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1. Log-Correlated Fields
I Hierarchical cases (Polymers on tree, BBM)
I Non-Hierarchical cases (2DGFF, MRM)

2. Main Result: Poisson-Dirichlet Statistics of the Gibbs weights
(Gibbs measure is supported on extremes)

3. Ideas of the Proof
I Multiscale Decomposition
I Tree approximation: Bolthausen, Deuschel, Giacomin
I Spin Glass tools: Ghirlanda-Guerra Identities, Bovier-Kurkova Lemma

4. Beyond the Gibbs measure: the Extremal Process



1. Examples of log-correlated fields



An example: Gaussian Field on a binary tree

I Consider a binary tree with n
generations.
Let Tn be the leaves |Tn| = 2n.

I Let (ge) be i.i.d. N (0, 1) on
each edge e.
Consider X = (Xv, v ∈ Tn)

Xv =
∑
e:∅→v

ge

I E[X2
v ] = n

E[XvXv′ ] = time of branching
I For any 0 ≤ r ≤ 1

#{v′ : E[XvXv′ ] ≥ rn} =
2n

2rn

;

1

I Correlations are hierarchical:
two correlations of a triplet v, v′, v′′ must be equal.
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Log-correlated Gaussian fields

I Consider a Gaussian field

(Xv, v ∈ Xn)

indexed by 2n points in Euclidean space, say [0, 1].

I E[X2
v ] = n and for c(v, v′) := E[XvX ′v]

1

2n
#{v′ : c(v, v′) ≥ rn} = 1

2rn

I Thus, c(v, v′) must be log-correlated

c(v, v′) ∼ − log ‖v − v′‖

where ‖v − v′‖ is the Euclidean distance
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Non-hierarchical example: 2D discrete GFF

I Consider a box Vn ⊂ Z2 with 2n

points.
I (Xv, v ∈ Vn) Gaussian field with

E[XvXv′ ] = Ev
[τ∂Vn∑
k=0

1{Sk=v′}

]
.

(Sk)k≥0 SRW starting at v.
I The field is log-correlated

E[X2
v ] =

1

π
log 2n +O(1)

E[XvXv′ ] =
1

π
log

2n

‖v − v′‖ +O(1)
Figure by Samuel April



Non-hierarchical example in 1D

We focus on a particular representation based on Bacry & Muzy ’03
Multifractal Random Measure.
They consider a random measure µ on [0, 1]∼ × [0, 1/2] such that:

1. µ(A) ∼ N (0, θ(A))

2. θ(A) =
∫
A
y−2dxdy

3. A ∩B = ∅ ⇔
µ(A)⊥µ(B).
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Example in 1D

We construct a field (Xv, v ∈ Xn) on 2n points.

I Xn: 2n equidistant
points on [0, 1]∼.

I Xv = µ(An(v))
cones of slope 1/2
truncated at 2−n
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E[X2
v ] =

∫
An(v)
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Example in 1D

We construct a field (Xv, v ∈ Xn) on 2n points.

I Xn: 2n equidistant
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Correlations are not hierarchical :
For a triplet v, v′, v′′, equality of two correlations is not ensured.



2. Main results: PD statistics



Correlations and Extremal Statistics

Goal: Understand the statistics of the high values (extremes) of the
log-correlated field (Xv, v ∈ Xn)

I Gaussian fields considered have strong correlations, of the order of the
variance (∼ spin glasses).

I The problem of determining fine statistics (law of the maximum, point
process of extremes) is typically very hard.

I A more robust approach, but coarser, is through the Gibbs weights.



Correlations and Extremal Statistics

Goal: Understand the statistics of the high values (extremes) of the
log-correlated field (Xv, v ∈ Xn) as n→∞.

I Free energy: β > 0, Zn(β) =
∑
v∈Xn e

βXv

f(β) := lim
n→∞

1

log 2n
logZn(β)

I Gibbs measure: Measure on Xn concentrating on extremes as β →∞

〈 · 〉β,n =

∑
v∈Xn(·)e

βXv

Zn(β)

I Overlap distribution: Normalized covariance q(v, v′) = E[XvX′
v ]

E[X2
v ]

xβ,n(r) := E
[
〈 1{q(v,v′)≤r} 〉×2

β,n

]



Extremal Statistics for IID variables (REM model)

Suppose (Xv, v ∈ Xn) are IID of variance n log 2.

