On the Gibbs states of the Potts model

Yvan Velenik

May 72013
based on a joint work with
Loren Coquille, Hugo Duminil-Copin et Dmitry loffe

Contents

(1) Introduction
(2) Infinite-volume Gibbs measures
(3) Principles of proof

Contents

(1) Introduction

(2) Infinite-volume Gibbs measures
(3) Principles of proof

The Potts model

Box: $\Lambda \Subset \mathbb{Z}^{2}$

Box: $\Lambda \Subset \mathbb{Z}^{2}$
Bound. cond.: $\omega \in \Omega \equiv\{1, \ldots, q\}^{\mathbb{Z}^{2}}$

Box: $\Lambda \Subset \mathbb{Z}^{2}$
Bound. cond.: $\omega \in \Omega \equiv\{1, \ldots, q\}^{\mathbb{Z}^{2}}$ $\Omega_{\Lambda}^{\omega}=\left\{\sigma \in \Omega: \sigma_{i}=\omega_{i}, \forall i \notin \Lambda\right\}$

> at temperature T

Box: $\Lambda \Subset \mathbb{Z}^{2}$
Bound. cond.: $\omega \in \Omega \equiv\{1, \ldots, q\}^{\mathbb{Z}^{2}}$
$\Omega_{\Lambda}^{\omega}=\left\{\sigma \in \Omega: \sigma_{i}=\omega_{i}, \forall i \notin \Lambda\right\}$
Energy in Λ of $\sigma \in \Omega_{\Lambda}^{\omega}$:

$$
H_{\Lambda}(\sigma)=\sum_{\substack{\{i, j\} \cap \Lambda \neq \varnothing \\ i \sim j}} 1_{\left\{\sigma_{i} \neq \sigma_{j}\right\}}
$$

[^0]Box: $\Lambda \Subset \mathbb{Z}^{2}$
Bound. cond.: $\omega \in \Omega \equiv\{1, \ldots, q\}^{\mathbb{Z}^{2}}$
$\Omega_{\Lambda}^{\omega}=\left\{\sigma \in \Omega: \sigma_{i}=\omega_{i}, \forall i \notin \Lambda\right\}$
Energy in Λ of $\sigma \in \Omega_{\Lambda}^{\omega}$:

$$
H_{\Lambda}(\sigma)=\sum_{\substack{\{i, j\} \cap \Lambda \neq \varnothing \\ i \sim j}} 1_{\left\{\sigma_{i} \neq \sigma_{j}\right\}}
$$

Gibbs measure in Λ at temperature $T>0$ with b.c. ω : probability measure on Ω given by

$$
\mu_{\Lambda ; T}^{\omega}(\sigma)=\frac{1_{\left\{\sigma \in \Omega_{\Lambda}^{\omega}\right\}}}{\mathbf{Z}_{\Lambda ; T}^{\omega}} e^{-H_{\Lambda}(\sigma) / T}
$$

where $\mathbf{Z}_{\Lambda ; T}^{\omega}=\sum_{\sigma \in \Omega_{\Lambda}^{\omega}} e^{-H_{\Lambda}(\sigma) / T}$ is the partition function.

Bulk behavior

Basic question: What possible behaviors can be observed in a (small) subregion deep in the bulk?

Contents

(1) Introduction
(2) Infinite-volume Gibbs measures
(3) Principles of proof

Idealization: infinite-volume Gibbs measures

We want to consider limits of the type $\lim _{\Lambda \uparrow \mathbb{Z}^{2}} \mu_{\Lambda ; T}^{\omega}$.
(Relevant topology: $\mu_{\Lambda ; T}^{\omega} \rightarrow \mu$ iff $\mu_{\Lambda ; T}^{\omega}(f) \rightarrow \mu(f), \forall f$ local)
exist and are translation invariant.

Problems with this definition:

- In ganeral difficult to establish convergence and determine the limit
- Not very convenient for an abstract study of infinite-volume Gibbs measures.

