Large Pólya Urns and Smoothing Equations

Cécile Mailler joint work with Brigitte Chauvin and Nicolas Pouyanne

Laboratoire de Mathématiques de Versailles
Université de Versailles-Saint-Quentin

May 7, 2013

What is a Pólya urn?

Examples

- Pólya-Eggenberger urn (spread of epidemics)

$$
\left(\begin{array}{ll}
S & 0 \\
0 & S
\end{array}\right)
$$

- Friedman (adverse campaign) urn

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

- Ehrenfest gaz model

$$
\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)
$$

- 3-ary search tree

$$
\left(\begin{array}{cc}
-1 & 2 \\
3 & -2
\end{array}\right)
$$

Pólya-Eggenberger urn

Initial composition α red balls and β black balls.
Replacement matrix $\left(\begin{array}{cc}S & 0 \\ 0 & S\end{array}\right)$.
Composition vector at time n :

$$
U(n)=\binom{\text { \#red balls in the urn at time } n}{\# \text { black balls in the urn at time } n} .
$$

Theorem athreya:
Asymptotically when n tends to infinity, almost surely,

$$
\frac{U(n)}{n S} \rightarrow V
$$

where V is a Dirichlet random vector of parameter $\left(\frac{\alpha}{S}, \frac{\beta}{S}\right)$.

3-ary search tree

Some entries (say i.i.d. on [0, 1]): . 83 . 12 . 26 . 3 . 71 . 9

3-ary search tree

Some entries (say i.i.d. on [0, 1]): . 83 . 12 . 26 . 3 . 71 . 9

$$
\left(\begin{array}{cc}
-1 & 2 \\
3 & -2
\end{array}\right)
$$

3-ary search tree

Some entries (say i.i.d. on [0, 1]): . 83 . 12 . 26 . 3 . 71 . 9

$$
\left(\begin{array}{cc}
-1 & 2 \\
3 & -2
\end{array}\right)
$$

3-ary search tree

Some entries (say i.i.d. on [0, 1]): . 83 . 12 . 26 . 3 . 71 . 9

$$
\left(\begin{array}{cc}
-1 & 2 \\
3 & -2
\end{array}\right)
$$

3-ary search tree

Some entries (say i.i.d. on [0, 1]): . 83.12 . 26 . 3 . 71 . 9

$$
\left(\begin{array}{cc}
-1 & 2 \\
3 & -2
\end{array}\right)
$$

3-ary search tree

Some entries (say i.i.d. on [0, 1]): . 83.12 . 26 . 3. 71 . 9

Literature

- Probabilistic approaches, via martingales, embedding in continuous time, branching processes

Athreya et al. 60's, Gouet 93, Janson 05, ...

- Analytic combinatorics flajolet et al. 05
- Algebraics pouyanne 08

In general,

A two-colour Pólya urn is defined by:

- An initial composition:
- A replacement matrix:

$$
U_{0}=\binom{\alpha}{\beta}
$$

$$
R=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

We assume:

- $a, b, c, d \geq 0$ (non extinction) and $b c \neq 0$,
- the urn is balanced, i.e. $a+b=c+d=S$

We denote by:

- m the second eigenvalue of R
- $\sigma=\frac{m}{S}$ the ratio of the two eigenvalues of R

Limit theorems

Composition vector:

$$
U(n)=\binom{\# \text { red balls at time } n}{\# \text { black balls at time } n}
$$

Theorem atherat, Janson, ...

- If $\sigma<\frac{1}{2}$

$$
\frac{U(n)-n v_{1}}{\sqrt{n}} \xrightarrow[n \rightarrow+\infty]{(\text { law })} \mathcal{N}\left(0, \Sigma^{2}\right) .
$$

- If $\sigma>\frac{1}{2}$, then, a.s. and in all $L^{p}(p \geq 1)$,

$$
U(n)=n v_{1}+n^{\sigma} W^{D T} v_{2}+o\left(n^{\sigma}\right)
$$

where $\left(v_{1}, v_{2}\right)$ is a (well chosen) basis of ${ }^{t} R$, and $\left(u_{1}, u_{2}\right)$ its dual basis.

