Branching Brownian motion: extremal process and ergodic theorems

Anton Bovier
with Louis-Pierre Arguin and Nicola Kistler

RCS&SM, Venezia, 06.05.2013

hausdorff center for mathematics
Plan

1. BBM
2. Maximum of BBM
3. The Lalley-Sellke conjecture
4. The extremal process of BBM
5. Ergodic theorems
6. Universality
Branching Brownian Motion

Branching Brownian motion is one of the fundamental models in probability. It combines two classical objects:
Branching Brownian Motion

Branching Brownian motion is one of the fundamental models in probability. It combines two classical objects:

Brownian motion

Pure random motion
Branching Brownian Motion

Branching Brownian motion is one of the fundamental models in probability. It combines two classical objects:

Brownian motion

Galton-Watson process

Pure random motion

Pure random genealogy
Branching Brownian motion

Branching Brownian motion (BBM) combines the two processes: Each particle of the Galton-Watson process performs Brownian motion independently of any other. This produces an immersion of the Galton-Watson process in space.
Branching Brownian motion

Branching Brownian motion (BBM) combines the two processes: Each particle of the Galton-Watson process performs Brownian motion independently of any other. This produces an immersion of the Galton-Watson process in space.

BBM is the canonical model of a spatial branching process.
Galton-Watson tree and corresponding BBM
Galton-Watson tree and corresponding BBM
BBM as Gaussian process
BBM as Gaussian process

- Fix GW-tree. Label individuals at time t as $i_1(t), \ldots, i_n(t)$.
BBM as Gaussian process

- Fix GW-tree. Label individuals at time t as $i_1(t), \ldots, i_n(t)(t)$
- $d(i_{\ell}(t), i_k(t)) \equiv$ time of most recent common ancestor of $i_{\ell}(t)$ and $i_k(t)$
BBM as Gaussian process

- Fix GW-tree. Label individuals at time t as $i_1(t), \ldots, i_n(t)(t)$
- $d(i_\ell(t), i_k(t)) \equiv$ time of most recent common ancestor of $i_\ell(t)$ and $i_k(t)$
- BBM is Gaussian process with covariance

$$\mathbb{E}x_k(t)x_\ell(s) = d(i_k(t), i_\ell(s))$$
BBM as Gaussian process

- Fix GW-tree. Label individuals at time t as $i_1(t), \ldots, i_n(t)$
- $d(i_\ell(t), i_k(t)) \equiv$ time of most recent common ancestor of $i_\ell(t)$ and $i_k(t)$
- BBM is Gaussian process with covariance
 \[\mathbb{E}x_k(t)x_\ell(s) = d(i_k(t), i_\ell(s)) \]

BBM special case of models where

\[\mathbb{E}x_k(t)x_\ell(t) = tA(t^{-1}d(i_k(t), i_\ell(t))) \quad \text{for } A : [0, 1] \to [0, 1]. \]
BBM as Gaussian process

- Fix GW-tree. Label individuals at time t as $i_1(t), \ldots, i_n(t)$.
- $d(i_\ell(t), i_k(t)) \equiv$ time of most recent common ancestor of $i_\ell(t)$ and $i_k(t)$.
- BBM is Gaussian process with covariance

$$\mathbb{E}x_k(t)x_\ell(s) = d(i_k(t), i_\ell(s))$$

BBM special case of models where

$$\mathbb{E}x_k(t)x_\ell(t) = tA(t^{-1}d(i_k(t), i_\ell(t))) \quad \text{for } A : [0, 1] \rightarrow [0, 1].$$

\Rightarrow GREM models of spin-glasses.

A. Bovier
First question: how big is the biggest?
First question: how big is the biggest?

To compare:

Single Brownian motion:

$$P [X(t) \leq x \sqrt{t}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{z^2}{2}\right) \, dz$$

Two independent Brownian motions:

$$P [\max_{k=1,\ldots,n} \epsilon t X_k(t) \leq \epsilon t x] \rightarrow e^{-\sqrt{\frac{4}{\pi}} x}$$
First question: how big is the biggest?

