On the Gibbs states of the Potts model

Yvan Velenik

May 7 2013

based on a joint work with Loren Coquille, Hugo Duminil-Copin et Dmitry loffe

- 2 Infinite-volume Gibbs measures
- O Principles of proof

1 Introduction

- 2 Infinite-volume Gibbs measures
- 3 Principles of proof

Box: $\Lambda \in \mathbb{Z}^2$ Bound. cond.: $\omega \in \Omega \equiv \{1, \dots, q\}^{\mathbb{Z}^2}$ $\Omega^{\omega}_{\Lambda} = \{\sigma \in \Omega : \sigma_i = \omega_i, \forall i \notin \Lambda\}$ Energy in Λ of $\sigma \in \Omega^{\omega}_{\Lambda}$: $H_{\Lambda}(\sigma) = \sum_{\{\sigma_i \neq \sigma_j\}} \mathbf{1}_{\{\sigma_i \neq \sigma_j\}}$

Gibbs measure in Λ at temperature T>0 with b.c. ω : probability measure on Ω given by

$$\mu^{\omega}_{\Lambda;T}(\sigma) = rac{\mathbf{1}_{\{\sigma\in\Omega^{\omega}_{\Lambda}\}}}{\mathbf{Z}^{\omega}_{\Lambda;T}} \, e^{-H_{\Lambda}(\sigma)/T}$$

Gibbs measure in Λ at temperature T>0 with b.c. ω : probability measure on Ω given by

$$\mu^{\omega}_{\Lambda;T}(\sigma) = \frac{\mathbf{1}_{\{\sigma \in \Omega^{\omega}_{\Lambda}\}}}{\mathbf{Z}^{\omega}_{\Lambda;T}} \, e^{-H_{\Lambda}(\sigma)/T}$$

Gibbs measure in Λ at temperature T>0 with b.c. ω : probability measure on Ω given by

$$\mu^{\omega}_{\Lambda;T}(\sigma) = \frac{\mathbf{1}_{\{\sigma \in \Omega^{\omega}_{\Lambda}\}}}{\mathbf{Z}^{\omega}_{\Lambda;T}} \, e^{-H_{\Lambda}(\sigma)/T}$$

Gibbs measure in Λ at temperature T>0 with b.c. ω : probability measure on Ω given by

$$\mu^{\omega}_{\Lambda;T}(\sigma) = rac{\mathbf{1}_{\{\sigma\in\Omega^{\omega}_{\Lambda}\}}}{\mathbf{Z}^{\omega}_{\Lambda;T}} \, e^{-H_{\Lambda}(\sigma)/T}$$

Gibbs measure in Λ at temperature T>0 with b.c. ω : probability measure on Ω given by

$$\mu^{\omega}_{\Lambda;T}(\sigma) = \frac{\mathbf{1}_{\{\sigma \in \Omega^{\omega}_{\Lambda}\}}}{\mathbf{Z}^{\omega}_{\Lambda;T}} e^{-H_{\Lambda}(\sigma)/T}$$

Basic question: What possible behaviors can be observed in a (small) subregion deep in the bulk?

- 2 Infinite-volume Gibbs measures
- 3 Principles of proof

We want to consider limits of the type $\lim_{\Lambda \uparrow \mathbb{Z}^2} \mu^{\omega}_{\Lambda;T}$.

(Relevant topology: $\mu^{\omega}_{\Lambda;T} o \mu$ iff $\mu^{\omega}_{\Lambda;T}(f) o \mu(f)$, $\forall f$ local)

Important particular case: pure boundary conditions, $\omega\equiv i,$ $i\in\{1,\ldots,q\}.$ In that case, the limits

$$\mu^i_T = \lim_{\Lambda \uparrow \mathbb{Z}^2} \mu^i_{\Lambda;T}$$

exist and are translation invariant.

Problems with this definition:

- In general difficult to establish convergence and determine the limit.
- Not very convenient for an abstract study of infinite-volume Gibbs measures.

