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We study the indentation of a rigid object into a
layer of a cohesive or non-cohesive plastic material.
Existing approaches to this problem using slip-line
theory assume that the penetration depth is relatively
small, employing perturbation theory about a flat
surface. Here, we use two alternative approaches to
account for large penetration depths, and for the
consequent spreading and uplift of the surrounding
material. For a viscoplastic fluid, which reduces to
an ideal plastic under the limit of vanishing viscosity,
we adopt a viscoplastic version of lubrication theory.
For a Mohr-Coulomb material, we adopt an extension
of slip-line theory between two parallel plates to
account for arbitrary indenter shapes. We compare the
theoretical predictions of penetration and spreading
with experiments in which a flat plate, circular
cylinder or sphere are indented into layers of
Carbopol or glass spheres with successively higher
loads. We find reasonable agreement between theory
and experiment, though with some discrepancies
that are discussed. There is a clear layer-depth
dependence of the indentation and uplift for the
viscoplastic material. For a cylinder indented into
a Mohr-Coulomb material, there is a much weaker
dependence on layer depth.
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1. Introduction
The indentation of a rigid object into the surface of a deformable plastic layer has been studied
extensively in solid mechanics in the context of determining the bearing capacity of a foundation
[1–3] and to provide a theoretical basis for rolling friction [4,5] and the Brinell hardness test [6].
For a layer of viscoplastic fluid, indentation is also relevant to a number of industrial coating,
callendering and squeeze-flow processes [7–9], the generic washboarding instability of a towed
object [10], and the migration of submerged pipelines over a muddy seafloor [11,12]. In a
biological context, the formation of footprints, and the inference about the creature that made
them, has been idealized as indentation into a ideal plastic layer [13–15]. In all these contexts,
provided a critical load is exceeded, the insertion of the object displaces material underneath,
forcing the medium to pile up around the object, adjusting the penetration depth and contact
area, and thereby allowing the indenter to reach an equilibrium.

In the classical problem of the indentation of a punch into an ideal plastic, it is assumed that
material begins to deform over a localized region underneath the indenter once one reaches
the critical load, and the surface remains horizontal outside the region of contact. For a two-
dimensional half-space indented by a flat punch, the method of characteristics, or sliplines, can
be used to calculate the critical load exactly for a cohesive material [1] or numerically for a
cohesionless medium [16]. The results can be extended to layers of finite depth [17] or nearly flat
indenters of arbitrary shape [18,19]. Given the contact length a, the critical load (per unit width) is
traditionally written as proportional to aτY for a cohesive material with cohesion τY , or 1

2ρga
2 for

a cohesionless medium with density ρ compacted by gravity g. The constants of proportionality,
the “Terzaghi coefficients”, account for effects such as layer confinement and indenter shape.
Nevertheless, this classical-style analysis does not account for the finite deformation of the plastic
layer and its uplift around the indenter. Consequently, the analysis must be extended to predict
the depth to which the indenter penetrates for a given load.

When the layer is relatively shallow, an alternative approach to the problem is provided by
Reynolds lubrication theory, developed for the flow of thin viscous films in fluid mechanics.
The extension of this theory for yield-stress fluids has been used to compute the dynamics of
viscoplastic squeeze flows [8], lubrication [20] and slumps with a free surface [21]. The theory
captures dynamical evolution as well as the final limiting states, and applies to a variety of more
general situations in two or three spatial dimensions [22]. Most closely related to the indentation
problem is the lubrication model of Hewitt & Balmforth [20] describing the washboard patterns
on a viscoplastic layer, which combines an analysis of the flow underneath a dragged, falling plate
with the ploughed free-surface flow ahead. Notably, as flow speeds become arbitrarily small, one
expects that viscoplasticity reduces to an ideal plastic limit. Thus, viscoplastic lubrication theory
offers a means to model dynamic indentation into a plastic layer beyond the initial contact, where
the surface is no longer flat and the penetration depth no longer negligible, with indenters of
arbitrary geometries and for plastic substrates with rate-dependent rheology.

The goal of the current paper is therefore to investigate indentation into a shallow plastic
fluid layer, exploiting a lubrication-style analysis. We begin by reviewing the classic results from
slipline theory (§2), and then discuss viscoplastic lubrication theory for indentation into a shallow
cohesive layer (§3). In §4, we then consider a Mohr-Coulomb material. In this case, the usual
lubrication model cannot be immediately applied except in the unphysical limit of an arbitrarily
small friction angle; instead, we generalize the analysis of Marshall [23], who reconsidered for
a Mohr-Coulomb material Prandtl’s solution of the compression of an ideal cohesive plastic
between two plates [24]. To complement the theory, in §5 and §6, we perform experiments in
which a cylinder or plate is pushed into a layer of either Carbopol or glass spheres. Aqueous
suspensions of Carbopol (a main ingredient in many hair gels and other common commercial
products) are well-characterized viscoplastic fluids that are adequately described by one of
the simplest yield-stress fluid models, the Herschel-Bulkley constitutive law [25]. Indentation
experiments with Carbopol are therefore expected to provide a demanding quantitative test of the
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(b)(a)

Figure 1: Sketches of the problem geometries: (a) a flat-based indenter or plate, and (b) the locally
parabolic underside of a cylinder.

viscoplastic lubrication theory; the experiments with glass spheres provide a counterpart for the
Mohr-Coulomb theory. We end the discussion by commenting on two other relevant issues: the
effect of inertia in dynamic indentation and how a permanent impression could be imprinted on
the plastic layer after the indenter is removed. Both are of particular importance in the formation
of footprints, either by animal or in an industrial process.

