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Abstract

The transient spreading of a viscous fluid beneath an elastic sheet adhered to the substrate is

controlled by the dynamics at the tip where the divergence of viscous stresses necessitates the

formation of a vapour tip separating the fluid front and fracture front. A simple theoretical model

is developed showing that adhesion gives rise to the possibility of static, elastic droplets and to two

dynamical regimes of spreading; viscosity dominant spreading controlled by flow of fluid into the

vapour tip, and adhesion dominant spreading. Constant flux experiments using clear, PDMS elastic

sheets enable new, direct measurements of the vapour tip, and confirm the existence of viscosity and

adhesion dominant spreading regimes. The theory and experiments thereby provide an important

test coupling the dynamics of flow with elastic deformation with important implications in fluid-

driven fracturing of elastic media more generally.
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I. INTRODUCTION

The geometry and propagation of fluid-driven fractures is determined by a competition

between the flow of viscous fluid, the elastic deformation of the solid and the energy required

to create new surfaces. These processes feature industrially in the hydraulic fracturing of

shale [1], but are also commonplace in nature, from magmatic intrusions in the Earth’s

crust [2, 3], to the propagation of cracks at the base of glaciers [4]. The relationship between

elastic deformation and adhesion energy has been successfuly considered for the development

of stretchable electronics made from buckled nanoribbons [5, 6]. Similarly, the coupling of

viscous spreading and elastic deformation has been analysed when looking at the dynamics

of blisters spreading over a pre-wetted film [7] with applications to the flow of biofluids

through deformable vessels [8] and the suppression of viscous fingering in an elastic-walled

Hele-Shaw cell [9]. However, the physical processes underlying the dynamics of the fluid-

driven fracturing of thin adhered elastica remain unexplored and unobserved.

The transient spreading of a viscous fluid beneath an adhered elastic sheet is controlled by

the dynamics at the tip. The centrality of the physics at the contact line is directly analogous

to the capillary-driven spreading of a droplet, where elasticity plays the role of surface

tension. Near the front, a large negative pressure gradient is needed to drive the viscous

fluid into the narrowing gap of the fracture where the rate of viscous dissipation diverges.

This is the elastic equivalent of Huh and Scriven’s paradox [10], and theoretically leads to

an immobile contact line. In the context of a spreading droplet, microscopic mechanisms

such as a precursor film [11] and relaxation of the no-slip conditions at the front [10] have

been proposed to account for experimental observations. For the problem of a viscous

fluid spreading underneath an elastic sheet, a macroscopic precursor film has been used to

regularise this contact-line singularity [7], but this fails to explain fracturing phenomena,

such as magmatic intrusions, where there is no evidence of a pre-wetted surface.

We show through consideration of a simple lubrication model that a fluid lag, or vapour

tip, develops between the fluid front and the fracture front, Fig. 1. Importantly we also

demonstrate an observational system capable of characterising the vapour tip, thereby con-

firming the presence of a vapour tip and its role in the transient dynamics. The addition

of a fluid lag regularises the contact line by imposing a finite fluid thickness at the fluid

front [12]. A fluid lag has previously been invoked in other contexts, when modelling penny-
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shaped cracks [13] and buoyancy-driven fractures [14], and has been observed in laboratory

experiments on the fracturing of elastic blocks [15–17] but has not been systematically char-

acterised. Our development of a theoretical model and consistent laboratory experiments

using thin elastica lead to a simpler analysis and treatment of fluid-driven fracturing and

provides a usefully reduced system in which to understand the dynamics of fluid-driven

fracturing, with direct biological and manufacturing implications.

To delaminate adhered elastica, the energy required to create new surfaces is ∆γ =

γ
(sheet)
SV + γ

(substrate)
SV − γSS, where γSV is the solid-vapour surface energy and γSS the solid-

solid surface energy. This imposes a curvature at the fracture front, or fracture criterion,

given by

κ =
√

2/lec, where lec = (B/∆γ)1/2, (1)

the elastocapillary lengthscale, with bending stiffness B [18]. The material strength of

adhesion allows for the possibility of static solutions, and controls the long-time behaviour

of spreading.