To compare:

- **Single Brownian motion:**

\[
P \left[X(t) \leq x \sqrt{t} \right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp \left(-\frac{z^2}{2} \right) dz
\]
First question: how big is the biggest?

To compare:

- **Single** Brownian motion:
 \[
 \mathbb{P} \left[X(t) \leq x \sqrt{t} \right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp \left(-\frac{z^2}{2} \right) \, dz
 \]

- \(e^t = \mathbb{E} n(t) \) independent Brownian motions:
 \[
 \mathbb{P} \left[\max_{k=1,\ldots,e^t} X_k(t) \leq t \sqrt{2} - \frac{1}{2\sqrt{2}} \ln t + x \right] \to e^{-\sqrt{4\pi e^{-\sqrt{2x}}}}
 \]
The KPP-F equation
The KPP-F equation

One of the simplest reaction-diffusion equations is the Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:
The KPP-F equation

One of the simplest reaction-diffusion equations is the Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

$$\partial_t \nu(x, t) = \frac{1}{2} \partial_x^2 \nu(x, t) + \nu - \nu^2$$
The KPP-F equation

One of the simplest reaction-diffusion equations is the Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

\[\partial_t \nu(x, t) = \frac{1}{2} \partial_x^2 \nu(x, t) + \nu - \nu^2 \]
The KPP-F equation

One of the simplest reaction-diffusion equations is the Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

$$\partial_t v(x, t) = \frac{1}{2} \partial_x^2 v(x, t) + v - v^2$$

Fischer used this equation to model the evolution of biological populations. It accounts for:
The KPP-F equation

One of the simplest reaction-diffusion equations is the Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

\[
\partial_t v(x, t) = \frac{1}{2} \partial_x^2 v(x, t) + v - v^2
\]

Fischer used this equation to model the evolution of biological populations. It accounts for:

- **birth**: \(v \),

The KPP-F equation

One of the simplest reaction-diffusion equations is the Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

$$\partial_t v(x, t) = \frac{1}{2} \partial_x^2 v(x, t) + v - v^2$$

Fischer used this equation to model the evolution of biological populations. It accounts for:

- birth: v,
- death: $-v^2$.
The KPP-F equation

One of the simplest reaction-diffusion equations is the Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

$$\partial_t v(x, t) = \frac{1}{2} \partial_x^2 v(x, t) + v - v^2$$

Fischer used this equation to model the evolution of biological populations. It accounts for:

- **birth**: v,
- **death**: $-v^2$,
- **diffusive migration**: $\partial_x^2 v$.
KPP-F equation and the maximum of of BBM

Maximum of BBM

McKean, 1975:

\(u \) solves the F-KPP equation, i.e.

\[
\partial_t u = \frac{1}{2} \partial^2_x u + u^2 - u,
\]

\(u(0, x) = \begin{cases} 1 & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases} \)

Bramson, 1978:

\[
\begin{align*}
\begin{align*} u(t, x + m(t)) & \to \omega(x), \\
m(t) & = \sqrt{2t - \frac{3}{2}} \sqrt{2 \ln t}
\end{align*}
\end{align*}
\]

where \(\omega(x) \) solves

\[
\frac{1}{2} \partial^2_x \omega + \sqrt{2} \partial_x \omega + \omega^2 - \omega = 0.
\]
KPP-F equation and the maximum of BBM

\[u(t, x) \equiv \mathbb{P} \left[\max_{k=1 \ldots n(t)} x_k(t) \leq x \right] \]
KPP-F equation and the maximum of of BBM

\[u(t, x) \equiv \mathbb{P} \left[\max_{k=1\ldots n(t)} x_k(t) \leq x \right] \]

McKean, 1975: \(1 - u \) solves the F-KPP equation, i.e.

\[
\partial_t u = \frac{1}{2} \partial_x^2 u + u^2 - u, \quad u(0, x) = \begin{cases}
1 & \text{if } x \geq 0 \\
0 & \text{if } x < 0
\end{cases}
\]
KPP-F equation and the maximum of BBM

\[u(t, x) \equiv \mathbb{P} \left[\max_{k=1 \ldots n(t)} x_k(t) \leq x \right] \]