2. Slipline theory
Following classical plasticity theory, we consider the indentation of a flat punch of length a= ap
into a two-dimensional, ideal plastic layer of depth h0, as sketched in figure 1(a). The governing
equations, describing force balance and the yield condition, take the form,

∂σ

∂x
+
∂τ

∂z
=
∂p

∂x
,

∂τ

∂x
− ∂σ

∂z
=
∂p

∂z
+ ρg and σ2 + τ2 = (τY cosφ+ p sinφ)2, (2.1)

where τ is the vertical shear stress, σ is the horizontal deviatoric normal stress, p is the pressure,
ρ is the substrate density, g is gravity, τY is the cohesion and φ is the friction angle. If we define

σ= (τY cosφ+ p sinφ) cos 2ϑ and τ = (τY cosφ+ p sinφ) sin 2ϑ, (2.2)

then the force balance equations may be manipulated into the characteristic forms,

dz = tan
(
ϑ− 1

4π −
1
2φ
)
dx, dp+ 2(τY + p tanφ)dϑ=−ρg(dz + tanφ dx) (2.3)

and
dz = tan

(
ϑ+ 1

4π + 1
2φ
)
dx, dp− 2(τY + p tanφ)dϑ=−ρg(dz − tanφ dx), (2.4)

which define the α and β−sliplines, respectively.

(a) Sliplines for a finite cohesive layer
For the case of an infinitely deep, purely cohesive layer (with φ= 0), the slipline solution can be
calculated analytically [1]. The slipline field consists of centred fans positioned at the edges of the
indenter, opening to angles of 90◦ and buffered from one another and the free surface by right-
angle triangles of constant stress; cf. figure 2(a) (which shows the right-half of the slipline field).
This solution implies a critical load per unit width of τY (2 + π)a.

For indentation into a finite layer, following [26], we generalize this Prandtl solution using
the slipline construction illustrated in figure 2. For a< h0

√
2, the indenter is too narrow for the

deformation to feel the bottom and the solution reduces to that of Prandtl. But if a> h0
√
2, the

deformation extends to the base. For that situation, we again place a centred fan and triangle of
constant stress at the edge of the indenter. The construction assumes that the surfaces of both the
indenter and underlying plane are rough, so that |τ |= τY along both, implying that the sliplines
there have angles given by ϑ=± 1

4π. The centred fan can consequently be extended down to the
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Figure 2: Sliplines for a cohesive layer, showing (a) the Prandtl solution for which the fan first
touches the base (a=

√
2h0), and (b)–(c) longer indenters in which the fan widens up to an angle

of 3π/4 and the slipline pattern is continued to the left (α−lines shown in red and β−lines in
blue). The arc bounding the centred fan to the left (thicker red curve) is the α−line from which the
slipline field is constructed. (d) shows a selection of upper yield surfaces for varying ap, coloured
according to the local vertical force density; the dashed line shows the edge of the fan. (e) plots
the load, scaled by aWτY , against 1

2h
−1
0 ap, with the shallow and deep limits indicated.

base of the layer and around towards the underside of the indenter, providing an arc along which
p and ϑ are known. Further sliplines can then be launched from this arc and the bottom surface to
complete the slipline field. As illustrated in figure 2(c), provided the contact length is sufficiently
larger than h0

√
2, the slipline pattern rapidly converges to the repeating cycloids characteristic

of the squeeze flow between two plates [24]. The pattern eventually terminates underneath the
centre of the indenter (assumed symmetrical about x= 0); here, the α and β−lines that reach x= 0

with angles given by ϑ= 0 (as demanded by symmetry) provide yield surfaces enclosing wedges
that are rigidly attached to the indenter and underlying plane.

The load for the slipline solutions is found by integrating the vertical force over the upper yield
surface of the deforming region underneath the indenter (which includes part of the underside
for sufficiently large a); see figure 2(d–e). As a→ h0

√
2, the yielded region becomes limited

to the fans and adjacent triangles of constant stress, and the load converges to τY (2 + π)aW ,
where W is the width of the plate. For very wide indenters, Prandtl’s squeeze-flow solution
gives the load 1

2 (aWτY )(a/h0). An approximation of the load for smaller contact lengths is
1
2 (aWτY )

(
a
h0

+ 8.32
)

, as shown in figure 2(e). The numerically computed load switches fairly
abruptly over to this approximation from the deep limit for a≈ 2h0.

(b) Sliplines for a finite Mohr-Coulomb layer
For an infinitely deep non-cohesive material with τY = 0, the slipline field must be constructed
numerically, although the pattern of sliplines superficially resembles Prandtl’s solution. The



5

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

-2.5 -2 -1.5 -1 -0.5 0

0

0.2

0.4

0.6

0.8

1

2 4 6 8

10
1

10
2

10
3

10
4

Figure 3: (a) Sliplines for a Mohr-Coulomb layer with a= 9.2h0, φ= 24◦ and ϑf =− 2
3 (

1
4π + 1

2φ).
The dashed line shows the locus of the points where ϑ= 0. In (b), the upper yield surfaces are
shown for various a, coloured according to the local vertical force density with the overlying
weight of plugged material subtracted, and with the last self-similar α−line shown by the dashed
line. In (c) we plot the load scaled by 1

2ρga
2W (the Terzaghi coefficient) for θf =−[0, 13 ,

2
3 , 1]×

( 14π + 1
2φ). The dashed lines show the asymptotic prediction for a� h0 in §4.

critical load per unit width is 1
2ρgNγa

2, where the Terzaghi coefficient Nγ depends on φ and
the frictional character of the surface of the indenter [3,16].

Again, the slipline solution can be generalized to a layer of finite depth; see figure 3. In this
case, the construction begins from a self-similar family of sliplines that are centred at the contact
line and span a region that extends down to where the last self-similar α−line touches the base
tangentially [16,17]. The slipline field is then continued to the left by launching new sliplines from
that final α−line and the base. The boundary condition on the indenter can further be adjusted to
account for surface slip by demanding that the sliplines meet the underside at a prescribed angle:
ϑ(x, h0) = ϑf , with ϑf =− 1

4π −
1
2φ for a fully rough indenter and ϑ= 0 if it is perfectly smooth;

ϑf lies between these limits for a partially rough surface. Continuing back under the indenter,
pressures now grow exponentially, negating hydrostatic contributions and allowing the slipline
pattern to converge to an x−independent form [23], as described in more detail in §4.