(Easy) observation: any limit μ satisfy

 $\mu(f) = \mu(\mu_{\Lambda;T}^{\cdot}(f)), \qquad \forall \Lambda \in \mathbb{Z}^2.$ (

We want to consider limits of the type $\lim_{\Lambda \uparrow \mathbb{Z}^2} \mu^{\omega}_{\Lambda;T}$.

 $({\sf Relevant \ topology} \colon \mu^\omega_{\Lambda;T} \to \mu \ {\sf iff} \ \mu^\omega_{\Lambda;T}(f) \to \mu(f), \ \forall f \ {\sf local})$

Important particular case: pure boundary conditions, $\omega \equiv i$, $i \in \{1, \ldots, q\}$. In that case, the limits

$$\mu^i_T = \lim_{\Lambda \uparrow \mathbb{Z}^2} \mu^i_{\Lambda;T}$$

exist and are translation invariant.

Problems with this definition:

- In general difficult to establish convergence and determine the limit.
- Not very convenient for an abstract study of infinite-volume Gibbs measures.

(Easy) observation: any limit μ satisfy

 $\mu(f)=\muig(\mu^{+}_{\Lambda;T}(f)ig),\qquad orall\Lambda\Subset\mathbb{Z}^{2}.$

We want to consider limits of the type $\lim_{\Lambda \uparrow \mathbb{Z}^2} \mu^{\omega}_{\Lambda;T}$.

 $({\sf Relevant \ topology} \colon \mu^\omega_{\Lambda;T} \to \mu \ {\sf iff} \ \mu^\omega_{\Lambda;T}(f) \to \mu(f), \ \forall f \ {\sf local})$

Important particular case: pure boundary conditions, $\omega \equiv i$, $i \in \{1, \ldots, q\}$. In that case, the limits

$$\mu^i_T = \lim_{\Lambda \uparrow \mathbb{Z}^2} \mu^i_{\Lambda;T}$$

exist and are translation invariant.

Problems with this definition:

- In general difficult to establish convergence and determine the limit.
- Not very convenient for an abstract study of infinite-volume Gibbs measures.

(Easy) observation: any limit μ satisfy

 $\mu(f) = \mu(\mu_{\Lambda;T}^{\cdot}(f)), \qquad \forall \Lambda \in \mathbb{Z}^2.$ (1)

We want to consider limits of the type $\lim_{\Lambda \uparrow \mathbb{Z}^2} \mu^{\omega}_{\Lambda;T}$.

 $({\sf Relevant \ topology} \colon \mu^\omega_{\Lambda;T} \to \mu \ {\sf iff} \ \mu^\omega_{\Lambda;T}(f) \to \mu(f), \ \forall f \ {\sf local})$

Important particular case: pure boundary conditions, $\omega \equiv i$, $i \in \{1, \ldots, q\}$. In that case, the limits

$$\mu^i_T = \lim_{\Lambda \uparrow \mathbb{Z}^2} \mu^i_{\Lambda;T}$$

exist and are translation invariant.

Problems with this definition:

- In general difficult to establish convergence and determine the limit.
- Not very convenient for an abstract study of infinite-volume Gibbs measures.

(Easy) observation: any limit μ satisfy

$$\mu(f) = \mu(\mu_{\Lambda;T}(f)), \qquad \forall \Lambda \Subset \mathbb{Z}^2. \tag{DLR}$$

$$\mu(f) = \mu(\mu_{\Lambda;T}(f)), \qquad \forall \Lambda \Subset \mathbb{Z}^2. \tag{DLR}$$

Let $\mathcal{G}_{T,q}$ be the set of all such random fields.

