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Introduction Definitions

What is a Pólya urn?
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Introduction Some examples

Examples

Pólya-Eggenberger urn (spread of epidemics)

(S 0
0 S

)
Friedman (adverse campaign) urn

(0 1
1 0

)
Ehrenfest gaz model

(−1 1
1 −1

)
3-ary search tree

(−1 2
3 −2

)
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Introduction Some examples

Pólya-Eggenberger urn

Initial composition α red balls and β black balls.

Replacement matrix (S 0
0 S

).
Composition vector at time n :

U(n) = ( #red balls in the urn at time n
#black balls in the urn at time n

) .

Theorem ATHREYA:
Asymptotically when n tends to infinity, almost surely,

U(n)
nS

→ V ,

where V is a Dirichlet random vector of parameter (αS , βS ).
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Introduction Some examples

3-ary search tree
Some entries (say i.i.d. on [0,1]): .83 .12 .26 .3 .71 .9

(−1 2
3 −2

)
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Introduction Literature

Literature

Probabilistic approaches, via martingales, embedding in
continuous time, branching processes
ATHREYA ET AL. 60’S, GOUET 93, JANSON 05, ...

Analytic combinatorics FLAJOLET ET AL. 05

Algebraics POUYANNE 08
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Introduction General context

In general,

A two-colour Pólya urn is defined by:

An initial composition:

U0 = (αβ)
A replacement matrix:

R = (a b
c d

)
We assume:

a,b,c,d ≥ 0 (non extinction) and bc ≠ 0,

the urn is balanced, i.e. a + b = c + d = S

We denote by:

m the second eigenvalue of R

σ = m
S the ratio of the two eigenvalues of R
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Introduction Limit theorems

Limit theorems

Composition vector:

U(n) = ( # red balls at time n
# black balls at time n

)

Theorem ATHREYA, JANSON, ... :

If σ < 1
2

U(n) − nv1√
n

(law)ÐÐÐ→
n→+∞

N (0,Σ2).
If σ > 1

2 , then, a.s. and in all Lp (p ≥ 1),

U(n) = nv1 + nσW DT v2 + o(nσ).
where (v1,v2) is a (well chosen) basis of tR, and (u1,u2) its dual basis.
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Introduction Limit theorems

Example of a trajectory

U(0) = (1
0
) R = (6 1

2 5
)
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Introduction Embedding in continuous time

Embedding in continuous time

Each ball becomes a clock that rings after a random time of lawExp(1), independently from the others.

We denote by τn the date of the nth ring,

(U(n))n≥0 (law)= (UCT (τn))n≥0.
Theorem ATHREYA, JANSON, ... :

If σ > 1
2 , asymptotically when n tends to +∞, a.s. and in all Lp (p ≥ 1),

UCT (t) = eStξv1(1 + o(1)) + emtW CT v2(1 + o(1)),
where ξ follows a Gamma(α+βS ) law.
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Introduction Embedding in continuous time

Connexions

We are interested in the properties of W

W DT
(α,β) = lim

n→+∞
u2 (U(α,β)(n)

nσ
) and W CT

(α,β) = lim
t→+∞

u2
⎛⎝

UCT
(α,β)(t)
emt

⎞⎠
We know that (embedding in continuous time) :

W CT
(α,β)

(law)= ξσW DT
(α,β) et W DT

(α,β)

(law)= ξ−σW CT
(α,β),

where ξ and W DT
(α,β) are independent in the left identity.

We also know CHAUVIN, POUYANNE, SAHNOUN (among other results) that
W DT and W CT admit a density on R
we know explicitely the Fourier transform of W CT

W DT and W CT have non symetric laws
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Underlying tree structure Discrete time

Forest and urn

Composition of the urn = leaves in the forest.
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Underlying tree structure Discrete time

Forest and urn

Composition of the urn = leaves in the forest.

Dk(n) = number of leaves in the k th tree of the forest at time n:

Dk(n) − 1
S

= internal “time” in the k th tree
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Underlying tree structure Discrete time

Forest and urn

U(α,β)(n) (law)= α∑
k=1

U(k)
(1,0) (Dk(n) − 1

S
) + α+β∑

k=α+1
U(k)
(0,1) (Dk(n) − 1

S
)

Remark: (D1(n), . . . ,Dα+β(n)) is the composition vector of an urn with
initial composition t(1, . . . ,1) and with replacement matrix SIα+β.