3. Indentation into a shallow viscoplastic layer

(a) Viscoplastic lubrication theory
To develop a viscoplastic lubrication model of indentation, we consider a shallow layer of yield-
stress fluid for which the depth is much less that the horizontal scale of the indenter, as sketched in
figure 1. We use the incompressible Herschel-Bulkley model [25] to describe the fluid. Because the
layer is shallow, and assuming that the fluid cannot slide freely over either the underlying plane
or the indenter, the pressure p and shear stress τ play the main roles in forcing or opposing fluid
motion. Ignoring the inertia of the plastic material, a standard thin-film approximation [21,22] of
the force balance equations in (2.1) and mass conservation implies that

px = τz pz =−ρg and ux + wz = 0, (3.1)

where subscripts are used to indicate partial derivatives. Given the dominance of the shear stress
(at least over the regions where the material is fully yielded [22,25]), the Herschel-Bulkley law
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becomes one-dimensional and takes the form,

τ =

(
Kγ̇n−1 +

τY
γ̇

)
uz , if |τ |> τY ,

γ̇ ≡ |uz |= 0, if |τ |< τY ,
(3.2)

where K is the consistency, n is the power-law index and τY is the (constant) yield stress.
The problem splits up spatially into two pieces: below the indenter, a squeeze flow arises, with

the no-slip boundary conditions on the surface demanding that

u(x, 0, t) =w(x, 0, t) = u(x, h, 0) = 0 and ht =w(x, h, t), (3.3)

where h(x, t) is the local depth of the plastic layer, which here is prescribed by the shape of the
underside of the indenter. For a cylinder or plate (figure 1):

h(x, t) =

{
h(0, t) + 1

2R
−1x2, cylinder,

h(0, t), plate,
(3.4)

where R denotes the radius of curvature of the cylinder. (In appendix A, we consider
axisymmetric geometry and a spherical indenter.) The squeeze flow occupies − 1

2a< x<
1
2a.

Outside this interval, we ignore any ambient pressure and surface tension, and impose

u(x, 0, t) =w(x, 0, t) = 0, ht + u(x, h, t)hx =w(x, h, t) and p(x, h, t) = τ(x, h, t) = 0.

(3.5)
If there is no sideways motion, the indenter falls vertically under gravity until it halts under

the resistance from the substrate, which is dominated by the lubrication pressure. Given that the
centre of mass lies a fixed distance above h(0, t), the equation of motion of the indenter is

m
d2

dt2
h(0, t) = 2W

∫a/2
0

p(x, h, t)dx−mg, (3.6)

where m and W are the indenter’s mass and width.
We begin from the initial moment of contact, when h(x, 0) = h0 and ht(0, 0) = ḣ0 (the initial

layer depth and indenter speed), with a(0) = 0 for the cylinder and a(0) = a(t) = ap for the plate.

(b) Squeeze-flow analysis
Underneath the indenter, integrals of (3.1) indicate that

p(x, z, t) = P (x, t) + ρg(h− z) and τ(x, z, t) = τ(x, h, t)− (Px + ρghx)(h− z), (3.7)

where P (x, t) = p(x, h, t). The constitutive law (3.2) then implies that

K|uz |n−1uz + τY sgn(uz) = τ(x, h, t)− (Px + ρghx)(h− z). (3.8)

Focusing on the region 0<x, where u> 0, we observe that (3.8) and the boundary conditions
u(x, 0, t) = u(x, h, 0) = 0 imply that u must be symmetric about z = 1

2h. Thus,

u=
nK−1/n

(n+ 1)
×

{
(−Px − ρghx)1/n[Y 1+1/n

− − (Y− − z)1+1/n], 0< z < Y−,

(−Px − ρghx)1/n[(h− Y+)−1+1/n −(z − Y+)1+1/n], Y+ < z < h,
(3.9)

where
Y± =

h

2
± τY
|Px + ρghx|

. (3.10)

Note that the shear stress |τ |< τY over Y− < z < Y+, implying uz = 0 there. However, the
horizontal flow speed,

u= up =
nY

1+1/n
−

(n+ 1)K1/n
(−Px − ρghx)1/n, (3.11)

cannot be uniform in x; this region is a “pseudo-plug”, where the stresses are held slightly above
the yield stress, and σ has a similar magnitude to τ [22,25].
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Finally, we record the depth-integrated mass-conservation equation,

∂h

∂t
+

∂

∂x

(∫h
0
udz

)
= 0, (3.12)

which (if the flow is symmetrical about x= 0) now implies that

− xht(0, t) =
n(−Px − ρghx)1/n

(n+ 1)(2n+ 1)K1/n
Y

1+1/n
− [2nh+ h− 2nY−] , (3.13)

and determines the surface pressure P (x, t) at each instant given ht(0, t).

(c) Free-surface flow
The stress state beyond the indenter follows from the alternative boundary conditions in (3.5):

p= ρg(h− z) and τ =−ρghx(h− z). (3.14)

Hence, in view of the constitutive law and (3.5),

u=
nK−1/n

(n+ 1)
×

{
(−ρghx)1/n[Y 1+1/n − (Y − z)1+1/n], 0< z < Y,

(−ρghx)1/n, Y < z < h,
(3.15)

where

Y = h+ τY /(ρghx), (3.16)

is a third fake yield surface underneath another pseudo-plug in Y < z < h. Last, we again use the
mass-conservation equation (3.12), which now turns into the evolution equation,

∂h

∂t
+

∂

∂x

[
n(−ρghx)1/nY 1+1/n(2nh+ h− nY )

(n+ 1)(2n+ 1)K1/n

]
= 0. (3.17)

The free surface flow terminates at the flow front x= xE (t), where h→ h0.

(d) Model summary
The full model problem consists of the squeeze-flow equations in 0<x< 1

2a (which amount to
an ODE in x for P (x, t) from (3.13), the free-surface evolution equation (3.17) for h(x, t) in 1

2a<

x< xE , and the equation of motion (3.6) for the indenter’s elevation (which requires the pressure
integral in (3.6)). The squeeze-flow and free-surface problems are coupled by the need to match
the pressure and outward flux at the contact line. The former condition translates to

P ( 12a, t) = ρg(h+
C
− h−

C
) and h±

C
= h( 12a

±, t), (3.18)

where x= 1
2a
± denotes the limit to the contact line from underneath or outside the indenter, and

h+
C
6= h−

C
allows for a jump in depth in the case of the plate due to its vertical sides.

