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Potts antiferromagnet
Potts antiferromagnet on a planar lattice (graph) G

• σ ∈ {1, 2, . . . , q}V (G) (we consider q = 3)
•H(σ) =

∑
{x,y}∈G δσx,σy

•G infinite, planar, biparite: G = G0 ∪G1, quasi-transitive, one end

R. K., Alan Sokal, Jan Swart, arXiv 2012

Existence of entropic long-range order for Potts antiferromagnet at low temperatures.

Plan:

• State the result
• Mention main ideas of the proof
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Main claim

Theorem
G = (V,E): a quadrangulation of the plane
G0 = (V0, E0), G1 = (V1, E1): its sublattices with edges drawn the diagonals of quadrilaterals.
Assume that G0 is a locally finite 3-connected quasi-transitive triangulation with one end.

Then there exist β0, C <∞ and ε > 0 such that for each inverse temperature β ∈ [β0,∞] and
each k ∈ {1, 2, 3}, there exists an infinite-volume Gibbs measure µk,β for the 3-state Potts
antiferromagnet on G satisfying:

(a) For all v0 ∈ V0, we have µk,β(σv0 = k) ≥ 1
3

+ ε.

(b) For all v1 ∈ V1, we have µk,β(σv1 = k) ≤ 1
3
− ε.

(c) For all {u, v} ∈ E, we have µk,β(σu = σv) ≤ Ce−β .

In particular, for each inverse temperature β ∈ [β0,∞], the 3-state Potts antiferromagnet on G has
at least three distinct extremal infinite-volume Gibbs measures.
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Walking through the proof
To simplify, notice that:

• The problem makes sense (it is nontrivial and well defined) even at zero temperature

• At zero temperature, the configurations are perfect colourings with 3 colours and the Gibbs states in
finite volume are just the uniform distributions on those that are consistent with boundary conditions

• Easy formulation of the claim:
For uniformly distributed perfect colourings of finite Λ ⊂ G with a fixed colour (say “1 = red”) on
G0 \ Λ, we have

PΛ,1(σ0 = 1) ≥ 1
3

+ ε

I have 3 mitigating circumstances (for insisting on showing you the idea of the proof):

• It is my obsession. This was the problem that has been hunting me for very long time:

• The proof is very simple and, still, it is bringing new ideas even for Ising model

• And I will do it in pictures with minimum of formulas
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G diced lattice, q = 3

, typical pattern?
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Which colour is in the centre?

Any is compatible with the boundary conditions, but there is some
subtle obstacle that makes it less likely to differ from the boundary colour.
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How to quantify this obstacle?

• Condition on a particular configuration of colours on the even sublattice:
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• Fix the obligatory colours:



• Count the number of remaining configurations consistent with what we have:



• For the colour in the centre to differ from the boundary, it has to be surrounded by a contour γ:

P(γ) = 2−|γ|
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P(the centre is not red) ≤
∑

γ surrounding centre P(γ) ≤

≤
∑

γ surrounding centre 2−|γ| ≤
∑∞

n=6 qn2−n
?
< 2/3

Even taking into account the exact asymptotics:

qn ∼
(√

2 +
√

2
)n
∼ 1.848n (Smirnov, Duminil-Copin)

ALMOST, BUT NOT YET SUFFICIENT∑∞
n=6(µ/2)n = (µ/2)6

1−µ/2 ∼ 8.17
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Nevertheless, it works!

R. K., Jesús Salas, and Alan D Sokal, Phase Transition in the Three-State
Potts Antiferromagnet on the Diced Lattice, Phys. Rev. Lett. 101, 2008

What we had to do for evaluating qn was rather nasty:

Iwan Jensen, Honeycomb lattice polygons and walks as a test of series analysis techniques,
Journal of Physics, 2006

Enumerating qn exactly:

q6 = 1
. . .
. . .

q140 = 12 203 494 959 311 144 967 485 193 175 739 454
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∑∞
n=6 qn2−n =

∑140
n=6 qn2−n +

∑∞
n=142

n2

36 2−n
(√

2 +
√

2
)n−2

= 0.03168 + 0.01731

Notice that we needed diced lattice (µ < 2), it would not work for square lattice!

Sideremark:
Similar long range order is expected to occur for hypercubic lattice with d ≥ 3.

Indeed, it was proven for hypercubic lattice of high dimension d:

Ron Peled, High-Dimensional Lipschitz Functions are Typically Flat
arXiv 2010

David Galvin, Jeff Kahn, Dana Randall, Gregory B. Sorkin,
Phase coexistence and torpid mixing in the 3-coloring model on Zd,
arXiv 2012
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In our paper with Alan Sokal and Jan Swart we avoided the use of explicit
values of qn by employing two tricks:

• Long range order by the bound using only the tail of the series
• Percolation (random cluster) reformulation



Long range order by the bound using only the tail of the series

Consider the events Ak,∆ that a big area ∆ of the even sublattice (G0)
around the centre is covered by the colour k and define

A∆ = A1,∆ ∪A2,∆ ∪A3,∆

the event that this area is monocolour.

Then,

PΛ,1(A1,∆)− PΛ,2(A1,∆) = PΛ,1(A1,∆)− PΛ,1(A2,∆)

=
(
PΛ,1(A1,∆ | A∆)− PΛ,1(A2,∆ | A∆)

)
PΛ,1(A∆) ≥ ε

To prove this, only a bound on probability of long contours is needed.
We also employ a fixed lower bound, uniform in Λ, on PΛ,1(A∆) (say,
PΛ,1(A∆) ≥ (1/3)|∆|).
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Sideremark: can be used to increase the proven region of LRO for Ising model

Let µ be the connectivity constant for SAW on square lattice
(yielding the bound qn ≤ n2

16µ
n).

Then, whenever β > β0 = 1
2 logµ, there is LRO (in a similar weak

sense):

PΛ,+(A+,∆)− PΛ,+(A−,∆) > ε

Compare numerics:

β0 = 0.485 wirh µ ≈ 2.638;

the exact critical point is

βc =
1

2
log(1 +

√
2) = 0.441;

while, in the standard Peierls argument, to get
∞∑
n=4

n2

16
(e−2βµ)n . . .

(e−2βµ)4

1− e−2βµ
< 1/2,

we need at least β > β1 with

β1 = 0.702.
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Argument using a random cluster reformulation

The difference PΛ,1(A1,∆)− PΛ,1(A2,∆) equals the probability that a
properly defined percolative cluster reaching from boundary to ∆ exists.





• Fix one colour:
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PΛ,1(σv0 = 1
∣∣Λ3) =


1 if v0 ↔ ∂Λ

1
2

if v0 ∈ Λ12 and v0 6↔ ∂Λ

0 if v0 ∈ Λ3

PΛ,1(σv0 = 2
∣∣Λ3) =


0 if v0 ↔ ∂Λ

1
2

if v0 ∈ Λ12 and v0 6↔ ∂Λ

0 if v0 ∈ Λ3
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All is finished by finite energy argument (a bit of ingeneering on clusters with uniform bounds):

PΛ,1

(
v0 ↔ ∂Λ) ≥ δPΛ,1

(
A∆&∆↔ ∂Λ)

+ extensions to small temperatures
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