Idealization: infinite-volume Gibbs measures

We want to consider limits of the type $\lim _{\Lambda \uparrow \mathbb{Z}^{2}} \mu_{\Lambda ; T}^{\omega}$.
(Relevant topology: $\mu_{\Lambda ; T}^{\omega} \rightarrow \mu$ iff $\mu_{\Lambda ; T}^{\omega}(f) \rightarrow \mu(f), \forall f$ local)
Important particular case: pure boundary conditions, $\omega \equiv i$, $i \in\{1, \ldots, q\}$. In that case, the limits

$$
\mu_{T}^{i}=\lim _{\Lambda \uparrow \mathbb{Z}^{2}} \mu_{\Lambda ; T}^{i}
$$

exist and are translation invariant.
Problems with this definition:
(Easy) observation: any limit μ satisfy

Idealization: infinite-volume Gibbs measures

We want to consider limits of the type $\lim _{\Lambda \uparrow \mathbb{Z}^{2}} \mu_{\Lambda ; T}^{\omega}$.
(Relevant topology: $\mu_{\Lambda ; T}^{\omega} \rightarrow \mu$ iff $\mu_{\Lambda ; T}^{\omega}(f) \rightarrow \mu(f), \forall f$ local)
Important particular case: pure boundary conditions, $\omega \equiv i$, $i \in\{1, \ldots, q\}$. In that case, the limits

$$
\mu_{T}^{i}=\lim _{\Lambda \uparrow \mathbb{Z}^{2}} \mu_{\Lambda ; T}^{i}
$$

exist and are translation invariant.
Problems with this definition:

- In general difficult to establish convergence and determine the limit.
- Not very convenient for an abstract study of infinite-volume Gibbs measures.
(Easy) observation: any limit μ satisfy

Idealization: infinite-volume Gibbs measures

We want to consider limits of the type $\lim _{\Lambda \uparrow \mathbb{Z}^{2}} \mu_{\Lambda ; T}^{\omega}$.
(Relevant topology: $\mu_{\Lambda ; T}^{\omega} \rightarrow \mu$ iff $\mu_{\Lambda ; T}^{\omega}(f) \rightarrow \mu(f), \forall f$ local)
Important particular case: pure boundary conditions, $\omega \equiv i$, $i \in\{1, \ldots, q\}$. In that case, the limits

$$
\mu_{T}^{i}=\lim _{\Lambda \uparrow \mathbb{Z}^{2}} \mu_{\Lambda ; T}^{i}
$$

exist and are translation invariant.
Problems with this definition:

- In general difficult to establish convergence and determine the limit.
- Not very convenient for an abstract study of infinite-volume Gibbs measures.
(Easy) observation: any limit μ satisfy

$$
\mu(f)=\mu\left(\mu_{\Lambda ; T}(f)\right), \quad \forall \Lambda \Subset \mathbb{Z}^{2}
$$

Idealization: infinite-volume Gibbs measures

Dobrushin and Lanford \& Ruelle proposed to define infinite-volume Gibbs measures as those random fields satisfying

$$
\begin{equation*}
\mu(f)=\mu\left(\mu_{\Lambda ; T}(f)\right), \quad \forall \Lambda \Subset \mathbb{Z}^{2} \tag{DLR}
\end{equation*}
$$

Idealization: infinite-volume Gibbs measures

Dobrushin and Lanford \& Ruelle proposed to define infinite-volume Gibbs measures as those random fields satisfying

$$
\begin{equation*}
\mu(f)=\mu\left(\mu_{\Lambda ; T}(f)\right), \quad \forall \Lambda \Subset \mathbb{Z}^{2} \tag{DLR}
\end{equation*}
$$

Let $\mathcal{G}_{T, q}$ be the set of all such random fields.
Some properties of the set $\mathcal{G}_{T, q}$:

Idealization: infinite-volume Gibbs measures

Dobrushin and Lanford \& Ruelle proposed to define infinite-volume Gibbs measures as those random fields satisfying

$$
\begin{equation*}
\mu(f)=\mu\left(\mu_{\Lambda ; T}(f)\right), \quad \forall \Lambda \Subset \mathbb{Z}^{2} \tag{DLR}
\end{equation*}
$$

Let $\mathcal{G}_{T, q}$ be the set of all such random fields.
Some properties of the set $\mathcal{G}_{T, q}$:

- $\exists T_{\mathrm{c}}(q) \in(0, \infty)$ such that $\left|\mathcal{G}_{T, q}\right|=1$ when $T>T_{\mathrm{c}}(q)$ but $\left|\mathcal{G}_{T, q}\right|>1$ when $T<T_{\mathrm{c}}(q)$.