I Free energy: a.s. and in L1

lim
n→∞

1

log 2n
logZn(β) :=

{
log 2 + β2 log 2

2
β ≤ βc :=

√
2√

2 log 2β β ≥ βc

I Overlap distribution: Normalized covariance q(v, v′) = δvv′

xβ(dr) := lim
n→∞

E
[
〈 1{q(v,v′)∈dr} 〉×2

β,n

]
=

{
δ0 if β ≤ βc
βc
β
δ0 + (1− βc

β
)δ1 if β ≥ βc

I Gibbs measure: For β > βc, the Gibbs weights(
eβXv

Zn(β)
, v ∈ Xn

)
↓
−→ PD(βc/β)

The REM is said to exhibit 1-RSB.



Extremal Statistics for IID variables (REM model)

Suppose (Xv, v ∈ Xn) are IID of variance n log 2.

I Free energy: a.s. and in L1

lim
n→∞

1

log 2n
logZn(β) :=

{
log 2 + β2 log 2

2
β ≤ βc :=

√
2√

2 log 2β β ≥ βc

I Overlap distribution: Normalized covariance q(v, v′) = δvv′

xβ(dr) := lim
n→∞

E
[
〈 1{q(v,v′)∈dr} 〉×2

β,n

]
=

{
δ0 if β ≤ βc
βc
β
δ0 + (1− βc

β
)δ1 if β ≥ βc

I Gibbs measure: For β > βc, the Gibbs weights(
eβXv

Zn(β)
, v ∈ Xn

)
↓
−→ PD(βc/β)

The REM is said to exhibit 1-RSB.



Extremal Statistics for IID variables (REM model)

Suppose (Xv, v ∈ Xn) are IID of variance n log 2.

I Free energy: a.s. and in L1

lim
n→∞

1

log 2n
logZn(β) :=

{
log 2 + β2 log 2

2
β ≤ βc :=

√
2√

2 log 2β β ≥ βc

I Overlap distribution: Normalized covariance q(v, v′) = δvv′

xβ(dr) := lim
n→∞

E
[
〈 1{q(v,v′)∈dr} 〉×2

β,n

]
=

{
δ0 if β ≤ βc
βc
β
δ0 + (1− βc

β
)δ1 if β ≥ βc

I Gibbs measure: For β > βc, the Gibbs weights(
eβXv

Zn(β)
, v ∈ Xn

)
↓
−→ PD(βc/β)

The REM is said to exhibit 1-RSB.



Main results: Free energy

The Gaussian field (Xv, v ∈ XN ) (cones) is 1-RSB:

0 1

2�n

1/2

y

v

An(v)

1

Theorem (A-Zindy ’12)
The free energy is the same as the REM:

lim
n→∞

1

log 2n
logZn(β) =

{
log 2 + β2 log 2

2
β ≤ βc :=

√
2√

2 log 2β β ≥ βc
a.s. and in L1

I This was shown for BBM (hierarchical) by Derrida & Spohn ’88 based
on the work of Bramson ’78.

I The result for non-hierarchical field was conjectured by Carpentier &
Ledoussal ’00.

I The result follows from the works on 2DGFF of Bolthausen, Deuschel
& Giacomin ’01, and Daviaud ’06.
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Main results: 1-RSB and PD weights

Theorem (A-Zindy ’12)
The joint distribution of overlaps is the same as the REM: for β ≥ βc

1.
xβ(dr) = lim

n→∞
E
[
〈 1{q(v,v′)∈dr} 〉×2

β,n

]
=
βc
β
δ0 + (1− βc

β
)δ1

2. Let F be a smooth function of the overlaps of s points.

E
[〈

F ({q(vk, vl)})
〉×s
β,n

]
→ E

[ ∑
i1,,is

ξi1 . . . ξisF ({δkl})
]

where (ξi, i ∈ N)↓ are PD(βc/β).

I This was shown in the hierarchical case by Bovier & Kurkova ’04.
I This shows the Ultrametricity Conjecture for the field considered:

Correlations not hierarchical for finite n, but are in the limit n→∞!
I Open questions: What about other test-functions ?

Conjectured in Duplantier, Rhodes, Sheffield & Vargas ’12
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3. Some ideas of the proof



Ideas of the Proofs

The method of proof is robust and is applicable to other log-correlated
fields

I Bacry & Muzy construction on [0, 1]d (Multifractal Random Measure)
I 2D discrete Gaussian free field

We restrict to the 1D case for simplicity.

1. Spin glass: GG Identities and AC Stochastic Stability
2. Multi-scale decomposition
3. Spin glass: Bovier & Kurkova technique ’04
4. Tree approximation (Bolthausen-Deuschel-Giacomin ’01, Daviaud ’06)
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1. Gibbs Measures of Gaussian Fields

Theorem (Panchenko ’10)
If the free energy is differentiable at β > 0, then the field concentrates:

1

log 2n
E〈
∣∣∣Xv − E[〈Xv〉β,n]

∣∣∣〉β,n → 0 .