To place the problem in dimensionless form, we rescale time, t̃= t
√
g/h0, and set

[ξ, ξC (t̃), ξE (t̃)] =
[x, 12a, xE ]

x0
, η(ξ, t̃) =

h

h0
, δ(t̃) =

[h0 − h(0, t)]
h0

, Π(ξ, t̃) =
x0WP

mg
, (3.19)

where x0 is the characteristic horizontal lengthscale of the indenter: for the cylinder, x0 ≡
√
h0R,

and for the plate, x0 = 1
2ap. In either case, we define load, gravity, and viscosity parameters,

M=
mgh0
τY Wx20

, G = ρgh20
τY x0

and V =

(
gx20
h30

)1/2(
K

τY

)1/n

. (3.20)
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The model system now reduces to (after dropping the hat decoration on t)

Vξδ̇=
n|MΠξ + Gηξ|1/n

(n+ 1)(2n+ 1)
Y1+1/n
− (2nη + η − 2nY−) , for 0< ξ < ξ−

C
,

Vηt =−
nG1/n

(n+ 1)(2n+ 1)

[
Y1+1/n(2nη + η − nY)|ηξ|1/n

]
ξ
, for ξ+

C
< ξ < ξE ,

δ̈= 1− 2

∫ξ−
C

0
Π(ξ, t)dξ,

(3.21)

where
Y± ≡ 1

2η ± |MΠξ + Gηξ|−1 and Y ≡ η + (Gηξ)−1, (3.22)

and

η(ξ, t) =

{
1− δ(t) + 1

2ξ
2, cylinder,

1− δ(t), plate,
for 0< ξ < ξ−

C
. (3.23)

At the flow front, η(ξE , t) = 1, and at the contact line we have continuity of pressure,

Π(ξ−
C
, t) =

G
M (η+

C
− η−

C
), (3.24)

where η±
C
(t) = η(ξ, t) for ξ = ξ±

C
, and continuity of flux,[∣∣∣∣MG Πξ + ηξ

∣∣∣∣1/n Y1+1/n
− (2nη + η − 2nY−)

]
ξ=ξ−

C

=
[
|ηξ|1/nY1+1/n(2nη + η − nY)

]
ξ=ξ+

C

.

(3.25)

(e) A sample indentation
We solve (3.21)–(3.25) numerically by using centred finite differences to approximate spatial
derivatives and quadrature on the same grid to evaluate the substrate resistance, then step the
solution forwards in time using MATLAB’s in-built solver ODE15s. Figure 4 shows a sample
numerical solution for the indentation of a cylinder, displaying snapshots of the flow pattern in
the viscoplastic layer, as well as time series of δ(t), ξC (t) and ξE (t). As the cylinder pushes into the
substrate, fluid is squeezed out from underneath, building up the free surface beyond the contact
line, which then collapses under gravity. The penetration of the indenter into the substrate slows
and eventually stops at t≈ 0.30 when δ= δf ≈ 0.37. The fluid stresses subsequently fall below the
yield stress everywhere to halt all motion (the model equations hold only for δ̇ > 0).

Note that the two flow patterns within the substrate are inconsistent at the contact line:
the pseudo-plugs of the squeeze and free-surface flows do not coincide in figure 4(a–c). The
discontinuity highlights the presence of a boundary layer at the contact line with a horizontal
length comparable to the fluid depth. Over this region, the two flow patterns must be reconciled;
in the shallow-layer theory, only the net effect is incorporated by matching the pressure and flux.

(f) Plastic limit
When V → 0, the resistance of the substrate is provided solely by the plastic yield stress and the
flow problems are rendered quasi-static. From (3.22), we then find

MΠξ =−Gηξ −
2

η
for 0< ξ < ξC and Gηηξ =−1 for ξC < ξ < ξE , (3.26)

which correspond to the conditions met when (Y, Y−)→ 0 and Y+→ h, and the yield surfaces
approach the adjacent solid walls (cf. figure 4(c)). Hence,

Mδ̈ −M=−2
∫ξ−

C

0
MΠdξ ≡−2ξCG(η

+
C
− η−

C
) + 2

∫ξ−
C

0

(
Gηξ +

2

η

)
ξdξ, (3.27)
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Figure 4: (a)-(c) Numerical solution for a cylinder dropped onto a Herschel Bulkley substrate with
n= 1

3 , with δ̇0 = 2 andM= G = V = 1, showing three snapshots of the flow patterns. Indicated
are the edge of cylinder (black), the free surface (blue), the yield surfaces in the squeeze flow (red)
and free surface flow (blue); the contact line and flow front are marked by vertical dashed lines.
The cylinder and plug flows are shaded. Below are time series of (d) δ(t) and (e) contact length
and flow front; the triangles indicate the times of the snapshots in (a)–(e) and the star in (d) is the
equilibrium depth δeq of see §3(f).

and the free surface profile and runout are

η=

√
(η+C )

2 − 2G−1(ξ − ξC ) and ξE = ξC + 1
2G[(η

+
C
)
2
− 1]. (3.28)

Conservation of mass now demands that∫ξ−
C

0
η(ξ, t)dξ +

∫ξ
E

ξ+
C

η(ξ, t)dξ = ξE . (3.29)

Below, we quote the equilibrium positions predicted by (3.27)–(3.29) when δ̈= 0 for the cylinder
and plate. These equilibria are not the same as the final position δf illustrated in figure 4, which
is lower as a result of the finite inertia of the indenter. However, when the load on the indenter is
slowly raised to push it incrementally into the substrate (which corresponds to raisingM at fixed
G), as in our loading experiments, inertia is largely irrelevant and the penetration depth is set by
the equilibrium position.

(i) Cylinder

For the cylinder (η= 1− δ + 1
2ξ

2 for ξ < ξC , η+
C
= η−

C
= 1− δ + 1

8a
2, and Π(ξC ) = 0), the

equations (3.27) and (3.29) reduce to

M=
2

3
Gξ3

C
+ 4 log

(
1 +

ξ2
C

2(1− δ)

)
and ξ3

C
− G(3− 2δ + ξ2

C
)
(
δ − 1

2ξ
2
C

)
= 6ξC(1− δ).