Some properties of the set $\mathcal{G}_{T,q}$:

- $\exists T_c(q) \in (0,\infty)$ such that $|\mathcal{G}_{T,q}| = 1$ when $T > T_c(q)$ but $|\mathcal{G}_{T,q}| > 1$ when $T < T_c(q)$.
- $\mathcal{G}_{T,q}$ is a simplex.
- $\forall \mu \in \text{ex} \, \mathcal{G}_{T,q}, \lim_{\Lambda \uparrow \mathbb{Z}^2} \mu^{\omega}_{\Lambda;T} = \mu$, for μ -a.e. ω .

$$\mu(f) = \mu(\mu_{\Lambda;T}^{\cdot}(f)), \qquad \forall \Lambda \Subset \mathbb{Z}^2.$$
 (DLR)

Let $\mathcal{G}_{T,q}$ be the set of all such random fields.

Some properties of the set $\mathcal{G}_{T,q}$:

- $\exists T_c(q) \in (0,\infty)$ such that $|\mathcal{G}_{T,q}| = 1$ when $T > T_c(q)$ but $|\mathcal{G}_{T,q}| > 1$ when $T < T_c(q)$.
- $\mathcal{G}_{T,q}$ is a simplex.
- $\forall \mu \in \text{ex} \, \mathcal{G}_{T,q}, \lim_{\Lambda \uparrow \mathbb{Z}^2} \mu^{\omega}_{\Lambda;T} = \mu, \text{ for } \mu\text{-a.e. } \omega.$

$$\mu(f) = \mu(\mu_{\Lambda;T}^{\cdot}(f)), \qquad \forall \Lambda \Subset \mathbb{Z}^2.$$
 (DLR)

Let $\mathcal{G}_{T,q}$ be the set of all such random fields.

Some properties of the set $\mathcal{G}_{T,q}$:

- $\exists T_c(q) \in (0,\infty)$ such that $|\mathcal{G}_{T,q}| = 1$ when $T > T_c(q)$ but $|\mathcal{G}_{T,q}| > 1$ when $T < T_c(q)$.
- $\mathcal{G}_{T,q}$ is a simplex.
- $\forall \mu \in \exp \mathcal{G}_{T,q}$, $\lim_{\Lambda \uparrow \mathbb{Z}^2} \mu^{\omega}_{\Lambda;T} = \mu$, for μ -a.e. ω .

$$\mu(f) = \mu(\mu_{\Lambda;T}^{\cdot}(f)), \qquad \forall \Lambda \Subset \mathbb{Z}^2.$$
 (DLR)

Let $\mathcal{G}_{T,q}$ be the set of all such random fields.

Some properties of the set $\mathcal{G}_{T,q}$:

- $\exists T_c(q) \in (0,\infty)$ such that $|\mathcal{G}_{T,q}| = 1$ when $T > T_c(q)$ but $|\mathcal{G}_{T,q}| > 1$ when $T < T_c(q)$.
- $\mathcal{G}_{T,q}$ is a simplex.
- $\forall \mu \in \text{ex } \mathcal{G}_{T,q}, \lim_{\Lambda \uparrow \mathbb{Z}^2} \mu^{\omega}_{\Lambda;T} = \mu, \text{ for } \mu\text{-a.e. } \omega.$

$$\mu(f) = \mu(\mu_{\Lambda;T}^{\cdot}(f)), \qquad \forall \Lambda \Subset \mathbb{Z}^2.$$
 (DLR)

Let $\mathcal{G}_{T,q}$ be the set of all such random fields.

Some properties of the set $\mathcal{G}_{T,q}$:

- $\exists T_c(q) \in (0,\infty)$ such that $|\mathcal{G}_{T,q}| = 1$ when $T > T_c(q)$ but $|\mathcal{G}_{T,q}| > 1$ when $T < T_c(q)$.
- $\mathcal{G}_{T,q}$ is a simplex.
- $\forall \mu \in \text{ex } \mathcal{G}_{T,q}, \lim_{\Lambda \uparrow \mathbb{Z}^2} \mu^{\omega}_{\Lambda;T} = \mu$, for μ -a.e. ω .

$$\mu(f) = \mu(\mu_{\Lambda;T}^{\cdot}(f)), \qquad \forall \Lambda \Subset \mathbb{Z}^2.$$
 (DLR)

Let $\mathcal{G}_{T,q}$ be the set of all such random fields.