We show that two dynamical regimes are possible; viscosity dominant spreading controlled

by the pressure gradient driving fluid into the vapour tip and adhesion dominant spreading

controlled by interfacial adhesion. These two regimes are analogous to the limiting regimes

of propagation for a semi-infinite hydraulic crack in an elastic medium [13]. In the elastic

bending case considered here, we demonstrate an asymptotic model for propagation in the

adhesion and viscosity dominated limits by resolving the behaviour of the vapour tip.

This paper is structured as follows. Section II presents the static blister shapes and

dynamic model demonstrating the transition from viscosity dominant to adhesion domi-

nant spreading within the thin elastica framework. Section III describes the experimental

setup and methods. Finally, the experimental results are analysed and compared with the

theoretical model in Sec. IV.

II. THEORETICAL MODEL

To examine the fluid-driven delamination of an adhered elastic sheet (see Fig. 1), a

volume of fluid of density ρ and viscosity µ is injected beneath an elastic sheet of thickness

d and density ρs initially adhered to a horizontal substrate with adhesion energy ∆γ. In

all dynamic cases the fracture front, RN , extends beyond the fluid front, RF , such that a
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(a) (b)

FIG. 1. (a) Schematic diagram of the theoretical model and experimental setup with the physical

parameters in the system. (b) Photograph of an experimental fluid front showing lag between fluid

front and fracture front.

vapour filled tip exists of length L = RN −RF . Bending stresses dominate when the vertical

deflection of the sheet is smaller than the thickness, h(r, t) � d. The flow of the fluid is

driven by gradients in the reduced pressure p̃ = p−p0−ρsgd = B∇4h+ρg(h−z), where p is

the pressure in the fluid, p0 is a reference pressure and bending stiffness B = Ed3/12(1−ν2),

where E and ν are the Young’s modulus and Poisson’s ratio of the sheet respectively.

For large aspect ratios we may balance viscous drag with the hydrostatic and elastic

pressure gradients to describe the deflection of the sheet [2],

∂h

∂t
=

1

12µ

1

r

∂

∂r

[
rh3

∂

∂r

(
B∇4h+ ρgh

)]
, (2)

where global mass conservation gives

V (t) = 2π
∫ RF

0
hr dr. (3)

The balance between elastic stresses and gravity acting on the fluid gives rise to a natural

horizontal, elastogravity lengthscale, leg = (B/ρg)1/4, and hence characteristic height and

time scales may be defined as H0 = (12µQ/ρg)1/4 and T0 = H0l
2
eg/Q respectively, where Q

is a typical volume flux.

A. Static shapes

Adhesion of the sheet at the perimeter, RN , allows for the possibility of static solutions

with no vapour tip, analogous to the capillary sessile drop [19]. The potential energy of the
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blister is balanced by the energy of adhesion between the elastic sheet and the horizontal

substrate. For a constant volume V , this gives rise to static shapes with uniform pressure p̃.

When the radius is smaller than the elastogravity lengthscale, RF � leg, the pressure within

the blister is dominated by bending stresses with p̃ ' B∇4h. At the origin the imposition

of zero slope and bending moment ensure that the mathematical description of the height

of the sheet does not diverge as r → 0. For static shapes the fracture and fluid fronts are

concomitant, and continuity with the adjoining flat regions requires that the height and

gradient are zero at the front, h = ∇h = 0 at r = RF . The deflection reduces to the classic

bell-shaped form [20, 21]

h(r) =
p̃R4

F

64B

(
1− r2

R2
F

)2

, (4)

see Fig. 2 (i) (inset). Global mass conservation (3) and the curvature condition at the

front due to adhesion impose V = πp̃R6
F/192B and κ = p̃R2

F/8B respectively, where κ =
√

2/lec [6], and thus determine the radial extent and central deflection,

RF =
(

24V

πκ

)1/4

and h0 =
(

3κV

8π

)1/2

. (5)

