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Introduction Definitions

What is a Polya urn?
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Uniformly at
random
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Examples

@ Polya-Eggenberger urn (spread of epidemics)

(o 3)

@ Friedman (adverse campaign) urn

(3

@ Ehrenfest gaz model

[

@ 3-ary search tree
-1 2
3 -2
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Polya-Eggenberger urn

Initial composition « red balls and 5 black balls.
Replacement matrix o s/
Composition vector at time n :

o~

#red balls in the urn at time n
#black balls in the urn attime n /"

Theorem ATHREYA.
Asymptotically when n tends to infinity, almost surely,

U(n)
— >V
ns

where V is a Dirichlet random vector of parameter (%, g)
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Introduction Some examples
3-ary search tree
Some entries (say i.i.d. on [0,1]): .83 .12 .26 .3.71 .9

(=)
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3-ary search tree
Some entries (say i.i.d. on [0,1]): .83 .12 .26 .3.71 .9
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Literature
Literature

@ Probabilistic approaches, via martingales, embedding in
continuous time, branching processes
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General context
In general,

A two-colour Pélya urn is defined by:

@ An initial composition: @ A replacement matrix:
Q@ a b
- (3 (¢ )

@ a,b,c,d >0 (non extinction) and bc # 0,

We assume:

@ the urnis balanced,i.e.a+b=c+d =S

We denote by:
@ m the second eigenvalue of R

@ |0 = % the ratio of the two eigenvalues of R
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Limit theorems
Limit theorems

Composition vector:

U(n) = # red balls at time n
~ \ # black balls at time n

Theorem amreva, sanson, ...

1
°|f0'<§

Uu(n)-nvy (law)
\/ﬁ N—+oo

o If o > 3, then, a.s. and in all LP (p > 1),

N(0,%2).

U(n) =nvy +n°WPTv, + o(n%).

v

where (vq,V5) is a (well chosen) basis of 'R, and (uy, u,) its dual basis.
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Introduction

Example of a trajectory

1 6 1
U0 =19 R=12 5

Number of black balls

Number of red balls

2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 S0 52 54 56 S8 60 62 64 66 68 70 72
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Example of a trajectory

o) =l

Number of black balls

Number of red balls
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Example of a trajectory

o) =l

7 Number of black balls

ln1

Number of red balls

&)
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Embedding in continuous time

Each ball becomes a clock that rings after a random time of law
Exp(1), independently from the others.
We denote by 7, the date of the n™ ring,

(law)

(U(M)nso = (U (70))nso-

Theorem ATHREYA, JANSON, ... .
If o > % asymptotically when n tends to +o0, a.s. and in all LP (p > 1),

UCT(t) =eSteva(1+0(1)) +e™W v, (1+0(1)),

where £ follows a Gamma(“sﬂ) law.
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Embedding in continuous time
Connexions

We are interested in the properties of W

N—+oo t—>+o00 emt

. U (n) UAPNQ)
W&Tﬁ)z lim uz(%) and W(aﬁ) lim u2( (@)

We know that (embedding in continuous time) :

(law)

Wig) =

(law)

EWeg et WRls =7 €W,

where £ and W(D 5 are independent in the left identity.

We also KNow crauvin, Pouvanne, Sarnoun (among other reSUItS) that
@ WPT and WCT admit a density on R
@ we know explicitely the Fourier transform of W¢T
@ WPT and WET have non symetric laws
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Discrete time
Forest and urn

Composition of the urn = leaves in the forest.
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Discrete time
Forest and urn

c d+1

Composition of the urn = leaves in the forest.
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Discrete time
Forest and urn

< p

Y

a+1 b c

[ —
d+1

Composition of the urn = leaves in the forest.
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Discrete time
Forest and urn

a B
—_— —_—
e O ?i [
N e
a+1 b
c d+1

‘ Composition of the urn = leaves in the forest.

Dy (n) = number of leaves in the k! tree of the forest at time n:

Dk(n) -1

S = internal “time” in the k" tree
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Underlying tree structure Discrete time

Forest and urn

(law) &) (Dx(n)-1 o+f ) [Dk(n)-1
Ua,3)(N) Z U, 0)( kZlUm) S
k=1 a+

Remark: (D1(n),...,Dqa+s(n)) is the composition vector of an urn with
initial composition '(1,...,1) and with replacement matrix Sl,. 3.