Some properties of the set $\mathcal{G}_{T,q}$:

- $\exists T_c(q) \in (0,\infty)$ such that $|\mathcal{G}_{T,q}| = 1$ when $T > T_c(q)$ but $|\mathcal{G}_{T,q}| > 1$ when $T < T_c(q)$.
- $\mathcal{G}_{T,q}$ is a simplex.
- $\forall \mu \in \text{ ex } \mathcal{G}_{T,q}$, $\lim_{\Lambda \uparrow \mathbb{Z}^2} \mu^{\omega}_{\Lambda;T} = \mu$, for μ -a.e. ω .

- In dimension 2, when $T \ll 1$, there are general results by Dobrushin & Shlosman (1985).
- Essentially no results in dimensions $d\geq$ 3, even at $T\ll 1$.
- In any dimension, there are general results about the set of all translation invariant Gibbs measures (e.g., via Pirogov-Sinai theory).

To be addressed now:

What about non-perturbative results in 2d?

- In dimension 2, when $T \ll 1$, there are general results by Dobrushin & Shlosman (1985).
- Essentially no results in dimensions $d\geq$ 3, even at $T\ll 1$.
- In any dimension, there are general results about the set of all translation invariant Gibbs measures (e.g., via Pirogov-Sinai theory).

To be addressed now:

What about non-perturbative results in 2d?

- In dimension 2, when $T \ll 1$, there are general results by Dobrushin & Shlosman (1985).
- Essentially no results in dimensions $d \ge 3$, even at $T \ll 1$.
- In any dimension, there are general results about the set of all translation invariant Gibbs measures (e.g., via Pirogov-Sinai theory).

To be addressed now:

What about non-perturbative results in 2d?

- In dimension 2, when $T \ll 1$, there are general results by Dobrushin & Shlosman (1985).
- Essentially no results in dimensions $d \ge 3$, even at $T \ll 1$.
- In any dimension, there are general results about the set of all *translation invariant* Gibbs measures (e.g., via Pirogov-Sinai theory).

To be addressed now:

What about non-perturbative results in 2d?

- In dimension 2, when $T \ll 1$, there are general results by Dobrushin & Shlosman (1985).
- Essentially no results in dimensions $d \ge 3$, even at $T \ll 1$.
- In any dimension, there are general results about the set of all *translation invariant* Gibbs measures (e.g., via Pirogov-Sinai theory).

To be addressed now:

What about non-perturbative results in 2d?

Two-dimensional 2-states Potts model (i.e., Ising model)

- Messager & Miracle-Sole '75: all *translation invariant* elements of $\mathcal{G}_{T,2}$ are convex combinations of μ_T^1 and μ_T^2 .
- Russo '79: Any measure µ ∈ G_T invariant under translations in direction e₁ is invariant under all translations.
- Aizenman '80, Higuchi '81: all elements of $\mathcal{G}_{T,2}$ are translation invariant. In particular, they are all convex combinations of μ_T^1 and μ_T^2 ,

 $\mathcal{G}_{T,2} = \{ lpha \mu_T^1 + (1-lpha) \mu_T^2 \, : \, 0 \leq lpha \leq 1 \}.$

Two-dimensional q-states Potts model

Two-dimensional 2-states Potts model (i.e., Ising model)

- Messager & Miracle-Sole '75: all *translation invariant* elements of $\mathcal{G}_{T,2}$ are convex combinations of μ_T^1 and μ_T^2 .
- Russo '79: Any measure $\mu \in \mathcal{G}_T$ invariant under translations in direction $\vec{e_1}$ is invariant under all translations.
- Aizenman '80, Higuchi '81: all elements of $\mathcal{G}_{T,2}$ are translation invariant. In particular, they are all convex combinations of μ_T^1 and μ_T^2 ,

