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Continuous time Markov chains

• {ξxt }t∈R+ Continuous time Markov chain on V , countable
state space, such that ξx0 = x

• r(y, z) rate of jump from y ∈ V to z ∈ V
• (V,E) oriented graph (not necessarily locally finite) where

E = {(y, z) : r(y, z) > 0}

• r(y) =
∑

z r(y, z) holding time at y

• Graphical construction

Davide Gabrielli LARGE DEVIATIONS FOR THE EMPIRICAL FLOW OF CONTINUOUS TIME MARKOV CHAINS



Harris graphical construction
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Continuous time Markov chains

BASIC ASSUMPTIONS

• ξxt does not explode a.e.

• irreducibility

• There exist an unique invariant probability measure π∑
z

π(y)r(y, z) =
∑
z

π(z)r(z, y)

• Generator: if
∑

z r(y, z)|f(z)| < +∞ for any y then

Lf(y) =
∑
z

r(y, z) [f(z)− f(y)]
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Empirical measure and flow

(ξxt )t∈[0,T ] ∈ D ([0, T ], V ) a sample path

Empirical measure ρT ∈M+,1(V )

ρT (y) =
1

T

∫ T

0
δξxs (y) ds

Empirical flow QT : E → R+

QT (y, z) =
] jumps from y y z in [0, T ]

T
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Empirical process

(ξxt )t∈[0,T ] ∈ D ([0, T ], V ) a sample path

Empirical process RT ∈M+,1
st

(
D ((−∞,+∞), V )

)
(ξt)t∈[0,T ] ⇒

(
ξ̃t

)
t∈(−∞,+∞)

= double infinite periodic extemsion

t ∈ [0, T )⇒ ξ̃t = ξt ξ̃t+T = ξ̃t

RT =
1

T

∫ T

0
δ
τsξ̃
ds , τ = shift
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Properties

1) ρT (y) = ERT

(
δy

(
ξ̃t

))
, ∀t

2) divQT (y) =
∑
z

(QT (y, z)−QT (z, y)) = 0

3) QT (y, z) = ERT

(
] jumps y y z in [0, 1]

)
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Donsker-Varadhan c(σ) conditions

There exists a sequence un : V → R+ such that

• For any y and n it holds
∑

z r(y, z)un(z) < +∞
• The sequence un is uniformly bounded from below

• The sequence un is uniformly in n bounded from above on
compacts of V

• The sequence vn = −Lun
un

converges point-wise to v : V → R
• The function v has compact level sets

• There exists positive constants σ and C such that

v ≥ σr − C
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LDP empirical measure

Under condition c(0), ρT satisfies a LDP on M+,1(V ) with
weak convergence

lim sup
T→+∞

1

T
logPx (ρT ∈ C) ≤ − inf

µ∈C
I1(µ) , ∀ C , closed

lim inf
T→+∞

1

T
logPx (ρT ∈ O) ≥ − inf

µ∈O
I1(µ) , ∀O , open

Rate function I1 has variational representation

I1(µ) = sup
f>0
−Eµ

(
Lf

f

)
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The reversible case

If the detailed balance condition holds

π(y)r(y, z) = π(z)r(z, y)

then the variational problem can be solved and we get an
explicit expression

I1(µ) =
1

2

∑
(y,z)∈E

(√
µ(y)r(y, z)−

√
µ(z)r(z, y)

)2
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LDP empirical process

Under condition c(0) the empirical process RT satisfies a LDP
on M+,1 (D((−∞,+∞), V )) with rate functional

I(R) = density of relative entropy

The rate functional I is affine

I
(
cR1 + (1− c)R2

)
= cI

(
R1
)

+ (1− c)I
(
R2
)
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LDP for empirical flow

Under condition c(σ) with σ > 0 we have that (µT , QT ) satisfies
a joint LDP on M1,+(V )× L1

+(E)

• On M1,+(V ) the weak topology

• On L1
+(E) the bounded weak∗ topology

weak∗ topology is the smallest topology such that

Q→
∑

(y,z)∈E

Q(y, z)φ(y, z)

is continuous for any φ ∈ C0(E)
Additional conditions to have strong topology
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The rate functional

The joint rate function of (µT , QT ) is

I(µ,Q) =

{ ∑
(y,z)∈E Φ

(
Q(y, z), µ(y)r(y, z)

