\{q\left(v_{i}, v_{j}\right)\right\}\right)\right\rangle_{\beta, n}^{\times s}\right] \\
& \\
& +\frac{1}{s} \sum_{k=2}^{s} \mathbb{E}\left[\left\langle q\left(v_{1}, v_{k}\right) F\left(\left\{q\left(v_{i}, v_{j}\right)\right\}\right)\right\rangle_{\beta, n}^{\times s}\right]+o(1)
\end{aligned}
$$

Ghirlanda-Guerra Identities

1. Gibbs Measures of Gaussian Fields

Theorem (Panchenko '10)

If the free energy is differentiable at $\beta>0$, then the field concentrates:

$$
\frac{1}{\log 2^{n}} \mathbb{E}\langle | X_{v}-\mathbb{E}\left[\left\langle X_{v}\right\rangle_{\beta, n}\right]| \rangle_{\beta, n} \rightarrow 0
$$

In particular, by integration by parts, for any smooth F,

$$
\begin{aligned}
& \mathbb{E}\left[\left\langle q\left(v_{1}, v_{s+1}\right) F\left(\left\{q\left(v_{i}, v_{j}\right)\right\}_{i, j \leq s}\right)\right\rangle_{\beta, n}^{\times s+1}\right]= \\
& \frac{1}{s} \mathbb{E}\left[\left\langle q\left(v_{1}, v_{2}\right)\right\rangle_{\beta, n}^{\times 2}\right] \mathbb{E}\left[\left\langle F\left(\left\{q\left(v_{i}, v_{j}\right)\right\}\right)\right\rangle_{\beta, n}^{\times s}\right] \\
&+\frac{1}{s} \sum_{k=2}^{s} \mathbb{E}\left[\left\langle q\left(v_{1}, v_{k}\right) F\left(\left\{q\left(v_{i}, v_{j}\right)\right\}\right)\right\rangle_{\beta, n}^{\times s}\right]+o(1)
\end{aligned}
$$

- In the case where $q\left(v, v^{\prime}\right) \rightarrow \delta_{v v^{\prime}}$, the GG identities characterizes PD distributions (Talagrand '03).
- GG identities are at the core of Ultrametricity (Aizenman-A '08, Panchenko '09 '12).

1. Gibbs Measures of Gaussian Fields

Theorem (Panchenko '10)
If the free energy is differentiable at $\beta>0$, then the field concentrates:

$$
\frac{1}{\log 2^{n}} \mathbb{E}\left|\left\langle X_{v}\right\rangle_{\beta, n}-\mathbb{E}\left[\left\langle X_{v}\right\rangle_{\beta, n}\right]\right| \rightarrow 0
$$

In particular, by integration by parts, for any smooth F,

$$
\begin{aligned}
& \mathbb{E}\left[\left\langle q\left(v_{1}, v_{s+1}\right) F\left(\left\{q\left(v_{i}, v_{j}\right)\right\}\right)\right\rangle_{\beta, n}^{\times s+1}\right]= \\
& \frac{1}{s} \mathbb{E}\left[\left\langle q\left(v_{1}, v_{2}\right)\right\rangle_{\beta, n}^{\times 2}\right] \mathbb{E}\left[\left\langle F\left(\left\{q\left(v_{i}, v_{j}\right)\right\}\right)\right\rangle_{\beta, n}^{\times s}\right] \\
&+\frac{1}{s} \sum_{k=2}^{s} \mathbb{E}\left[\left\langle q\left(v_{1}, v_{k}\right) F\left(\left\{q\left(v_{i}, v_{j}\right)\right\}\right)\right\rangle_{\beta, n}^{\times s}\right]+o(1)
\end{aligned}
$$

Reduces the problem to computing $x_{\beta}(r)$.

2. Multi-scale Decomposition

- Independence of disjoint sets \rightarrow multiscale decomposition in strips

2. Multi-scale Decomposition

- Independence of disjoint sets \rightarrow multiscale decomposition in strips
- Pick $\alpha=\left(\alpha_{1}, \alpha_{2}\right), 0<\alpha_{1}<\alpha_{2}<1$, and $\sigma=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$.

2. Multi-scale Decomposition

- Independence of disjoint sets \rightarrow multiscale decomposition in strips
- Pick $\alpha=\left(\alpha_{1}, \alpha_{2}\right), 0<\alpha_{1}<\alpha_{2}<1$, and $\sigma=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$.
- Write $Y^{(\sigma, \alpha)}=\left(Y_{v}^{(\sigma, \alpha)}, n \in \mathcal{X}_{n}\right)$ for the Gaussian field

$$
Y_{v}^{(\sigma, \alpha)}=\sigma_{1} \mu\left(A_{n}^{1}(v)\right)+\sigma_{2} \mu\left(A_{n}^{2}(v)\right)+\sigma_{3} \mu\left(A_{n}^{3}(v)\right)
$$

2. Multi-scale Decomposition

- Independence of disjoint sets \rightarrow multiscale decomposition in strips
- Pick $\alpha=\left(\alpha_{1}, \alpha_{2}\right), 0<\alpha_{1}<\alpha_{2}<1$, and $\sigma=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$.
- Write $Y^{(\sigma, \alpha)}=\left(Y_{v}^{(\sigma, \alpha)}, n \in \mathcal{X}_{n}\right)$ for the Gaussian field

$$
Y_{v}^{(\sigma, \alpha)}=\sigma_{1} \mu\left(A_{n}^{1}(v)\right)+\sigma_{2} \mu\left(A_{n}^{2}(v)\right)+\sigma_{3} \mu\left(A_{n}^{3}(v)\right)
$$

- This is similar to a GREM (Derrida '85).