 $\mathcal{G}_{T,2} = \{ lpha \mu_T^1 + (1-lpha) \mu_T^2 : 0 \le lpha \le 1 \}.$

Two-dimensional q-states Potts model

Two-dimensional 2-states Potts model (i.e., Ising model)

- Messager & Miracle-Sole '75: all *translation invariant* elements of $\mathcal{G}_{T,2}$ are convex combinations of μ_T^1 and μ_T^2 .
- Russo '79: Any measure $\mu \in \mathcal{G}_T$ invariant under translations in direction $\vec{e_1}$ is invariant under all translations.
- Aizenman '80, Higuchi '81: all elements of $\mathcal{G}_{T,2}$ are translation invariant. In particular, they are all convex combinations of μ_T^1 and μ_T^2 ,

$\mathcal{G}_{T,2} = \{ lpha \mu_T^1 + (1-lpha) \mu_T^2 \, : \, 0 \leq lpha \leq 1 \}.$

Two-dimensional q-states Potts model

Two-dimensional 2-states Potts model (i.e., Ising model)

- Messager & Miracle-Sole '75: all *translation invariant* elements of $\mathcal{G}_{T,2}$ are convex combinations of μ_T^1 and μ_T^2 .
- Russo '79: Any measure $\mu \in \mathcal{G}_T$ invariant under translations in direction $\vec{e_1}$ is invariant under all translations.
- Aizenman '80, Higuchi '81: all elements of $\mathcal{G}_{T,2}$ are translation invariant. In particular, they are all convex combinations of μ_T^1 and μ_T^2 ,

 $\mathcal{G}_{T,2} = \{ lpha \mu_T^1 + (1-lpha) \mu_T^2 : 0 \le lpha \le 1 \}.$

Two-dimensional *q*-states Potts model

Our results

Our results (first obtained for the case q = 2 in a joint work with Loren Coquille), take the following form:

Theorem [Coquille, Duminil-Copin, loffe, V.]

Let $T < T_c(q)$, $\Lambda_n = \{-n, \ldots, n\}^2$, $\omega \in \Omega$ et $R = o(n^{1/2})$. $\exists \alpha_i^{n,\omega}(T) \in [0, 1]$, $i = 1, \ldots, q$, such that $\sum_{i=1}^q \alpha_i^{n,\omega}(T) = 1$ and

$$\mu^{\omega}_{\Lambda_n;T}(f) = \sum_{i=1}^{q} \alpha^{n,\omega}_i \mu^i_T(f) + O_T(||f||_{\infty} R n^{-1/2})$$

for all $n > n_0(T)$, uniformly in functions f with support included inside Λ_R .

Corollary

For all $T < T_c(q)$, all Gibbs measures are translation invariant and $\mathcal{G}_{T,q} = \{\sum_{i=1}^q \alpha_i \mu_T^i \, : \, \alpha_i \ge 0, \sum_{i=1}^q \alpha_i = 1\}.$

Our results

Our results (first obtained for the case q = 2 in a joint work with Loren Coquille), take the following form:

Theorem [Coquille, Duminil-Copin, loffe, V.]

Let $T < T_c(q)$, $\Lambda_n = \{-n, \ldots, n\}^2$, $\omega \in \Omega$ et $R = o(n^{1/2})$. $\exists \alpha_i^{n,\omega}(T) \in [0, 1]$, $i = 1, \ldots, q$, such that $\sum_{i=1}^q \alpha_i^{n,\omega}(T) = 1$ and

$$\mu^{\omega}_{\Lambda_n;T}(f) = \sum_{i=1}^{q} \alpha^{n,\omega}_i \mu^i_T(f) + O_T(||f||_{\infty} R n^{-1/2})$$

for all $n > n_0(T)$, uniformly in functions f with support included inside Λ_R .