McKean, 1975: \(1 - u \) solves the F-KPP equation, i.e.

\[\partial_t u = \frac{1}{2} \partial_x^2 u + u^2 - u, \quad u(0, x) = \begin{cases} 1 & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases} \]

Bramson, 1978:

\[u(t, x+m(t)) \to \omega(x), \quad m(t) = \sqrt{2} t - \frac{3}{2\sqrt{2}} \ln t \]
KPP-F equation and the maximum of of BBM

\[u(t, x) \equiv \mathbb{P} \left[\max_{k=1 \ldots n(t)} x_k(t) \leq x \right] \]

McKean, 1975: \[1 - u \] solves the F-KPP equation, i.e.

\[
\partial_t u = \frac{1}{2} \partial_x^2 u + u^2 - u, \quad u(0, x) = \begin{cases} 1 & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases}
\]

Bramson, 1978:

\[u(t, x + m(t)) \to \omega(x), \quad m(t) = \sqrt{2t - \frac{3}{2\sqrt{2}}} \ln t \]

where \(\omega(x) \) solves

\[
\frac{1}{2} \partial_x^2 \omega + \sqrt{2} \partial_x \omega + \omega^2 - \omega = 0
\]
The derivative martingale

Lalley-Sellke, 1987: \(\omega(x) \) is random shift of Gumbel-distribution

\[\omega(x) = E \left[e^{-CZ} e^{-\sqrt{2}x} \right], \]

\[Z(t) = \lim_{t \to \infty} Z(t), \]

where \(Z(t) \) is the derivative martingale,

\[Z(t) = \sum_{k \leq n(t)} \left\{ \sqrt{2}t - x_k(t) \right\} e^{-\sqrt{2} \left\{ \sqrt{2}t - x_k(t) \right\}}, \]

Lalley-Sellke conjecture:

\[P\text{-a.s., for any } x \in \mathbb{R}, \lim_{T \uparrow \infty} \frac{1}{T} \int_0^T 1_{\{ \max_{n \in [1]} x_n(t) - m(t) \leq x \}} = \exp \left(-CZ e^{-\sqrt{2}x} \right) \]
The derivative martingale

Lalley-Sellke, 1987: $\omega(x)$ is random shift of Gumbel-distribution

$$\omega(x) = \mathbb{E}\left[e^{-CZe^{-\sqrt{2x}}}\right],$$
The derivative martingale

Lalley-Sellke, 1987: \(\omega(x) \) is random shift of Gumbel-distribution

\[
\omega(x) = \mathbb{E} \left[e^{-CZ e^{-\sqrt{2}x}} \right],
\]

\[
Z \overset{(d)}{=} \lim_{t \to \infty} Z(t), \text{ where } Z(t) \text{ is the derivative martingale,}
\]

\[
Z(t) = \sum_{k \leq n(t)} \left\{ \sqrt{2}t - x_k(t) \right\} e^{-\sqrt{2}\left\{ \sqrt{2}t - x_k(t) \right\}}
\]
The derivative martingale

Lalley-Sellke, 1987: $\omega(x)$ is random shift of Gumbel-distribution

$$\omega(x) = \mathbb{E} \left[e^{-CZ e^{-\sqrt{2}x}} \right],$$

$Z \overset{(d)}{=} \lim_{t \to \infty} Z(t)$, where $Z(t)$ is the derivative martingale,

$$Z(t) = \sum_{k \leq n(t)} \{\sqrt{2}t - x_k(t)\} e^{-\sqrt{2}\{\sqrt{2}t-x_k(t)\}}$$

Lalley-Sellke conjecture: \mathbb{P}-a.s., for any $x \in \mathbb{R}$,

$$\lim_{T \uparrow \infty} \frac{1}{T} \int_{0}^{T} \mathbb{I}\left\{ \max_{k=1}^{n(t)} x_k(t) - m(t) \leq x \right\} = \exp \left(-CZ e^{-\sqrt{2}x} \right)$$
Looking at BBM from the top

