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Branching Brownian motion

Branching Brownian Motion

Branching Brownian motion is one of the fundamental models in
probability. It combines two classical objects:

Brownian motion

Pure random motion

Galton-Watson process

Pure random genealogy
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Branching Brownian motion

Branching Brownian motion

Branching Brownian motion (BBM) combines the two processes: Each
particle of the Galton-Watson process performs Brownian motion
independently of any other. This produces an immersion of the
Galton-Watson process in space.

Picture by Matt Roberts, Bath Maury Bramson H. McKean A.V. Skorokhod J.E. Moyal

BBM is the canonical model of a spatial branching process.
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Branching Brownian motion

Galton-Watson tree and corresponding BBM
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Branching Brownian motion

BBM as Gaussian process

Fix GW-tree. Label individuals at time t as
i1(t), . . . , in(t)(t)

d(i`(t), ik(t)) ≡ time of most recent
common ancestor of i`(t) and ik(t)

BBM is Gaussian process with covariance

Exk(t)x`(s) = d(ik(t), i`(s))

BBM special case of models where

Exk(t)x`(t) = tA
(
t−1d(ik(t), i`(t))

)
for A : [0, 1]→ [0, 1].

⇒ GREM models of spin-glasses.
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Maximum of BBM

First question: how big is the biggest?

To compare:

Single Brownian motion:

P
[
X (t) ≤ x

√
t
]

=
1√
2π

∫ x

−∞
exp

(
−z2

2

)
dz

et = En(t) independent Brownian motions:

P
[

max
k=1,...,et

xk(t) ≤ t
√

2− 1

2
√

2
ln t + x

]
→ e−

√
4πe−

√
2x

BBM Many BMs
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Maximum of BBM

The KPP-F equation

One of the simplest reaction-diffusion equations is the

Fisher-Kolmogorov-Petrovsky-
Piscounov (F-KPP) equation:

∂tv(x , t) =
1

2
∂2
xv(x , t)+v−v2

Fisher Kolmogorov Petrovsky

Fischer used this equation to model the evolution of biological
populations. It accounts for:

birth: v ,

death: −v2,

diffusive migration: ∂2
xv .
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Maximum of BBM

KPP-F equation and the maximum of of BBM

u(t, x) ≡ P
[

max
k=1...n(t)

xk(t) ≤ x

]

McKean, 1975: 1− u solves the F-KPP equation, i.e.

∂tu =
1

2
∂2
xu + u2 − u, u(0, x) =

{
1 if x ≥ 0

0 if x < 0

Bramson, 1978:

u(t, x+m(t))→ ω(x), m(t) =
√

2t− 3

2
√

2
ln t

where ω(x) solves

1
2∂

2
xω +

√
2∂xω + ω2 − ω = 0

.
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The Lalley-Sellke conjecture

The derivative martingale

Lalley-Sellke, 1987: ω(x) is random shift of Gumbel-distribution

ω(x) = E
[
e−CZe−

√
2x
]
,

Z
(d)
= limt→∞ Z (t), where Z (t) is the derivative martingale,

Z (t) =
∑

k≤n(t)

{
√

2t − xk(t)}e−
√

2{
√

2t−xk (t)}

Lalley-Sellke conjecture: P-a.s., for any x ∈ R,

lim
T↑∞

1

T

∫ T

0
1I{

max
n(t)
k=1 xk (t)−m(t)≤x

} = exp
(
−CZe−

√
2x
)
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The extremal process of BBM

Looking at BBM from the top

Closer look at the extremes: Zooming into the top

Can we describe the asymptotic structure of the largest points, and their
genealogical structure?
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The extremal process of BBM

Classical Poisson convergence for many BMs

From classical extreme values statistics one knows:

Let Xi (t), i ∈ N, iid Brownian motions. Then, the point process

Pt ≡
et∑
i=1

δXi (t)−
√

2t+ 1
2
√

2
ln t → PPP

(√
4πe−xdx

)
,

where PPP(µ) is Poisson point process with intensity measure µ.
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The extremal process of BBM

Extensions to correlated processes

GREM [Derrida ’82]: Recall Exi`(t)xik (t) = tA
(
t−1d(i`(t), ik(t))

)
.