(3.30)
In the limit, G � 1, we find ξC =

√
6δ. For this low-gravity situation, the free surface deformation

becomes localized to ξ = ξC , and a near vertical face forms at the contact line. In the opposite limit
of G � 1, the free surface is pulled immediately down to the height of the original layer by the
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relatively strong gravity, with ηC = 1 and ξC =
√
2δ. Note that the cylinder never makes contact

with the underlying surface (δ→ 1): δ∼ 1− e−M/4 forM� 1.

(ii) Plate

For the plate (η= η−
C
= 1− δ for ξ < ξC = 1 and Π(1) = G(ηC − 1 + δ)), we find

M= 2(1− δ)−1 + 2G(ηC − 1 + δ) and 6δ= G(η+
C
− 1)2(2η+

C
+ 1). (3.31)

In this problem, the variables are δ and η+
C

, the height to which the fluid becomes piled up against
the sides of the plate. Moreover, there is a threshold for penetration because of the plate’s fixed
length ξC = 1 (for the cylinder, ξC → 0 as δ→ 0), ofM> 2 or τY < 2mgh0/(Wa2).

4. Indentation into a shallow Mohr-Coulomb layer
Viscoplastic lubrication theory applies when the deviatoric stresses τ and σ are much less than
the pressure p, leading to scale separation and the usual simplifications of Reynolds theory. For
a Mohr-Coulomb material, however, the pressure is only significantly larger than τ and σ when
the friction angle of the material φ is unphysically small. An alternative theoretical description is
then needed. For this task we return to plasticity theory, and extend the analysis of Marshall [23].
The key insight is that, when the length of indenter is much greater than the depth of the layer,
the sliplines converge to a universal pattern away from the contact line.

(a) Perturbation theory
For shallow indentation, we stretch the horizontal coordinate, X = εx, to account for difference
in spatial scales, where ε� 1 corresponds to the ratio of the layer depth and the characteristic
horizontal extent of the indenter (i.e. ε= h0/x0 in the notation of the lubrication analysis). We then
set p= p(X, z, t), ϑ(X, z, t) and h= h(X, t). With τY = 0, we have (σ, τ) = p sinφ(cos 2ϑ, sin 2ϑ),
and a re-arrangement of (2.1) now gives

− (log p)z cos
2 φ+ 2 sinφ [ϑz sin 2ϑ+ ε(cos 2ϑ− sinφ)ϑX ] =

ρg

p
(1− cos 2ϑ sinφ), (4.1)

− ε(log p)X cos2 φ+ 2 sinφ [(cos 2ϑ+ sinφ)ϑz − εϑX sin 2ϑ] =
ρg

p
sin 2ϑ sinφ. (4.2)

Motivated by the exponential growth of the pressure in the squeeze flow shown by Marshall [23]
and demonstrated by the slipline solutions in §2, we introduce the asymptotic sequences,

log p=
sinφ

cos2 φ

(
F−1
ε

+ F0 + εF1 + ...

)
and ϑ= ϑ0 + εϑ1 + ... (4.3)

The pressure rise further ensures that hydrostatic contributions become exponentially small,
leading us to discard the gravity terms on the right of (4.1)–(4.2). Again, we take the bottom
of the layer to be rough with ϑ(X, 0, t) = 1

4π + 1
2φ, and the indenter to be partially rough so that

ϑ(X,h, t)∼ ϑf − εhX , in view of the shape of the indenter.
Collecting terms of order ε−1 and ε0 in (4.1)–(4.2), we now find the relations,

F−1z = 0, F0z =−(cos 2ϑ0)z and F−1X = 2(cos 2ϑ0 + sinφ)ϑ0z . (4.4)

Hence, given that ϑ0(X, 0, t) = 1
4π + 1

2φ and ϑ0(X,h, t) = ϑf ,

F−1(X, t) =

∫A/2
X

C

h(u, t)
du, F0(X, z, t) = f(X, t)− cos 2ϑ0 + cos 2ϑf , (4.5)

and
z

h
=

sin 2ϑ0 − cosφ+ (2ϑ0 − 1
2π − φ) sinφ

sin 2ϑf − cosφ+ (2ϑf − 1
2π − φ) sinφ

, (4.6)
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where A= εa, f(X, t) = F0(X,h, t) and

C = cosφ− sin 2ϑf − (2ϑf − 1
2π − φ) sinφ. (4.7)

The implicit solution for ϑ0 in (4.6) reflects the convergence of the slipline pattern to a form that
depends only on the rescaled vertical coordinate z/h(X, t). Moreover, in (4.5) we have assumed
that the solution matches to an O(1) pressure at the contact line (demanding F−1( 12A, t) = 0).

At O(ε), equation (4.2) gives

F0X = 2(ϑ1 cos 2ϑ0 + ϑ1 sinφ)z + (cos 2ϑ0)X , (4.8)

which now implies that fX = Υ (log h)X , where

Υ = 2 sinφ− 2

C

[
ϑf − 1

4π −
1
2φ+ sinφ(sin 2ϑf − cosφ) + 1

4 (sin 4ϑf + sin 2φ)
]
. (4.9)

Hence, to O(1), the pressure is prescribed up to a dimensionless amplitude parameter Ψ (cf. [23]):

p= ρghCΨ exp

{
sinφ

cos2 φ

[
1

ε

∫A/2
X

C

h(u, t)
du+ Υ ln

(
h

hC

)
− (cos 2ϑ0 − cos 2ϑf )

]}
. (4.10)

(b) Matching, uplift and surface resistance
To determine Ψ , we assume that the indenter and free surface are locally flat in a narrow region
around the contact line with O(hC ) width. This leads us to match the pressure p( 12A, z, t) to the
slipline solution of §2(b), where edge effects and gravity become important. The match provides
Ψ = Ψ(φ, ϑf ) from the leftward limit of the slipline solution, where the sliplines converge to
universal form. The local depth hC = h0ηC requires a model for the free-surface uplift beyond
the indenter. For a Mohr-Coulomb layer, this is problematic as the time-dependent dynamics
predicted by an associated flow rule predicts an unphysical degree of dilation [27]. One path
forward is to assume that the profile of the free surface is dictated by gravitational collapse to the
angle of friction, in which case

h= h0ηC − (x− 1
2a) tanφ, for 1

2a< x<
1
2a+ h0(ηC − 1) cotφ. (4.11)

