Branching Brownian motion: extremal process and ergodic theorems

Anton Bovier with Louis-Pierre Arguin and Nicola Kistler

RCS&SM, Venezia, 06.05.2013

hausdorff center for mathematics

universitätbonn iam

A. Bovier ()

Plan

BBM

- Maximum of BBM
- The Lalley-Sellke conjecture
- The extremal process of BBM
- Second Second
- Universality

Branching Brownian Motion

Branching Brownian motion is one of the fundamental models in probability. It combines two classical objects:

Branching Brownian Motion

Branching Brownian motion is one of the fundamental models in probability. It combines two classical objects:

Brownian motion

Pure random motion

Branching Brownian Motion

Branching Brownian motion is one of the fundamental models in probability. It combines two classical objects:

Brownian motion

Galton-Watson process

Pure random motion

Pure random genealogy

Branching Brownian motion

Branching Brownian motion (BBM) combines the two processes: Each particle of the Galton-Watson process performs Brownian motion independently of any other. This produces an immersion of the Galton-Watson process in space.

Branching Brownian motion

Branching Brownian motion (BBM) combines the two processes: Each particle of the Galton-Watson process performs Brownian motion independently of any other. This produces an immersion of the Galton-Watson process in space.

Picture by Matt Roberts, Bath

Maury Bramson H. McKean

A.V. Skorokhod

J.E. Moyal

BBM is the canonical model of a spatial branching process.

Galton-Watson tree and corresponding BBM

Galton-Watson tree

Galton-Watson tree and corresponding BBM

hausdorff center for mathematics

A. Bovier ()

• Fix GW-tree. Label individuals at time t as $\mathbf{i}_1(t), \dots, \mathbf{i}_{n(t)}(t)$

hausdorff center for mathematics

A. Bovier ()

- Fix GW-tree. Label individuals at time t as $\mathbf{i}_1(t), \dots, \mathbf{i}_{n(t)}(t)$
- d(i_ℓ(t), i_k(t)) ≡ time of most recent common ancestor of i_ℓ(t) and i_k(t)

- Fix GW-tree. Label individuals at time t as $\mathbf{i}_1(t), \dots, \mathbf{i}_{n(t)}(t)$
- $d(\mathbf{i}_{\ell}(t), \mathbf{i}_{k}(t)) \equiv \text{time of most recent}$ common ancestor of $\mathbf{i}_{\ell}(t)$ and $\mathbf{i}_{k}(t)$

• BBM is Gaussian process with covariance

$$\mathbb{E} x_k(t) x_\ell(s) = d(\mathbf{i}_k(t), \mathbf{i}_\ell(s))$$

- Fix GW-tree. Label individuals at time t as $\mathbf{i}_1(t), \dots, \mathbf{i}_{n(t)}(t)$
- d(i_ℓ(t), i_k(t)) ≡ time of most recent common ancestor of i_ℓ(t) and i_k(t)

• BBM is Gaussian process with covariance

$$\mathbb{E} x_k(t) x_\ell(s) = d(\mathbf{i}_k(t), \mathbf{i}_\ell(s))$$

BBM special case of models where

 $\mathbb{E} x_k(t) x_\ell(t) = t A\left(t^{-1} d(\mathbf{i}_k(t), \mathbf{i}_\ell(t))\right) \quad \text{for } A: [0, 1] \to [0, 1].$

- Fix GW-tree. Label individuals at time t as $\mathbf{i}_1(t), \dots, \mathbf{i}_{n(t)}(t)$
- d(i_ℓ(t), i_k(t)) ≡ time of most recent common ancestor of i_ℓ(t) and i_k(t)

• BBM is Gaussian process with covariance

$$\mathbb{E} x_k(t) x_\ell(s) = d(\mathbf{i}_k(t), \mathbf{i}_\ell(s))$$

BBM special case of models where

 $\mathbb{E} x_k(t) x_\ell(t) = t A \left(t^{-1} d(\mathbf{i}_k(t), \mathbf{i}_\ell(t)) \right) \quad \text{for } A : [0, 1] \to [0, 1].$

 \Rightarrow GREM models of spin-glasses.