A increasing step function.

Extreme behaviour relatively insensitive to correlations: If
A(x) < x ,∀x ∈ (0, 1), then no change in the extremal process.

Poisson cascades: If A takes only finitely many values, and A(x) > x ; for
some x ∈ (0, 1), the extremal process is known (Derrida, B-Kurkova) and
given by Poisson cascade process.

Borderline: If A takes only finitely many values, and A(x) ≤ x , for all
x ∈ [0, 1], but A(x) = x , for some x ∈ (0, 1), the extremal process is again
Poisson, but with reduced intensity (B-Kurkova).

What happens at the natural border A(x) = x??
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Borderline: If A takes only finitely many values, and A(x) ≤ x , for all
x ∈ [0, 1], but A(x) = x , for some x ∈ (0, 1), the extremal process is again
Poisson, but with reduced intensity (B-Kurkova).

What happens at the natural border A(x) = x??
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The extremal process of BBM

The life of BBM

General principle: follow history of the leading particles!
There are three phases with distinct properties and effects:

the early years

midlife

before the end

Let us look at them.......
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The extremal process of BBM

The early years...

Randomness persists for all times from what happened in the early history:

Both and
occur with positive probability, independent of t!

In the second case, all particles at time r have the same chance to have
offspring that is close to the maximum.

Two consequences:

the random variable Z , the “derivative martingale”

particles near the maximum at time t can have common ancestors at
finite, t-independent times (when t ↑ ∞).
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The extremal process of BBM

...Midlife...

Key fact: The function m(t) is convex:

Descendants of a particle maximal at time
0� s � t cannot be maximal at time t!

Particles realising the maximum at time t
have ancestors at times s that are selected
from the very many particles that are a lot
below the maximum at time s.

Offspring of the selected particles is atypical!

Only one descendant of a selected particle at
times 0� s � t can be at finite distance
from the maximum at time t.

The function m(t)
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The extremal process of BBM

...just before the end

Any particle the arrives close to the maximum at time t can have
produced offspring shortly before. These will be only a finite amount
smaller then their brothers.

Hence, particles near the maximum come in small families.
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The extremal process of BBM

The extremal process

Let Et ≡
n(t)∑
i=1

δxi (t)−m(t)

Let Z be the limit of the derivative martingale, and set

PZ =
∑
i∈N

δpi ≡ PPP
(
CZe−

√
2xdx

)
Let L(t) ≡

{
maxj≤n(t) xj(t) >

√
2t
}

and

∆(t) ≡
∑
k

δxk (t)−maxj≤n(t) xj (t) conditioned onL(t).

Law of ∆(t) under P (·|L(t)) converges to law of point process, ∆. Let

∆(i) be iid copies of ∆, with atoms ∆
(i)
j .
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The extremal process of BBM

The extremal process

Theorem ( Arguin-B-Kistler, 2011 (PTRF 2013))

With the notation above, the point process Et converges in law to a point
process E , given by

E ≡
∑
i ,j∈N

δ
pi+∆

(i)
j

Similar result obtained independently by Äıdékon, Brunet, Berestycki, and Shi.
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Ergodic theorems

Ergodic theorem for the max

Alternative look: what happens if we consider time averages?
Naively one might expect a law of large numbers:

lim
T↑∞

1

T

∫ T

0
1I{

max
n(t)
k=1 xk (t)−m(t)≤x

} = E exp
(
−CZe−

√
2x
)

a.s.

But this cannot be true!