Example of a trajectory

$$
U(0)=\binom{1}{0} \quad R=\left(\begin{array}{ll}
6 & 1 \\
2 & 5
\end{array}\right)
$$

Example of a trajectory

$$
U(0)=\binom{1}{0} \quad R=\left(\begin{array}{ll}
6 & 1 \\
2 & 5
\end{array}\right)
$$

Example of a trajectory

$$
U(0)=\binom{1}{0} \quad R=\left(\begin{array}{ll}
6 & 1 \\
2 & 5
\end{array}\right)
$$

Embedding in continuous time

Each ball becomes a clock that rings after a random time of law $\mathcal{E x p}(1)$, independently from the others.

We denote by τ_{n} the date of the $n^{\text {th }}$ ring,

$$
(U(n))_{n \geq 0} \stackrel{(\text { law })}{=}\left(U^{C T}\left(\tau_{n}\right)\right)_{n \geq 0} .
$$

Theorem atheeva, Janson, ... :
If $\sigma>\frac{1}{2}$, asymptotically when n tends to $+\infty$, a.s. and in all $L^{p}(p \geq 1)$,

$$
U^{C T}(t)=e^{S t} \xi v_{1}(1+o(1))+e^{m t} W^{C T} v_{2}(1+o(1)),
$$

where ξ follows a Gamma $\left(\frac{\alpha+\beta}{S}\right)$ law.

Connexions

We are interested in the properties of W

$$
W_{(\alpha, \beta)}^{D T}=\lim _{n \rightarrow+\infty} u_{2}\left(\frac{U_{(\alpha, \beta)}(n)}{n^{\sigma}}\right) \quad \text { and } \quad W_{(\alpha, \beta)}^{C T}=\lim _{t \rightarrow+\infty} u_{2}\left(\frac{U_{(\alpha, \beta)}^{C T}(t)}{e^{m t}}\right)
$$

We know that (embedding in continuous time) :

$$
W_{(\alpha, \beta)}^{C T} \stackrel{(\text { law })}{=} \xi^{\sigma} W_{(\alpha, \beta)}^{D T} \quad \text { et } \quad W_{(\alpha, \beta)}^{D T} \stackrel{(\text { law })}{=} \xi^{-\sigma} W_{(\alpha, \beta)}^{C T},
$$

where ξ and $W_{(\alpha, \beta)}^{D T}$ are independent in the left identity.
We also know chauvn, pouranne, Sahnoun (among other results) that

- $W^{D T}$ and $W^{C T}$ admit a density on \mathbb{R}
- we know explicitely the Fourier transform of $W^{C T}$
- $W^{D T}$ and $W^{C T}$ have non symetric laws

Forest and urn

Composition of the urn = leaves in the forest.

Forest and urn

Composition of the urn = leaves in the forest.

Forest and urn

Composition of the urn = leaves in the forest.

Forest and urn

Composition of the urn = leaves in the forest.
$D_{k}(n)=$ number of leaves in the $k^{\text {th }}$ tree of the forest at time n :

$$
\frac{D_{k}(n)-1}{S}=\text { internal "time" in the } k^{\text {th }} \text { tree }
$$

Forest and urn

$$
U_{(\alpha, \beta)}(n) \stackrel{\text { (law) }}{=} \sum_{k=1}^{\alpha} U_{(1,0)}^{(k)}\left(\frac{D_{k}(n)-1}{S}\right)+\sum_{k=\alpha+1}^{\alpha+\beta} U_{(0,1)}^{(k)}\left(\frac{D_{k}(n)-1}{S}\right)
$$

Remark: $\left(D_{1}(n), \ldots, D_{\alpha+\beta}(n)\right)$ is the composition vector of an urn with initial composition ${ }^{t}(1, \ldots, 1)$ and with replacement matrix $S I_{\alpha+\beta}$.