Closer look at the extremes: Zooming into the top

Can we describe the asymptotic structure of the largest points, and their genealogical structure?
Classical Poisson convergence for many BMs

From classical extreme values statistics one knows:

Let $X_i(t)$, $i \in \mathbb{N}$, iid Brownian motions. Then, the point process

$$\mathcal{P}_t \equiv \sum_{i=1}^{e^t} \delta_{X_i(t)-\sqrt{2}t+\frac{1}{2\sqrt{2}} \ln t} \to \text{PPP} \left(\sqrt{4\pi e^{-x}} \, dx \right),$$

where $\text{PPP}(\mu)$ is Poisson point process with intensity measure μ.
Extensions to correlated processes

GREM [Derrida '82]: Recall

\[x_i(\tau) = tA(\tau - 1) d(i_\ell(\tau), i_k(\tau)) \]

A increasing step function.

Extreme behaviour relatively insensitive to correlations: If \(A(x) < x \), \(\forall x \in (0, 1) \), then no change in the extremal process.

Poisson cascades: If \(A \) takes only finitely many values, and \(A(x) > x \); for some \(x \in (0, 1) \), the extremal process is known (Derrida, B-Kurkova) and given by Poisson cascade process.

Borderline: If \(A \) takes only finitely many values, and \(A(x) \leq x \), for all \(x \in [0, 1] \), but \(A(x) = x \), for some \(x \in (0, 1) \), the extremal process is again Poisson, but with reduced intensity (B-Kurkova).

What happens at the natural border \(A(x) = x \)??
Extensions to correlated processes

GREM [Derrida ’82]: Recall $\mathbb{E} x_{i\ell}(t)x_{ik}(t) = tA\left(t^{-1}d(i_{\ell}(t), i_{k}(t))\right)$. A increasing step function.
Extensions to correlated processes

GREM [Derrida ’82]: Recall $\mathbb{E} x_{i_\ell(t)} x_{i_k(t)} = t A \left(t^{-1} d(i_\ell(t), i_k(t)) \right)$.

An increasing step function.

Extreme behaviour relatively insensitive to correlations: If $A(x) < x$, $\forall x \in (0, 1)$, then no change in the extremal process.

A. Bovier () Branching Brownian motion: extremal process and ergodic theorems
Extensions to correlated processes

GREM [Derrida ’82]: Recall $\mathbb{E}x_{i\ell}(t)x_{ik}(t) = tA \left(t^{-1} d(i\ell(t), ik(t)) \right)$.

A increasing step function.

Extreme behaviour relatively insensitive to correlations: If $A(x) < x$, $\forall x \in (0, 1)$, then no change in the extremal process.

Poisson cascades: If A takes only finitely many values, and $A(x) > x$; for some $x \in (0, 1)$, the extremal process is known (Derrida, B-Kurkova) and given by Poisson cascade process.
Extensions to correlated processes

GREM [Derrida ’82]: Recall \(\mathbb{E} x_{i_\ell(t)} x_{i_k(t)} = tA \left(t^{-1} d(i_\ell(t), i_k(t)) \right) \).

A increasing step function.

Extreme behaviour relatively insensitive to correlations: If \(A(x) < x, \forall x \in (0, 1) \), then no change in the extremal process.

Poisson cascades: If \(A \) takes only finitely many values, and \(A(x) > x; \) for some \(x \in (0, 1) \), the extremal process is known (Derrida, B-Kurkova) and given by Poisson cascade process.

Borderline: If \(A \) takes only finitely many values, and \(A(x) \leq x, \) for all \(x \in [0, 1] \), but \(A(x) = x, \) for some \(x \in (0, 1) \), the extremal process is again Poisson, but with reduced intensity (B-Kurkova).
Extensions to correlated processes

GREM [Derrida ’82]: Recall $E x_{i_{\ell}(t)} x_{i_k(t)} = t A \left(t^{-1} d(i_{\ell}(t), i_k(t)) \right)$.