First question: how big is the biggest?

universitätteen am

A. Bovier ()

Branching Brownian motion: extremal process and ergodic theorems

First question: how big is the biggest? To compare:

First question: how big is the biggest? To compare:

• Single Brownian motion:

$$\mathbb{P}\left[X(t) \le x\sqrt{t}\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{z^2}{2}\right) dz$$

A. Bovier ()

First question: how big is the biggest? To compare:

• Single Brownian motion:

$$\mathbb{P}\left[X(t) \le x\sqrt{t}\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{z^2}{2}\right) dz$$

• $e^t = \mathbb{E}n(t)$ independent Brownian motions:

$$\mathbb{P}\left[\max_{k=1,\ldots,e^{t}} x_{k}(t) \leq t\sqrt{2} - \frac{1}{2\sqrt{2}} \ln t + x\right] \to e^{-\sqrt{4\pi}e^{-\sqrt{2}x}}$$

A. Bovier ()

hausdorff center for mathematics

A. Bovier ()

One of the simplest reaction-diffusion equations is the

Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

One of the simplest reaction-diffusion equations is the

Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

$$\partial_t v(x,t) = \frac{1}{2} \partial_x^2 v(x,t) + v - v^2$$

One of the simplest reaction-diffusion equations is the

Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

$$\partial_t v(x,t) = \frac{1}{2} \partial_x^2 v(x,t) + v - v^2$$

Fisher

Kolmogorov

Petrovsky

One of the simplest reaction-diffusion equations is the

Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

$$\partial_t v(x,t) = \frac{1}{2} \partial_x^2 v(x,t) + v - v^2$$

Fisher

Kolmogorov Pe

Petrovsky

Fischer used this equation to model the evolution of biological populations. It accounts for:

One of the simplest reaction-diffusion equations is the

Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

$$\partial_t v(x,t) = \frac{1}{2} \partial_x^2 v(x,t) + v - v^2$$

Fisher

Kolmogorov

Petrovsky

Fischer used this equation to model the evolution of biological populations. It accounts for:

One of the simplest reaction-diffusion equations is the

Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

$$\partial_t v(x,t) = \frac{1}{2} \partial_x^2 v(x,t) + v - v^2$$

Fisher

Kolmogorov

Petrovsky

Fischer used this equation to model the evolution of biological populations. It accounts for:

- birth: v,
- death: $-v^2$,

One of the simplest reaction-diffusion equations is the

Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

$$\partial_t v(x,t) = \frac{1}{2} \partial_x^2 v(x,t) + v - v^2$$

Fisher

Kolmogorov

Petrovsky

Fischer used this equation to model the evolution of biological populations. It accounts for:

- birth: v,
- death: $-v^2$,
- diffusive migration: $\partial_x^2 v$.

hausdorff center for mathematics

A. Bovier ()

$$u(t,x) \equiv \mathbb{P}\left[\max_{k=1...n(t)} x_k(t) \le x\right]$$

hausdorff center for mathematics

A. Bovier ()

$$u(t,x) \equiv \mathbb{P}\left[\max_{k=1...n(t)} x_k(t) \leq x\right]$$

McKean, 1975: 1 - u solves the F-KPP equation, i.e.

$$\partial_t u = \frac{1}{2} \partial_x^2 u + u^2 - u, \quad u(0, x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

hausdorff center for mathematics

A. Bovier ()

$$u(t,x) \equiv \mathbb{P}\left[\max_{k=1...n(t)} x_k(t) \leq x\right]$$

McKean, 1975: 1 - u solves the F-KPP equation, i.e.

$$\partial_t u = \frac{1}{2} \partial_x^2 u + u^2 - u, \quad u(0, x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

Bramson, 1978:

$$u(t,x+m(t))
ightarrow \omega(x), \quad m(t) = \sqrt{2}t - rac{3}{2\sqrt{2}} \ln t$$

$$u(t,x) \equiv \mathbb{P}\left[\max_{k=1...n(t)} x_k(t) \leq x\right]$$

McKean, 1975: 1 - u solves the F-KPP equation, i.e.

$$\partial_t u = \frac{1}{2} \partial_x^2 u + u^2 - u, \quad u(0, x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

Bramson, 1978:

$$u(t, x+m(t)) \to \omega(x), \quad m(t) = \sqrt{2}t - \frac{3}{2\sqrt{2}} \ln t$$
where $\omega(x)$ solves
$$\frac{1}{2}\partial_x^2 \omega + \sqrt{2}\partial_x \omega + \omega^2 - \omega = 0$$
hausdorff center for mathematics