Mass conservation during a quasi-static indentation then implies that∫ξ
C

0
η(ξ, t) dξ + 1

2 (ηC − 1)2ε cotφ= ξC , (4.12)

where, again, ξC = a/(2x0) and η(ξ, t) = η(x/x0, t) = h/h0. Finally, we compute the surface
resistance by integrating the leading-order vertical stress σ + p over the contact length, and feed
the result into the dimensionless equation of motion of the indenter:

1− 2G
MΨ(φ, ϑf )(1 + sinφ cos 2ϑf )ηC

∫ξ
C

0
exp

{
sinφ

cos2 φ

[
1

ε

∫ξ
C

χ

C du

η(u, t)
+ Υ ln

(
η

ηC

)]}
dχ= δ̈.

(4.13)
As in §3(f), we consider the equilibrium positions where δ̈= 0 for different indenter shapes.

The load predicted by (4.13) for a flat plate with x= 1
2ap is compared with slipline computations

in figure 3(c); in this instance, the slipline computation is exact, and the prediction from (4.13)
corresponds to its asymptotic limit for ap� h0. For the cylinder (with η= 1− δ + 1

2ξ
2),

M
2G = Ψ(φ, ϑf )(1 + sinφ cos 2ϑf )(1− δ + 1

2ξ
2
C
) exp

[
C sinφ

ε cos2 φ

√
2

1− δ tan−1
(

ξC√
2(1− δ)

)]
×

×
∫ξ

C

0
exp

{
− sinφ

cos2 φ

[
C

ε

√
2

1− δ tan−1
(

χ√
2(1− δ)

)
− Υ ln

(
1− δ + 1

2χ
2

1− δ + 1
2ξ

2
C

)]}
dχ. (4.14)

along with
ξ3
C
+ 3(δ − 1

2ξ
2
C
)2ε cotφ= 6ξC δ. (4.15)
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Figure 5: Penetration depth, δ, and contact length, 2ξC , against non-dimensional load M/G for
(a–b) φ= 20, 25, 30◦, (c–d) ε= 0.05, 0.1, 0.15, and (e–f) ϑf =−[0, 12 , 1]× ( 14π + 1

2φ). Aside from
those choices, the parameters are ε= 0.1, ϑf =− 1

2 (
1
4π + 1

2φ) and φ= 25◦.

lever masses

pivot

laser

Figure 6: Sketch of the experimental set-up.

Figure 5 shows the solutions to (4.14–4.15) for different values of the friction angle φ, aspect ratio
ε (equivalently, the layer thickness for a given cylinder) and cylinder roughness ϑf .

5. Indentation experiments with Carbopol

(a) Set-up
The setup for our indentation experiments is sketched in figure 6: an indenter was attached
to the end of an aluminium bar and positioned above a tray filled with Carbopol. The metre-
long bar was fixed to bearings that could rotate relatively freely about an axle. The indenter was
counterbalanced so that it rested at a height just above the Carbopol surface, and weights were
placed on top of the bar to add a moment, and hence load, to force the indenter to penetrate the
substrate. For most of the experiments, we began by smoothing the surface of the Carbopol in
the tray with a levelled scraper. The weights were then incrementally added to the bar and then
moved along to the end to gradually increase the load without lifting the indenter off in between.
These “loading” experiments therefore marched through a sequence of equilibrium indentations,
minimizing any dependence on initial position or velocity. In a number of cases, we repeated the
loading sequence after relevelling the surface, to verify the repeatability of the results.
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Each time the load was raised, the depth of penetration and contact length were measured
after waiting a short interval. To measure the penetration depth d, a high-resolution camera took
photographs of each equilibrium position of the indenter. Markers in the field of view were
tracked to determine displacements in the images, and then translated to vertical penetration
distances using the known orientation and distance of the camera. A tape measure adhered to
the top side of the indenter permitted a visual measurement of the length of the contact curve a
along the underside. Additional photographs from the side highlighted the uplifted free surface
and allowed a measurement of the profile h(x, t).

The Carbopol was an aqueous suspension of Ultrez 21 with a concentration of about 0.5% by
mass, neutralized with sodium hydroxide. A Herschel-Bulkley fit to the flow curve measured in
a rheometer (MCR501, Anton Paar, with roughened parallel plates) gave τY ≈ 38Pa, n≈ 0.3 and
K ≈ 30Pa sn. The tray was filled to layer depths h0 between 0.6 cm and 6.2 cm, and was lined
with sandpaper to minimize any effective slip.

For the indenter, we used either a section of a cylinder (of radius R= 7.2 cm and width W =

30.3 cm), or a plate (of length ap = 6.8 cm and widthW = 26.9 cm), both made of perspex. Further
experiments using a sphere are described in appendix A.

(b) Penetration depths and contact lengths
Figure 7(a,c) displays the results for the penetration depth d and contact length a. Both depend
on the layer depth, and the trends with load compare poorly with a prediction of Spencer [19] for
an infinitely deep layer (included as solid lines in the figure). In panels (b) and (d), the data are
rescaled according to the viscoplastic lubrication theory, plotting δ= d/h0 and a/x0 = a/

√
Rh0

againstM. Although there are some discrepancies, particularly for the deeper Carbopol layers,
the model broadly reproduces the experimental data. Importantly, the effect of gravity on the
material beyond the contact line is significant, with the theory for G → 0 overestimating the
penetration of the cylinder.

By contrast, the comparison of theory and experiment for the plate is less satisfactory: figure
8 shows the penetration depths and compares the resulting data for δ with the lubrication theory
predictions. Although there is an abrupt increase in penetration past at a certain layer-depth-
dependent load in the experiments, there is no true threshold below which the plate sits on the
undeformed surface. The absence of a threshold could be due to viscoelastic deformation below
the yield stress (a feature of Carbopol seen in other contexts [7,25,28]), although surface tension
and its repercussions on the wetting of the plate may also contribute.