Theorem atrheza :

$$
\frac{1}{n S}\left(D_{1}(n), \ldots, D_{\alpha+\beta}(n)\right) \xrightarrow[n \rightarrow+\infty]{\text { a.s. }}\left(V_{1}, \ldots, V_{\alpha+\beta}\right),
$$

where $\left(V_{1}, \ldots, V_{\alpha+\beta}\right)$ is $\operatorname{Dirichlet}\left(\frac{1}{S}, \ldots, \frac{1}{S}\right)$-distributed.

Forest and urn

$$
U_{(\alpha, \beta)}(n) \stackrel{\text { (law) }}{=} \sum_{k=1}^{\alpha} U_{(1,0)}^{(k)}\left(\frac{D_{k}(n)-1}{S}\right)+\sum_{k=\alpha+1}^{\alpha+\beta} U_{(0,1)}^{(k)}\left(\frac{D_{k}(n)-1}{S}\right)
$$

implies

$$
\begin{aligned}
U_{2}\left(\frac{U_{(\alpha, \beta)}(n)}{n^{\sigma}}\right) \stackrel{(\text { law })}{=} & \sum_{k=1}^{\alpha} u_{2}\left(\frac{1}{n^{\sigma}} U_{(1,0)}^{(k)}\left(\frac{D_{k}(n)-1}{S}\right)\right) \\
& +\sum_{k=\alpha+1}^{\alpha+\beta} u_{2}\left(\frac{1}{n^{\sigma}} U_{(0,1)}^{(k)}\left(\frac{D_{k}(n)-1}{S}\right)\right)
\end{aligned}
$$

and since

$$
\begin{gathered}
W_{(\alpha, \beta)}^{D T}=\lim _{n \rightarrow+\infty} u_{2}\left(\frac{U_{(\alpha, \beta)}(n)}{n^{\sigma}}\right), \\
W_{(\alpha, \beta)} \stackrel{(\text { law })}{=} \sum_{k=1}^{\alpha} V_{k}^{\sigma} W_{(1,0)}^{(k)}+\sum_{k=\alpha+1}^{\alpha+\beta} V_{k}^{\sigma} W_{(0,1)}^{(k)}
\end{gathered}
$$

Let us study $W_{(1,0)}$ and $W_{(0,1)}$

$$
W_{(1,0)} \stackrel{(\text { law })}{=} \sum_{k=1}^{a+1} V_{k}^{\sigma} W_{(1,0)}^{(k)}+\sum_{k=a+2}^{S+1} V_{k}^{\sigma} W_{(0,1)}^{(k)}
$$

$$
W_{(0,1)} \stackrel{(\text { law })}{=} \sum_{k=1}^{c} V_{k}^{\sigma} W_{(1,0)}^{(k)}+\sum_{k=c+1}^{S+1} V_{k}^{\sigma} W_{(0,1)}^{(k)}
$$

Summary

- we reduced the study to $W_{(1,0)}$ and $W_{(0,1)}$
- $W_{(1,0)}$ and $W_{(0,1)}$ are solutions of a fixed point system:

$$
\left\{\begin{array}{l}
W_{(1,0)} \stackrel{(\text { law })}{=} \sum_{k=1}^{a+1} V_{k}^{\sigma} W_{(1,0)}^{(k)}+\sum_{k=a+2}^{S+1} V_{k}^{\sigma} W_{(0,1)}^{(k)} \\
W_{(0,1)} \stackrel{(\text { law })}{=} \sum_{k=1}^{c} V_{k}^{\sigma} W_{(1,0)}^{(k)}+\sum_{k=c+1}^{S+1} V_{k}^{\sigma} W_{(0,1)}^{(k)}
\end{array}\right.
$$

What information does the system give us?