1____

hausdorff center for mathematics

A. Bovier ()

Lalley-Sellke, 1987: $\omega(x)$ is random shift of Gumbel-distribution

$$\omega(x) = \mathbb{E}\left[e^{-C\mathbf{Z}e^{-\sqrt{2}x}}
ight]$$

Lalley-Sellke, 1987: $\omega(x)$ is random shift of Gumbel-distribution

$$\omega(x) = \mathbb{E}\left[e^{-\mathsf{CZ}e^{-\sqrt{2}x}}\right]$$

 $Z \stackrel{(d)}{=} \lim_{t \to \infty} Z(t)$, where Z(t) is the derivative martingale,

$$Z(t) = \sum_{k \le n(t)} \{\sqrt{2}t - x_k(t)\} e^{-\sqrt{2}\{\sqrt{2}t - x_k(t)\}}$$

universitätiseen lam

hausdorff center for mathematics

A. Bovier ()

Lalley-Sellke, 1987: $\omega(x)$ is random shift of Gumbel-distribution

$$\omega(x) = \mathbb{E}\left[e^{-C\mathbf{Z}e^{-\sqrt{2}x}}\right],$$

 $Z \stackrel{(d)}{=} \lim_{t \to \infty} Z(t)$, where Z(t) is the derivative martingale,

$$Z(t) = \sum_{k \le n(t)} \{\sqrt{2}t - x_k(t)\} e^{-\sqrt{2}\{\sqrt{2}t - x_k(t)\}}$$

Lalley-Sellke conjecture: \mathbb{P} -a.s., for any $x \in \mathbb{R}$,

$$\lim_{T\uparrow\infty}\frac{1}{T}\int_0^T \mathrm{I}_{\left\{\max_{k=1}^{n(t)}x_k(t)-m(t)\leq x\right\}} = \exp\left(-\frac{CZ}{e^{-\sqrt{2}x}}\right)$$

Looking at BBM from the top

Closer look at the extremes: Zooming into the top

Can we describe the asymptotic structure of the largest points, and their genealogical structure?

Classical Poisson convergence for many BMs

From classical extreme values statistics one knows:

Let $X_i(t)$, $i \in \mathbb{N}$, iid Brownian motions. Then, the point process

$$\mathcal{P}_t \equiv \sum_{i=1}^{e^t} \delta_{X_i(t) - \sqrt{2}t + \frac{1}{2\sqrt{2}} \ln t} \to \mathsf{PPP}\left(\sqrt{4\pi}e^{-x}dx\right),$$

where $PPP(\mu)$ is Poisson point process with intensity measure μ .

universitätionen lam

hausdorff center for mathematics

A. Bovier ()

GREM [Derrida '82]: Recall $\mathbb{E}x_{\mathbf{i}_{\ell}(t)}x_{\mathbf{i}_{k}(t)} = tA\left(t^{-1}d(\mathbf{i}_{\ell}(t),\mathbf{i}_{k}(t))\right).$

A increasing step function.

GREM [Derrida '82]: Recall $\mathbb{E}x_{\mathbf{i}_{\ell}(t)}x_{\mathbf{i}_{k}(t)} = tA\left(t^{-1}d(\mathbf{i}_{\ell}(t),\mathbf{i}_{k}(t))\right)$.

A increasing step function.

Extreme behaviour relatively insensitive to correlations: If $A(x) < x, \forall x \in (0, 1)$, then no change in the extremal process.

GREM [Derrida '82]: Recall $\mathbb{E}x_{\mathbf{i}_{\ell}(t)}x_{\mathbf{i}_{k}(t)} = tA\left(t^{-1}d(\mathbf{i}_{\ell}(t),\mathbf{i}_{k}(t))\right)$.

A increasing step function.

Extreme behaviour relatively insensitive to correlations: If $A(x) < x, \forall x \in (0, 1)$, then no change in the extremal process.

Poisson cascades: If A takes only finitely many values, and A(x) > x; for some $x \in (0, 1)$, the extremal process is known (Derrida, B-Kurkova) and given by Poisson cascade process.

GREM [Derrida '82]: Recall $\mathbb{E}x_{\mathbf{i}_{\ell}(t)}x_{\mathbf{i}_{k}(t)} = tA\left(t^{-1}d(\mathbf{i}_{\ell}(t),\mathbf{i}_{k}(t))\right)$.