A increasing step function.

Extreme behaviour relatively insensitive to correlations: If $A(x) < x$, $\forall x \in (0, 1)$, then no change in the extremal process.

Poisson cascades: If A takes only finitely many values, and $A(x) > x$; for some $x \in (0, 1)$, the extremal process is known (Derrida, B-Kurkova) and given by Poisson cascade process.

Borderline: If A takes only finitely many values, and $A(x) \leq x$, for all $x \in [0, 1]$, but $A(x) = x$, for some $x \in (0, 1)$, the extremal process is again Poisson, but with reduced intensity (B-Kurkova).

What happens at the natural border $A(x) = x$??
The extremal process of BBM

The life of BBM

General principle: follow history of the leading particles!

There are three phases with distinct properties and effects:
- the early years
- midlife
- before the end

Let us look at them...
The life of BBM

General principle: follow history of the leading particles!
There are three phases with distinct properties and effects:
The life of BBM

General principle: follow history of the leading particles!
There are three phases with distinct properties and effects:

- the early years
The life of BBM

General principle: follow history of the leading particles!
There are three phases with distinct properties and effects:

- the early years
- midlife
The life of BBM

General principle: follow history of the leading particles!
There are three phases with distinct properties and effects:

- the early years
- midlife
- before the end
The life of BBM

General principle: follow history of the leading particles!
There are three phases with distinct properties and effects:

- the early years
- midlife
- before the end

Let us look at them.......
The early years...

Randomness persists for all times from what happened in the early history:
The early years...

Randomness **persistence** for all times from what happened in the early history:

Both
The early years...

Randomness **persists** for all times from what happened in the early history:

Both \(r \) and \(r' \) occur with positive probability, independent of \(t! \)

In the second case, all particles at time \(r \) have the same chance to have offspring that is close to the maximum.
The early years...

Randomness **persists** for all times from what happened in the early history:

Both and occur with positive probability, independent of t!

In the second case, all particles at time r have the same chance to have offspring that is close to the maximum.

Two consequences:

- the random variable Z, the "derivative martingale"
- particles near the maximum at time t can have common ancestors at finite, t-independent times (when $t \uparrow \infty$).
...Midlife...
...Midlife...

Key fact: The function $m(t)$ is convex:

![Graph showing the convex function $m(t)$](image)

The function $m(t)$
The extremal process of BBM

...Midlife...

Key fact: The function \(m(t) \) is convex:

- Descendants of a particle maximal at time \(0 \ll s \ll t \) cannot be maximal at time \(t \)!

The function \(m(t) \)
...Midlife...

Key fact: The function $m(t)$ is convex:

- Descendants of a particle maximal at time $0 \ll s \ll t$ cannot be maximal at time t!
- Particles realising the maximum at time t have ancestors at times s that are selected from the very many particles that are a lot below the maximum at time s.

![The function $m(t)$](image)
The extremal process of BBM

...Midlife...

Key fact: The function $m(t)$ is convex:

- Descendants of a particle maximal at time $0 \ll s \ll t$ cannot be maximal at time t!
- Particles realising the maximum at time t have ancestors at times s that are selected from the very many particles that are a lot below the maximum at time s.
- Offspring of the selected particles is atypical!
...Midlife...

Key fact: The function $m(t)$ is convex:

- Descendants of a particle maximal at time $0 \ll s \ll t$ cannot be maximal at time t!
- Particles realising the maximum at time t have ancestors at times s that are selected from the very many particles that are a lot below the maximum at time s.
- Offspring of the selected particles is atypical!
- Only one descendant of a selected particle at times $0 \ll s \ll t$ can be at finite distance from the maximum at time t.
...just before the end

Any particle that arrives close to the maximum at time t can have produced offspring shortly before. These will be only a finite amount smaller than their brothers.