In contrast, for larger volumes when the radius is much greater than the elastogravity

lengthscale, RF � leg, gravity becomes important and the uniform pressure contains both

elastic and hydrostatic contributions, p̃ = B∇4h + ρgh. In the interior, the pressure is

nearly hydrostatic and hence the height is uniform and the profiles are flat topped. Near

the front, on a lengthscale O(leg), the hydrostatic pressure is balanced by elastic stress due

to bending the elastic sheet over the periphery. Adhesion at the front therefore imposes

curvature, κ ∼ h/l2eg, which thereby determines the height and radial extent of the static

elastic droplet. An analytic solution can be found by matching the interior hydrostatic and

edge bending regions with the adhesion condition along the periphery such that the profile

h(r) = κl2eg
[
1− eX (cosX − sinX)

]
, (6)

where X = (r − RF )/
√

2leg, see Fig. 2 (ii) (inset). In this sessile elastic limit the radial

extent and central deflection are

RF =

(
V

πκl2eg

)1/2

and h0 = κl2eg. (7)

Fig. 2 (a, b and c) shows the transition from bending dominant to gravitationally dominant

profiles, radial extent and central deflection with increasing volume (blue curves) along with

asymptotic scaling from Eqn. 5 and 7 (black dot-dashed lines).
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FIG. 2. (a) Plot of the static profiles for a constant volume V transitioning from bending to

gravitationally dominated regimes. Inset (i) shows numerical solution in the pure bending regime

(blue dots) plotted on top of theoretical profile Eqn. 4 (red curve), and (ii) the numerical solution

in the gravity dominant regime with a bending tip (blue dots) plotted on top of theoretical profile

Eqn. 6 (green curve). (b) Dimensionless radial extent with volume. (c) Dimensionless central

deflection with volume.

These static shapes arise due to the balance between adhesion of the elastic sheet and the

substrate at the periphery and the hydrostatic and elastic potential energy of the blister. In

Sec. II B we will show that these are the end-member profiles for time dependent spreading

due to a constant flux Q, when the rate at which the fluid front advances is slow.

B. Dynamic spreading

In contrast to the static case, dynamic inflation requires the presence of a vapour tip of

length L = RN −RF . This eliminates the inherent divergence of viscous stresses at the fluid

front, and thus regularises the flow at the contact line by imposing a finite fluid thickness

at the fluid front [12]. An examination of the dominant lengthscales at the tip reveal two

possible behaviours when the volume V (t) = Qt; either the expansion of the fluid blister is

dominated by viscous dissipation, or by the requirement to overcome the energy of adhesion.

At early times, RF � leg, the evolution of the blister is slow, and therefore the interior

pressure is nearly constant. The deflection of the sheet in this limit takes the form described
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in Eqn. 4. The rate at which the blister expands is determined entirely by processes at the

front. Assuming the radial extent of the fluid greatly exceeds the length of the vapour tip,

RF � L, we can treat the tip as two-dimensional with reduced pressure p̃T = pT−p0−ρsgd =

BhIV , where σ = −p̃T is large and the tip pressure pT is negligible compared with the weight

of the beam [1, 12]. As in the static case, continuity at the tip requires the height and gradient

to be zero h = h′ = 0 with fracture criterion h′′ = κ at r = RN . The deflection of the sheet

in the vapour tip may then be written as

h(r, t) = − σ

24B
(RN − r)3(RN − r − L) (8)

+
h(RF , t)

L3
(RN − r)3 −

κ

2L
(RN − r)2(RN − r − L),

which extends the vapour tip model ([12] Eqn. (3.5)) to include adhesion at the front.

The rate of advance is determined by matching the interior curvature, κint = 24Qt/πR4
F ,

with that of the front, h′′(RF , t) = κF . Matching the deflection of the sheet and it’s first

four derivatives at the fluid front we find that the curvature at the front is a combination of

that imposed by adhesion and the dynamic curvature from the propagating fluid interface,

κF ' 2h(RF , t)/L
2 ' κ+ σL2/8B. This defines a natural lengthscale LC = (Bκ/σ)1/2 over

which the adhesion curvature is felt. A comparison of this lengthscale with the lengthscale

of the vapour tip separates viscosity dominant spreading (L� LC) from adhesion dominant

spreading (L� LC).

