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Spatial random permutations are motivated by a model from
quantum mechanics and have recently studied by V. Betz and
D. Ueltschi.

Unfortunately, the computations with spatial random permutation
have technical difficulties.
We propose a natural approximation of spatial random
permutations on the symmetric group Sn.
This approximation suggested here has a simpler structure and is
thus more tractable.
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This two measure share many properties, for instance

Two possible behaviours (only small cycles or some fraction of
long cycles)

the same critical density

the same splitting into small and long cycles

similar behaviour of long cycles

Furthermore, we obtain a few new results about the distribution of
the cycle lengths.
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Surrogate-spatial permutation
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Ewens measure

An important and special case of the spatial measure and the
surrogate spatial measure is the Ewens measure.

This was introduced by Ewens (1972) in population genetics.
But it has various applications, for instance

It has a connection with Kingman’s coalescent process (1982).

It has been used to model the dynamics of tumour evolution.
(Barbour and Tavaré (2010))

It appears in a Bayesian non parametric statistics stetting.
(Antoniak (1974))

It plays a crucial role for virtual permutations since it is
central and stable under the restriction Sn → Sn−1

.......
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A cycle (s0 s1 . . . sk−1) is a permutation which maps

s0 7→ s1 7→ s2 7→ · · · 7→ sk−1 7→ sk = s0.

and agrees with the identity on the remaining points.

Two cycles (s0 . . . sk−1) and (t0 . . . tm−1) are called disjoint if the
sets {s0, . . . , sk−1} and {t0, . . . , tm−1} are disjoint.
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If σ ∈ Sn is given, then it can be written as

σ = σ1σ2 · · ·σ`

where σ1, . . . , σ` are disjoint cycles.

The Ewens measure is defined for ϑ > 0 as

P [σ] :=
ϑ`
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Small Cycles

Let
σ = σ1σ2 · · ·σ`.

We write λj for the length of the cycle σj .
We define the cycle counts as

Ck := # {j ;λj = k} .

Theorem (Shepp,Loyd (1966) ϑ = 1, Watterson (1974) general ϑ)

(C1, . . . ,Cb)
d−→ (Y1, . . . ,Yb)

with Yk independent Poisson distributed with E [Yk ] = ϑ
k
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Total Number of Cycles

The Total number of cycles is defined as Tn := C1 + · · ·+ Cn.

Theorem (Goncharov (1942) ϑ = 1, Watterson (1974) general ϑ)

Tn − ϑ log(n)√
ϑ log(n)

d−→ N(0, 1)
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Long Cycles

Let
σ = σ1σ2 · · ·σ`.

We write λj for the length of the cycle σj .

W.l.o.g. we can assume λ1 ≥ λ2 ≥ . . . .

Theorem (Vershik and Shmidt (1977) resp. Kingman (1977) )

(
λ1

n
,
λ2

n
, . . .

)
d−→ PD(ϑ), (n→∞)

with PD(ϑ) the Poisson–Dirichlet distribution with parameter ϑ.
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What is the Poisson–Dirichlet distribution?

The best way to describe this is the stick breaking process with
size ordering.
Let (Bk)k∈N be iid Beta distributed with parameters (1, ϑ) and
consider a stick of length 1

Ordering the sticks obtained by this process by size then has a
Poisson–Dirichlet distribution.

Dirk Zeindler(Joint work with Leonid Bogachev) Surrogate-Spatial Random Permutations
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Spatial permutations occur as a model in quantum mechanics.
More precisely, as a model for the Feynman–Kac representation of
the dilute Bose gas.