Hence, particles near the maximum come in small families.
The extremal process

Let \(E_t \equiv \sum_{i=1}^{n(t)} \delta x_i(t) - m(t) \),

Let \(Z \) be the limit of the derivative martingale, and set

\[P_Z = \sum_{i \in \mathbb{N}} \delta p_i \equiv \text{PPP}(CZe - \sqrt{2}x dx) \]

Let \(L(t) \equiv \{ \max_{j \leq n(t)}(x_j(t)) > \sqrt{2}t \} \) and

\[\Delta(t) \equiv \sum_k \delta x_k(t) - \max_{j \leq n(t)}(x_j(t)) \text{ conditioned on } L(t) \].

Law of \(\Delta(t) \) under \(P(\cdot | L(t)) \) converges to law of point process, \(\Delta \). Let \(\Delta(i) \) be iid copies of \(\Delta \), with atoms \(\Delta(j,i) \).
The extremal process

Let

\[\mathcal{E}_t \equiv \sum_{i=1}^{n(t)} \delta_{\chi_i(t) - m(t)} \]
The extremal process of BBM

Let

\[\mathcal{E}_t \equiv \sum_{i=1}^{n(t)} \delta_{x_i(t)} - m(t) \]

Let \(Z \) be the limit of the derivative martingale, and set

\[\mathcal{P}_Z = \sum_{i \in \mathbb{N}} \delta_{p_i} \equiv \text{PPP} \left(CZ e^{-\sqrt{2}x} \, dx \right) \]
The extremal process

Let
\[\mathcal{E}_t \equiv \sum_{i=1}^{n(t)} \delta_{x_i(t) - m(t)} \]

Let \(Z \) be the limit of the derivative martingale, and set
\[\mathcal{P}_Z = \sum_{i \in \mathbb{N}} \delta_{p_i} \equiv \text{PPP} \left(CZe^{-\sqrt{2}x} \, dx \right) \]

Let \(\mathcal{L}(t) \equiv \{ \max_{j \leq n(t)} x_j(t) > \sqrt{2}t \} \) and
The extremal process

Let
\[E_t \equiv \sum_{i=1}^{n(t)} \delta_{x_i(t)} - m(t) \]

Let \(Z \) be the limit of the derivative martingale, and set
\[P_Z = \sum_{i \in \mathbb{N}} \delta_{p_i} \equiv \text{PPP} \left(CZ e^{-\sqrt{2}x} \, dx \right) \]

Let \(L(t) \equiv \{ \max_{j \leq n(t)} x_j(t) > \sqrt{2}t \} \) and
\[\Delta(t) \equiv \sum_k \delta_{x_k(t) - \max_{j \leq n(t)} x_j(t)} \quad \text{conditioned on } L(t). \]
The extremal process

Let
\[\mathcal{E}_t \equiv \sum_{i=1}^{n(t)} \delta_{x_i(t)} - m(t) \]

Let \(Z \) be the limit of the derivative martingale, and set
\[\mathcal{P}_Z = \sum_{i \in \mathbb{N}} \delta_{p_i} \equiv \text{PPP} \left(CZe^{-\sqrt{2}x} \, dx \right) \]

Let \(\mathcal{L}(t) \equiv \{ \max_{j \leq n(t)} x_j(t) > \sqrt{2}t \} \) and
\[\Delta(t) \equiv \sum_k \delta_{x_k(t) - \max_{j \leq n(t)} x_j(t)} \text{ conditioned on } \mathcal{L}(t). \]

Law of \(\Delta(t) \) under \(\mathbb{P}(\cdot | \mathcal{L}(t)) \) converges to law of point process, \(\Delta \). Let \(\Delta^{(i)} \) be iid copies of \(\Delta \), with atoms \(\Delta^{(i)}_j \).
The extremal process

Theorem (Arguin-B-Kistler, 2011 (PTRF 2013))

With the notation above, the point process \(E_t\) converges in law to a point process \(E\), given by

\[
E \equiv \sum_{i, j \in \mathbb{N}} \delta_{p_i + \Delta(i) j}
\]

Similar result obtained independently by A. Idékon, Brunet, Berestycki, and Shi.
The extremal process

Theorem (Arguin-B-Kistler, 2011 (PTRF 2013))