To determine the spreading rate we look for a travelling wave solution near the tip of the

form h = hFf [ξ ≡ (r −RF (t))], which satisfies (2),

−ṘFhFf
′ =

Bh4F
12µ

(
f 3fV

)′
⇒ −ṘF =

Bh3F
12µ

f 2fV , (9)

using mass conservation at the fluid front ṘF = limr→RF
−h2pr/12µ, where f ′ = ∂f/∂ξ, fV =

∂5f/∂ξ5. This defines a viscous peeling lengthscale lp = (Bh3F/12µṘF )1/5 [7]. In the vis-

cosity controlled regime, continuity suggests L ' lp at the front along with curvature

κF ' 2hF/L
2 ' σL2/8B. The viscous peeling lengthscale is then

lp =

(
212(12µ)B2ṘF

σ3

)1/7

(10)

and demonstrates that spreading is viscosity controlled at early times when ṘF is large,

and hence lp � LC . The front exhibits a dynamic curvature that can be defined without

recourse to adhesion [22],
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κF '
2hF
L2
'
(

23(12µ)2σ

B3

)1/7

Ṙ
2/7
F , (11)

and it is this curvature which initially controls the propagation. Matching onto the interior

curvature κint thus gives an asymptotic model for the radial extent, central deflection and

lag length in the viscosity dominant regime,

RF (t) = 1.52

(
Q7B3

(12µ)2σ

)1/30

t3/10, (12)

h0(t) = 0.41

(
(12µ)2σQ8

B3

)1/15

t2/5, (13)

L(t) = 1.19

(
(12µ)4B9Q

σ13

)1/30

t−1/10, (14)

(see the Supplemental Material [23]). We emphasise that these initial solutions are indepen-

dent of the adhesion at the front.

At later times, t > (12µ)4/3Q1/3σ2/3/B2κ5, the decrease in ṘF implies that lp � LC , and

there is therefore a transition to adhesion control where the peeling lengthscale is no longer

important at the tip. The curvature at the front is predominantly that imposed by adhesion,

κF ' κ. Thus, when adhesion at the front becomes dominant, the blister transitions through

a series of quasi-static solutions, identical to those described by (5), now with V = Qt,

RF (t) =
(

24Q

πκ

)1/4

t1/4, (15)

h0(t) =
(

3κQ

8π

)1/2

t1/2. (16)

Importantly, these late time solutions are now independent of the fluid viscosity, as well as

the presence of a vapour tip.

The lag length L is determined by considering mass conservation at the fluid front,

ṘF ' h2Fσ/12µL, where there is a jump in pressure of O(σ) at the fluid-vapour interface,

and the curvature due to adhesion, 2hF/L
2 ' κ. Hence the lag length is determined by the

flow of a viscous fluid slowly infilling a wedge whose geometry is determined by adhesion,

L(t) = 0.82

(
(12µ)4Q

σ4κ9

)1/12

t−1/4. (17)

It can be shown that the assumptions of constant interior pressure and pure bending

(r � leg and h � d) are valid provided (12µB/Qσ2)1/2 � t � l4egκ/Q, d
2/Qκ by sub-

stituting the scalings for the two regimes into the original time evolution equation for the

8



deflection (2). For axisymmetric spreading the transition from viscosity dominant to ad-

hesion dominant spreading occurs at transitional horizontal, height and time scales RC =

(12µQ)1/3σ1/6/B1/2κ3/2, HC = (12µQ)2/3σ1/3/B7/15κ2, and TC = (12µ)4/3Q1/3σ2/3/B2κ5,

respectively.

Dynamic spreading of a fluid beneath an elastic sheet is governed by a competition

between viscous dissipation and the energy required to overcome adhesion. At early times,

the spreading is viscosity dominant, controlled by the pressure gradients driving fluid into

the tip, and given by the no-adhesion solution, [12]. When lp � LC , there is a transition

to adhesion control, where the lag length no longer plays a role in the propagation of the

fracture front. Instead the spreading tends towards the static case controlled by the energy of

adhesion at the tip and is independent of viscosity of the fluid and pressure in the vapour tip.

