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Random matrices as a probability machine

Recall Galton’s quincunx ...
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Ginibre ensembles

Quite a lot of interest to EV statistics in the complex plane in the last 20
years or so. Mostly Gaussian ensembles studies and a few beyond.

Real matrices with no symmetry conditions imposed – non-zero prob of
having real EVs – interesting, though challenging. Recent progress for the
real Ginibre [Kanzieper & Akemann 2005, Forrester & Nagao 2007,
Sommers 2007] and for its chiral counterpart [Akemann et al 2010]
building on foundations laid by Lehmann & Sommers 1991, Edelman
1998 and Edelman, Kostlan & Shub 1994.
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Eigvs of a real Ginibre matrix 
 N = 100, no. of samples = 40.
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Truncations of unitary matrices

What truncations of unitary matrices are good for?

(1) Quantum transport problems (Beenakker ’97) Additive stats of EVs of
TT † describe phys quantities of interest, i.e. trTT † for conductance of quasi
one-dimensional wires

(2) Open chaotic sys (Fyodorov & Sommers, ’97 Życzkowski & S. ’00 )
Eigenvalues of T are used to model resonances

(3) Combinatorics of vicious walkers(Novak ’09) < | trT |N >T enumerates
configs of random-turn vicious walkers

Singular values of T (1); eigenvalues of T (2,3)

Why truncation of orthogonal matrices? To explore the degree of
universality of EVs statistics in the complex plane (no mathematical theory
known).

Also, truncations and Kac polynomials [Krishnapour 2008, Forrester 2010]
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Truncations of orthogonal matrices

Choose U ∈ O(n) at random, and then truncate:

U =
(T S
Q R

)

"→ T , where T is m×m

Haar measure on O(n) induces a probability distribution dρn,m×m(T ) on
truncated orthogonals. No dependence on the block’s position.
Matrix measure:

• If n ≥ 2m then dρn,m×m(T ) is supp by the matrix ball TT † ≤ I and

dρn,m×m(T ) =
V 2
n−m

VnVn−2m
det(I − TT †)

1

2
(n−2m−1)

m
∏

j,k=1

dTjk

where Vn = V ol O(n) [Friedman&Mello ’85, Fyodorov&Sommers ’03,
Forrester ’06]

• If n < 2m then dρn,m×m(T ) is singular (supported on the boundary of
TT † ≤ I ; no useful expression for matrix measure is known.

This is similar to truncated unitaries.
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Gaussian approximation and beyond

Gaussian Approximation (small size truncs of large orth matrices):

If m ! n then suitably scaled T becomes Gaussian (entries are
independent normals), known as the Borel Thm [Borel 1906, Gallardo
1982, Yor 1985, Diaconis et al 1987, 1992, Jiang 2009]. Not surprising as

dρn,m×m/dT ∝ det(I − TT †)
1

2
(n−2m−1), n ≥ 2m

Thus expect Ginibre EVs stats in Gaussian regime.

Two other interesting regimes beyond Gaussian approximation:

(i) n → ∞, l := n−m = const. (weak non-orthogonality)

(ii) n → ∞, m
n = const. (strong non-orthogonality)

Similar to weak/strong non-Hermiticity X + ivY [Fyodorov, Kh. &
Sommers 1997], and weak/strong non-unitarity [Życzkowski & Sommers
2000, Fyodorov &Sommers, 2003]
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Eigenvalue scatter plots
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Truncated Haar orthogonals: joint distribution of EVs

Consider truncations of size 2 – remove all but the top left 2x2 block.
dµ(T ) = Const. det(I − T †T )(l−3)/2dT . The induced EV jpdf follows

dµ(z1, z2) = (z1 − z2)f(z1)f(z2)dz1 ∧ dz2

with f2(z) =
l(l − 1)

2π
|1− z2|l−2

∫ 1

2| Im z|

|1−z2|

(1− t2)
l−3

2 dt.

Two real EVs (z1 = x1, z2 = x2): (z1 − z2)dz1 ∧ dz2 = (x1 − x2)dx1dx2

Complex conj EVs(z1 = z∗2 = z): (z − z∗)dz ∧ dz∗ = 2iy(−2i)dxdy

Thm 1 For truncations of size m with l rows/columns removed:

dµ(z1, . . . , zm) ∝
∏

1≤j<k≤m

(zj − zk)
m
∏

j=1

f(zj)
m
∧

j=1

dzj, |zj| < 1.

Caveats: m even, sectors, ordering, f2(z) = (2π|1− z2|)−1 for l = 1.
Similarity to the Ginibre ens.
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Incomplete Beta function

EV jpdf (Thm 1) and techniques developed for the real Ginibre ensemble
yield the EV densities (and corr fncs) of truncations, for finite matrix sizes,
in closed form in terms of the incomplete Beta function

Ix(a, b) =
1

B(a, b)

∫ x

0
ta−1(1− t)b−1 dt = 1− I1−x(b, a)

For positive integer a, b, Ix(a, b) is a truncated binomial series:

Ix(a, b) = 1− (1− x)b
a−1
∑

j=0

(

b+ j − 1

m

)

xj

One essential ingredient of is determining the kernel/skew-orthogonal
polynomials – a difficult task. The kernel can be expressed through
averages of characteristic polynomials 〈det(z1 − T )(z2 − T )〉T of matrices
of smaller dimensions. The problem then can be reduced a Selberg type
integral.
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EV densities of truncated Haar orthogonals

As before, truncate U ∈ O(n) to size m, so that l is the no. of columns
(rows) removed, l = n−m.