Idealization: infinite-volume Gibbs measures

Dobrushin and Lanford \& Ruelle proposed to define infinite-volume Gibbs measures as those random fields satisfying

$$
\begin{equation*}
\mu(f)=\mu\left(\mu_{\Lambda ; T}(f)\right), \quad \forall \Lambda \Subset \mathbb{Z}^{2} \tag{DLR}
\end{equation*}
$$

Let $\mathcal{G}_{T, q}$ be the set of all such random fields.
Some properties of the set $\mathcal{G}_{T, q}$:

- $\exists T_{\mathrm{c}}(q) \in(0, \infty)$ such that $\left|\mathcal{G}_{T, q}\right|=1$ when $T>T_{\mathrm{c}}(q)$ but $\left|\mathcal{G}_{T, q}\right|>1$ when $T<T_{\mathrm{c}}(q)$.
- $\mathcal{G}_{T, q}$ is a simplex.

Natural question: determine the set ex $\mathcal{G}_{T, q}$.

Idealization: infinite-volume Gibbs measures

Dobrushin and Lanford \& Ruelle proposed to define infinite-volume Gibbs measures as those random fields satisfying

$$
\begin{equation*}
\mu(f)=\mu\left(\mu_{\Lambda ; T}(f)\right), \quad \forall \Lambda \Subset \mathbb{Z}^{2} \tag{DLR}
\end{equation*}
$$

Let $\mathcal{G}_{T, q}$ be the set of all such random fields.
Some properties of the set $\mathcal{G}_{T, q}$:

- $\exists T_{\mathrm{c}}(q) \in(0, \infty)$ such that $\left|\mathcal{G}_{T, q}\right|=1$ when $T>T_{\mathrm{c}}(q)$ but $\left|\mathcal{G}_{T, q}\right|>1$ when $T<T_{\mathrm{c}}(q)$.
- $\mathcal{G}_{T, q}$ is a simplex.
- $\forall \mu \in \operatorname{ex} \mathcal{G}_{T, q}, \lim _{\Lambda \uparrow \mathbb{Z}^{2}} \mu_{\Lambda ; T}^{\omega}=\mu$, for μ-a.e. ω.

Idealization: infinite-volume Gibbs measures

Dobrushin and Lanford \& Ruelle proposed to define infinite-volume Gibbs measures as those random fields satisfying

$$
\begin{equation*}
\mu(f)=\mu\left(\mu_{\Lambda ; T}(f)\right), \quad \forall \Lambda \Subset \mathbb{Z}^{2} \tag{DLR}
\end{equation*}
$$

Let $\mathcal{G}_{T, q}$ be the set of all such random fields.
Some properties of the set $\mathcal{G}_{T, q}$:

- $\exists T_{\mathrm{c}}(q) \in(0, \infty)$ such that $\left|\mathcal{G}_{T, q}\right|=1$ when $T>T_{\mathrm{c}}(q)$ but $\left|\mathcal{G}_{T, q}\right|>1$ when $T<T_{\mathrm{c}}(q)$.
- $\mathcal{G}_{T, q}$ is a simplex.
- $\forall \mu \in \operatorname{ex} \mathcal{G}_{T, q}, \lim _{\Lambda \uparrow \mathbb{Z}^{2}} \mu_{\Lambda ; T}^{\omega}=\mu$, for μ-a.e. ω.

Natural question: determine the set ex $\mathcal{G}_{T, q}$.

Determination of $\mathcal{G}_{T, Q}$

Unfortunately, determining the set of all infinite-volume Gibbs measures associated to a given model is usually very difficult.

Determination of $\mathcal{G}_{T, q}$

Unfortunately, determining the set of all infinite-volume Gibbs measures associated to a given model is usually very difficult.

- In dimension 2, when $T \ll 1$, there are general results by Dobrushin \& Shlosman (1985).

Determination of $\mathcal{G}_{T, q}$

Unfortunately, determining the set of all infinite-volume Gibbs measures associated to a given model is usually very difficult.

- In dimension 2, when $T \ll 1$, there are general results by Dobrushin \& Shlosman (1985).
- Essentially no results in dimensions $d \geq 3$, even at $T \ll 1$.

Determination of $\mathcal{G}_{T, q}$

Unfortunately, determining the set of all infinite-volume Gibbs measures associated to a given model is usually very difficult.

- In dimension 2, when $T \ll 1$, there are general results by Dobrushin \& Shlosman (1985).
- Essentially no results in dimensions $d \geq 3$, even at $T \ll 1$.
- In any dimension, there are general results about the set of all translation invariant Gibbs measures (e.g., via Pirogov-Sinai theory).