Theorem ATHREYA .
1 a.s.
—S(Dl(n), e ,Da+5(n)) m (Vl, . ,Va+5),

where (V1,...,Va.p) is Dirichlet(3, .. ., £ )-distributed.
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Discrete time
Forest and urn

(law) & (k) [Dx(n)-1 otf ) [Dk(n)-1
Uga,p)(n) = kZ_;U(LO)( Z U(Ol) S

implies

Uz(U(afg(n)) (law) Z ( U((Il()o)(Dk(r;)_l))
5o (pon 2)

k=a+1
and since U )
DT _ | (a,5)(N
W(avﬁ) - nﬂrpoo u2 ( nO’ ) ’
(law) S~ /oy 0 (k)
Wiap = kZ_: kWeo) + Z VW 0.1y |
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Let us study W, oy and W 1)
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e
Summary

@ we reduced the study to W3 oy and W(q 1)

® W0y and W(q ;) are solutions of a fixed point system:

(law) a+1l " K S+1 " K
Wi =) SvEwid e 3 vew &)
k=1 k=a+2

(1,0) (0,1)

(aw) &\ ouns (K oy K)

W) = |<21Vk W((l,Z)) + ) > 1Vk W)
- =C+

What information does the system give us?
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Underlying tree structure Continuous time

Continuous time
We can use the same “tree” argument:
@ we reduce the study to W, gy and W q 1)

° W(CLTO) and W(C()Tl) are solutions of the following fixed point system:

(law) a+l (k) S+1 )
W) = Um(ZW(1,0)+ > W1
k=1 k=a+2

(law) CLK) )
W) = U™ (Z Wio)* > W1
k=1 k=c+1

where U is uniformly distributed on [0, 1].

What information does the system give us?
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Fixed point system Contraction

Contraction

M5 (C) = space of square integrable probability distributions on R of
mean C equipped with the Wasserstein distance:

1
da(p,v) = (mm)([E(Xl - X2)?) ’

172

is a complete metrix space.
For all bC; + cC, = 0, we define

¢ M2(Cy1) x M2(C2) - M2(Cy1) x M2(Cy),

by

ool el )
k=a+2 k=1 k=c+1

where the X(®) ~ ;, and the Y %) ~ v (k > 1) are all independent copies
of X (resp. Y).
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Contraction
Contraction

We prove that ¢ is /-=>t1--Lipschitz:

2m+1

Proposition:

If o> % both fixed point systems have a unique solution on
(M2(Cq) x M2(C3),dz ® d).

Remark: the means of the W are explicitely known.
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Moments of WECT

(law) a+l (k) S+1 ()
Wao) = um (kZ W(1 ot Z W(o 1)
=a+

(law) c (K) S+1 (k)
W) = U™ (kZ W10 k_ZC: W1

PI’OpOSitiOh CHAUVIN, POUYANNE, SAHNOUN

The Laplace transforms of W ( 0) and W(%Tl) have a radius of
convergence equal to O: for all C > 0, for all large enough p,

E|wCT|p

CP<
p!
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Moments of WECT

(Ia_w) m a+l (K) S+1 (®)

W ="U ZW(10)+ > W)
k=1 k=a+2

W o 0 m (S Sy

(01 = Z 1ot 21 (0,1)
k=1 k=c+

Theorem:
W(ClTO) and W(COTl) admit all their moments and both sequences
Yo

EWCTP cT
are bounded. The random variables W(1 0) and W(0 1) are

p!'InPp
thus determined by their moments.

Via martingale connexions,
W(DlTO) and W(0 1) are determined by their moments.
Via the expression of W, 5y in terms of W4 o) and W g 1):
for all o, 3, W, ) is determined by its moments.
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Fixed point system Moments

Densities:
The variables W all have a density on R. J

Let ¢ (t) = Ee™ be the Fourier transform of W.

If the Fourier transform is invertible, the W admits a density, namely
the inverse of the Fourier transform.

@ If by is L?, then it's ok. But ¢y is not L2...
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The variables W all have a density on R. J

Let ¢ (t) = Ee™ be the Fourier transform of W.