Continuous time

We can use the same "tree" argument:

- we reduce the study to $W_{(1,0)}$ and $W_{(0,1)}$
- $W_{(1,0)}^{C T}$ and $W_{(0,1)}^{C T}$ are solutions of the following fixed point system:

$$
\left\{\begin{array}{l}
W_{(1,0)} \stackrel{\text { (law) }}{=} U^{m}\left(\sum_{k=1}^{a+1} W_{(1,0)}^{(k)}+\sum_{k=a+2}^{S+1} W_{(0,1)}^{(k)}\right) \\
W_{(0,1)} \stackrel{(\text { law })}{=} U^{m}\left(\sum_{k=1}^{c} W_{(1,0)}^{(k)}+\sum_{k=c+1}^{S+1} W_{(0,1)}^{(k)}\right)
\end{array}\right.
$$

where U is uniformly distributed on $[0,1]$.

What information does the system give us?

Contraction

$\mathcal{M}_{2}(C)=$ space of square integrable probability distributions on \mathbb{R} of mean C equipped with the Wasserstein distance:

$$
d_{2}(\mu, \nu)=\min _{\left(X_{1}, X_{2}\right)}\left(\mathbb{E}\left(X_{1}-X_{2}\right)^{2}\right)^{1 / 2}
$$

is a complete metrix space.
For all $b C_{1}+c C_{2}=0$, we define

$$
\phi: \mathcal{M}_{2}\left(C_{1}\right) \times \mathcal{M}_{2}\left(C_{2}\right) \rightarrow \mathcal{M}_{2}\left(C_{1}\right) \times \mathcal{M}_{2}\left(C_{2}\right)
$$

by
$\phi(\mu, \nu)=\left(\mathcal{L}\left(U^{m}\left(\sum_{k=1}^{a+1} X^{(k)}+\sum_{k=a+2}^{S+1} Y^{(k)}\right)\right), \mathcal{L}\left(U^{m}\left(\sum_{k=1}^{c} X^{(k)}+\sum_{k=c+1}^{S+1} Y^{(k)}\right)\right)\right.$
where the $X^{(k)} \sim \mu$ and the $Y^{(k)} \sim \nu(k \geq 1)$ are all independent copies of X (resp. Y).

Contraction

We prove that ϕ is $\sqrt{\frac{S+1}{2 m+1}}$-Lipschitz:

Proposition:

If $\sigma>\frac{1}{2}$, both fixed point systems have a unique solution on $\left(\mathcal{M}_{2}\left(C_{1}\right) \times \mathcal{M}_{2}\left(C_{2}\right), d_{2} \otimes d_{2}\right)$.

Remark: the means of the W are explicitely known.

Moments of WCT

$$
\left\{\begin{array}{l}
W_{(1,0)} \stackrel{\text { (law) }}{=} U^{m}\left(\sum_{k=1}^{a+1} W_{(1,0)}^{(k)}+\sum_{k=a+2}^{S+1} W_{(0,1)}^{(k)}\right) \\
W_{(0,1)} \stackrel{\text { (law) }}{=} U^{m}\left(\sum_{k=1}^{c} W_{(1,0)}^{(k)}+\sum_{k=c+1}^{S+1} W_{(0,1)}^{(k)}\right)
\end{array}\right.
$$

Proposition chauvin, pouyanne, sahnoun:

The Laplace transforms of $W_{(1,0)}^{C T}$ and $W_{(0,1)}^{C T}$ have a radius of convergence equal to 0 : for all $C>0$, for all large enough p,

$$
C^{p} \leq \frac{\mathbb{E}\left|W^{C T}\right|^{p}}{p!}
$$

Moments of WCT

$$
\left\{\begin{array}{l}
W_{(1,0)} \stackrel{(\text { law })}{=} U^{m}\left(\sum_{k=1}^{a+1} W_{(1,0)}^{(k)}+\sum_{k=a+2}^{S+1} W_{(0,1)}^{(k)}\right) \\
W_{(0,1)} \stackrel{(\text { law })}{=} U^{m}\left(\sum_{k=1}^{c} W_{(1,0)}^{(k)}+\sum_{k=c+1}^{S+1} W_{(0,1)}^{(k)}\right)
\end{array}\right.
$$

Theorem:

$W_{(1,0)}^{C T}$ and $W_{(0,1)}^{C T}$ admit all their moments and both sequences $\left(\frac{⿷ 匚 W^{C T p} p}{p!\ln \rho}\right)^{1 / p}$ are bounded. The random variables $W_{(1,0)}^{C T}$ and $W_{(0,1)}^{C T}$ are thus determined by their moments.