With the notation above, the point process \mathcal{E}_t converges in law to a point process \mathcal{E}, given by

$$\mathcal{E} \equiv \sum_{i,j \in \mathbb{N}} \delta_{p_i + \Delta_j(i)}$$
The extremal process

Theorem (Arguin-B-Kistler, 2011 (PTRF 2013))

With the notation above, the point process \mathcal{E}_t converges in law to a point process \mathcal{E}, given by

$$\mathcal{E} \equiv \sum_{i,j \in \mathbb{N}} \delta_{p_i+\Delta_j(i)}$$

Similar result obtained independently by A. Bovier, Brunet, Berestycki, and Shi.
The extremal process

Theorem (Arguin-B-Kistler, 2011 (PTRF 2013))

With the notation above, the point process \(\mathcal{E}_t \) converges in law to a point process \(\mathcal{E} \), given by

\[
\mathcal{E} \equiv \sum_{i,j \in \mathbb{N}} \delta_{p_i + \Delta_j^{(i)}(i)}
\]

Similar result obtained independently by Aïdékon, Brunet, Berestycki, and Shi.
Ergodic theorem for the max

Alternative look: what happens if we consider time averages? Naively one might expect a law of large numbers:

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \mathbb{1}_{\left\{ \max_{k=1}^n x_k(t) - m(t) \leq x \right\}} = \mathbb{E} \exp \left(-CZ e^{-\sqrt{2}x} \right) \text{ a.s.}$$

But this cannot be true!
Ergodic theorem for the max

Alternative look: what happens if we consider time averages? Naively one might expect a law of large numbers:

$$\lim_{T \uparrow \infty} \frac{1}{T} \int_0^T \mathbb{I} \left\{ \max_{k=1}^n x_k(t) - m(t) \leq x \right\} = \mathbb{E} \exp \left(-CZ e^{-\sqrt{2}x} \right) \quad \text{a.s.}$$

But this cannot be true! Lalley and Sellke conjectured a random version:

Theorem (Arguin, B, Kistler, 2012 (EJP 18))

\[\mathbb{P}-\text{a.s., for any } x \in \mathbb{R}, \]

$$\lim_{T \uparrow \infty} \frac{1}{T} \int_0^T \mathbb{I} \left\{ \max_{k=1}^n x_k(t) - m(t) \leq x \right\} = \exp \left(-CZ e^{-\sqrt{2}x} \right)$$
Ergodic theorem for the extremal process

We prove this conjecture and extend it to the entire extremal process:
Ergodic theorem for the extremal process

We prove this conjecture and extend it to the entire extremal process:

Theorem (Arguin, B, Kistler (2012))

\[E_t \text{ converges } \mathbb{P}\text{-almost surely weakly under time-average to the Poisson cluster process } E_Z. \text{ That is, } \mathbb{P}\text{-a.s., } \forall f \in C_c^+(\mathbb{R}), \]

\[\frac{1}{T} \int \exp \left(- \int f(y)E_{t,\omega}(dy) \right) \, dt \to E \left[\exp \left(- \int f(y)E_Z(dy) \right) \right] \]

Here \(E_Z \) is the process \(E \) for given value \(Z \) of the derivative martingale, \(E \) is w.r.t. the law of that process, given \(Z \).
Elements of the proof

For $\varepsilon > 0$ and $R_T \ll T$, decompose

$$\frac{1}{T} \int_0^T \exp \left(- \int f(y) \mathcal{E}_{y,\omega}(dy) \right) dt$$
Elements of the proof

For $\varepsilon > 0$ and $R_T \ll T$, decompose

$$\frac{1}{T} \int_0^T \exp \left(- \int f(y) \mathcal{E}_{t,\omega}(dy) \right) dt = \frac{1}{T} \int_0^\varepsilon T \exp \left(- \int f(y) \mathcal{E}_{t,\omega}(dy) \right) dt$$

(I): vanishes as $\varepsilon \downarrow 0$
Elements of the proof

For $\varepsilon > 0$ and $R_T \ll T$, decompose

$$
\frac{1}{T} \int_0^T \exp \left(- \int f(y) E_{t,\omega}(dy) \right) dt = \frac{1}{T} \int_0^T \exp \left(- \int f(y) E_{t,\omega}(dy) \right) dt
$$

