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The Potts model
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The Potts model
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Gibbs measure in A at temperature T' > 0 with b.c. w : probability
measure on 2 given by

1{069 b e Ha(0)/T
AT

where Z3. 7 = ZUEQ’X e Ha(9)/T is the partition function. 55 e
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Bulk behavior

Observation region

(deep in the bulk)

Macroscopic sample

Basic question: What possible behaviors can be observed in a (small)
subregion deep in the bulk?
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|dealization: infinite-volume Gibbs measures

We want to consider limits of the type limp+z2 uf. 7.

(Relevant topology: u}.p — w iff uf.(f) — u(f), Vf local)
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|dealization: infinite-volume Gibbs measures

We want to consider limits of the type limp+z2 uf. 7.
(Relevant topology: u}.p — w iff uf.(f) — u(f), Vf local)

Important particular case: pure boundary conditions, w = 1,
1€ {1,...,q}. In that case, the limits
o= lim b,
KT Fecr KT

exist and are translation invariant.
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|dealization: infinite-volume Gibbs measures

We want to consider limits of the type limp+z2 uf. 7.
(Relevant topology: u}.p — w iff uf.(f) — u(f), Vf local)

Important particular case: pure boundary conditions, w = 1,
1€ {1,...,q}. In that case, the limits

L= lim pf.
KT Fecr KT

exist and are translation invariant.

Problems with this definition:
@ In general difficult to establish convergence and determine the limit.
@ Not very convenient for an abstract study of infinite-volume Gibbs
measures.
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|dealization: infinite-volume Gibbs measures

We want to consider limits of the type limp+z2 uf. 7.
(Relevant topology: u}.p — w iff uf.(f) — u(f), Vf local)

Important particular case: pure boundary conditions, w = 1,
1€ {1,...,q}. In that case, the limits

L= lim pf.
KT Fecr KT

exist and are translation invariant.

Problems with this definition:
@ In general difficult to establish convergence and determine the limit.

@ Not very convenient for an abstract study of infinite-volume Gibbs
measures.

(Easy) observation: any limit p satisfy

p(f) = wlpar(f),  VAEZ? (DLR)
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|dealization: infinite-volume Gibbs measures

Dobrushin and Lanford & Ruelle proposed to define infinite-volume Gibbs
measures as those random fields satisfying

w(f) = w(par(f),  VAEZ? (DLR)
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|dealization: infinite-volume Gibbs measures

Dobrushin and Lanford & Ruelle proposed to define infinite-volume Gibbs
measures as those random fields satisfying

w(f) = w(par(f),  VAEZ? (DLR)

Let Gr 4 be the set of all such random fields.

Some properties of the set Gr,:

e IT.(q) € (0, 00) such that |Gz 4| = 1 when T > T.(q) but |Gr 4| > 1
when T' < T.(q).
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|dealization: infinite-volume Gibbs measures

Dobrushin and Lanford & Ruelle proposed to define infinite-volume Gibbs
measures as those random fields satisfying

w(f) = w(par(f),  VAEZ? (DLR)

Let Gr 4 be the set of all such random fields.

Some properties of the set Gr,:

e IT.(q) € (0, 00) such that |Gz 4| = 1 when T > T.(q) but |Gr 4| > 1
when T' < T.(q).

@ Gr 4 is a simplex.

o Vu € exGrg, limpgzz puX.p = p, for p-ae. w.
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|dealization: infinite-volume Gibbs measures

Dobrushin and Lanford & Ruelle proposed to define infinite-volume Gibbs
measures as those random fields satisfying

w(f) = w(par(f),  VAEZ? (DLR)

Let Gr 4 be the set of all such random fields.

Some properties of the set Gr,:

e IT.(q) € (0, 00) such that |Gz 4| = 1 when T > T.(q) but |Gr 4| > 1
when T' < T.(q).

@ Gr 4 is a simplex.
o Vu € exGrg, limpgzz puX.p = p, for p-ae. w.

Natural question: determine the set ex Gr .
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Determination of Gr g4

Unfortunately, determining the set of all infinite-volume Gibbs measures
associated to a given model is usually very difficult.
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Determination of Gr g4

Unfortunately, determining the set of all infinite-volume Gibbs measures
associated to a given model is usually very difficult.