)
if divQ = 0

+∞ otherwise

where

Φ(Q,λ) = Q log
Q

λ
+ λ−Q

is the rate function associated to a Poisson process of rate λ

♥ Is it possible to get this LDP from the Graphical
construction?
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The rate functional

Under condition c(σ)∑
(y,z)∈E

Qπ(y, z) =
∑

(y,z)∈E

π(y)r(y, z) = Eπ (r) < +∞

and (π,Qπ) is the unique zero.
The rate functional I is convex

The rate functional I is affine. Let Ki be the connected
components of the graph (V (µ), E(Q)) then{

I(µ,Q) =
∑

j µ(Kj)I(µj , Qj)

(µ,Q) =
∑

j µ(Kj) (µj , Qj)
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Contraction

Fenchel–Rockafellar Theorem
Let φ, ψ two convex extended functions on a topological vector
space X, under some additional conditions it holds

inf
x∈X
{φ(x) + ψ(x)} = sup

f∈X∗
{−φ∗(−f)− ψ∗(f)}

sup
f>0
−Eµ

(
Lf

f

)
= inf

Q
I(µ,Q)

The divergence free constraint transforms in a gradient
constraint
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Current fluctuations

Current across a bond

J(y, z) = Q(y, z)−Q(z, y)

J is a discrete vector field J(y, z) = −J(z, y) and divJ = divQ
Joint LDP for the empirical measure and current by contraction

Ĩ(µ, J) = inf
Q
I(µ,Q) = I(µ,Qµ,J)

where

Qµ,J(y, z) =
J(y, z) +

√
J2(y, z) + 4µ(y)µ(z)r(y, z)r(z, y)

2
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Ideas around the proof

Tilting
1) perturbed rates; gradient perturbations (Donsker–Varadhan)
are not enough; F : E → R

rF (y, z) = r(y, z)eF (y,z)

2) Cyclic decomposition of divergence free flows
Cycle C = (x1, . . . , xn) if (xi, xi+1) ∈ E
IC divergence free flow associated to C

IC(y, z) = 1 if (y, z) ∈ C and zero otherwise
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Ideas around the proof

if divQ = 0 and exists Vn invading sequence such that (zero
flow towards infinity )

lim
n→+∞

∑
y∈Vn ,z 6∈Vn

Q(y, z) = 0

then
Q =

∑
C∈C

Q̂(C)IC

Contraction from level 3
1) A generalized contraction principle
2) Cyclic decomposition
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An example

Birth and death chain; V = N ∪ {0}, E = (y, z) such that
|y − z| = 1
r(y, y + 1) = by , y ≥ 0 births rates and r(y, y − 1) = dy , y ≥ 1
deaths rates
If {

limy→+∞ dy = +∞
lim supy→+∞

by
dy
< 1

then condition c(σ) is satisfied and our LDP holds.
If moreover

lim sup
y→+∞

by
dy

= 0

then the LDP for empirical flow holds also in the strong L1

topology
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Applications

Current fluctuations of a simple random walk on a ring with N
sites
Minimize IN (µ,Q) with the constraint
Q(y, y + 1)−Q(y + 1, y) = j you get

WN (j) = Nj log

Nj
λ

+

√(
Nj

λ

)2

+ 1

− λ
√(

Nj

λ

)2

+ 1 + λ

In the diffusive rescaling λ = λN = αN2 we have

lim
N→+∞

WN (j) =
j2

2α
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Applications

Lattice diffusions
Random walk on (εZ)d in a confining potential V

LDP empirical measure and current Iε(µ, J)

In the diffusive rescaling

Iε(µ, J)→
∫

[J(x)− J(ρ(x))]2

ρ(x)
dx
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Applications

Current fluctuations for interacting particle systems
Projection from configuration space to physical space

Q̃(y, y + 1) =
∑
η

Q(η, ηy,y+1)

Current
J̃(y, y + 1) = Q̃(y, y + 1)− Q̃(y + 1, y)

divergence free discrete vector field (no condensation)
Exclusion models, Zero Range (almost exactly solved), others
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Applications

Gallavotti-Cohen functional

WT =
1

T
log

dPπ|[0,T ]
dP∗π|[0,T ]

is a function of the empirical current
Total activity

NT = ] jumps in [0, T ]

Bodineau-Toninelli: Phase transition in the East Model
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