Let us first describe the idea of the model.
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A cube Λ ⊂ Rd with side
length L > 0 (d ≥ 3)

n particles in the cube Λ

A permutation σ of particles
with the same state
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We now define a measure on P [.] on Sn × Λn with

P [σ, dx ] =
1

Ynn!
e−H(σ,x)dx

with dx the Lebesgue measure, Yn a normalisation constant and

H(σ, x) =
n∑

k=1

αkCk +
n∑

j=1

‖xj − xσ(j)‖

where αk ∈ R, x = (x1, . . . , xn) ∈ Λn ⊂ Rnd are the coordinates of
the particles.
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Let us take a look at

H(σ, x) =
n∑

k=1

αkCk +
n∑

j=1

‖xj − xσ(j)‖

The αk model the particle interaction.
A reasonable choice is αk → α.

The norm ‖ · ‖ forces particles of the same state to stay together.

Particles of different states do not interact.

Dirk Zeindler(Joint work with Leonid Bogachev) Surrogate-Spatial Random Permutations
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We study the behavior of this system with respect to the
thermodynamic limit.

Thermodynamic limit = n→∞ while keeping ρ := n
Ld

= n
|Λ| fixed

Condensation = Only one state occurs in the limit infinitely often.

The first step is study the existence or non-existence of infinite sets
of particles of the same state (in the limit).

In this setting large sets of particles of the same state correspond
to long cycles in the cycle decomposition of σ ∈ Sn.
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How can one measure the existence of infinite cycles in the limit?

For finite n, all cycles are finite.
Let us consider for p ∈ N

1

n

∑
k≥p

kCk

This has the interpretation as the fraction of particles in cycles of
length at least p.

Dirk Zeindler(Joint work with Leonid Bogachev) Surrogate-Spatial Random Permutations
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We now define

νp := lim inf
n→∞

E

1

n

∑
k≥p

kCk



and

ν := lim
p→∞

νp.

For the Ewens measure, we have ν = 1.
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It was shown by Betz and Ueltschi for
‘αk → α‘ and αk = γ log(k) for γ > 0

ν = max

{
0, 1− ρc

ρ

}

with

ρc :=
∞∑
k=1

e−αk

∫
Rd

e−k‖x‖ dx .
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Betz and Ueltschi could also compute the behaviour of the large
cycles for ρ > ρc .

In the case ‘αk → α‘ we have

(
λ1

νn
,
λ2

νn
, . . .

)
d→ PD(e−α)

and in the case αk = γ log(k)

λ1

νn
d→ 1
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Remember we had

P [σ, dx ] =
1

Ynn!
e−H(σ,x)dx

with

H(σ, x) =
n∑

k=1

αkCk +
n∑

j=1

‖xj − xσ(j)‖.

“Periodizing” the boundary conditions gives and integrating out
the x gives

P [σ] :=
1

Ynn!

n∏
k=1

e−αk
∑
m∈Zd

e−k‖m/L‖

Ck

,
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We now have for fixed k and using ρ = n
Ld

1

Ld

∑
m∈Zd

e−k‖m/L‖ ≈
∫
Rd

e−k‖x‖ dx

and thus

P [σ] =
1

Ynn!

n∏
k=1

e−αk
∑
m∈Zd

e−k‖m/L‖

Ck

≈ 1

Ynn!

n∏
k=1

(
n · e

−αk

ρ

∫
Rd

e−k‖x‖ dx

)Ck

.
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We make the following Ansatz

Definition

Let Θ = (θk)k≥1 and Υ = (τk)k≥1 be given, with θk , τk ≥ 0. We
then define the surrogate spatial probability measure on
permutations as

P(sur)
n [σ] :=

1

Hnn!

n∏
k=1

(n · τk + θk)Ck ,

with Hn some constant.
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Are the error-terms θk important?

If one computes the τk arising from spatial permutations, one gets

‘αk → α’ αk = γ log(k)

τk = 1
ρe
−αk−d/2 τk = 1

ρk
−d/2−γ

(
λ1
νn ,

λ2
νn , . . .