Lalley and Sellke conjectured a random version:

Theorem (Arguin, B, Kistler, 2012 (EJP 18))

P-a.s., for any x ∈ R,

lim
T↑∞

1

T

∫ T

0
1I{

max
n(t)
k=1 xk (t)−m(t)≤x

} = exp
(
−CZe−

√
2x
)
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Ergodic theorems

Ergodic theorem for the extremal process

We prove this conjecture and extend it to the entire extremal process:

Theorem (Arguin, B, Kistler (2012))

Et converges P-almost surely weakly under time-average to the Poisson
cluster process EZ . That is, P-a.s., ∀f ∈ C+

c (R),

1

T

∫
exp

(
−
∫

f (y)Et,ω(dy)

)
dt → E

[
exp

(
−
∫

f (y)EZ (dy)

)]

Here EZ is the process E for given value Z of the derivative martingale, E
is w.r.t. the law of that process, given Z .
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Ergodic theorems

Elements of the proof

For ε > 0 and RT � T , decompose

1

T

∫ T

0
exp

(
−
∫

f (y)Et,ω(dy)

)
dt

=
1

T

∫ εT

0
exp

(
−
∫

f (y)Et,ω(dy)

)
dt︸ ︷︷ ︸

(I ):vanishes as ε ↓ 0

+
1

T

∫ T

εT
E
[

exp

(
−
∫

f (y)Et,ω(dy)

) ∣∣∣FRT

]
dt︸ ︷︷ ︸

(II ):what we want

+
1

T

∫ T

εT
Yt(ω)dt︸ ︷︷ ︸

(III ): needs LLN
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Ergodic theorems

Elements of the proof: the LLN

(III ) ≡ exp

(
−
∫ T

εT
f (y)Et,ω(dy)

)
− E

[
exp

(
−
∫ T

εT
f (y)Et,ω(dy)

) ∣∣∣FRT

]
should vanish by a law of large numbers.
We use a criterion which is an adaptation of the theorem due to Lyons:

Lemma

Let {Ys}s∈R+ be a.s. uniformly bounded and E[Ys ] = 0 for all s. If

∞∑
T=1

1

T
E
[∣∣∣ 1

T

∫ T

0
Ysds

∣∣∣2] <∞,
then

1

T

∫ T

0
Ys ds → 0, a.s.
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Elements of the proof: the LLN

(III ) ≡ exp

(
−
∫ T

εT
f (y)Et,ω(dy)

)
− E

[
exp

(
−
∫ T

εT
f (y)Et,ω(dy)

) ∣∣∣FRT

]
should vanish by a law of large numbers.
We use a criterion which is an adaptation of the theorem due to Lyons:

Lemma

Let {Ys}s∈R+ be a.s. uniformly bounded and E[Ys ] = 0 for all s. If

∞∑
T=1

1

T
E
[∣∣∣ 1

T

∫ T

0
Ysds

∣∣∣2] <∞,
then

1

T

∫ T

0
Ys ds → 0, a.s.
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LLN

Requires covariance estimate:

Lemma

Let Ys from (III). For RT = o(
√
T ) with limT→∞ RT = +∞, there exists

κ > 0, s.t.

E[YsYs′ ] ≤ Ce−R
κ
T for any s, s ′ ∈ [εT ,T ] with |s − s ′| ≥ RT .

A. Bovier () Branching Brownian motion: extremal process and ergodic theorems RCS&SM, Venezia, 06.05.2013



Universality

Universality

The new extremal process of BBM should not be limited to BBM:

Branching random walk (Äıdekon, Madaule)

Gaussian free field in d = 2 [Bolthausen, Deuschel, Giacomin,
Bramson, Zeitouni,Biskup and Louisdor (!) ....]

Cover times of random walks [Ding, Zeitouni, Sznitman,....]

Spin glasses with log-correlated potentials [Fyodorov, Bouchaud,..]

and building block for further models:

Extensions to stronger correlations: beyond the borderline
[Fang-Zeitouni ’12]...

Extension back to spin glasses: some of the observations made give
hope.... see Louis-Pierre’s talk
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