Determination of $\mathcal{G}_{T, q}$

Unfortunately, determining the set of all infinite-volume Gibbs measures associated to a given model is usually very difficult.

- In dimension 2, when $T \ll 1$, there are general results by Dobrushin \& Shlosman (1985).
- Essentially no results in dimensions $d \geq 3$, even at $T \ll 1$.
- In any dimension, there are general results about the set of all translation invariant Gibbs measures (e.g., via Pirogov-Sinai theory).

To be addressed now:
What about non-perturbative results in 2d?
What makes $d=2$ simpler than $d \geq 3$?

Earlier non-perturbative results for 2d Ising/Potts model

Two-dimensional 2-states Potts model (i.e., Ising model)

- Messager \& Miracle-Sole '75: all translation invariant elements of $\mathcal{G}_{T, 2}$ are convex combinations of μ_{T}^{1} and μ_{T}^{2}.

Earlier non-perturbative results for 2d Ising/Potts model

Two-dimensional 2-states Potts model (i.e., Ising model)

- Messager \& Miracle-Sole '75: all translation invariant elements of $\mathcal{G}_{T, 2}$ are convex combinations of μ_{T}^{1} and μ_{T}^{2}.
- Russo '79: Any measure $\mu \in \mathcal{G}_{T}$ invariant under translations in direction \vec{e}_{1} is invariant under all translations.

Two-dimensional q-states Potts model

Earlier non-perturbative results for 2d Ising/Potts model

Two-dimensional 2-states Potts model (i.e., Ising model)

- Messager \& Miracle-Sole '75: all translation invariant elements of $\mathcal{G}_{T, 2}$ are convex combinations of μ_{T}^{1} and μ_{T}^{2}.
- Russo '79: Any measure $\mu \in \mathcal{G}_{T}$ invariant under translations in direction \vec{e}_{1} is invariant under all translations.
- Aizenman '80, Higuchi '81: all elements of $\mathcal{G}_{T, 2}$ are translation invariant. In particular, they are all convex combinations of μ_{T}^{1} and μ_{T}^{2},

$$
\mathcal{G}_{T, 2}=\left\{\alpha \mu_{T}^{1}+(1-\alpha) \mu_{T}^{2}: 0 \leq \alpha \leq 1\right\} .
$$

Two-dimensional q-states Potts model

Earlier non-perturbative results for 2d Ising/Potts model

Two-dimensional 2-states Potts model (i.e., Ising model)

- Messager \& Miracle-Sole '75: all translation invariant elements of $\mathcal{G}_{T, 2}$ are convex combinations of μ_{T}^{1} and μ_{T}^{2}.
- Russo '79: Any measure $\mu \in \mathcal{G}_{T}$ invariant under translations in direction \vec{e}_{1} is invariant under all translations.
- Aizenman '80, Higuchi '81: all elements of $\mathcal{G}_{T, 2}$ are translation invariant. In particular, they are all convex combinations of μ_{T}^{1} and μ_{T}^{2},

$$
\mathcal{G}_{T, 2}=\left\{\alpha \mu_{T}^{1}+(1-\alpha) \mu_{T}^{2}: 0 \leq \alpha \leq 1\right\} .
$$

Two-dimensional q-states Potts model

- Martirosyan '86: When $q \gg 1$ and $T<T_{\mathrm{c}}(q)$, all translation invariant elements of $\mathcal{G}_{T, q}$ are convex combinations of μ_{T}^{i}, $i=1, \ldots, q$.

Our results

Our results (first obtained for the case $q=2$ in a joint work with Loren Coquille), take the following form:

Theorem [Coquille, Duminil-Copin, loffe, V.]

Let $T<T_{c}(q), \Lambda_{n}=\{-n, \ldots, n\}^{2}, \omega \in \Omega$ et $R=o\left(n^{1 / 2}\right)$.
$\exists \alpha_{i}^{n, \omega}(T) \in[0,1], i=1, \ldots, q$, such that $\sum_{i=1}^{q} \alpha_{i}^{n, \omega}(T)=1$ and

$$
\mu_{\Lambda_{n} ; T}^{\omega}(f)=\sum_{i=1}^{q} \alpha_{i}^{n, \omega} \mu_{T}^{i}(f)+O_{T}\left(\|f\|_{\infty} R n^{-1 / 2}\right)
$$

for all $n>n_{0}(T)$, uniformly in functions f with support included inside Λ_{R}.