In addition, the relatively abrupt penetration of the plate occurs at higher loads than expected
in the theory, for which the threshold is M= 2. In fact, as exposed in §2(a), the threshold is
underestimated in the shallow-layer model because of edge effects: slipline theory for a plate
of finite length implies that M≈ 2(1 + 8.32h0/ap) (see figure 3). The revised threshold implies
that the plate begins to penetrate whenM is over the range 3.5− 5.7 for the experiments shown
in figure 8, which is much closer to the observations.

Another potential source of disagreement arises from the way in which we conduct the loading
experiments: at each load, the penetration depth was measured after ten or so seconds. Given the
shallowness of the layer and the finite and fixed length of the plate, however, it is conceivable that
fluid takes longer to be squeezed out from underneath. To explore this in more detail, we carried
out an additional experiment in which we increased the load linearly up to 1 kg and then waited,
recording the instantaneous penetration depth every ten seconds. The inset of figure 8(b) shows
the results. Evidently, the plate does not reach its resting position within the ten second period
after changing the load, and continues to descend by over a millimetre for about a minute after
the maximum load is attained. Thus, time-dependent dynamics are at least partly responsible for
the discrepancy in figure 8(b).
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Figure 7: (a) Penetration depth d and (c) contact length a for indentations of the cylinder into
Carbopol layers of different depth h0 (as indicated by the colour scheme in (c)); solid lines show
Spencer’s predictions, d=m2g2/[14R(2 + π)2W 2τY

2] and a=mg/[(2 + π)WτY ], for a infinitely
deep plastic layer. In (b) and (d), the dimensionless equilibrium position δ= d/h0 and contact
length 2ξC = a/x0 = a/

√
h0R are plotted against the dimensionless load M=mgh0/(τY Wx20);

the solid lines show the prediction of the shallow-layer theory of 3(f)i and the dashed line is the
G/M→ 0 limit with δ→ 1− 3/(2 + eM/4) and ξC →

√
6δ.

(c) Uplifted surface profiles
Figure 9 shows sample profiles of the uplifted free surface outside the cylinder. Given a point
(x∗, h∗) on the free surface to the left of the cylinder, the lubrication theory result in (3.28) predicts
that the (dimensional) free surface is given by

h=

√
h2∗ + τY (x− x∗)/(ρg), (5.1)

whereas Spencer’s [19] prediction for infinite depth is

h= h∗ + (x2 − x2∗)/(14R). (5.2)

Figure 9 compares these predictions with the experimental profiles, using the observed points
indicated by circles. For the largest penetration depths, the profile steepens up close to the
theoretical prediction of viscoplastic lubrication theory. However, for the smallest penetration
depths, this prediction performs poorly and Spencer’s result is superior, implying these
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Figure 9: Profiles of the free surface deformation in Carbopol for the cylinder with h0 = 1.2cm.
The theoretical predictions in (5.1) and (5.2), pinned at the points indicated by the circles, are
plotted as solid or dashed lines (respectively).

indentations are effectively deep. Note that the observed profiles flatten out near the cylinder
and outer edges, perhaps due to the influence of surface tension and the dynamics at the contact
line that reconciles the squeeze and free-surface flow patterns (see also [11]).

6. Indentation experiments with granular layers
We conducted complementary experiments for the indentation of a cylinder into a layer of glass
spheres (technical quality ballotini, from Potters Industries) with diameter D= 0.1, 0.25, 0.5 and
1mm. The bulk density is ρ≈ 1.5 g/cm3, and the angle of repose, as measured from building
sandpiles, was about 24◦ for all four particle diameters. Once more, we measured the position
of the indenter using markers in recorded images and visually measuring the contact length. In
addition, however, we used a laser line incident in a vertical plane to highlight a section along the
ballotini surface perpendicular to the axis of the cylinder. The deflections of the laser line occuring
due to the uplift of the ballotini surface were recorded by a camera positioned off to one side at
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Figure 10: (a) Penetration depth d and (b) contact length a for indentations of the cylinder into
ballotini. To remove an offset in the penetration depths that arises because the surface is not
smooth and the counterbalancing is imperfect, the depth measurement at the lowest mass was
subtracted from the data for d. The solid line plots the slipline prediction for the contact length a=
(2m/ρNγW )1/2 along with approximation d≈m/(6.5RρNγW ), whereNγ = 5.5. The dotted and
dashed lines in (a) are the bounds, d=m/(12RρNγW ) and d=m/(4RρNγW ). The dot-dashed
lines plot the shallow layer theory with φ= 24◦ for a fully rough cylinder and each layer depth
(corresponding to ε= 0.41, 0.55, 0.69 and 0.87). The inset in (b) plots d against a (in cm); the solid
line shows the fit a≈ 3.6

√
Rd.

a known angle to the vertical, and the ballotini surface thereby identified. Unless the cylinder
was raised from the surface after each indentation (which inevitably also disturbs the surface), a
portion of the laser line is distorted by its passage through the cylinder. In our sequential loading
experiments, we corrected for this distortion by subtracting off a reference profile of the counter-
balanced cylinder resting just above the surface. Despite this subtraction, the indentation of the
cylinder shifts the distorted section of the laser line, leaving inconsequential but unsatisfying
residual optical features in the recorded signal. The penetration depth and contact length can also
be extracted from the laser profiles and we verified that the two sets of measurements were in
agreement.

Figure 10 shows penetration depth d and contact length a for indentations with different layer
depths h0 and particle diameters D. For the particles with D< 1mm, both d and a appear to
be insensitive to particle diameter and layer depth. The D= 1mm data are slightly different,
suggesting a finite-size effect for that ballotini (such as persistent force chains spanning the layer
[29]). The independence of layer depth suggests that the indentation into the granular substrate
does not feel the underlying surface, which is surprising in view of the results for Carbopol and
the slipline theory, in which deformation extends to the base for a& h0 (figure 3).

