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1. Log-Correlated Fields

> Hierarchical cases (Polymers on tree, BBM)
> Non-Hierarchical cases (2DGFF, MRM)

2. Main Result: Poisson-Dirichlet Statistics of the Gibbs weights
(Gibbs measure is supported on extremes)

3. Ideas of the Proof
> Multiscale Decomposition
> Tree approximation: Bolthausen, Deuschel, Giacomin
> Spin Glass tools: Ghirlanda-Guerra Identities, Bovier-Kurkova Lemma

N

. Beyond the Gibbs measure: the Extremal Process



1. Examples of log-correlated fields
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> Let (ge) be ii.d. N(0,1) on
each edge e.
Consider X = (X,,v € Tn)

X'u: de
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» E[X2]=n
E[X,X,/] = time of branching
» Forany 0<r <1
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» Correlations are hierarchical:

two correlations of a triplet v, v, v/ must be equal.



Log-correlated Gaussian fields

> Consider a Gaussian field
(Xoy,v € Xp)
indexed by 2" points in Euclidean space, say [0, 1].
» E[X?2] = n and for c(v,v) := E[X,X]]
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Non-hierarchical example: 2D discrete GFF

» Consider a box V,, C Z? with 2"
points.

> (Xy,v € V,) Gaussian field with

TOVn

EXo Xy ] =E"| Y 1{s,=v}
k=0

(Sk)k>0 SRW starting at v.
> The field is log-correlated

E[X2] = %log 2" +0(1)
2
v ="l

E[X,X,] = %log +o(1)

Figure by Samuel April



Non-hierarchical example in 1D

We focus on a particular representation based on Bacry & Muzy ’03
Multifractal Random Measure.
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Non-hierarchical example in 1D

We focus on a particular representation based on Bacry & Muzy ’03
Multifractal Random Measure.
They consider a random measure g on [0, 1]~ X [0,1/2] such that:

Yy ;

1/2

L u(A) ~ N (0,0(4)) §
2. 0(A) = [,y *dady A B i
3. AnB=0 < |
n(A)Lu(B). §

i
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Example in 1D

We construct a field (X,,v € X,) on 2" points.
Yy

1/2 j

> X,: 2" equidistant !

points on [0, 1]~. 4,0 A,) !

(v (v !

> Xy = p(An(v)) !

cones of slope 1/2

truncated at 27" o\’ |
2 [R—

0 v U/ 1

Correlations are not hierarchical :
For a triplet v,v’,v"”, equality of two correlations is not ensured.



2. Main results: PD statistics



Correlations and Extremal Statistics

Goal: Understand the statistics of the high values (extremes) of the
log-correlated field (X,,v € Xy)

» Gaussian fields considered have strong correlations, of the order of the
variance (~ spin glasses).

» The problem of determining fine statistics (law of the maximum, point
process of extremes) is typically very hard.

» A more robust approach, but coarser, is through the Gibbs weights.



Correlations and Extremal Statistics

Goal: Understand the statistics of the high values (extremes) of the
log-correlated field (X,,v € X,) as n — oo.

» Free energy: >0, Zn(B) =3 cx, ePXv

f(8) = lim

log Zn
A g o8 (B)

» Gibbs measure: Measure on X, concentrating on extremes as 8 — co

Zuexn(‘)eﬁxv

A

» Overlap distribution: Normalized covariance q(v,v') = B

2o (1) = E[( Lgw)<r )pa)
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Extremal Statistics for IID variables (REM model)

Suppose (Xy,v € &y) are IID of variance nlog 2.