Corollary

For all $T < T_c(q)$, all Gibbs measures are translation invariant and $\mathcal{G}_{T,q} = \{\sum_{i=1}^q \alpha_i \mu_T^i : \alpha_i \ge 0, \sum_{i=1}^q \alpha_i = 1\}.$

A natural candidate when trying to generate a non translation invariant Gibbs measure is to consider the Dobrushin boundary condition:

$$\omega_i^{1,2} = egin{cases} 1 & ext{si} \ \langle i, \mathbf{e}_2
angle \geq 0, \ 2 & ext{si} \ \langle i, \mathbf{e}_2
angle < 0. \end{cases}$$

After diffusive scaling, the interface induced by this b.c. in $\Lambda_L = \{-L, \ldots, L\}^2$ weakly converges, as $L \to \infty$, toward a Brownian bridge [Higuchi '79, Greenberg & loffe '05, Campanino, loffe, V. '08].

In particular, this interface has fluctuations of size $O(\sqrt{L})$, and the expectation of a local function f thus satisfies

$$\lim_{L \to \infty} \mu_{\Lambda_L;T}^{1,2}(f) = \frac{1}{2} \mu_T^1(f) + \frac{1}{2} \mu_T^2(f),$$

A natural candidate when trying to generate a non translation invariant Gibbs measure is to consider the Dobrushin boundary condition:

$$\omega_i^{1,2} = egin{cases} 1 & ext{si} \ \langle i, \mathbf{e}_2
angle \geq 0, \ 2 & ext{si} \ \langle i, \mathbf{e}_2
angle < 0. \end{cases}$$

After diffusive scaling, the interface induced by this b.c. in $\Lambda_L = \{-L, \ldots, L\}^2$ weakly converges, as $L \to \infty$, toward a Brownian bridge [Higuchi '79, Greenberg & loffe '05, Campanino, loffe, V. '08].

In particular, this interface has fluctuations of size $O(\sqrt{L})$, and the expectation of a local function f thus satisfies

$$\lim_{L \to \infty} \mu_{\Lambda_L;T}^{1,2}(f) = \frac{1}{2} \mu_T^1(f) + \frac{1}{2} \mu_T^2(f),$$

A natural candidate when trying to generate a non translation invariant Gibbs measure is to consider the Dobrushin boundary condition:

$$\omega_i^{1,2} = egin{cases} 1 & ext{si} \; \langle i, \mathbf{e}_2
angle \geq 0, \ 2 & ext{si} \; \langle i, \mathbf{e}_2
angle < 0. \end{cases}$$

After diffusive scaling, the interface induced by this b.c. in $\Lambda_L = \{-L, \ldots, L\}^2$ weakly converges, as $L \to \infty$, toward a Brownian bridge [Higuchi '79, Greenberg & loffe '05, Campanino, loffe, V. '08].

In particular, this interface has fluctuations of size $O(\sqrt{L})$, and the expectation of a local function f thus satisfies

$$\lim_{L \to \infty} \mu_{\Lambda_L;T}^{1,2}(f) = \frac{1}{2} \mu_T^1(f) + \frac{1}{2} \mu_T^2(f),$$

A natural candidate when trying to generate a non translation invariant Gibbs measure is to consider the Dobrushin boundary condition:

$$\omega_i^{1,2} = egin{cases} 1 & ext{si} \; \langle i, \mathbf{e}_2
angle \geq 0, \ 2 & ext{si} \; \langle i, \mathbf{e}_2
angle < 0. \end{cases}$$

After diffusive scaling, the interface induced by this b.c. in $\Lambda_L = \{-L, \ldots, L\}^2$ weakly converges, as $L \to \infty$, toward a Brownian bridge [Higuchi '79, Greenberg & loffe '05, Campanino, loffe, V. '08].