The regimes described here have parallels with those described for a semi-infinite hydraulic

fracture evolving from a viscosity dominant to a toughness dominant crack in an elastic half-

space [13], and, as shown in the following section, can be readily observed in experiments

on thin elastica.

III. EXPERIMENTAL METHODS

Experiments conducted to investigate the fluid-driven fracturing of adhered elastica con-

sisted of injecting a viscous fluid beneath an elastic sheet adhered to a horizontal substrate

(see Fig. 1). An elastic sheet of polydimethylsiloxane (PDMS) was used with diameter

917 ± 1 mm and thickness d = 9.8 ± 0.3mm. The bending stiffness B = 0.18 ± 0.02 Pa.m3

was measured using loop [24] and circular blister tests [25]. The PDMS sheet was ad-

hered to a horizontal glass table using TUFFBondTM Adhesive Mount Film of thickness

0.15 ± 0.01 mm. Glycerine-water solutions were injected between the glass table and com-

posite PDMS and adhesive sheet. Injection was through a 5.5 mm diameter aperture and

the flux was determined by measuring the volume injected on the table from the deflection

profiles.

The deformation of the PDMS sheet was measured by imaging a fluorescent line on

top of the sheet at a known oblique angle φ, as shown in Fig 1. To improve the contrast

between the line and the background, the line was illuminated by a blue light and the blue

colour channel was isolated in the digital images acquired. A filtered image taken using this
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FIG. 3. (a) Sample image taken underneath experimental blister. (b) Sample image taken of

fluorescent line on top of PDMS sheet and filtered image showing the deflected line. (c) Zoom in

of the edge of the blister filtered to show intensity contrast between vapour tip and the substrate.

Fluid front given by the black-dashed line with lag lengths given by pairs of red dots. (d) Lag

length with time for two experiments in the viscosity dominant regime.

method is shown in Fig. 3(b) demonstrating the contrast achieved. Deflections of the line

are determined by comparing with a reference image of the undeformed PDMS taken prior

to injection. A Gaussian was then fit to the intensity profile at each vertical strip of pixels

where the central peak was chosen as the centreline. To reduce scatter, an average was taken

every 10 pixels. The final profile for this sample snapshot is plotted in Fig. 4 for t = 64 s,

µ = 2.12 Pa.s and QE = 0.39 g/s.

The fluid and fracture fronts were measured by imaging from underneath the glass sub-

strate using a mirror placed at 45◦ to the base (see Figs. 1, 3(a)). A high contrast be-

tween the fluid and the substrate meant the fluid front could be automatically detected, as
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demonstrated in Fig. 3(c) by the black-dashed line. Due to the small, non-axisymmetric

deviations, a circle was fit to the points detected at the fluid front to give radial extent RF

at each timestep.

Partial internal reflection within the vapour tip allowed for distinction between the fluid

front and fracture front. This is demonstrated in Fig. 3(c) where the blue colour channel is

isolated and the contrast increased. The scatter in the brightness of the vapour tip meant

the fracture front could not be automatically chosen. As a result, the fracture front was

manually chosen at 10 points around the edge of the blister. The red dots in Fig. 3(c) show

the automatically chosen RF and manually picked RN . The lag length is determined at each

pair of points and an average is taken for each timestep. The results of this procedure are

shown in Fig. 3(d), with the error estimated from the standard deviation of the 10 points

measured at each timestep.