(\text{i): vanishes as } \varepsilon \downarrow 0

$$
+ \frac{1}{T} \int_{\varepsilon T}^T \mathbb{E} \left[\exp \left(- \int f(y) E_{t,\omega}(dy) \right) \bigg| \mathcal{F}_{R_T} \right] dt
$$

(\text{ii): what we want}
Elements of the proof

For $\varepsilon > 0$ and $R_T \ll T$, decompose

$$\frac{1}{T} \int_0^T \exp \left(- \int f(y) \mathcal{E}_{t,\omega}(dy) \right) dt = \frac{1}{T} \int_0^T \exp \left(- \int f(y) \mathcal{E}_{t,\omega}(dy) \right) dt$$

\[\text{(I): vanishes as } \varepsilon \downarrow 0\]

$$+ \frac{1}{T} \int_{\varepsilon T}^T \mathbb{E} \left[\exp \left(- \int f(y) \mathcal{E}_{t,\omega}(dy) \right) \bigg| \mathcal{F}_{R_T} \right] dt$$

\[\text{(II): what we want}\]

$$+ \frac{1}{T} \int_{\varepsilon T}^T Y_t(\omega) dt$$

\[\text{(III): needs LLN}\]
Elements of the proof: the LLN
Elements of the proof: the LLN

\[(III) \equiv \exp \left(- \int_{\epsilon T}^{T} f(y) \mathcal{E}_{t,\omega}(dy) \right) - \mathbb{E} \left[\exp \left(- \int_{\epsilon T}^{T} f(y) \mathcal{E}_{t,\omega}(dy) \right) \middle| \mathcal{F}_{R_{T}} \right] \]

should vanish by a law of large numbers.
Elements of the proof: the LLN

\[(III) \equiv \exp \left(- \int_{\epsilon T}^{T} f(y) \mathcal{E}_{t,\omega}(dy) \right) - \mathbb{E} \left[\exp \left(- \int_{\epsilon T}^{T} f(y) \mathcal{E}_{t,\omega}(dy) \right) \bigg| \mathcal{F}_{RT} \right] \]

should vanish by a law of large numbers.
We use a criterion which is an adaptation of the theorem due to Lyons:

Lemma

Let \(\{Y_s\}_{s \in \mathbb{R}_+} \) be a.s. uniformly bounded and \(\mathbb{E}[Y_s] = 0 \) for all \(s \). If

\[
\sum_{T=1}^{\infty} \frac{1}{T} \mathbb{E} \left[\left| \frac{1}{T} \int_{0}^{T} Y_s \, ds \right|^2 \right] < \infty,
\]

then

\[
\frac{1}{T} \int_{0}^{T} Y_s \, ds \rightarrow 0, \text{ a.s.}
\]
Requires covariance estimate:

Lemma

Let Y_s from (III). For $R_T = o(\sqrt{T})$ with $\lim_{T \to \infty} R_T = +\infty$, there exists $\kappa > 0$, s.t.

$$
E[Y_s Y_{s'}] \leq Ce^{-R_T^\kappa} \quad \text{for any } s, s' \in [\varepsilon T, T] \text{ with } |s - s'| \geq R_T.
$$
Universality

The new extremal process of BBM should not be limited to BBM:

- Branching random walk (Aïdeckon, Madaule)
- Gaussian free field in $d = 2$ [Bolthausen, Deuschel, Giacomin, Bramson, Zeitouni, Biskup and Louisdor (!)]
- Cover times of random walks [Ding, Zeitouni, Sznitman,....]
- Spin glasses with log-correlated potentials [Fyodorov, Bouchaud,..]

and building block for further models:

- Extensions to stronger correlations: beyond the borderline [Fang-Zeitouni ’12]...
- Extension back to spin glasses: some of the observations made give hope.... see Louis-Pierre’s talk
References

Thank you for your attention!