In particular, this interface has fluctuations of size $O(\sqrt{L})$, and the expectation of a local function f thus satisfies

$$\lim_{L \to \infty} \mu_{\Lambda_L;T}^{1,2}(f) = \frac{1}{2} \mu_T^1(f) + \frac{1}{2} \mu_T^2(f),$$

This is not true when $d \ge 3$ and $T \ll 1$: $\mu_{\Lambda_L;T}^{1,2}$ gives rise to an extremal, translation non-invariant, Gibbs state [Dobrushin '72].

Crucial difference:

- When d = 2, interfaces are "one-dimensional" objects, which undergo unbounded fluctuations at any $T < T_c$.
- When $d\geq$ 3 and $T\ll$ 1, the horizontal interface is **rigid**.

This is not true when $d \ge 3$ and $T \ll 1$: $\mu_{\Lambda_L;T}^{1,2}$ gives rise to an extremal, translation non-invariant, Gibbs state [Dobrushin '72].

Crucial difference:

- When d = 2, interfaces are "one-dimensional" objects, which undergo unbounded fluctuations at any $T < T_c$.
- When $d \ge 3$ and $T \ll 1$, the horizontal interface is **rigid**.

This is not true when $d \ge 3$ and $T \ll 1$: $\mu_{\Lambda_L;T}^{1,2}$ gives rise to an extremal, translation non-invariant, Gibbs state [Dobrushin '72].

Crucial difference:

- When d = 2, interfaces are "one-dimensional" objects, which undergo unbounded fluctuations at any $T < T_c$.
- When $d \ge 3$ and $T \ll 1$, the horizontal interface is **rigid**.

This is **not true when** $d \ge 3$ and $T \ll 1$: $\mu_{\Lambda_L;T}^{1,2}$ gives rise to an extremal, translation non-invariant, Gibbs state [Dobrushin '72].

Crucial difference:

- When d = 2, interfaces are "one-dimensional" objects, which undergo unbounded fluctuations at any $T < T_c$.
- When $d \ge 3$ and $T \ll 1$, the horizontal interface is **rigid**.

- Infinite-volume Gibbs measures
- O Principles of proof

Ingredient #1: Exponential relaxation in pure phases

Let $\Lambda \subset \mathbb{Z}^2$. Then [Beffara & Duminil-Copin '12]: For any $T < T_c(q)$, there exists C(T) > 0 such that

 $\left|\mu^i_{\Lambda;T}(f)-\mu^i_T(f)
ight|\leq \|f\|_{\infty} \left|S(f)
ight|e^{-Cd(S(f),\Lambda^c)},$

uniformly for all local functions f with support $S(f) \subset \Lambda$.

Ingredient #2: Macroscopic interfaces

Consider a large box $\Lambda \Subset \mathbb{Z}^2$, with a "macroscopic" boundary condition. Then the interfaces concentrate on the solution of a variational problem ("minimize total surface tension, taking into account the constraints induced by the b.c."). The solution consists in a **finite family of "well-separated" trees**, with **inner nodes of degree** 3.

(Of course, when q = 2 there are no inner nodes.)

Ingredient #3: Gaussian fluctuations of interfaces

Open contours corresponding to linear macroscopic interfaces have **Gaussian fluctuations** (convergence to a **Brownian bridge** after diffusive scaling).

In the same way, the "center" and the branches of a tripod undergo Gaussian fluctuations after proper scaling.

Ingredient #3: Gaussian fluctuations of interfaces

Open contours corresponding to linear macroscopic interfaces have **Gaussian fluctuations** (convergence to a **Brownian bridge** after diffusive scaling).

In the same way, the "center" and the branches of a tripod undergo Gaussian fluctuations after proper scaling.

Let $\Lambda_n = \{-n, \ldots, n\}^2$.

The boundary condition is generically *not* macroscopic (there can be O(n) changes of colors along the boundary of Λ_n).

Claim: at most $M(T) < \infty$ interfaces reach the sub-box $\Lambda_{n/2}$.