Theorem ATHREYA :
1

nS
(D1(n), . . . ,Dα+β(n)) a.s.ÐÐÐ→

n→+∞
(V1, . . . ,Vα+β),

where (V1, . . . ,Vα+β) is Dirichlet( 1
S , . . . ,

1
S )-distributed.
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Underlying tree structure Discrete time

Forest and urn

U(α,β)(n) (law)= α∑
k=1

U(k)
(1,0) (Dk(n) − 1

S
) + α+β∑

k=α+1
U(k)
(0,1) (Dk(n) − 1

S
)

implies

u2 (U(α,β)(n)
nσ

) (law)= α∑
k=1

u2 ( 1
nσ

U(k)
(1,0) (Dk(n) − 1

S
))

+ α+β∑
k=α+1

u2 ( 1
nσ

U(k)
(0,1) (Dk(n) − 1

S
)) .

and since

W DT
(α,β) = lim

n→+∞
u2 (U(α,β)(n)

nσ
) ,

W(α,β)
(law)= α∑

k=1
V σ

k W (k)
(1,0) +

α+β∑
k=α+1

V σ
k W (k)

(0,1) .
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Underlying tree structure Discrete time

Let us study W(1,0) and W(0,1)

W(1,0)
(law)= a+1∑

k=1
V σ

k W (k)
(1,0) +

S+1∑
k=a+2

V σ
k W (k)

(0,1)

W(0,1)
(law)= c∑

k=1
V σ

k W (k)
(1,0) +

S+1∑
k=c+1

V σ
k W (k)

(0,1)
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Underlying tree structure Discrete time

Summary

we reduced the study to W(1,0) and W(0,1)

W(1,0) and W(0,1) are solutions of a fixed point system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W(1,0)
(law)= a+1∑

k=1
V σ

k W (k)
(1,0) +

S+1∑
k=a+2

V σ
k W (k)

(0,1)

W(0,1)
(law)= c∑

k=1
V σ

k W (k)
(1,0) +

S+1∑
k=c+1

V σ
k W (k)

(0,1)

What information does the system give us?
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Underlying tree structure Continuous time

Continuous time
We can use the same “tree” argument:

we reduce the study to W(1,0) and W(0,1)

W CT
(1,0) and W CT

(0,1) are solutions of the following fixed point system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W(1,0)
(law)= Um ⎛⎝

a+1∑
k=1

W (k)
(1,0) +

S+1∑
k=a+2

W (k)
(0,1)

⎞⎠
W(0,1)

(law)= Um ⎛⎝
c∑

k=1
W (k)
(1,0) +

S+1∑
k=c+1

W (k)
(0,1)

⎞⎠
where U is uniformly distributed on [0,1].

What information does the system give us?
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Fixed point system Contraction

Contraction
M2(C) = space of square integrable probability distributions on R of
mean C equipped with the Wasserstein distance:

d2(µ, ν) = min
(X1,X2)

(E(X1 −X2)2)1/2

is a complete metrix space.
For all bC1 + cC2 = 0, we define

φ ∶M2(C1) ×M2(C2)→M2(C1) ×M2(C2),
by

φ(µ, ν) = ⎛⎝L⎛⎝Um ⎛⎝
a+1∑
k=1

X (k) + S+1∑
k=a+2

Y (k)
⎞⎠⎞⎠ ,L⎛⎝Um ⎛⎝

c∑
k=1

X (k) + S+1∑
k=c+1

Y (k)
⎞⎠⎞⎠⎞⎠

where the X (k) ∼ µ and the Y (k) ∼ ν (k ≥ 1) are all independent copies
of X (resp. Y ).
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Fixed point system Contraction

Contraction

We prove that φ is
√

S+1
2m+1 -Lipschitz:

Proposition:

If σ > 1
2 , both fixed point systems have a unique solution on(M2(C1) ×M2(C2),d2 ⊗ d2).

Remark: the means of the W are explicitely known.
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Fixed point system Moments

Moments of W CT

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W(1,0)
(law)= Um ⎛⎝

a+1∑
k=1

W (k)
(1,0) +

S+1∑
k=a+2

W (k)
(0,1)

⎞⎠
W(0,1)

(law)= Um ⎛⎝
c∑

k=1
W (k)
(1,0) +

S+1∑
k=c+1

W (k)
(0,1)

⎞⎠
Proposition CHAUVIN, POUYANNE, SAHNOUN:

The Laplace transforms of W CT
(1,0) and W CT

(0,1) have a radius of
convergence equal to 0: for all C > 0, for all large enough p,

Cp ≤ E∣W CT ∣p
p!

.
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Fixed point system Moments

Moments of W CT

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W(1,0)
(law)= Um (a+1∑

k=1
W (k)
(1,0) +

S+1∑
k=a+2

W (k)
(0,1))

W(0,1)
(law)= Um ( c∑

k=1
W (k)
(1,0) +

S+1∑
k=c+1

W (k)
(0,1))

Theorem:

W CT
(1,0) and W CT

(0,1) admit all their moments and both sequences

(E∣W CT ∣p

p! lnp p )
1/p

are bounded. The random variables W CT
(1,0) and W CT

(0,1) are

thus determined by their moments.

Via martingale connexions,
W DT
(1,0) and W DT

(0,1) are determined by their moments.
Via the expression of W(α,β) in terms of W(1,0) and W(0,1):

for all α,β, W(α,β) is determined by its moments.
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Fixed point system Moments

Densities:
The variables W all have a density on R.

Let ψW (t) = EeitW be the Fourier transform of W .

If the Fourier transform is invertible, the W admits a density, namely
the inverse of the Fourier transform.

If ψW is L2, then it’s ok. But ψW is not L2...
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Fixed point system Moments

Densities:
The variables W all have a density on R.

Let ψW (t) = EeitW be the Fourier transform of W .