@ In dimension 2, when T' <« 1, there are general results by Dobrushin
& Shlosman (1985).
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Determination of Gr g4

Unfortunately, determining the set of all infinite-volume Gibbs measures
associated to a given model is usually very difficult.

@ In dimension 2, when T' <« 1, there are general results by Dobrushin
& Shlosman (1985).

@ Essentially no results in dimensions d > 3, even at T < 1.
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Unfortunately, determining the set of all infinite-volume Gibbs measures
associated to a given model is usually very difficult.

@ In dimension 2, when T' <« 1, there are general results by Dobrushin
& Shlosman (1985).

@ Essentially no results in dimensions d > 3, even at T < 1.

@ In any dimension, there are general results about the set of all
translation invariant Gibbs measures (e.g., via Pirogov-Sinai theory).
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Determination of Gr g4

Unfortunately, determining the set of all infinite-volume Gibbs measures
associated to a given model is usually very difficult.

@ In dimension 2, when T' <« 1, there are general results by Dobrushin
& Shlosman (1985).

@ Essentially no results in dimensions d > 3, even at T < 1.

@ In any dimension, there are general results about the set of all
translation invariant Gibbs measures (e.g., via Pirogov-Sinai theory).

To be addressed now:
What about non-perturbative results in 2d?
What makes d = 2 simpler than d > 37
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Earlier non-perturbative results for 2d Ising/Potts model

Two-dimensional 2-states Potts model (i.e., Ising model)

o Messager & Miracle-Sole '75: all translation invariant elements of
oot 1 2
Gr,2 are convex combinations of uz and u7..
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Earlier non-perturbative results for 2d Ising/Potts model

Two-dimensional 2-states Potts model (i.e., Ising model)
o Messager & Miracle-Sole '75: all translation invariant elements of
Gr.2 are convex combinations of u. and u2..

@ Russo '79: Any measure u € Gr invariant under translations in
direction &7 is invariant under all translations.
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Earlier non-perturbative results for 2d Ising/Potts model

Two-dimensional 2-states Potts model (i.e., Ising model)

o Messager & Miracle-Sole '75: all translation invariant elements of
Gr.2 are convex combinations of u. and u2..

@ Russo '79: Any measure u € Gr invariant under translations in
direction &7 is invariant under all translations.

@ Aizenman '80, Higuchi "81: all elements of Gr > are translation
invariant. In particular, they are all convex combinations of uZ. and

2
M,
Gro={apr+ (1 —-a)pz : 0<a <1}
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Earlier non-perturbative results for 2d Ising/Potts model

Two-dimensional 2-states Potts model (i.e., Ising model)

o Messager & Miracle-Sole '75: all translation invariant elements of
Gr.2 are convex combinations of u. and u2..

@ Russo '79: Any measure u € Gr invariant under translations in
direction &7 is invariant under all translations.

@ Aizenman '80, Higuchi "81: all elements of Gr > are translation
invariant. In particular, they are all convex combinations of uZ. and

2
M,
Gro={apr+ (1 —-a)pz : 0<a <1}

Two-dimensional g-states Potts model
o Martirosyan '86: When ¢ >> 1 and T < T¢(g), all translation
invariant elements of Gr 4, are convex combinations of uf,
1=1,...,q.
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Our results (first obtained for the case ¢ = 2 in a joint work with Loren
Coquille), take the following form:

Theorem [Coquille, Duminil-Copin, loffe, V.]

Let T < T.(q), Ap = {-n,...,n}?, w € Qet R=o(n'/?).
Ja“(T) €10,1], ¢ =1,...,q, such that >°7  o"“(T) =1 and

q

ug r(f) = > o pin(f) + Oz (|| fll« Rn7Y3),

i=1

for all n > ng(T), uniformly in functions f with support included inside
Ag.
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Our results (first obtained for the case ¢ = 2 in a joint work with Loren
Coquille), take the following form:

Theorem [Coquille, Duminil-Copin, loffe, V.]