Via martingale connexions,
$W_{(1,0)}^{D T}$ and $W_{(0,1)}^{D T}$ are determined by their moments.
Via the expression of $W_{(\alpha, \beta)}$ in terms of $W_{(1,0)}$ and $W_{(0,1)}$:
for all $\alpha, \beta, W_{(\alpha, \beta)}$ is determined by its moments.

Densities:

The variables W all have a density on \mathbb{R}.

Let $\psi_{W}(t)=\mathbb{E} e^{i t W}$ be the Fourier transform of W.
If the Fourier transform is invertible, the W admits a density, namely the inverse of the Fourier transform.

- If ψ_{W} is L^{2}, then it's ok. But ψ_{W} is not $L^{2} \ldots$

Densities:

The variables W all have a density on \mathbb{R}.

Let $\psi_{W}(t)=\mathbb{E} e^{i t W}$ be the Fourier transform of W.
If the Fourier transform is invertible, the W admits a density, namely the inverse of the Fourier transform.

- If ψ_{W} is L^{2}, then it's ok. But ψ_{W} is not $L^{2} \ldots$
- If ψ_{W} is L^{1}, then it's ok. But ψ_{W} is not $L^{1} \ldots$

Densities:

The variables W all have a density on \mathbb{R}.

Let $\psi_{W}(t)=\mathbb{E} e^{i t W}$ be the Fourier transform of W.
If the Fourier transform is invertible, the W admits a density, namely the inverse of the Fourier transform.

- If ψ_{W} is L^{2}, then it's ok. But ψ_{W} is not $L^{2} \ldots$
- If ψ_{W} is L^{1}, then it's ok. But ψ_{W} is not $L^{1} \ldots$
- If ψ_{W}^{\prime} is L^{1} and if $t \mapsto \frac{\psi_{W}(t)}{t}$ is L^{1} then it's ok. Phew!

Fourier analysis

We begin from the fixed point system verified by $W_{(1,0)}^{C T}$ and $W_{(0,1)}^{C T}$:

$$
\left\{\begin{array}{l}
X_{\stackrel{\text { law }}{ }}^{=} U^{m}\left(\sum_{k=1}^{a+1} X^{(k)}+\sum_{k=a+2}^{S+1} Y^{(k)}\right) \\
Y^{(\text {law })}
\end{array} U^{m}\left(\sum_{k=1}^{c} X^{(k)}+\sum_{k=c+1}^{S+1} Y^{(k)}\right), ~ 又\right.
$$

implies

$$
\left\{\begin{array}{l}
\psi_{X}(t)=\mathbb{E}\left[\psi_{X}\left(U^{m} t\right)^{a+1} \psi_{Y}\left(U^{m} t\right)^{b}\right] \\
\psi_{Y}(t)=\mathbb{E}\left[\psi_{X}\left(U^{m} t\right)^{c} \psi_{Y}\left(U^{m} t\right)^{d+1}\right]
\end{array}\right.
$$

We can derive the system, we get information on ψ_{w} and ψ_{W}^{\prime}. We apply our ad hoc Fourier inversion theorem and prove the existence of a density for W.

Halfway conclusion

The underlying tree structure of the urn permits

- to reduce the study to very few initial composition vectors,
- to write fixed point systems that are verified by the $W \mathrm{~s}$,
- to apply to these systems usual methods (cf. smoothing equations in literature liu 90's, durrett and liggett 83, biggins and Kyprianou 05, Knape and Neininger 13),
- to prove existence of densities of the $W \mathrm{~s}$,
- and to study the moments of these variables.