A increasing step function.

Extreme behaviour relatively insensitive to correlations: If $A(x) < x, \forall x \in (0, 1)$, then no change in the extremal process.

Poisson cascades: If A takes only finitely many values, and A(x) > x; for some $x \in (0, 1)$, the extremal process is known (Derrida, B-Kurkova) and given by Poisson cascade process.

Borderline: If A takes only finitely many values, and $A(x) \le x$, for all $x \in [0,1]$, but A(x) = x, for some $x \in (0,1)$, the extremal process is again Poisson, but with reduced intensity (B-Kurkova).

GREM [Derrida '82]: Recall $\mathbb{E}x_{\mathbf{i}_{\ell}(t)}x_{\mathbf{i}_{k}(t)} = tA\left(t^{-1}d(\mathbf{i}_{\ell}(t),\mathbf{i}_{k}(t))\right).$

A increasing step function.

Extreme behaviour relatively insensitive to correlations: If $A(x) < x, \forall x \in (0, 1)$, then no change in the extremal process.

Poisson cascades: If A takes only finitely many values, and A(x) > x; for some $x \in (0, 1)$, the extremal process is known (Derrida, B-Kurkova) and given by Poisson cascade process.

Borderline: If A takes only finitely many values, and $A(x) \le x$, for all $x \in [0,1]$, but A(x) = x, for some $x \in (0,1)$, the extremal process is again Poisson, but with reduced intensity (B-Kurkova).

What happens at the natural border A(x) = x??

hausdorff center for mathematics

A. Bovier ()

General principle: follow history of the leading particles! There are three phases with distinct properties and effects:

hausdorff center for mathematics

A. Bovier ()

General principle: follow history of the leading particles! There are three phases with distinct properties and effects:

the early years

General principle: follow history of the leading particles! There are three phases with distinct properties and effects:

- the early years
- midlife

General principle: follow history of the leading particles! There are three phases with distinct properties and effects:

- the early years
- midlife
- before the end

General principle: follow history of the leading particles! There are three phases with distinct properties and effects:

- the early years
- midlife
- before the end

Let us look at them.....

Randomness persists for all times from what happened in the early history:

universitätteen lam

hausdorff center for mathematics

A. Bovier ()

Randomness persists for all times from what happened in the early history:

Both r

Randomness persists for all times from what happened in the early history:

occur with positive probability, independent of t!

In the second case, all particles at time r have the same chance to have offspring that is close to the maximum.

Randomness persists for all times from what happened in the early history:

occur with positive probability, independent of t!

In the second case, all particles at time r have the same chance to have offspring that is close to the maximum.

Two consequences:

- the random variable Z, the "derivative martingale"
- particles near the maximum at time t can have common ancestors at finite, t-independent times (when $t \uparrow \infty$).

hausdorff center for mathematics

A. Bovier ()

Key fact: The function m(t) is convex:

The function m(t)

hausdorff center for mathematics

A. Bovier ()

Key fact: The function m(t) is convex:

 Descendants of a particle maximal at time 0 « s « t cannot be maximal at time t!

The function m(t)

Key fact: The function m(t) is convex:

- Descendants of a particle maximal at time 0 ≪ s ≪ t cannot be maximal at time t!
- Particles realising the maximum at time t have ancestors at times s that are selected from the very many particles that are a lot below the maximum at time s.

Key fact: The function m(t) is convex:

- Descendants of a particle maximal at time 0 ≪ s ≪ t cannot be maximal at time t!
- Particles realising the maximum at time t have ancestors at times s that are selected from the very many particles that are a lot below the maximum at time s.

Key fact: The function m(t) is convex:

- Descendants of a particle maximal at time 0 ≪ s ≪ t cannot be maximal at time t!
- Particles realising the maximum at time t have ancestors at times s that are selected from the very many particles that are a lot below the maximum at time s.
- Offspring of the selected particles is atypical!
- Only one descendant of a selected particle at times 0 ≪ s ≪ t can be at finite distance from the maximum at time t.

...just before the end

Any particle the arrives close to the maximum at time t can have produced offspring shortly before. These will be only a finite amount smaller then their brothers.