)
d→ PD(e−α) λ1

νn
d→ 1
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‘αk → α’ αk = γ log(k)
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ρe
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Strategy to analyse large−n asymptotics of surrogate-spatial
permutations:

Use generating functions to give ‘nice’ expressions

Apply Cauchy’s integral formula

We illustrate this with the normalisation constant Hn in the
surrogate-spatial measure.
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We work here only with class functions on Sn and it is well known
that the conjugacy class of Sn can be parametrised with partitions.

Lemma

For any class function u : Sn → C, there is the identity

1

n!

∑
σ∈Sn

u(σ) =
∑
λ∈Pn

1

zλ
u(Cλ)

where Cλ is the conjugacy class corresponding to partition λ and
zλ :=

∏n
k=1 k

CkCk !.
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The main tool in this talk to write down generating functions

Lemma (Polya)

Let (am)m∈N be a sequence of complex numbers. Then

∑
λ∈P

1

zλ

 `(λ)∏
m=1

aλm

 t |λ| = exp

( ∞∑
m=1

1

m
amt

m

)

with zλ as above.
If one of the sums is absolutely convergent then so is the other one.
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It follows form the definition of P(sur)
n [·] that

Hn =
∑
λ∈Pn

1

zλ

∞∏
k=1

(n · τk + θk)Ck

Unfortunately we can not directly compute

∞∑
n=0

Hnt
n or

∞∑
n=0

Hn
tn

n!
or . . .

We thus introduce for v ∈ N

hn(v) =
∑
λ∈Pn

1

zλ

∞∏
k=1

(v · τk + θk)Ck
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We get for each v ∈ N
∞∑
n=0

hn(v) tn =

exp (gΘ(t) + v · pΥ(t))

with

gΘ(t) :=
∞∑
k=1

θk
k

tk , pΥ(t) :=
∞∑
k=1

τk
k

tk .

and thus

Hn = [tn] [exp (gΘ(t) + n · pΥ(t))]
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Assume that gΘ(t) and pΥ(t) have radius of convergence R > 0.

It turns out that one has to distinguish the cases
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Assume that gΘ(t) and pΥ(t) have radius of convergence R > 0.
It turns out that one has to distinguish the cases

a(R) := Rp′Υ(R) > 1 and a(R) < 1 and a(R) = 1
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Assume that gΘ(t) and pΥ(t) have radius of convergence R > 0.
It turns out that one has to distinguish the cases

a(R) := Rp′Υ(R) > 1︸ ︷︷ ︸
sub-critical

and a(R) < 1︸ ︷︷ ︸
super-critical

and a(R) = 1︸ ︷︷ ︸
critical
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Sub-critical case

If we apply Cauchy’s integral formula, we get

Hn =
1

2πi

∫
γ

exp (gΘ(z) + n · pΥ(z))

zn+1
dz

≈
∫ (

f (x)
)n

dx

We choose γ(ϕ) = re iϕ with ϕ ∈ [−π, π]. It’s clear that
Re(pΥ(re iϕ)) has a maximum for ϕ = 0.
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If we apply Cauchy’s integral formula, we get
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We expand

pΥ(re iϕ) = pΥ(r) + iϕa(r)− ϕ2

2
b(r) + O(ϕ3),

with a(r) = rp′Υ(r) and b(r) = rp′Υ(r) + r2p′′Υ(r).

Inserting this expansion into the integral and considering only a
small neighbourhood [−κn, κn] of ϕ = 0 gives (setting gΘ ≡ 0)

exp (n · pΥ(r))

2πrn
√
n

∫ κn
√
n

−κn
√
n
e i
√
nϕ(a(r)−1)e−b(r) x2

2 (1 + o(1))dx

We now choose r to be the solution of a(r) = 1 (if it’s possible).
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Theorem

Assume that gΘ(t) and pΥ(t) have radius of convergence R > 0.
Suppose that

a(R) > 1 with a(R) := sup
0<r<R

a(r) ≤ ∞

and let r1 be the unique solution of a(r1) = 1. Suppose further
that pΥ(t) 6= f (tk) with k > 1 and f holomorphic.
We then have as n→∞

Hn ∼
exp
(
gΘ(r1) + npΥ(r1)

)
rn−d1

√
2πnb(r1)

Dirk Zeindler(Joint work with Leonid Bogachev) Surrogate-Spatial Random Permutations



Introduction
Ewens measure

Spatial Permutations
Surrogate-Spatial Permutations

Definition
Generating functions
The behaviour of Hn
Cycle counts and total number of cycles
First comparison of models
Long cycles

Super-critical case

What can we do if a(R) < 1?

