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The Potts model

Box: � b Z2

Bound. cond.: ! 2 
 � f1; : : : ; qgZ
2


!
� = f� 2 
 : �i = !i; 8i 62 �g

Energy in � of � 2 
!
� :

H�(�) =
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fi;jg\�6=∅
i�j

1f�i 6=�jg

Gibbs measure in � at temperature T > 0 with b.c. ! : probability
measure on 
 given by

�!�;T (�) =
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!

�
g

Z!
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Bulk behavior

Observation region

Macroscopic sample

(deep in the bulk)

Basic question: What possible behaviors can be observed in a (small)
subregion deep in the bulk?
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Idealization: in�nite-volume Gibbs measures

We want to consider limits of the type lim�"Z2 �
!
�;T .

(Relevant topology: �!�;T ! � i� �!�;T (f)! �(f), 8f local)

Important particular case: pure boundary conditions, ! � i,
i 2 f1; : : : ; qg. In that case, the limits

�iT = lim
�"Z2

�i�;T

exist and are translation invariant.

Problems with this de�nition:

In general di�cult to establish convergence and determine the limit.

Not very convenient for an abstract study of in�nite-volume Gibbs
measures.

(Easy) observation: any limit � satisfy

�(f) = �
�
���;T (f)

�
; 8� b Z2: (DLR)
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Idealization: in�nite-volume Gibbs measures

Dobrushin and Lanford & Ruelle proposed to de�ne in�nite-volume Gibbs
measures as those random �elds satisfying

�(f) = �
�
���;T (f)

�
; 8� b Z2: (DLR)

Let GT;q be the set of all such random �elds.

Some properties of the set GT;q:

9Tc(q) 2 (0;1) such that jGT;qj = 1 when T > Tc(q) but jGT;qj > 1
when T < Tc(q).

GT;q is a simplex.

8� 2 exGT;q, lim�"Z2 �
!
�;T = �, for �-a.e. !.

Natural question: determine the set exGT;q.
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Determination of GT;q

Unfortunately, determining the set of all in�nite-volume Gibbs measures
associated to a given model is usually very di�cult.

In dimension 2, when T � 1, there are general results by Dobrushin
& Shlosman (1985).

Essentially no results in dimensions d � 3, even at T � 1.

In any dimension, there are general results about the set of all
translation invariant Gibbs measures (e.g., via Pirogov-Sinai theory).

To be addressed now:

What about non-perturbative results in 2d?

What makes d = 2 simpler than d � 3?
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Earlier non-perturbative results for 2d Ising/Potts model

Two-dimensional 2-states Potts model (i.e., Ising model)

Messager & Miracle-Sole '75: all translation invariant elements of
GT;2 are convex combinations of �1T and �2T .

Russo '79: Any measure � 2 GT invariant under translations in
direction ~e1 is invariant under all translations.

Aizenman '80, Higuchi '81: all elements of GT;2 are translation
invariant. In particular, they are all convex combinations of �1T and
�2T ,

GT;2 = f��1T + (1� �)�2T : 0 � � � 1g:

Two-dimensional q-states Potts model

Martirosyan '86: When q � 1 and T < Tc(q), all translation
invariant elements of GT;q are convex combinations of �iT ,
i = 1; : : : ; q.
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Our results

Our results (�rst obtained for the case q = 2 in a joint work with Loren
Coquille), take the following form:

Theorem [Coquille, Duminil-Copin, Io�e, V.]

Let T < Tc(q), �n = f�n; : : : ; ng2, ! 2 
 et R = o(n1=2).
9�

n;!
i (T ) 2 [0; 1], i = 1; : : : ; q, such that

Pq
i=1 �

n;!
i (T ) = 1 and

�!�n;T (f) =

qX
i=1

�
n;!
i �iT (f) +OT (kfk1Rn�1=2);

for all n > n0(T ), uniformly in functions f with support included inside
�R.

Corollary

For all T < Tc(q), all Gibbs measures are translation invariant and

GT;q =
� qX
i=1

�i�
i
T : �i � 0;

qX
i=1

�i = 1
	
:



Our results

Our results (�rst obtained for the case q = 2 in a joint work with Loren
Coquille), take the following form:

Theorem [Coquille, Duminil-Copin, Io�e, V.]

Let T < Tc(q), �n = f�n; : : : ; ng2, ! 2 
 et R = o(n1=2).
9�

n;!
i (T ) 2 [0; 1], i = 1; : : : ; q, such that

Pq
i=1 �

n;!
i (T ) = 1 and

�!�n;T (f) =

qX
i=1

�
n;!
i �iT (f) +OT (kfk1Rn�1=2);

for all n > n0(T ), uniformly in functions f with support included inside
�R.