Our results

Our results (first obtained for the case $q=2$ in a joint work with Loren Coquille), take the following form:

Theorem [Coquille, Duminil-Copin, loffe, V.]

Let $T<T_{c}(q), \Lambda_{n}=\{-n, \ldots, n\}^{2}, \omega \in \Omega$ et $R=o\left(n^{1 / 2}\right)$.
$\exists \alpha_{i}^{n, \omega}(T) \in[0,1], i=1, \ldots, q$, such that $\sum_{i=1}^{q} \alpha_{i}^{n, \omega}(T)=1$ and

$$
\mu_{\Lambda_{n} ; T}^{\omega}(f)=\sum_{i=1}^{q} \alpha_{i}^{n, \omega} \mu_{T}^{i}(f)+O_{T}\left(\|f\|_{\infty} R n^{-1 / 2}\right)
$$

for all $n>n_{0}(T)$, uniformly in functions f with support included inside Λ_{R}.

Corollary

For all $T<T_{\mathrm{c}}(q)$, all Gibbs measures are translation invariant and

$$
\mathcal{G}_{T, q}=\left\{\sum_{i=1}^{q} \alpha_{i} \mu_{T}^{i}: \alpha_{i} \geq 0, \sum_{i=1}^{q} \alpha_{i}=1\right\} .
$$

$d=2$ vs $d \geq 3$, translation invariance

A natural candidate when trying to generate a non translation invariant Gibbs measure is to consider the Dobrushin boundary condition:

$$
\omega_{i}^{1,2}= \begin{cases}1 & \text { si }\left\langle i, \mathbf{e}_{2}\right\rangle \geq 0 \\ 2 & \text { si }\left\langle i, \mathbf{e}_{2}\right\rangle<0\end{cases}
$$

$d=2$ vs $d \geq 3$, translation invariance

A natural candidate when trying to generate a non translation invariant Gibbs measure is to consider the Dobrushin boundary condition:

$$
\omega_{i}^{1,2}= \begin{cases}1 & \text { si }\left\langle i, \mathbf{e}_{2}\right\rangle \geq 0, \\ 2 & \text { si }\left\langle i, \mathbf{e}_{2}\right\rangle<0 .\end{cases}
$$

\square
In particular, this interface has fluctuations of size $O(\sqrt{L})$, and the expectation of a local function f thus satisfies

$d=2$ vs $d \geq 3$, translation invariance

A natural candidate when trying to generate a non translation invariant Gibbs measure is to consider the Dobrushin boundary condition:

$$
\omega_{i}^{1,2}= \begin{cases}1 & \text { si }\left\langle i, \mathbf{e}_{2}\right\rangle \geq 0 \\ 2 & \text { si }\left\langle i, \mathbf{e}_{2}\right\rangle<0\end{cases}
$$

After diffusive scaling, the interface induced by this b.c. in $\Lambda_{L}=\{-L, \ldots, L\}^{2}$ weakly converges, as $L \rightarrow \infty$, toward a Brownian bridge [Higuchi '79, Greenberg \& loffe '05, Campanino, loffe, V. '08].
In particular, this interface has fluctuations of size $O(\sqrt{L})$, and the expectation of a local function f thus satisfies

$d=2$ vs $d \geq 3$, translation invariance

A natural candidate when trying to generate a non translation invariant Gibbs measure is to consider the Dobrushin boundary condition:

$$
\omega_{i}^{1,2}= \begin{cases}1 & \text { si }\left\langle i, \mathbf{e}_{2}\right\rangle \geq 0 \\ 2 & \text { si }\left\langle i, \mathbf{e}_{2}\right\rangle<0\end{cases}
$$

After diffusive scaling, the interface induced by this b.c. in $\Lambda_{L}=\{-L, \ldots, L\}^{2}$ weakly converges, as $L \rightarrow \infty$, toward a Brownian bridge [Higuchi '79, Greenberg \& loffe '05, Campanino, loffe, V. '08].
In particular, this interface has fluctuations of size $O(\sqrt{L})$, and the expectation of a local function f thus satisfies

$$
\lim _{L \rightarrow \infty} \mu_{\Lambda_{L} ; T}^{1,2}(f)=\frac{1}{2} \mu_{T}^{1}(f)+\frac{1}{2} \mu_{T}^{2}(f)
$$

since the support of this function is either far above or far below the interface with equal probability $1 / 2$.