We have in this case pΥ(R) <∞ since a(t) = tp′Υ(t) and
remember

Hn = [tn] [exp (gΘ(t) + n · pΥ(t))]

If gΘ(t) is diverging at R, we can hope that Hn is determined by
the behaviour of pΥ and gΘ near R.
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gΘ(t) = −ϑ log(1− t/R) + O(1− t/R),

pΥ(t) = pΥ(R) + a(R)(t/R − 1) + O((1− t/R)2).

Theorem

For a(R) < 1 and under the above assumptions we have

Hn ∼
nϑ−1 exp(npΥ(R))

Rn

(1− a(R))ϑ−1

Γ(ϑ)
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Let us define the quantity r∗ as

r∗ :=

{
r1, a(R) ≥ 1,

R, a(R) ≤ 1,
(1)

where r1 is the (unique) solution of the equation

a(r1) = 1
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Cycle counts

Theorem

We have

E(sur)
n [(Ck)m] ∼

(
n · τk r

k
∗

k

)m

and Ck
n converges in law to the constant τk r

k
∗

k .
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Using the previous result, we obtain for each p ∈ N

νp = lim inf
n→∞

(
1− 1

n
E

[
p∑

k=1

kCk

])
= 1−

p∑
k=1

τk r
k
∗

This then gives

ν = lim
p→∞

(
1−

p∑
k=1

τk r
m
1

)
= 1− a(r∗)

=

{
0 if a(R) ≥ 1

1− a(R) if a(R) < 1
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Total number of cycles

Theorem

(a) Let a(R) > 1. Then,

Tn − npΥ(r1)√
n
[
pΥ(r1)− 1/b(r1)

] d−→ N (0, 1), n→∞, (2)

(b) If a(R) < 1 then,

Tn − npΥ(R)√
npΥ(R)

d−→ N (0, 1), n→∞. (3)
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First comparison of models

If we take τk = k−α

ρ with α > 1, we get the polylogarithm

pΥ(t) =
Liα+1(t)

ρ
=
∞∑
k=1

tk

ρkα+1
and a(t) =

Liα(t)

ρ
.

We have in this case R = 1

a(1) =
Liα(1)

ρ
<∞ and ν = max

{
0, 1− Liα(1)

ρ

}
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The study of the long cycles requires further assumptions on the
derivative.

We assume that there exist an α > 2, α /∈ N such that
for all d ∈ N(

∂

∂t

)d

pΥ(t) =

((
∂

∂t

)d

Liα(t)

)
(1 + o(1))

(
∂

∂t

)d

gΘ(t) =

((
∂

∂t

)d

ϑ log

(
1

1− t

))
(1 + o(1))
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We find here a new phenomenon:
the stick–breaking process with an unbreakable part.

Let a stick of length 1 be given, splitted into a breakable part of
length ν and an unbreakable part 1− ν.
Let (Bk)k∈N be iid Beta distributed with parameters (1, ϑ).
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Theorem

Suppose that θk → ϑ > 0 and ν > 0. Then(
λ1

νn
,
λ2

νn
, . . .

)
d−→ PD(ϑ)

with PD(ϑ) the Poisson–Dirichlet distribution with parameter ϑ.

Theorem

Suppose that θk ≡ 0 and ν > 0. Then

λ1

νn
d−→ 1 (4)
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Thank you
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