» Free energy: a.s. and in L'

log2+ B2 5 <=2
V2log 23 B> B

lim
n— oo log 2n

log Zn(B) := {

» Overlap distribution: Normalized covariance q(v,v') = &,

{% if 8< B

wp(dr) = lim E[{1(ownear Vin] = Besy+(1—Z)6; if B> P
B B = e

n— o0

> Gibbs measure: For 8 > ., the Gibbs weights

< % ,U € Xn>¢ — PD(B:/B)

The REM is said to exhibit 1-RSB.
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Main results: Free energy

The Gaussian field (X,,v € Xn) (cones) is 1-RSB: A0

Theorem (A-Zindy ’12)
The free energy is the same as the REM:

log2+ £E2 B < B, = /2
ﬂlOgQﬁ B> Be

. . 1
lim a.s. and in L

n— oo log 2n

log Zn(B) = {

» This was shown for BBM (hierarchical) by Derrida & Spohn ’88 based
on the work of Bramson ’78.

» The result for non-hierarchical field was conjectured by Carpentier &
Ledoussal "00.

» The result follows from the works on 2DGFF of Bolthausen, Deuschel
& Giacomin ’01, and Daviaud ’06.
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Main results: 1-RSB and PD weights

Theorem (A-Zindy ’12)

The joint distribution of overlaps is the same as the REM: for > (.

1.

Besov - Peys,

xg(dr) = lim IE[( Liq(v,0)edr) >B n} = £ 3

n—>00 5

2. Let F be a smooth function of the overlaps of s points.

E[( Flawe )} ) "] = B] Yt F{duD)
where (&,1 € N), are PD(B:/83).

» This was shown in the hierarchical case by Bovier & Kurkova ’04.

» This shows the Ultrametricity Conjecture for the field considered:
Correlations not hierarchical for finite n, but are in the limit n — oo!

» Open questions: What about other test-functions ?
Conjectured in Duplantier, Rhodes, Sheffield & Vargas '12
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» Bacry & Muzy construction on [0,1]% (Multifractal Random Measure)

» 2D discrete Gaussian free field

We restrict to the 1D case for simplicity.



Ideas of the Proofs

The method of proof is robust and is applicable to other log-correlated
fields

» Bacry & Muzy construction on [0,1]% (Multifractal Random Measure)

» 2D discrete Gaussian free field

We restrict to the 1D case for simplicity.

Spin glass: GG Identities and AC Stochastic Stability
Multi-scale decomposition

Spin glass: Bovier & Kurkova technique 04

L

Tree approximation (Bolthausen-Deuschel-Giacomin ’01, Daviaud ’06)
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Ghirlanda-Guerra Identities



1. Gibbs Measures of Gaussian Fields

Theorem (Panchenko ’10)
If the free energy is differentiable at B > 0, then the field concentrates:

E(| X, — E[(X.)an]}pn 0.

log 2n

In particular, by integration by parts, for any smooth F,

E [<q<v1,vsH)F({q(vi,w)}ms%ﬁl] -

Lo ()]

e [(Ftatonnn) ]
Z [( ({q(wwﬁ}))x‘“}ﬂ(n

Sz B,n

s

> In the case where q(v,v") — §,,/, the GG identities characterizes PD
distributions (Talagrand ’03).

» GG identities are at the core of Ultrametricity (Aizenman-A ’08,
Panchenko ’09 ’12).



1. Gibbs Measures of Gaussian Fields

Theorem (Panchenko "10)
If the free energy is differentiable at B > 0, then the field concentrates:

log Z"E' —E[{Xu)gn]| — 0.

In particular, by integration by parts, for any smooth F,

E [<Q(U17 vs+1) F({q(vi, 'u])})> XSH} _

B
3 (om0 | (rtstnm)

Xs

+

[

- E|:<q(7)17vk) ({Q(quj)})>

k=2

} +o(1)

B,n

Reduces the problem to computing zg(r).
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» Independence of disjoint sets — multiscale decomposition in strips
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2. Multi-scale Decomposition

» Independence of disjoint sets — multiscale decomposition in strips
» Pick aa = (al,ag), O<ag <az<l, and o = (0'1,0'270'3).
> Write V(2% = (YU(J’O‘),n € X,) for the Gaussian field

Y7 = 1 u(Ap(0) + 02 p(A%(v)) + 03 p(AL ()
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2. Multi-scale Decomposition

v

Independence of disjoint sets — multiscale decomposition in strips

v

Pick a = (al,ag), O<ag <az<l, and o = (0'1,0'270'3).
Write Y (@) = (YU(J’O‘),n € X,) for the Gaussian field

Y7 = 1 u(Ap(0) + 02 p(A%(v)) + 03 p(AL ()

\4

» This is similar to a GREM (Derrida ’85).

y I
1/2 :
- Al(v) o

—naog !
, A ) o |
—nag |
A3 (v) o5 |

2—"1 |
0 v 1



3. The Bovier-Kurkova technique

» Bovier & Kurkova ’04 obtained the overlap distribution of a continuous
version of the GREM by considering perturbation of the model.