$d=2$ vs $d \geq 3$, translation invariance

This is not true when $d \geq \mathbf{3}$ and $\boldsymbol{T} \ll \mathbf{1}: \mu_{\Lambda_{L} ; T}^{1,2}$ gives rise to an extremal, translation non-invariant, Gibbs state [Dobrushin '72].

$d=2$ vs $d \geq 3$, translation invariance

This is not true when $\boldsymbol{d} \geq \mathbf{3}$ and $\boldsymbol{T} \ll \mathbf{1}: \mu_{\Lambda_{L} ; T}^{1,2}$ gives rise to an extremal, translation non-invariant, Gibbs state [Dobrushin '72].

Crucial difference:

- When $d=2$, interfaces are "one-dimensional" objects, which undergo unbounded fluctuations at any $T<T_{\mathrm{c}}$.

Interface fluctuations are responsible for the absence of translation non-invariant Gibbs measures in two-dimensional svstems and are certral to our proof.

$d=2$ vs $d \geq 3$, translation invariance

This is not true when $\boldsymbol{d} \geq \mathbf{3}$ and $\boldsymbol{T} \ll \mathbf{1}: \mu_{\Lambda_{L} ; T}^{1,2}$ gives rise to an extremal, translation non-invariant, Gibbs state [Dobrushin '72].

Crucial difference:

- When $d=2$, interfaces are "one-dimensional" objects, which undergo unbounded fluctuations at any $T<T_{c}$.
- When $d \geq 3$ and $T \ll 1$, the horizontal interface is rigid.

Interface fluctuations are responsible for the absence of translation non-invariant Gibbs measures in two-dimensional systems and are central to our proof.

$d=2$ vs $d \geq 3$, translation invariance

This is not true when $\boldsymbol{d} \geq \mathbf{3}$ and $\boldsymbol{T} \ll \mathbf{1}: \mu_{\Lambda_{L} ; T}^{1,2}$ gives rise to an extremal, translation non-invariant, Gibbs state [Dobrushin '72].

Crucial difference:

- When $d=2$, interfaces are "one-dimensional" objects, which undergo unbounded fluctuations at any $T<T_{c}$.
- When $d \geq 3$ and $T \ll 1$, the horizontal interface is rigid.

Interface fluctuations are responsible for the absence of translation non-invariant Gibbs measures in two-dimensional systems and are central to our proof.

Contents

(1) Introduction
(2) Infinite-volume Gibbs measures
(3) Principles of proof

Ingredient \#1: Exponential relaxation in pure phases

Let $\Lambda \subset \mathbb{Z}^{2}$. Then [Beffara \& Duminil-Copin '12]: For any $T<T_{\mathrm{c}}(q)$, there exists $C(T)>0$ such that

$$
\left|\mu_{\Lambda ; T}^{i}(f)-\mu_{T}^{i}(f)\right| \leq\|f\|_{\infty}|S(f)| e^{-C d\left(S(f), \Lambda^{c}\right)}
$$

uniformly for all local functions f with support $S(f) \subset \Lambda$.

Ingredient \#2: Macroscopic interfaces

Consider a large box $\Lambda \subseteq \mathbb{Z}^{2}$, with a "macroscopic" boundary condition. Then the interfaces concentrate on the solution of a variational problem ("minimize total surface tension, taking into account the constraints induced by the b.c."). The solution consists in a finite family of "well-separated" trees, with inner nodes of degree 3.

(Of course, when $q=2$ there are no inner nodes.)

Ingredient \#3: Gaussian fluctuations of interfaces

Open contours corresponding to linear macroscopic interfaces have Gaussian fluctuations (convergence to a Brownian bridge after diffusive scaling).

In the same way, the "center" and the branches of a tripod undergo Gaussian fluctuations after proper scaling.

Ingredient \#3: Gaussian fluctuations of interfaces

Open contours corresponding to linear macroscopic interfaces have Gaussian fluctuations (convergence to a Brownian bridge after diffusive scaling).

In the same way, the "center" and the branches of a tripod undergo Gaussian fluctuations after proper scaling.

Proof: Step \#1

Let $\Lambda_{n}=\{-n, \ldots, n\}^{2}$.
The boundary condition is generically not macroscopic (there can be $O(n)$ changes of colors along the boundary of $\left.\Lambda_{n}\right)$.