Hence, particles near the maximum come in small families.

hausdorff center for mathematics

A. Bovier ()

Let

$$\mathcal{E}_t \equiv \sum_{i=1}^{n(t)} \delta_{x_i(t)-m(t)}$$

hausdorff center for mathematics

A. Bovier ()

Let

$$\mathcal{E}_t \equiv \sum_{i=1}^{n(t)} \delta_{x_i(t)-m(t)}$$

Let Z be the limit of the derivative martingale, and set

$$\mathcal{P}_{Z} = \sum_{i \in \mathbb{N}} \delta_{p_{i}} \equiv \mathsf{PPP}\left(CZe^{-\sqrt{2}x}dx\right)$$

hausdorff center for mathematics

A. Bovier ()

L

et
$$\mathcal{E}_t \equiv \sum_{i=1}^{n(t)} \delta_{x_i(t)-m(t)}$$

Let Z be the limit of the derivative martingale, and set

$$\mathcal{P}_{Z} = \sum_{i \in \mathbb{N}} \delta_{p_{i}} \equiv \mathsf{PPP}\left(CZe^{-\sqrt{2}x}dx\right)$$

Let $\mathcal{L}(t) \equiv \left\{\max_{j \leq n(t)} x_j(t) > \sqrt{2}t\right\}$ and

.et
$$\mathcal{E}_t \equiv \sum_{i=1}^{n(t)} \delta_{x_i(t)-m(t)}$$

Let Z be the limit of the derivative martingale, and set

$$\mathcal{P}_{Z} = \sum_{i \in \mathbb{N}} \delta_{p_{i}} \equiv \mathsf{PPP}\left(CZe^{-\sqrt{2}x}dx\right)$$

Let
$$\mathcal{L}(t) \equiv \left\{\max_{j \leq n(t)} x_j(t) > \sqrt{2}t\right\}$$
 and

$$\Delta(t) \equiv \sum_k \delta_{x_k(t) - \max_{j \le n(t)} x_j(t)}$$
 conditioned on $\mathcal{L}(t)$.

.et
$$\mathcal{E}_t \equiv \sum_{i=1}^{n(t)} \delta_{x_i(t)-m(t)}$$

Let Z be the limit of the derivative martingale, and set

$$\mathcal{P}_{Z} = \sum_{i \in \mathbb{N}} \delta_{p_{i}} \equiv \mathsf{PPP}\left(CZe^{-\sqrt{2}x}dx\right)$$

Let
$$\mathcal{L}(t) \equiv \left\{\max_{j \leq n(t)} x_j(t) > \sqrt{2}t\right\}$$
 and

$$\Delta(t) \equiv \sum_k \delta_{x_k(t) - \max_{j \le n(t)} x_j(t)}$$
 conditioned on $\mathcal{L}(t)$.

Law of $\Delta(t)$ under $\mathbb{P}(\cdot|\mathcal{L}(t))$ converges to law of point process, Δ . Let $\Delta^{(i)}$ be iid copies of Δ , with atoms $\Delta_i^{(i)}$.

hausdorff center for mathematics

A. Bovier ()

Theorem (Arguin-B-Kistler, 2011 (PTRF 2013))

With the notation above, the point process \mathcal{E}_t converges in law to a point process \mathcal{E} , given by

$$\mathcal{E}\equiv\sum_{i,j\in\mathbb{N}}\delta_{m{p}_i+\Delta_j^{(i)}}$$

hausdorff center for mathematics

A. Bovier ()

Theorem (Arguin-B-Kistler, 2011 (PTRF 2013))

With the notation above, the point process \mathcal{E}_t converges in law to a point process \mathcal{E} , given by

$$\mathcal{E} \equiv \sum_{i,j \in \mathbb{N}} \delta_{p_i + \Delta_j^{(i)}}$$

Theorem (Arguin-B-Kistler, 2011 (PTRF 2013))

With the notation above, the point process \mathcal{E}_t converges in law to a point process \mathcal{E} , given by

$$\mathcal{E} \equiv \sum_{i,j \in \mathbb{N}} \delta_{\mathbf{p}_i + \Delta_j^{(i)}}$$

Similar result obtained independently by Aïdékon, Brunet, Berestycki, and Shi.