Halfway conclusion

The underlying tree structure of the urn permits

- to reduce the study to very few initial composition vectors,
- to write fixed point systems that are verified by the $W \mathrm{~s}$,
- to apply to these systems usual methods (cf. smoothing equations in literature liu 90's, durrett and liggett 83, biggins and Kyprianou 05, Knape and Neininger 13),
- to prove existence of densities of the $W \mathrm{~s}$,
- and to study the moments of these variables.

Can we extend the results to d-colour urns?

Definitions

$$
U_{0}=\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{d}
\end{array}\right) \quad \text { and } \quad R=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 d} \\
\vdots & & \vdots \\
a_{d 1} & \ldots & a_{d d}
\end{array}\right)
$$

We assume

- $\forall i, j, a_{i, j} \geq 0$ (non-extinction)
- irreducibility
- the urn is balanced: $\forall i, \sum_{j=1}^{d} a_{i j}=S$

Composition vector:

$$
U(n)=\left(\begin{array}{c}
\# \text { balls of colour } 1 \text { at time } n \\
\vdots \\
\# \text { balls of colour } d \text { at time } n
\end{array}\right)
$$

Large eigenvalues

Let us write the Jordan decompoition of R : $R=\operatorname{diag}\left(J_{1}, \ldots, J_{r}\right)$ where

$$
J_{i}=\left(\begin{array}{ccccc}
\lambda_{i} & 1 & & & \\
& \lambda_{i} & 1 & & \\
& & \ddots & \ddots & \\
& & & & 1 \\
& & & & \lambda_{i}
\end{array}\right)
$$

We choose a Jordan block associated to a large eigenvalue λ, i.e. an eigenvalue such that

$$
\sigma=\frac{\mathrm{Re} \lambda}{S}>\frac{1}{2} .
$$

- we denote by $\nu+1$ the size of the Jordan block,
- E is the stable subspace associated to this Jordan block,
- $v \in E$ is a unitary eigenvector associated to λ,
- we denote by π_{E} the projection on E.

Limit theorems

Theorem pouranve:
There exists a random complex variable $W^{D T}$ such that

$$
\lim _{n \rightarrow+\infty} \frac{\pi_{E}(U(n))}{n^{\lambda / s} \ln ^{\nu} n}=\frac{1}{\nu!} W^{D T} v .
$$

Embedding in continuous time
Theorem Janson:
There exists a random complex variable $W^{C T}$ such that

$$
\lim _{n \rightarrow+\infty} \frac{\pi_{E}(U(t))}{\mathrm{e}^{\lambda t} t^{\nu}}=\frac{1}{\nu!} W^{C T} v .
$$

Connexions:

$$
W^{C T} \stackrel{(\text { law })}{=} S^{\nu} \xi^{\lambda / s} W^{D T} \quad \text { and } \quad W^{D T} \stackrel{(\text { law })}{=} S^{-\nu} \xi^{-\lambda / s} W^{C T} \text {. }
$$

Tree structure

- We reduce the study to $\left(W_{\boldsymbol{e}_{i}}\right)_{i=1 . . d}$, where $\boldsymbol{e}_{\boldsymbol{i}}$ corresponds to the initial composition "one ball of colour i ".
- The d variables $W_{e_{i}}$ are solutions of a system of d equations in law.
- We consider $\times_{i=1}^{d} \mathcal{M}_{2}\left(m_{i}\right)$ equipped with the Wasserstein distance: the solution of the system is unique on this space.
- What information can we get on $W_{e_{i}}$?
- density?
- moments ?

Tree structure

- We reduce the study to $\left(W_{\boldsymbol{e}_{i}}\right)_{i=1 . . d}$, where $\boldsymbol{e}_{\boldsymbol{i}}$ corresponds to the initial composition "one ball of colour i ".
- The d variables $W_{e_{i}}$ are solutions of a system of d equations in law.
- We consider $\times_{i=1}^{d} \mathcal{M}_{2}\left(m_{i}\right)$ equipped with the Wasserstein distance: the solution of the system is unique on this space.
- What information can we get on $W_{e_{i}}$?
- density?
- moments ?

Thanks for your attention!