Let T < T.(q), Ap = {-n,...,n}?, w € Qet R=o(n'/?).
Ja“(T) €10,1], ¢ =1,...,q, such that >°7  o"“(T) =1 and

q

ug r(f) = > o pin(f) + Oz (|| fll« Rn7Y3),

i=1

for all n > ng(T), uniformly in functions f with support included inside
Ag.

Corollary

For all T < T.(g), all Gibbs measures are translation invariant and
q

q
Orq={) e : 2 20,) e =1},
=1 =1
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d = 2 vs d > 3, translation invariance

A natural candidate when trying to generate a non translation invariant Gibbs
measure is to consider the Dobrushin boundary condition:

12 J1 si(i,e2) >0,
T2 si(4,e2) <O.
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d = 2 vs d > 3, translation invariance

A natural candidate when trying to generate a non translation invariant Gibbs
measure is to consider the Dobrushin boundary condition:

12 J1 si(i,e2) >0,
T |2 si(3,e2) <O.
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d = 2 vs d > 3, translation invariance

A natural candidate when trying to generate a non translation invariant Gibbs
measure is to consider the Dobrushin boundary condition:

1,2 1 si (’L, ez) Z 0,
|2 si(d,e2) <O,

After diffusive scaling, the interface induced by this b.c. in Ay = {—L,..., L}?
weakly converges, as L — oo, toward a Brownian bridge [Higuchi '79,
Greenberg & loffe '05, Campanino, loffe, V. '08].
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d = 2 vs d > 3, translation invariance

A natural candidate when trying to generate a non translation invariant Gibbs
measure is to consider the Dobrushin boundary condition:

1,2 1 si (’L, ez) Z 0,
|2 si(d,e2) <O,

After diffusive scaling, the interface induced by this b.c. in Ay = {—L,..., L}?
weakly converges, as L — oo, toward a Brownian bridge [Higuchi '79,
Greenberg & loffe '05, Campanino, loffe, V. '08].

In particular, this interface has fluctuations of size O(+/L), and the expectation
of a local function f thus satisfies

Jim py? n(F) = 5u7(F) + 507(F),

since the support of this function is either far above or far below the interface . ...
with equal probability 1/2. - pramee



d = 2 vs d > 3, translation invariance

This is not true when d > 3 and T K 1: ,u}\’f;T gives rise to an
extremal, translation non-invariant, Gibbs state [Dobrushin '72].

(ﬁ'g\ UNIVERSITE
"% DE GENEVE



d = 2 vs d > 3, translation invariance

This is not true when d > 3 and T K 1: /.t}\’f;T gives rise to an
extremal, translation non-invariant, Gibbs state [Dobrushin '72].

Crucial difference:

@ When d = 2, interfaces are “one-dimensional” objects, which
undergo unbounded fluctuations at any T' < T..
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d = 2 vs d > 3, translation invariance

This is not true when d > 3 and T K 1: /.l,}\’f;T gives rise to an
extremal, translation non-invariant, Gibbs state [Dobrushin '72].

Crucial difference:

@ When d = 2, interfaces are “one-dimensional” objects, which
undergo unbounded fluctuations at any T' < T..

@ When d > 3 and T' < 1, the horizontal interface is rigid.
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d = 2 vs d > 3, translation invariance

This is not true when d > 3 and T K 1: ,U,}\’S;T gives rise to an
extremal, translation non-invariant, Gibbs state [Dobrushin '72].

Crucial difference:
@ When d = 2, interfaces are “one-dimensional” objects, which
undergo unbounded fluctuations at any T' < T..
@ When d > 3 and T' < 1, the horizontal interface is rigid.

Interface fluctuations are responsible for the absence of translation
non-invariant Gibbs measures in two-dimensional systems and are central
to our proof.
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© Principles of proof

# UNIVERSITE
DE GENEVE



Ingredient #1: Exponential relaxation in pure phases

Let A C Z?. Then [Beffara & Duminil-Copin '12]: For any T < T.(g),
there exists C(T") > 0 such that

() = ()] < £l [S(F)] e=CHSDA,

uniformly for all local functions f with support S(f) C A.
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Ingredient #2: Macroscopic interfaces

Consider a large box A € Z?, with a “macroscopic’ boundary condition.
Then the interfaces concentrate on the solution of a variational problem
(“minimize total surface tension, taking into account the constraints
induced by the b.c.”). The solution consists in a finite family of
“well-separated” trees, with inner nodes of degree 3.