If the Fourier transform is invertible, the W admits a density, namely
the inverse of the Fourier transform.

If ψW is L2, then it’s ok. But ψW is not L2...

If ψW is L1, then it’s ok. But ψW is not L1...

If ψ′W is L1 and if t ↦ ψW (t)
t is L1 then it’s ok. Phew!
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Fixed point system Moments

Fourier analysis
We begin from the fixed point system verified by W CT

(1,0) and W CT
(0,1):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X
(law)= Um ⎛⎝

a+1∑
k=1

X (k) + S+1∑
k=a+2

Y (k)
⎞⎠

Y
(law)= Um ⎛⎝

c∑
k=1

X (k) + S+1∑
k=c+1

Y (k)
⎞⎠

implies ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ψX (t) = E [ψX (Umt)a+1ψY (Umt)b]
ψY (t) = E [ψX (Umt)cψY (Umt)d+1]

We can derive the system, we get information on ψW and ψ′W . We
apply our ad hoc Fourier inversion theorem and prove the existence of
a density for W .
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Halfway conclusion

Halfway conclusion

The underlying tree structure of the urn permits

to reduce the study to very few initial composition vectors,

to write fixed point systems that are verified by the Ws,

to apply to these systems usual methods (cf. smoothing equations
in literature LIU 90’S, DURRETT AND LIGGETT 83, BIGGINS AND KYPRIANOU 05, KNAPE AND NEININGER 13),

to prove existence of densities of the Ws,

and to study the moments of these variables.
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Halfway conclusion

Halfway conclusion

The underlying tree structure of the urn permits

to reduce the study to very few initial composition vectors,

to write fixed point systems that are verified by the Ws,

to apply to these systems usual methods (cf. smoothing equations
in literature LIU 90’S, DURRETT AND LIGGETT 83, BIGGINS AND KYPRIANOU 05, KNAPE AND NEININGER 13),

to prove existence of densities of the Ws,

and to study the moments of these variables.

Can we extend the results to d -colour urns?
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Large d -colour urns Definitions

Definitions

U0 = ⎛⎜⎝
α1⋮
αd

⎞⎟⎠ and R = ⎛⎜⎝
a11 . . . a1d⋮ ⋮
ad1 . . . add

⎞⎟⎠
We assume

∀i , j , ai ,j ≥ 0 (non-extinction)

irreducibility

the urn is balanced: ∀i , ∑d
j=1 aij = S

Composition vector:

U(n) = ⎛⎜⎝
# balls of colour 1 at time n⋮
# balls of colour d at time n

⎞⎟⎠
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Large d -colour urns Definitions

Large eigenvalues
Let us write the Jordan decompoition of R: R = diag(J1, . . . ,Jr ) where

Ji =
⎛⎜⎜⎜⎜⎜⎜⎝

λi 1
λi 1⋱ ⋱⋱ 1

λi

⎞⎟⎟⎟⎟⎟⎟⎠
We choose a Jordan block associated to a large eigenvalue λ, i.e. an
eigenvalue such that

σ = Reλ
S
> 1

2
.

we denote by ν + 1 the size of the Jordan block,
E is the stable subspace associated to this Jordan block,
v ∈ E is a unitary eigenvector associated to λ,
we denote by πE the projection on E .
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Large d -colour urns Limit theorems

Limit theorems

Theorem POUYANNE:

There exists a random complex variable W DT such that

lim
n→+∞

πE(U(n))
nλ/S lnν n

= 1
ν!

W DT v .

Embedding in continuous time

Theorem JANSON:

There exists a random complex variable W CT such that

lim
n→+∞

πE(U(t))
eλt tν

= 1
ν!

W CT v .

Connexions:

W CT (law)= Sνξ
λ/SW DT and W DT (law)= S−νξ−λ/SW CT .

Cécile Mailler (LMV - UVSQ) Pólya Urns May 7, 2013 27 / 28



Large d -colour urns Fixed point systems

Tree structure

We reduce the study to (Wei )i=1..d , where ei corresponds to the
initial composition “one ball of colour i”.

The d variables Wei are solutions of a system of d equations in
law.

We consider ⨉d
i=1M2(mi) equipped with the Wasserstein

distance: the solution of the system is unique on this space.

What information can we get on Wei ?
▸ density ?
▸ moments ?
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Large d -colour urns Fixed point systems

Tree structure

We reduce the study to (Wei )i=1..d , where ei corresponds to the
initial composition “one ball of colour i”.

The d variables Wei are solutions of a system of d equations in
law.

We consider ⨉d
i=1M2(mi) equipped with the Wasserstein

distance: the solution of the system is unique on this space.

What information can we get on Wei ?
▸ density ?
▸ moments ?

Thanks for your attention!

Cécile Mailler (LMV - UVSQ) Pólya Urns May 7, 2013 28 / 28


	Introduction
	Definitions
	Some examples
	Literature
	General context
	Limit theorems
	Embedding in continuous time

	Underlying tree structure
	Discrete time
	Continuous time

	Fixed point system
	Contraction
	Moments

	Halfway conclusion
	Large d-colour urns
	Definitions
	Limit theorems
	Fixed point systems