Ergodic theorem for the max

Alternative look: what happens if we consider time averages? Naively one might expect a law of large numbers:

$$\lim_{T\uparrow\infty}\frac{1}{T}\int_0^T \mathbb{I}_{\left\{\max_{k=1}^{n(t)}x_k(t)-m(t)\leq x\right\}} = \mathbb{E}\exp\left(-CZe^{-\sqrt{2}x}\right) \quad \text{a.s.}$$

But this cannot be true!

Ergodic theorem for the max

Alternative look: what happens if we consider time averages? Naively one might expect a law of large numbers:

$$\lim_{T\uparrow\infty}\frac{1}{T}\int_0^T \mathbb{I}_{\left\{\max_{k=1}^{n(t)}x_k(t)-m(t)\leq x\right\}} = \mathbb{E}\exp\left(-CZe^{-\sqrt{2}x}\right) \quad \text{a.s.}$$

But this cannot be true! Lalley and Sellke conjectured a random version:

Theorem (Arguin, B, Kistler, 2012 (EJP 18)) \mathbb{P} -a.s., for any $x \in \mathbb{R}$,

$$\lim_{T\uparrow\infty}\frac{1}{T}\int_0^T \mathbb{I}_{\left\{\max_{k=1}^{n(t)}x_k(t)-m(t)\leq x\right\}} = \exp\left(-\frac{CZ}e^{-\sqrt{2}x}\right)$$

Ergodic theorem for the extremal process

We prove this conjecture and extend it to the entire extremal process:

Ergodic theorem for the extremal process

We prove this conjecture and extend it to the entire extremal process:

Theorem (Arguin, B, Kistler (2012))

 \mathcal{E}_t converges \mathbb{P} -almost surely weakly under time-average to the Poisson cluster process \mathcal{E}_Z . That is, \mathbb{P} -a.s., $\forall f \in C_c^+(\mathbb{R})$,

$$\frac{1}{T}\int \exp\left(-\int f(y)\mathcal{E}_{t,\omega}(dy)\right)dt \to E\left[\exp\left(-\int f(y)\mathcal{E}_{Z}(dy)\right)\right]$$

Here \mathcal{E}_Z is the process \mathcal{E} for given value Z of the derivative martingale, E is w.r.t. the law of that process, given Z.

For $\varepsilon > 0$ and $R_T \ll T$, decompose

$$\frac{1}{T}\int_0^T \exp\left(-\int f(y)\mathcal{E}_{t,\omega}(dy)\right) dt$$

hausdorff center for mathematics

A. Bovier ()

Branching Brownian motion: extremal process and ergodic theorems

For $\varepsilon > 0$ and $R_T \ll T$, decompose

$$\frac{1}{T}\int_0^T \exp\left(-\int f(y)\mathcal{E}_{t,\omega}(dy)\right) dt = \underbrace{\frac{1}{T}\int_0^{\varepsilon T} \exp\left(-\int f(y)\mathcal{E}_{t,\omega}(dy)\right) dt}_{t=0}$$

(1):vanishes as $\epsilon \downarrow 0$

For $\varepsilon > 0$ and $R_T \ll T$, decompose

$$\frac{1}{T}\int_0^T \exp\left(-\int f(y)\mathcal{E}_{t,\omega}(dy)\right)dt = \underbrace{\frac{1}{T}\int_0^{\varepsilon T} \exp\left(-\int f(y)\mathcal{E}_{t,\omega}(dy)\right)dt}_{-\int t^{\varepsilon}(y)\mathcal{E}_{t,\omega}(dy)$$

(*I*):vanishes as $\epsilon \downarrow 0$

$$+\underbrace{\frac{1}{T}\int_{\varepsilon T}^{T}\mathbb{E}\left[\exp\left(-\int f(y)\mathcal{E}_{t,\omega}(dy)\right)\Big|\mathcal{F}_{R_{T}}\right]dt}_{\checkmark}$$

(II):what we want

For $\varepsilon > 0$ and $R_T \ll T$, decompose

$$\frac{1}{T}\int_0^T \exp\left(-\int f(y)\mathcal{E}_{t,\omega}(dy)\right)dt = \underbrace{\frac{1}{T}\int_0^{\varepsilon T} \exp\left(-\int f(y)\mathcal{E}_{t,\omega}(dy)\right)dt}_{t=0}$$