(Of course, when g = 2 there are no inner nodes.) 4 it
%’ DE GENEVE



Ingredient #3: Gaussian fluctuations of interfaces

Open contours corresponding to linear macroscopic interfaces have
Gaussian fluctuations (convergence to a Brownian bridge after
diffusive scaling).
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Ingredient #3: Gaussian fluctuations of interfaces

Open contours corresponding to linear macroscopic interfaces have
Gaussian fluctuations (convergence to a Brownian bridge after
diffusive scaling).

In the same way, the “center” and the branches of a tripod undergo
Gaussian fluctuations after proper scaling.
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Proof: Step #1

Let A, = {-n,...,n}?
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Proof: Step #1

Let A, = {-n,...,n}?

The boundary condition is generically not macroscopic (there can be
O(n) changes of colors along the boundary of A,,).
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Proof: Step #1

Let A, = {-n,...,n}?

The boundary condition is generically not macroscopic (there can be
O(n) changes of colors along the boundary of A,,).

Claim: at most M (T') < oo interfaces reach the sub-box Ay /5.
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Proof: Step #1

Let A, = {-n,...,n}?

The boundary condition is generically not macroscopic (there can be
O(n) changes of colors along the boundary of A,,).

Claim: at most M (T') < oo interfaces reach the sub-box Ay /5.

Indeed
e Each interface “costs” e~<", ¢ > 0, so that K interfaces cost e K™,

@ The “cost” of having 0 interfaces is at most e=<", ¢ > 0 (just force
all spins along the inner boundary of A,, to have color 1).
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Proof: Step #1

This creates a random box consisting of the inner box A, » with random
“petals” attached. The boundary condition on this random box changes
color only at most M'(T') times (at points of Ay /z).
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Proof: Step #2

We restrict now our attention to the inner box A, ;. Since the latter has
a “macroscopic” boundary condition, the induced interfaces inside A, /2

concentrate into tubes along the solution of the corresponding variational
problem.
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Proof: Step #3

Consider a new small macroscopic box Agy,.
Since the macroscpic interfaces are “well-separated”, there three
possibilites:

© None of the tubes intersect A,,.
© Exactly one tube cuts through A,.

© Exactle one “tripod” has its node inside A.,,.
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Proof: Step #3

First case: None of the tubes intersect A,,.

A

“"Z.

In that case, A, (and thus also Ag) lies deeply in a pure phase.
We conclude using exponential relaxation in pure phases.
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Proof: Step #3

Second case: Exactly one tube cuts through A,.

L= \-__.__)\

In that case, because of its Gaussian fluctuations, the corresponding open
contour inside A., stays far from Agr with high probability. Consequently
AR lies again deeply in a pure phase.

We conclude using exponential relaxation in pure phases.
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Proof: Step #3

Third case: Exactle one “tripod” has its node inside Ay,.

Similarly, because of the Gaussian fluctuations of the “center of the
tripod” and of its “branches”, the corresponding contours stay far from Ag
with high probability. Consequently Ag lies again deeply in a pure phase.
We conclude using exponential relaxation in pure phases.

i UNIVERSITE
" DE GENEVE



Thank youl

UNIVERSITE
EEEEEEEE



Typical configurations ¢ = 2 Potts (Ising) model
(500 x 500 spins)

Blue b.c. Red b.c.
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Typical configurations ¢ = 2 Potts (Ising) model
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Typical configurations ¢ = 2 Potts (Ising) model
(500 x 500 spins)
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Typical configurations ¢ = 2 Potts (Ising) model
(500 x 500 spins)
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Typical configurations ¢ = 2 Potts (Ising) model
(500 x 500 spins)

Blue b.c. Red b.c.
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Typical configurations ¢ = 2 Potts (Ising) model
(500 x 500 spins)

Blue b.c. Red b.c.

T == 083 UNIVERSITE
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