Thm 2 Assume m is even (technical). Then (|x| ≤ 1)

ρ(R)
m (x) =

I1−x2(l,m− 1)

B( l2 ,
1
2)(1− x2)

+
(1− x2)

l
2
−1|x|m−1Ix2(m−1

2 , l
2)

B(m2 ,
l
2)

and (|z| ≤ 1)

ρ(C)
m (z = x+ iy) = 4|y| f2(z)

I1−|z|2(l + 1,m− 1)

(1− |z|2)l+1

with f2(z) =
l(l − 1)

2π
|1− z2|l−2

∫ 1

2|y|

|1−z2|

(1− t2)
l−3

2 dt

These expressions become rather simple for m large!
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Truncated Haar orthogonals: average no. of real EVs

N (R)
m =

∫ 1

−1
ρ(R)
m (x)dx = av. no. of real EVs of truncations of size m .

In the limit of strong non-orthogonality, m, l → ∞, l
m → α > 0:

N (R)
m #

√

l

2π
ln

√
m+ l +

√
m√

m+ l −
√
m

∝
√
m

In the limit of weak non-orthogonality, m → ∞, l is finite:

N (R)
m #

logm

B
(

l
2 ,

1
2

)

Cf.: N (R)
m ∝

√
m in the real Ginibre (Edelman,Kostlan & Shub, 1994);

N (R)
m ∝ logm for random real polynomials (Kac, 1948).
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Strong non-orthogonality - density of real EVs,

Consider m, l → ∞, l
m → α > 0. In this limit the distribution of the real

EVs of truncated Haar orthogonals is described by the ‘Artanh Law’:

ρ(R)
m (x) #

√

l

2π

1

1− x2
Θ

(

1

1 + α
− x2

)

.
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Weak non-orthogonality - density of real EVs

Consider m → ∞, l is finite. In this limit

ρ(R)
m (x) #

√

l

2π

1

1− x2
, x ∈ (−1 + ε, 1− ε).

Have two accumulation points ±1. The expected no. of real EVs away
from these two points is finite.
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Weak non-orthogonality - density of real EVs near the acc. pnts

Profile of EV distribution near the accumulation point x = 1:

On rescaling x = 1−
u

m
, we have lim

m→∞

1

m
ρ(R)
m

(

1−
u

m

)

= p(u) where

p(u) =
u

l
2
−1e−u

2Γ( l2)

∞
∫

u
t
l
2
−1e−t dt

Γ( l2)
+

1

2u

1

B( l2 ,
1
2)

2u
∫

0
tl−1e−t dt

Γ(l)
.

The 1st term determines behaviour for small u; have p(u) "
u

l−2

2

2Γ( l2)
.

The 2nd term determines behaviour for large u; have p(u) " 1
2uB(l/2,1/2)) ,

heavy tail leading to the logm growth of the number of real eigenvalues.

Compare with Kac polynomials: same density (and corr fncs) away from
the accumulation points [Forrester 2010]. Different profile near ±1
[Aldous-Fyodorov 2004].
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Strong non-orthogonality - density of complex EVs

Consider m, l → ∞, l
m = α > 0. Away from the real line :

ρ(C)
m (z) #

l

π

1

(1− |z|2)2
Θ

(

1

1 + α
− |z|2

)

, y %= 0.

Same limiting form as for truncated unitaries (Życzkowski & Sommers
2000). However, finite size corrections near the real line differ due to
ρ(C)
m (x+ i0) = 0.
Close to the real line (y ∝ 1√

m
) the density of complex EVs of truncated

orthogonals is described by the scaling law

ρ(C)
m (z) # ρ(R)

m (x)2h(yρ(R)
m (x)), h(y) = 4π|y|e4πy

2

erfc(
√
4π|y|)

where ρ(R)
m (x) =

√

l
2π

1
1−x2 is the density of real EVs (note factorisation in

curvilinear coordinates) . Same form as for the real Ginibre except ρ(R)
m is

not constant now. Universality?
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Conclusions

A non-Gaussian emsemble of real asymmetric matrices – truncations of
random orthogonal matrices – is solved exactly:

• jpdf of eigenvalues obtained;

• EV densities and corr fncs obtained in closed form for finite matrix
dimensions, and asymptotically in various regimes;

• real Ginibre correlations recovered in the regime of strong
non-orthogonality;

• scaling laws obtained for expected number of real eigenvalues and
corresponding densities.
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THANK YOU!
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