In particular, by integration by parts, for any smooth F ,

E
[〈
q(v1, vs+1)F ({q(vi, vj)}i,j≤s)

〉×s+1

β,n

]
=

1

s
E
[〈
q(v1, v2)

〉×2

β,n

]
E
[〈
F ({q(vi, vj)})

〉×s
β,n

]
+

1

s

s∑
k=2

E
[〈
q(v1, vk)F ({q(vi, vj)})

〉×s
β,n

]
+ o(1)

Ghirlanda-Guerra Identities
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I In the case where q(v, v′)→ δvv′ , the GG identities characterizes PD
distributions (Talagrand ’03).

I GG identities are at the core of Ultrametricity (Aizenman-A ’08,
Panchenko ’09 ’12).
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Reduces the problem to computing xβ(r).



2. Multi-scale Decomposition
I Independence of disjoint sets → multiscale decomposition in strips

I Pick α = (α1, α2), 0 < α1 < α2 < 1, and σ = (σ1, σ2, σ3).
I Write Y (σ,α) = (Y

(σ,α)
v , n ∈ Xn) for the Gaussian field

Y (σ,α)
v = σ1 µ(A

1
n(v)) + σ2 µ(A

2
n(v)) + σ3 µ(A

3
n(v))

I This is similar to a GREM (Derrida ’85).
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3. The Bovier-Kurkova technique

I Bovier & Kurkova ’04 obtained the overlap distribution of a continuous
version of the GREM by considering perturbation of the model.

I For 0 < r < 1, δ and u small.
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3. The Bovier-Kurkova technique

I For 0 < r < 1, δ small and u close to 1

xβ(r) = lim
n→∞

E
〈
1{q(v,v′)≤r}

〉×2

β,n
Z(u,r,δ)
n (β) =

∑
v∈Xn

eβY
(u,r,δ)(v)

Lemma (Bovier & Kurkova ’04)

β2

∫ r+δ

r

xβ(s)ds =
d

du

(
lim
n→∞

1

n log 2
E logZ(u,r,δ)

n (β)
)∣∣∣
u=0
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4. BDG tree approximation

To compute the free energy, it suffices to compute the log-number of high
points

E(σ,α)(γ) = lim
n→∞

log#{v ∈ Xn : Y
(σ,α)
v ≥ γ

√
2 log 2n}

log 2n
in prob.

Theorem
I Daviaud ’06: Case σ1 = σ2 = σ3 = 1

E(γ) = 1− γ2 (like IID)

I A-Zindy ’12: The number of high points E(σ,α)(γ) is the same as for
the GREM(σ, α).



4. BDG tree approximation

I Divide the 2n points into 2nr boxes with 2n(1−r) points/box (offspring)
I Contribution at scale 2−nr is not the same for the points in the box.
I Log-Miracle #1:

Non-common part is smaller than the common part: 1� rn log 2.
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4. BDG tree approximation

I The offspring within a box are not independent.
I Log-Miracle #2:

The offspring of two boxes are independent at scale below 2−nr.
Enough independent boxes for the offspring to reach a high value.

2�n

2�nr

1

I Bolthausen, Deuschel & Giacomin ’01 and Daviaud ’06 uses this
approximation to compute the first order of the maximum and the
log-number of high points in the 2D GFF.
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4. Beyond the Gibbs measure:
the Extremal process



Beyond the Gibbs measure: the Extremal Process

The analysis of the extremal process

(Xv, v ∈ Xn) close to max
v

Xv

is much more delicate than the one of the Gibbs measure.

Not in the same universality class as the REM.

Hierarchical case
I Bramson ’78: for BBM, maxvXv −m(n) converges as n→∞ for an

appropriate m(n).
I The limit law is not Gumbel as in the REM.
I (Xv −m(n), v ∈ Tn) converges to a Poisson cluster process (A, Bovier

& Kistler ’11, Aïdekon. Berestycki, Brunet & Shi ’11).



Beyond the Gibbs measure: the Extremal Process
The analysis of the extremal process

(Xv, v ∈ Xn) close to max
v

Xv

is much more delicate than the one of the Gibbs measure.

Universality class of log-correlated fields

Non-Hierarchical case (cones, 2DGFF, etc)
I The extremal process should be like the one of BBM: Carpentier &

Ledoussal ’00, Fyodorov & Bouchaud ’08.
I Recent results: BDG ’01, Bramson & Zeitouni ’10, Ding & Zeitouni

’12, Duplantier, Rhodes, Sheffield & Vargas ’12
I Convergence of max: Bramson, Ding, Zeitouni ’13
I Result on Extremal process: Biskup & Louidor ’13



Thank you !
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