IV. RESULTS AND DISCUSSION

A. Viscosity dominant spreading

A series of constant flux injection experiments were carried out in the viscosity dominant

and adhesion dominant regimes. In the viscosity dominant regime, pure glycerine was used

with viscosities µ = 1.67−2.12±0.02 Pa.s and injected at mass fluxes of QE = 0.18−0.39±

0.005 g/s. Fig. 4 shows the measured deflection for an experiment with mass flux QE = 0.39

g/s and viscosity µ = 2.12 Pa.s for t = 64-130 s, with profiles plotted every ∆t = 6 s. From

Sec. II, Eqns. 12 and 13 describe the radius and central deflection at time t in the viscosity

dominant regime. By scaling the radius and height of the profiles in Fig. 4(a) by these

expressions for RF and h0, the profiles collapse on to a universal curve described by (4), see

Fig. 4(b). The black-dashed line shows the theoretical profile Eqn. 4 demonstrating excellent

agreement with the collapsed dataset. This confirms that in the dynamic spreading case the

shape of the blister remains unchanged from the classic bell-shaped profile.

Because the pressure within the central blister was quasi-static, the position of the blister

with respect to the injection hole was only weakly constrained and hence was very sensitive

to initial experimental conditions. For example, the differing angle the injection pipe made

to the horizontal substrate, or differences in the adhesion energy in the immediate vicinity
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(a) (b)

FIG. 4. Deflection profiles for an experiment in the viscosity dominant regime with mass flux QE =

0.39 g/s, viscosity µ = 2.12 Pa.s, σ = 101× 103 Pa for t = 64-130 s, where ∆t = 6 s. (a) Measured

deflection, and (b) deflection scaled with theoretical expressions (12, 13). The black-dashed line

shows the theoretical profile (4).

of the injection hole resulted in migration of the blister off-centre, see Fig. 3(a). At the start

of each experiment, the fluorescent line on the PDMS sheet was aligned with the injection

hole, and hence for the same experiments the detected deflection profile is of a chord taken

off-centre. For these reasons, the magnitude measured radius and height in Fig. 4(a) are less

than the theoretical prediction for a profile through the origin, i.e. the dimensionless radial

extent and central deflection in Fig. 4(b) are less than 1. However, as these measurements

are of a chord of the symmetric bell-shaped profile, they show excellent collapse and confirm

the predicted deflection shape. In the next paragraph we will show that the position of the

blister relative to the injection hole has no impact on the dynamics of propagation. This

supports the assumption that the interior of the blister remains quasi-static with constant

reduced pressure p̃.

Fig. 5(a) shows the radial extent with time for six experiments with different mass

fluxes in the viscosity dominant regime. In Fig. 5(b) the radial extent is scaled with

(Q7B3/((12µ)2σ))1/30 from Eqn. 12. (Here we have taken σ = 101 × 103 Pa which we

will justify when describing the measured lag length). This collapses the experiments onto

to one curve with power law exponent 3/10. Hence, the experimental data is in good agree-

ment with the theoretical scaling RF ∼ t3/10 in the viscosity dominant regime. This also
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(a) (b)

FIG. 5. Radial extent with time in the viscosity dominant regime. (a) Measured radial extent.

(b) Radial extent scaled with (Q7B3/((12µ)2))1/30. Black-dashed line corresponds to best fit

RF /(Q
7B3/((12µ)2σ))1/30 = 1.40 t3/10.

highlights the position of the blister with respect to the injection hole has no impact on the

dynamics of propagation. The black-dashed line in Fig. 5(b) corresponds to the best fit line

RF/(Q
7B3/((12µ)2σ))1/30 = 1.40 t3/10, where the prefactor is within 8% of the theoretical

prefactor 1.52.

For the viscosity dominant regime, we manually measured the lag length using the meth-

ods described in Sec. III, see Fig. 3(c). Fig. 3(d) plots the lag length for two experi-

ments with mass fluxes QE =0.18, 0.30 g/s, where L is the average of the measured lag

lengths and the error bars are one standard deviation above and below the mean. The

overlapping error bars for the two experiments suggest there is no measurable difference

between the lag lengths which is supported by the negligible dependence on the volume

flux, Q1/30, in Eqn. 14. The black dashed and dot-dashed lines in Fig. 3(d) are Eqn. 14

plotted with σ = 101 × 103, 60 × 103 Pa respectively. If the vapour tip produces a near

vacuum pressure at the front the vapour tip pressure would be zero pT = 0 and hence