- Each interface "costs" e^{-cn} , c > 0, so that K interfaces cost e^{-cKn} .
- The "cost" of having 0 interfaces is at most e^{-c'n}, c' > 0 (just force all spins along the inner boundary of Λ_n to have color 1).

Let
$$\Lambda_n = \{-n, \ldots, n\}^2$$
.

The boundary condition is generically *not* macroscopic (there can be O(n) changes of colors along the boundary of Λ_n).

Claim: at most $M(T) < \infty$ interfaces reach the sub-box $\Lambda_{n/2}$.

- Each interface "costs" e^{-cn} , c > 0, so that K interfaces cost e^{-cKn} .
- The "cost" of having 0 interfaces is at most $e^{-c'n}$, c' > 0 (just force all spins along the inner boundary of Λ_n to have color 1).

Let
$$\Lambda_n = \{-n, \ldots, n\}^2$$
.

The boundary condition is generically *not* macroscopic (there can be O(n) changes of colors along the boundary of Λ_n).

Claim: at most $M(T) < \infty$ interfaces reach the sub-box $\Lambda_{n/2}$.

- Each interface "costs" e^{-cn} , c > 0, so that K interfaces cost e^{-cKn} .
- The "cost" of having 0 interfaces is at most e^{-c'n}, c' > 0 (just force all spins along the inner boundary of Λ_n to have color 1).

Let $\Lambda_n = \{-n, \ldots, n\}^2$.

The boundary condition is generically *not* macroscopic (there can be O(n) changes of colors along the boundary of Λ_n).

Claim: at most $M(T) < \infty$ interfaces reach the sub-box $\Lambda_{n/2}$.

- Each interface "costs" e^{-cn} , c > 0, so that K interfaces cost e^{-cKn} .
- The "cost" of having 0 interfaces is at most $e^{-c'n}$, c' > 0 (just force all spins along the inner boundary of Λ_n to have color 1).

This creates a random box consisting of the inner box $\Lambda_{n/2}$ with random "petals" attached. The boundary condition on this random box changes color only at most M'(T) times (at points of $\partial \Lambda_{n/2}$).

We restrict now our attention to the inner box $\Lambda_{n/2}$. Since the latter has a "macroscopic" boundary condition, the induced interfaces inside $\Lambda_{n/2}$ concentrate into tubes along the solution of the corresponding variational problem.

Consider a new small macroscopic box $\Lambda_{\epsilon n}$. Since the macroscopic interfaces are "well-separated", there three possibilites:

- None of the tubes intersect $\Lambda_{\epsilon n}$.
- 2 Exactly one tube cuts through $\Lambda_{\epsilon n}$.
- Exactle one "tripod" has its node inside $\Lambda_{\epsilon n}$.

First case: None of the tubes intersect $\Lambda_{\epsilon n}$.

In that case, $\Lambda_{\epsilon n}$ (and thus also Λ_R) lies deeply in a pure phase. We conclude using exponential relaxation in pure phases.

Second case: Exactly one tube cuts through $\Lambda_{\epsilon n}$.

In that case, because of its Gaussian fluctuations, the corresponding open contour inside $\Lambda_{\epsilon n}$ stays far from Λ_R with high probability. Consequently Λ_R lies again deeply in a pure phase.

We conclude using exponential relaxation in pure phases.

Proof: Step #3

Third case: Exactle one "tripod" has its node inside $\Lambda_{\epsilon n}$.

Similarly, because of the Gaussian fluctuations of the "center of the tripod" and of its "branches", the corresponding contours stay far from Λ_R with high probability. Consequently Λ_R lies again deeply in a pure phase. We conclude using exponential relaxation in pure phases.

Thank you!

Blue b.c.

$$T = \infty$$

Blue b.c.

Blue b.c.

$$T = 1.44$$

Blue b.c.

Blue b.c.

Blue b.c.

$$T = 1.12$$

Blue b.c.