If the Fourier transform is invertible, the W admits a density, namely
the inverse of the Fourier transform.
@ If by is L?, then it's ok. But ¢y is not L2...
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Fixed point system Moments

Densities:
The variables W all have a density on R. J

Let ¢ (t) = Ee™ be the Fourier transform of W.

If the Fourier transform is invertible, the W admits a density, namely
the inverse of the Fourier transform.
@ If by is L?, then it's ok. But ¢y is not L2...

@ If ¢y is L1, then it's ok. But ¢y is not LL...

@ If 4y, isL*andif t wa(t) is L! then it's ok. Phew!

Cécile Mailler (LMV - UVSQ) Pélya Urns May 7, 2013 22/28



Momens
Fourier analysis

We begin from the fixed point system verified by WS - and W&

(1,0) 01"

x (law) Um(ailx(k)Jr Sil Y(k))

k=1 k=a+2

k=c+1

y @) (EX(")+ Z Y<k>)

implies

{1/1x(t) = E[1x (UM)*y (UM)P]
by (1) = E[ex (U™) y (UM) 44 ]

We can derive the system, we get information on ¢y and ¢y, . We
apply our ad hoc Fourier inversion theorem and prove the existence of
a density for W.
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Halfway conclusion

The underlying tree structure of the urn permits
@ to reduce the study to very few initial composition vectors,

@ to write fixed point systems that are verified by the W's,

@ to apply to these systems usual methods (cf. smoothing equations

in literature L 9o's, DURRETT AND LIGGETT 83, BIGGINS AND KYPRIANOU 05, KNAPE AND NEININGER 13),

@ to prove existence of densities of the W's,

@ and to study the moments of these variables.
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Halfway conclusion

The underlying tree structure of the urn permits
@ to reduce the study to very few initial composition vectors,

@ to write fixed point systems that are verified by the W's,

@ to apply to these systems usual methods (cf. smoothing equations

in literature L 9o's, DURRETT AND LIGGETT 83, BIGGINS AND KYPRIANOU 05, KNAPE AND NEININGER 13),

@ to prove existence of densities of the W's,

@ and to study the moments of these variables.

Can we extend the results to d-colour urns?
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Large d-colour urns Definitions

Definitions
(e%] ail

Ug = and R=| :
(o7 ag1

We assume
@ Vi,j, a;j > 0 (non-extinction)
@ irreducibility
@ the urn is balanced: Vi, Z,d:l aj=S

Composition vector:

U(n) =

Cécile Mailler (LMV - UVSQ) Pélya Urns

# balls of colour 1 at time n

# balls of colour d at time n
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e
Large eigenvalues

Let us write the Jordan decompoition of R: R =di ag(Jy,...,J;) where

N1
A1

1
Ai

We choose a Jordan block associated to a large eigenvalue J, i.e. an

eigenvalue such that
S 2
@ we denote by v + 1 the size of the Jordan block,
@ E is the stable subspace associated to this Jordan block,
@ v € E is a unitary eigenvector associated to A,
@ we denote by 7g the projection on E.
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Limit theorems
Limit theorems

Theorem pouvanne:
There exists a random complex variable WPT such that

me(U(n)) EWDT

= V.
no+oo N¥SIn"n vl

Embedding in continuous time
Theorem sanson:
There exists a random complex variable WCT such that

im U®) 1 cr

V.
notoo @AY vl

Connexions:
wer (aw) SYe¥sWPT  and  WPOT (law) S Ve MsWET
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Tree structure

@ We reduce the study to (We, )i-1.4, Where g; corresponds to the
initial composition “one ball of colour i”.

@ The d variables We, are solutions of a system of d equations in
law.

@ We consider ><id:l M (m;) equipped with the Wasserstein
distance: the solution of the system is unique on this space.

@ What information can we get on We, ?
» density ?
» moments ?
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Tree structure

@ We reduce the study to (We, )i-1.4, Where g; corresponds to the
initial composition “one ball of colour i”.

@ The d variables We, are solutions of a system of d equations in
law.

@ We consider ><id:l M (m;) equipped with the Wasserstein
distance: the solution of the system is unique on this space.

@ What information can we get on We, ?
» density ?
» moments ?

Thanks for your attention!
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