σ = p0 + ρsgd − pT ' 101 × 103 Pa. The magnitude of the lag length observed suggests

the tip pressure is non-negligible, which can be explained by considering the experimental

setup. Some small amount of air may have been trapped when placing the adhesive sheet

onto the glass substrate. These bubbles may act to increase the pressure at the tip and

hence explain the smaller value of σ required to fit the lag length observed.
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The measured lag length also appears to be smaller at early times, in contrast to our

theoretical prediction. However, it should be noted that Eqn. 8 has been written in the

limit RF � L, which may be violated at early times. As a result, when fluid is first injected

the elastic sheet is clamped at the radius of the injection hole, and the sheet is lifted up

by the injection of fluid with a small lag length at the front. As the blister first begins

to propagate beyond this radius the lag length first begins to increase as it relaxes to the

dynamically determined extent. This transient behaviour can be seen in Fig. 5(b) where the

radial extent does not collapse at early times and in Fig. 3 where the lag length increases

initially, and continues until the pressure decreases to that given by the elastic pressure i.e.

until the blister is large enough that the initial pressure build up is negligible. The constant

lag length observed at late time during the viscosity dominant spreading is then consistent

with the slowly varying lag length L ∼ t−1/10 predicted by the theoretical model.

B. Adhesion dominant spreading

In the adhesion dominant regime, glycerine-water solutions were used with viscosities

µ = 0.03− 0.17± 0.005 Pa.s injected at mass fluxes QE = 0.18− 0.58± 0.005 g/s. Fig. 6(a)

shows the measured radial extent with time. Under the assumption that the adhesion energy

is constant, we scale the radial extent by Q1/4 from Eqn. 15 and find that the prefactor c,

where RF = c(Qt)1/4, is dependent on the glycerol-water content of the injected fluid. From

Eqn. 15, c is a constant set by the curvature imposed by adhesion at the front. Hence, we

find that the curvature at the front, which is constant for any given experiment, varies with

the fluid viscosity; and hence is a function of the glycerol-water content, and that blistering is

therefore a sensitive measure of the rheology of the adhesive tape. We independently measure

the curvature κ for each experiment by fitting a quadratic to the tip region of the detected

deflection profiles. Fig. 6(c) (inset) plots the measured curvature κ against the prefactor c

for the six experiments (see the Supplemental Material [23]). We find that c = c(κ) where

c = 1.45κ−1/4, black-dashed line, where the exponent of κ agrees with the static scaling given

by Eqn. 15. In Fig. 6(b) the radial extent is scaled by (Q/κ)1/4 using the measured values

of κ which shows an excellent collapse of the experimental data onto one curve with power

law exponent 1/4, where the black-dashed line is best fit RF/(Q/κ)1/4 = 1.45 t1/4, where the

prefactor is within 13% of theoretical prefactor 1.66. This discrepancy is largely due to the
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(a) (b)
(c)

FIG. 6. Radial extent with time in the adhesion dominant regime. (a) Measured radial extent. (b)

(inset) Measured curvature κ plotted against measured prefactor c, where RF = c(Qt)1/4. Black-

dashed line given by c = 1.45κ−1/4. (c) Radial extent scaled with (Q/κ)1/4. Black-dashed line

corresponds to best fit RF /(Q/κ)1/4 = 1.45 t1/4.

inherent limitations in the measurement of experimental curvature κ. We hypothesise that

the decrease in curvature (and hence decrease in adhesion energy ∆γ) with viscosity can be

explained by a chemical interaction between the fluid and adhesive material when the lag

length becomes small which weakens the adhesive strength, and hence reduces curvature.

Unlike in the viscosity dominant regime, in the adhesion dominant regime no measurable

lag region was observed during experiments, however condensation droplets were seen when

pulling off the adhesive tape. This suggests that the vapour tip was present and at low

enough pressures to exsolve gas from the glycerine-water mix but was of sufficiently small

scale such that it could not be distinguished from the fluid front during experiments using

our optical technique. Substituting the experimental parameters µ, Q and κ, and taking

σ = 101 × 103 Pa, into the expression for the lag length in the adhesion dominant regime

Eqn. 17 gives L ' 0.8− 1.2× 10−3 m. This is consistent with a lag length which was below

the image resolution as demonstrated in Fig. 3.