(*I*):vanishes as $\epsilon \downarrow 0$

$$+\underbrace{\frac{1}{T}\int_{\varepsilon T}^{T}\mathbb{E}\left[\exp\left(-\int f(y)\mathcal{E}_{t,\omega}(dy)\right)\Big|\mathcal{F}_{R_{T}}\right]dt}_{\mathcal{F}_{T}}$$

(II):what we want

$$+\underbrace{\frac{1}{T}\int_{\varepsilon T}^{T}Y_{t}(\omega)dt}_{(III): \text{ needs LLN}}$$

Elements of the proof: the LLN

hausdorff center for mathematics

A. Bovier ()

Branching Brownian motion: extremal process and ergodic theorems

Elements of the proof: the LLN

$$(III) \equiv \exp\left(-\int_{\epsilon T}^{T} f(y) \mathcal{E}_{t,\omega}(dy)\right) - \mathbb{E}\left[\exp\left(-\int_{\epsilon T}^{T} f(y) \mathcal{E}_{t,\omega}(dy)\right) \middle| \mathcal{F}_{R_{T}}\right]$$

should vanish by a law of large numbers.

hausdorff center for mathematics

A. Bovier ()

Branching Brownian motion: extremal process and ergodic theorems

Elements of the proof: the LLN

$$(III) \equiv \exp\left(-\int_{\epsilon T}^{T} f(y) \mathcal{E}_{t,\omega}(dy)\right) - \mathbb{E}\left[\exp\left(-\int_{\epsilon T}^{T} f(y) \mathcal{E}_{t,\omega}(dy)\right) \middle| \mathcal{F}_{R_{T}}\right]$$

should vanish by a law of large numbers.

We use a criterion which is an adaptation of the theorem due to Lyons:

Lemma

Let $\{Y_s\}_{s\in\mathbb{R}_+}$ be a.s. uniformly bounded and $\mathbb{E}[Y_s] = 0$ for all s. If

$$\sum_{T=1}^{\infty} \frac{1}{T} \mathbb{E}\left[\left|\frac{1}{T} \int_{0}^{T} Y_{s} ds\right|^{2}\right] < \infty,$$

then

$$\frac{1}{T}\int_0^T Y_s \ ds \to 0, \ \text{ a.s.}$$

A. Bovier ()

LLN

Requires covariance estimate:

Lemma

Let Y_s from (III). For $R_T = o(\sqrt{T})$ with $\lim_{T\to\infty} R_T = +\infty$, there exists $\kappa > 0$, s.t.

$$\mathbb{E}[Y_sY_{s'}] \leq Ce^{-R_T^\kappa} \text{ for any } s, s' \in [\varepsilon T, T] \text{ with } |s-s'| \geq R_T.$$

Universality

The new extremal process of BBM should not be limited to BBM:

- Branching random walk (Aïdekon, Madaule)
- Gaussian free field in d = 2 [Bolthausen, Deuschel, Giacomin, Bramson, Zeitouni, Biskup and Louisdor (!)]
- Cover times of random walks [Ding, Zeitouni, Sznitman,....]
- Spin glasses with log-correlated potentials [Fyodorov, Bouchaud,..]

and building block for further models:

- Extensions to stronger correlations: beyond the borderline [Fang-Zeitouni '12]...
- Extension back to spin glasses: some of the observations made give hope.... see Louis-Pierre's talk

Universality

References

- L.-P. Arguin, A. Bovier, and N. Kistler, The genealogy of extremal particles of branching Brownian motion, Commun. Pure Appl. Math. 64, 1647–1676 (2011).
- L.-P. Arguin, A. Bovier, and N. Kistler, Poissonian statistics in the extremal process of braching Brownian motion, Ann. Appl. Probab. 22, 1693–1711 (2012).
- L.-P. Arguin, A. Bovier, and N. Kistler, The extremal process of branching Brownian motion, to appear in Probab. Theor. Rel. Fields (2012).
- L.-P. Arguin, A. Bovier, and N. Kistler, An ergodic theorem for the frontier of branching Brownian motion, EJP 18 (2013).
- L.-P. Arguin, A, Bovier, and N. Kistler, An ergodic theorem for the extremal process of of branching Brownian motion, arXiv:1209.6027, (2012).
- E. Aïdékon, J. Berestyzki, É. Brunet, Z. Shi, Branching Brownian motion seen from its tip, to appear in Probab. Theor. Rel. Fields (2012).

Thank you for your attention!