Claim: at most $M(T)<\infty$ interfaces reach the sub-b $x_{n / 2}$.

Let $\Lambda_{n}=\{-n, \ldots, n\}^{2}$.
The boundary condition is generically not macroscopic (there can be $O(n)$ changes of colors along the boundary of $\left.\Lambda_{n}\right)$.

Proof: Step \#1

Let $\Lambda_{n}=\{-n, \ldots, n\}^{2}$.
The boundary condition is generically not macroscopic (there can be $O(n)$ changes of colors along the boundary of Λ_{n}).

Claim: at most $M(T)<\infty$ interfaces reach the sub-box $\Lambda_{n / 2}$.

Let $\Lambda_{n}=\{-n, \ldots, n\}^{2}$.
The boundary condition is generically not macroscopic (there can be $O(n)$ changes of colors along the boundary of Λ_{n}).

Claim: at most $M(T)<\infty$ interfaces reach the sub-box $\Lambda_{n / 2}$.
Indeed

- Each interface "costs" $e^{-c n}, c>0$, so that K interfaces cost $e^{-c K n}$.
- The "cost" of having 0 interfaces is at most $e^{-c^{\prime} n}, c^{\prime}>0$ (just force all spins along the inner boundary of Λ_{n} to have color 1).

This creates a random box consisting of the inner box $\Lambda_{n / 2}$ with random "petals" attached. The boundary condition on this random box changes color only at most $M^{\prime}(T)$ times (at points of $\partial \Lambda_{n / 2}$).

We restrict now our attention to the inner box $\Lambda_{n / 2}$. Since the latter has a "macroscopic" boundary condition, the induced interfaces inside $\Lambda_{n / 2}$ concentrate into tubes along the solution of the corresponding variational problem.

Proof: Step \#3

Consider a new small macroscopic box $\Lambda_{\epsilon n}$.
Since the macroscpic interfaces are "well-separated", there three possibilites:
(1) None of the tubes intersect $\Lambda_{\epsilon n}$.
(2) Exactly one tube cuts through $\Lambda_{\epsilon n}$.
(3) Exactle one "tripod" has its node inside $\Lambda_{\epsilon n}$.

First case: None of the tubes intersect $\Lambda_{\epsilon n}$.

In that case, $\Lambda_{\epsilon n}$ (and thus also Λ_{R}) lies deeply in a pure phase. We conclude using exponential relaxation in pure phases.

Second case: Exactly one tube cuts through $\Lambda_{\epsilon n}$.

In that case, because of its Gaussian fluctuations, the corresponding open contour inside $\Lambda_{\epsilon n}$ stays far from Λ_{R} with high probability. Consequently Λ_{R} lies again deeply in a pure phase.
We conclude using exponential relaxation in pure phases.

Third case: Exactle one "tripod" has its node inside $\Lambda_{\epsilon n}$.

Similarly, because of the Gaussian fluctuations of the "center of the tripod" and of its "branches", the corresponding contours stay far from Λ_{R} with high probability. Consequently Λ_{R} lies again deeply in a pure phase. We conclude using exponential relaxation in pure phases.

Thank you!

Phase transition

Typical configurations $q=2$ Potts (Ising) model (500×500 spins)

Blue b.c.
Red b.c.

$$
T=\infty
$$

Phase transition

Typical configurations $q=2$ Potts (Ising) model (500×500 spins)

Blue b.c.

Red b.c.

$$
T=1.96
$$

Phase transition

Typical configurations $q=2$ Potts (Ising) model (500×500 spins)

Blue b.c.

Red b.c.

$$
T=1.44
$$

Phase transition

Typical configurations $q=2$ Potts (Ising) model (500×500 spins)

Blue b.c.

Red b.c.

$$
T=1.15
$$

Phase transition

Typical configurations $q=2$ Potts (Ising) model (500×500 spins)

Blue b.c.
Red b.c.

$$
T=1.15
$$

Phase transition

Typical configurations $q=2$ Potts (lsing) model (500×500 spins)

Blue b.c.

Red b.c.

$$
T=1.12
$$

Phase transition

Typical configurations $q=2$ Potts (Ising) model (500×500 spins)

Blue b.c.
Red b.c.

$$
T=0.83
$$

[^0]: measure on Ω given by