C. Transition timescales

The measured curvature values in the adhesion dominant regime provide a lower bound

on the absolute adhesive strength without interaction with the glycerine-water solution,
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κmin = 3.04 m−1, ∆γmin = 0.83 Jm−2, and an estimate of the magnitude of the dynamic

curvature in the viscosity dominant regime, given by (11), from the profile seen in Fig. 4,

gives an upper bound, κmax = 3.19 m−1, ∆γmax = 0.92 Jm−2. These adhesion energies are

comparable to values previously obtained [18]. We can therefore estimate the transition

timescale between the viscosity and adhesion dominant regimes. For the pure glycerine

experiments we estimate tC = 1.95TC ' 153 − 253 s however we do not anticipate seeing

adhesion dominant spreading due to the transition to gravity control. For the glycerine-water

solutions, using the measured values of curvature, we estimate the transition timescale to

be tC = 1.95TC ' 9 − 32 s. Both of these transition timescales are in agreement with the

timescales over which the experimental data collapse in the viscosity and adhesion dominant

regimes, see Figs. 5, 6.

V. DISCUSSION

Static blister tests have long been used as a measure of the strength of adhesion between

two materials [6, 26]. The coupling of viscous fluid delaminating adhered elastica has moved

concentration towards the study of blister dynamics [7, 12] with application in a wide range

of biological and industrial settings. These include the flow of biofluids through deformable

vessels [8] such as the reopening of the pulmonary airways [27]; and the manufacturing

of stretchable electronics [5] made from buckled film on an elastomeric substrate [28]. The

experiments described in Sec. IV have highlighted that blister dynamics could again usefully

be applied to understanding the strength of adhesion with blistering providing a sensitive

measure of the rheology of adhesive tape. In addition, the treatment of using thin elastica

coupled with an adhesive sheet has provided a simple, new approach to understanding fluid-

driven fracturing in an experimental setting. Hence, this experimental setup could lend itself

to investigating other outstanding problems such as the effect of inhomogeneity in adhesive

strength on the dynamics of fluid-driven fractures.

In Sec. II we described the static shapes for a given volume V and the dynamic spreading

regimes for a constant flux injection, V = Qt. One can think of connecting these two cases by

considering the evolution of a blister once injection has stopped. For a blister propagating in

the viscosity dominant regime, there would be a transition to adhesion control at the front as

the front velocity slows down, with a transient behaviour as the blister adjusts to the static
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shape. Conversely, for spreading in the adhesion dominant regime, the blister progresses

through a series of quasi-static shapes. Hence, if injection is stopped the fracture front

would remain stationary while the deceleration of the fluid front would be accomodated by

infilling of the vapour tip. This extension could easily be tested in our experimental setup

with the ability to track the evolution of the fluid and fracture fronts as described in Sec. III.

VI. CONCLUSION

Our theoretical model describes fluid-driven fracturing of adhered elastica by the intro-

duction of a vapour tip separating the fracture and fluid fronts. Coupled with a fracture

criterion imposed at the front, this leads to the possibility of static shapes where the poten-

tial energy of the blister balances the energy required for fracture. For dynamic inflation,

spreading can be split into two distinct regimes: viscosity dominant spreading controlled by

the pressure gradient driving fluid into the vapour tip, and adhesion dominant spreading

controlled by interfacial adhesion. Experiments using thin elastica adhered to a horizontal

substrate have yielded excellent comparisons with the theoretical model and demonstrated

spreading behaviour in the two regimes. The experimental techniques developed have also

provided further concrete evidence for the formation of an experimental vapour tip consistent

with that predicted by the theoretical model. The fluid lag has previously been observed

in laboratory experiments on the fracturing of elastic blocks [15–17], however our study is

the first to link an analytical prediction for the lag length with an experimental analogue.

This study gives further insight into the processes involved in fluid-driven fracturing and

provides an experimental framework to investigate fluid-driven fracturing of elastic media

more generally.
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