Corollary

For all T < Tc(q), all Gibbs measures are translation invariant and

GT;q =
� qX
i=1

�i�
i
T : �i � 0;

qX
i=1

�i = 1
	
:



d = 2 vs d � 3, translation invariance

A natural candidate when trying to generate a non translation invariant Gibbs
measure is to consider the Dobrushin boundary condition:

!1;2

i =

�
1 si hi; e2i � 0,

2 si hi; e2i < 0.

After di�usive scaling, the interface induced by this b.c. in �L = f�L; : : : ; Lg2
weakly converges, as L!1, toward a Brownian bridge [Higuchi '79,
Greenberg & Io�e '05, Campanino, Io�e, V. '08].

In particular, this interface has �uctuations of size O(
p
L), and the expectation

of a local function f thus satis�es

lim
L!1

�1;2
�L;T

(f) = 1
2
�1
T (f) +

1
2
�2
T (f);

since the support of this function is either far above or far below the interface

with equal probability 1=2.
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d = 2 vs d � 3, translation invariance

This is not true when d ≥ 3 and T � 1: �
1;2
�L;T

gives rise to an
extremal, translation non-invariant, Gibbs state [Dobrushin '72].

Crucial di�erence:

When d = 2, interfaces are �one-dimensional� objects, which
undergo unbounded �uctuations at any T < Tc.

When d � 3 and T � 1, the horizontal interface is rigid.

Interface �uctuations are responsible for the absence of translation
non-invariant Gibbs measures in two-dimensional systems and are central
to our proof.
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Ingredient #1: Exponential relaxation in pure phases

Let � � Z2. Then [Be�ara & Duminil-Copin '12]: For any T < Tc(q),
there exists C(T ) > 0 such that

���i�;T (f)� �iT (f)
�� � kfk

1
jS(f)j e�Cd(S(f);�

c);

uniformly for all local functions f with support S(f) � �.



Ingredient #2: Macroscopic interfaces

Consider a large box � b Z2, with a �macroscopic� boundary condition.
Then the interfaces concentrate on the solution of a variational problem
(�minimize total surface tension, taking into account the constraints
induced by the b.c.�). The solution consists in a �nite family of
�well-separated� trees, with inner nodes of degree 3.

(Of course, when q = 2 there are no inner nodes.)



Ingredient #3: Gaussian �uctuations of interfaces

Open contours corresponding to linear macroscopic interfaces have
Gaussian �uctuations (convergence to a Brownian bridge after
di�usive scaling).

In the same way, the �center� and the branches of a tripod undergo
Gaussian �uctuations after proper scaling.
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Proof: Step #1

Let �n = f�n; : : : ; ng2.

The boundary condition is generically not macroscopic (there can be
O(n) changes of colors along the boundary of �n).

Claim: at most M(T ) <1 interfaces reach the sub-box �n=2.

Indeed

Each interface �costs� e�cn, c > 0, so that K interfaces cost e�cKn.

The �cost� of having 0 interfaces is at most e�c
0n, c0 > 0 (just force

all spins along the inner boundary of �n to have color 1).
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Proof: Step #1

This creates a random box consisting of the inner box �n=2 with random
�petals� attached. The boundary condition on this random box changes
color only at most M 0(T ) times (at points of @�n=2).



Proof: Step #2

We restrict now our attention to the inner box �n=2. Since the latter has
a �macroscopic� boundary condition, the induced interfaces inside �n=2

concentrate into tubes along the solution of the corresponding variational
problem.



Proof: Step #3

Consider a new small macroscopic box ��n.
Since the macroscpic interfaces are �well-separated�, there three
possibilites:

1 None of the tubes intersect ��n.

2 Exactly one tube cuts through ��n.

3 Exactle one �tripod� has its node inside ��n.



Proof: Step #3

First case: None of the tubes intersect ��n.

In that case, ��n (and thus also �R) lies deeply in a pure phase.
We conclude using exponential relaxation in pure phases.



Proof: Step #3

Second case: Exactly one tube cuts through ��n.

In that case, because of its Gaussian �uctuations, the corresponding open
contour inside ��n stays far from �R with high probability. Consequently
�R lies again deeply in a pure phase.
We conclude using exponential relaxation in pure phases.



Proof: Step #3

Third case: Exactle one �tripod� has its node inside ��n.

Similarly, because of the Gaussian �uctuations of the �center of the
tripod� and of its �branches�, the corresponding contours stay far from �R

with high probability. Consequently �R lies again deeply in a pure phase.
We conclude using exponential relaxation in pure phases.



Thank you!
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