» For 0 < r <1, § and u small.

1/2

@y

(27m)r+

‘
|

ool N L
‘

0 v 1



3. The Bovier-Kurkova technique

» For 0 < r < 1, § small and u close to 1

x2 (u,r,8)(v)
mﬁ(’f‘) = lim E<1{q(v v/)<r}> (u Té) Z BY

n—00
vEX,

Lemma (Bovier & Kurkova '04)

438 d 1
2 = (1 Elog Z{"™
g /T zp(s)ds du (nggo nlog2 08 Zn (5))

u=0




4. BDG tree approximation

To compute the free energy, it suffices to compute the log-number of high
points

. (o,0) >
5(0‘,04) ('Y) = lim log #{’U € XTL . YU = ’Yﬁlog 2”} in pI‘Ob.
n— 00 lOg 2n

Theorem

» Daviaud 06: Case 01 =09 =03 =1

E(y) =1 -~ (like IID)

> A-Zindy ’12: The number of high points 5("’°‘>(’y) is the same as for
the GREM(o, ).



4. BDG tree approximation

» Divide the 2" points into 2"" boxes with 2"!~™) points/box (offspring)
» Contribution at scale 27 ™" is not the same for the points in the box.
» Log-Miracle #1:

Non-common part is smaller than the common part: 1 < rnlog 2.
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4. BDG tree approximation

» The offspring within a box are not independent.

» Log-Miracle #2:
The offspring of two boxes are independent at scale below 27"".
Enough independent boxes for the offspring to reach a high value.

» Bolthausen, Deuschel & Giacomin '01 and Daviaud ’06 uses this
approximation to compute the first order of the maximum and the
log-number of high points in the 2D GFF.



4. BDG tree approximation

» The offspring within a box are not independent.

» Log-Miracle #2:
The offspring of two boxes are independent at scale below 27"".
Enough independent boxes for the offspring to reach a high value.

9=n oo [N ] AR\ o VAARN
» Bolthausen, Deuschel & Giacomin '01 and Daviaud ’06 uses this

approximation to compute the first order of the maximum and the
log-number of high points in the 2D GFF.




4. Beyond the Gibbs measure:
the Extremal process



Beyond the Gibbs measure: the Extremal Process

The analysis of the extremal process

(Xv,v € X,) close to max X,

is much more delicate than the one of the Gibbs measure.
Not in the same universality class as the REM.

Hierarchical case
» Bramson ’78: for BBM, max, X, — m(n) converges as n — oo for an
appropriate m(n).
» The limit law is not Gumbel as in the REM.

> (X, —m(n),v € Tn) converges to a Poisson cluster process (A, Bovier
& Kistler '11, Aidekon. Berestycki, Brunet & Shi ’11).



Beyond the Gibbs measure: the Extremal Process
The analysis of the extremal process

(Xv,v € Xy) close to max X,

is much more delicate than the one of the Gibbs measure.

Universality class of log-correlated fields

Non-Hierarchical case (cones, 2DGFF, etc)
» The extremal process should be like the one of BBM: Carpentier &
Ledoussal 00, Fyodorov & Bouchaud ’08.
» Recent results: BDG ’01, Bramson & Zeitouni '10, Ding & Zeitouni
’12, Duplantier, Rhodes, Sheffield & Vargas '12
» Convergence of max: Bramson, Ding, Zeitouni '13
» Result on Extremal process: Biskup & Louidor ’13




Thank you !
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