3. The Bovier-Kurkova technique

- Bovier \& Kurkova '04 obtained the overlap distribution of a continuous version of the GREM by considering perturbation of the model.
- For $0<r<1, \delta$ and u small.

3. The Bovier-Kurkova technique

- For $0<r<1, \delta$ small and u close to 1

$$
x_{\beta}(r)=\lim _{n \rightarrow \infty} \mathbb{E}\left\langle 1_{\left\{q\left(v, v^{\prime}\right) \leq r\right\}}\right\rangle_{\beta, n}^{\times 2} \quad Z_{n}^{(u, r, \delta)}(\beta)=\sum_{v \in \mathcal{X}_{n}} e^{\beta Y^{(u, r, \delta)(v)}}
$$

Lemma (Bovier \& Kurkova '04)

$$
\beta^{2} \int_{r}^{r+\delta} x_{\beta}(s) d s=\left.\frac{d}{d u}\left(\lim _{n \rightarrow \infty} \frac{1}{n \log 2} \mathbb{E} \log Z_{n}^{(u, r, \delta)}(\beta)\right)\right|_{u=0}
$$

4. BDG tree approximation

To compute the free energy, it suffices to compute the log-number of high points

$$
\mathcal{E}^{(\sigma, \alpha)}(\gamma)=\lim _{n \rightarrow \infty} \frac{\log \#\left\{v \in \mathcal{X}_{n}: Y_{v}^{(\sigma, \alpha)} \geq \gamma \sqrt{2} \log 2 n\right\}}{\log 2^{n}} \text { in prob. }
$$

Theorem

- Daviaud '06: Case $\sigma_{1}=\sigma_{2}=\sigma_{3}=1$

$$
\left.\mathcal{E}(\gamma)=1-\gamma^{2} \quad \text { like } I I D\right)
$$

- A-Zindy '12: The number of high points $\mathcal{E}^{(\sigma, \alpha)}(\gamma)$ is the same as for the $\operatorname{GREM}(\sigma, \alpha)$.

4. BDG tree approximation

- Divide the 2^{n} points into $2^{n r}$ boxes with $2^{n(1-r)}$ points/box (offspring)
- Contribution at scale $2^{-n r}$ is not the same for the points in the box.
- Log-Miracle \#1:

Non-common part is smaller than the common part: $1 \ll r n \log 2$.

4. BDG tree approximation

- Divide the 2^{n} points into $2^{n r}$ boxes with $2^{n(1-r)}$ points/box (offspring)
- Contribution at scale $2^{-n r}$ is not the same for the points in the box.
- Log-Miracle \#1:

Non-common part is smaller than the common part: $1 \ll r n \log 2$.

4. BDG tree approximation

- Divide the 2^{n} points into $2^{n r}$ boxes with $2^{n(1-r)}$ points/box (offspring)
- Contribution at scale $2^{-n r}$ is not the same for the points in the box.
- Log-Miracle \#1:

Non-common part is smaller than the common part: $1 \ll r n \log 2$.

- The offspring within a box are not independent.
- Log-Miracle \#2:

The offspring of two boxes are independent at scale below $2^{-n r}$. Enough independent boxes for the offspring to reach a high value.

- Bolthausen, Deuschel \& Giacomin '01 and Daviaud '06 uses this approximation to compute the first order of the maximum and the log-number of high points in the 2D GFF.

4. BDG tree approximation

- The offspring within a box are not independent.
- Log-Miracle \#2: The offspring of two boxes are independent at scale below $2^{-n r}$. Enough independent boxes for the offspring to reach a high value.

- Bolthausen, Deuschel \& Giacomin '01 and Daviaud '06 uses this approximation to compute the first order of the maximum and the log-number of high points in the 2D GFF.

4. Beyond the Gibbs measure: the Extremal process

Beyond the Gibbs measure: the Extremal Process

The analysis of the extremal process

$$
\left(X_{v}, v \in \mathcal{X}_{n}\right) \text { close to } \max _{v} X_{v}
$$

is much more delicate than the one of the Gibbs measure.

Not in the same universality class as the REM.

Hierarchical case

- Bramson '78: for BBM, $\max _{v} X_{v}-m(n)$ converges as $n \rightarrow \infty$ for an appropriate $m(n)$.
- The limit law is not Gumbel as in the REM.
- ($\left.X_{v}-m(n), v \in \mathcal{T}_{n}\right)$ converges to a Poisson cluster process (A, Bovier \& Kistler '11, Aïdekon. Berestycki, Brunet \& Shi '11).

Beyond the Gibbs measure: the Extremal Process

The analysis of the extremal process

$$
\left(X_{v}, v \in \mathcal{X}_{n}\right) \text { close to } \max _{v} X_{v}
$$

is much more delicate than the one of the Gibbs measure.
Universality class of log-correlated fields
Non-Hierarchical case (cones, 2DGFF, etc)

- The extremal process should be like the one of BBM: Carpentier \& Ledoussal '00, Fyodorov \& Bouchaud '08.
- Recent results: BDG '01, Bramson \& Zeitouni '10, Ding \& Zeitouni '12, Duplantier, Rhodes, Sheffield \& Vargas '12
- Convergence of max: Bramson, Ding, Zeitouni '13
- Result on Extremal process: Biskup \& Louidor '13

Thank you!

