| Outline | Spin variables<br>00 | Interacting particle systems and Pfaffians<br>00000 | Conclusions |
|---------|----------------------|-----------------------------------------------------|-------------|
|         |                      |                                                     |             |

# Annihilating and coalescing particle systems as extended Pfaffian point processes

#### Roger Tribe, Kwan Yip and Oleg Zaboronski

#### Department of Mathematics, University of Warwick

May 6 2013

(日) (同) (日) (日) (日)

| Outline | Spin variables<br>00 | Interacting particle systems and Pfaffians | Conclusions |
|---------|----------------------|--------------------------------------------|-------------|
| Outline |                      |                                            |             |

イロト 不得 トイヨト イヨト 一日 うらつ

# Spin variables

- Definition
- From spin variables to correlation functions

# Interacting particle systems and Pfaffians

- Pfaffians
- Annihilating Brownian motions on R
- Pfaffian Point Processes
- Extended Pfaffian Point Process
- Applications

# 3 Conclusions



### N(dx) simple point measure on **R**

Spin variable 
$$s(x) = (-1)^{N(0,x)}$$

$$x < y$$
 implies  $s(x)s(y) = (-1)^{N(x,y)}$ 

Spin correlations  $\mathbb{E}[s(x_1) \dots s(x_{2n})]$ 

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへの



### Spin variables $\rightarrow$ correlation functions

$$\frac{d}{dx}(-1)^{N(x,y)} = (-2)(-1)^{N(x,y)}N(dx)$$

$$-\frac{1}{2}\lim_{y\downarrow x}\frac{d}{dx}s(x)s(y)=N(dx)$$

$$\rho(x_1, x_2, \dots, x_n) = \left(-\frac{1}{2}\right)^n \lim_{x_2 \downarrow x_1} \dots \lim_{x_{2n} \downarrow x_{2n-1}} \frac{d}{dx_1} \frac{d}{dx_3} \dots \frac{d}{dx_{2n-1}} E\left[s(x_1) \dots s(x_{2n})\right]$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへで

| Outline   | Spin variables<br>00 | Interacting particle systems and Pfaffians<br>●○○○○ | Conclusions |
|-----------|----------------------|-----------------------------------------------------|-------------|
| Pfaffians |                      |                                                     |             |

Recall, for anti-symmetric real  $2n \times 2n$  matrix A,  $det(A) = (Pf(A))^2$ .

$$\mathsf{Pf} \begin{pmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{pmatrix} = af - be + cd.$$

 Outline
 Spin variables
 Interacting particle systems and Pfaffians
 Conclusion

 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

# Annihilating Brownian motions on R

 $N_t(A) =$  Number of particles in A at time t

 $\mathbb{E}[s(x_1) \dots s(x_{2n})] = \mathsf{Pf}(\mathbb{E}[s(x_i)s(x_j)] : i < j)$ 

Proof: Both sides solve

$$\partial_t u^{(2n)} = \frac{1}{2} \Delta u^{(2n)}$$
 on  $V_{2n} = \{x_1 < x_2 < \dots x_{2n}\}$  with boundary conditions

$$u^{(2n)}|_{x_i=x_{i+1}} = u^{(2n-2)}(t, x_1, \dots, x_{i-1}, x_{i+2}, \dots, x_{2n})$$

(日) (日) (日) (日) (日) (日) (日) (日)

イロト 不得 トイヨト イヨト ヨー ろくで

# Pfaffian Point Processes

Outline

**Corollary**:  $N_t$  is a Pfaffian Point process.

That is,  $\rho_t(x_1, x_2, ..., x_n) = Pf(K(x_i, x_j) : i < j)$ 

Special case: maximal entrance law

$$\mathcal{K}_{t}(z) = \begin{pmatrix} \mathcal{K}_{t}^{11}(z) & \mathcal{K}_{t}^{12}(z) \\ \mathcal{K}_{t}^{21}(z) & \mathcal{K}_{t}^{22}(z) \end{pmatrix} = \begin{pmatrix} -\frac{F''(zt^{-1/2})}{t^{-1}} & -\frac{F'(zt^{-1/2})}{t^{-1/2}} \\ \frac{F'(zt^{-1/2})}{t^{-1/2}} & \operatorname{sgn}(z)F(|z|t^{-1/2}) \end{pmatrix}$$

and F is the Gaussian error function given by

$$F(z) = \frac{1}{2\pi^{1/2}} \int_{z}^{\infty} e^{-x^{2}/4} dx$$

00000

Interacting particle systems and Pfaffians

(日) (日) (日) (日) (日) (日) (日) (日)

# Extended Pfaffian Point process

Let

$$\rho((t_1, x_1), \dots, (t_n, x_n)) dx_1 \dots dx_n$$
  
=  $P(\text{particles at times } t_i \text{ at positions } dx_i$ 

Then

$$\rho((t_1, x_1), \ldots, (t_n, x_n)) = \mathsf{Pf}(\mathcal{K}((t_i, x_i), (t_j, x_j) : i < j))$$

Under maximal entrance law: for t > s and  $i, j \in \{1, 2\}$ 

$$K^{ij}((t,x);(s,y)) = G_{t-s}K^{ij}_{s}(y-x) - 2I_{\{i=1,j=2\}}g_{t-s}(y-x);$$

**Proof**: double induction over space and time points.

| Outline     | Spin variables<br>00 | Interacting particle systems and Pfaffians | Conclusions |
|-------------|----------------------|--------------------------------------------|-------------|
| Application | S                    |                                            |             |

 Coalescing case: The same structure as ABM's. The kernel is rescaled by 2.
 Proof. Use empty interval formula

$$I(N_t([y_1, y_2]) = N_t([y_3, y_4]) = \ldots = N_t([y_{2m-1}, y_{2m}]) = 0)$$

in place of product spin formula.

• Negative dependence:

$$\rho_t(x_1, x_2, \dots, x_n) = \frac{A_n}{t^{n/2}} \left| \Delta\left(\frac{\mathbf{x}}{\sqrt{t}}\right) \right| \left(1 + O(t^{-1/2})\right)$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 > シへ⊙

| Outline    | Spin variables<br>00 | Interacting particle systems and Pfaffians | Conclusions |
|------------|----------------------|--------------------------------------------|-------------|
| Conclusion | S                    |                                            |             |

- Coalescing (annihilating) Brownian motions on **R** can be characterized as an extended Pfaffian point process
- The one dimensional law of C(A)BM's at t = 1 coincides with the law of real eigenvalues for the real Ginibre ensemble in the limit  $N \to \infty$  (Borodin, Sinclair; Forrester, Nagao)
- The Pfaffian structure allows for a detailed study of the structure of correlations in C(A)BM's including negative dependencies between particles
- Further research: asymptotics of multi-time correlations, the distribution of inter-particle spacings (Janossi densities), models with immigration
- **Reference**: Roger Tribe, Oleg Zaboronski, K. Yip, *One dimensional annihilating and coalescing particle systems as extended Pfaffian point processes*, ECP vol.**17** (2012)