According to slipline theory (§2), the contact length for a deep (non-cohesive) Mohr-Coulomb
layer is given by a= (2m/ρNγW )1/2. For a material with φ= 24◦, the Terzaghi coefficient isNγ ≈
5.5 for a fully rough cylinder, andNγ ≈ 3 if the surface is perfectly smooth [30]. The contact length
data in figure 10(b) is best reproduced by the slipline prediction with the Terzaghi coefficient for a
rough cylinder. For the penetration depth, one requires an assumption regarding the uplifted free
surface to either side of the cylinder. The penetration depth can be bounded by assuming that the
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surface purely compacts without any sideways deformation (giving a2 = 8Rd; dotted line) or is
pushed out incompressibly to form a vertical cliff at the contact line (a2 = 24Rd; dashed line). In
fact, a plot of the penetration depth against the contact length (inset of figure 10(b)) suggests that
a2 ≈ 13Rd, which leads to the prediction for d shown by the solid line in figure 10(a).

In figure 10, we also plot the contact length and penetration depth from the shallow layer
theory in §4. When we assume that the free surface sits at the friction angle, this theory
significantly overestimates the contact length for a given penetration depth, suggesting that
avalanching of the free surface does not dictate the profile. Instead, we adopt the fit a≈ 3.6

√
Rd

(in place of the constraint (4.15)), which leads to the dot-dashed curves in figure 10 for a rough
cylinder. The experimental trends for d and a are somewhat better captured by the deep layer
theory, perhaps due to the fact that the aspect ratio ε is never very small. However, the shallow-
layer theory also does not predict a pronounced layer-depth dependence as might have otherwise
been expected. Thus, the experimental results do not necessarily imply that the deformation fails
to reach the base of the layer.

Figure 11 shows surface profiles for the ballotini extracted using the laser line. The profiles
show some irregularities due the optical distortions from the passage of the laser through the
cylinder. However, some of the other sharp variations for the shallower layers are genuine
features that emerge from abrupt uplifts of sections of the surface in the manner of sudden
slip events, with the sharp features appearing to be lines of failure. For the most part, the
surface profiles can be fairly satisfyingly collapsed using the scalings, x/

√
Rd and (z − h0)/d.

This collapse allows the extraction of average, or “master”, profiles that are weakly sensitive
to particle diameter and layer depth for D< 1mm and h0 > 1.2 cm (at the shallowest layer
depth (h0 = 1.2 cm), the master profiles become significantly disfigured by the slip events, which
lead to distinct maxima away from the cylinder and “humped” profiles). The profiles descend
almost linearly from a maximum of (z − h0)/d≈ 0.6 at the side of the cylinder, down to the
undisturbed surface for x/

√
Rd≈ 5. The contact line occurs at x/

√
Rd≈ 1.8, in agreement with

the fit a≈ 3.6
√
Rd of figure 10. In view of the scaling, the slope of the uplift depends on the

depth of penetration and does not steepen to the angle of repose, ruling out surface avalanching
as the origin of the profile. The master profiles can also be integrated horizontally to furnish the
(signed) area of the deformed layers relative to the undeformed surface. These areas turn out to be
relatively small (the integral averages of the scaled surface heights are order 10−2, in comparison
to the profiles themselves which ascend from−1 up to 0.6), suggesting that the penetration of the
cylinder does not compact the ballotini and incompressibly uplifts the free surface.

7. Discussion

(a) Dynamic indentation
In shallow-layer theory, the final resting position of the indenter is not necessarily the equilibrium
position studied in the sequential loading experiments, but below that height as a result of
inertial effects. In particular, in the plastic limit (V → 0), and with an indenter whose mass far
exceeds that of the deforming substrate (G/M→ 0), the dimensionless equation of motion of the
descending object takes the form, δ̈=−V ′(δ), where V (δ) is a potential function representing the
indenter’s weight and substrate resistance. This equation of motion is conservative because the
plastic resistance of the substrate is rate-independent, but only applies up to the point that δ̇= 0.
Thus, given an initial speed δ̇0 at the undeformed substrate surface, the final depth of penetration
δf is given by the integral, 1

2 δ̇
2
0 = V (δf ), if we set V (0) = 0. For example, with a plate or cylinder

pushed into a purely cohesive layer,

V (δ) =

{
−δ − 2M−1 ln(1− δ) (plate),

−δ + 2M−1 [(1 + 2δ) ln(1 + 2δ) + 2(1− δ) ln(1− δ)] (cylinder),
(7.1)
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Figure 11: (a)-(b) Ballotini surface profiles for the layer depths h0 and particle diameters D
indicated. (c–e) show scaled profiles for the (h0, D) combinations indicated, with the seven
deepest penetrations in darker blue and ten shallower penetrations in light gray. The dashed
lines show the averages of the data and the green solid lines indicate the cylinder. (f) plots the
averaged scaled profiles, with the different layer depths colour coded as indicated and the particle
diameters D= 0.1mm (solid), 0.25mm (dashed) and 0.5mm (dotted). Features marked A denote
optical distortions through the cylinder; B denotes a genuine sharp variation in the surface.

which are illustrated in figure 12, and indicate how the final penetration depth can be determined
from δ̇0. If 1

2 δ̇
2
0 >V (1), then δf = 1 and the indenter is predicted to impact the underlying surface.

Although this is not predicted for the plate (for which V (δ) diverges for δ→ 1), δf can vanish for
the cylinder, even though the equilibrium height is always finite.

It was possible to confirm the effect of the initial speed δ̇0 on the final depth δf experimentally
by dropping the cylinder from various heights, rather than loading it up sequentially. For
example, for the 1mm ballotini, with a layer depth of h0 = 5 cm, when the initial height of the
cylinder was raised by tens of centimetres, the final penetration depth increased significantly
from about 2mm to 6mm.

(b) Lift-off dynamics
Indentation is the first phase in the process of creating an imprint in a plastic layer; the second
phase is pull-out or lift-off. For example, an idealized model for the formation of a footprint
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Figure 12: Potential functions V (δ) for (a) the plate and (b) the cylinder for three values of M
indicated. The stars show δeq ; the dots indicate δf assuming that δ̇0 = 1. For the plate, δeq = 0 if
M< 2 (but the plate still penetrates to δf > 0 for δ̇0 > 0) and contact cannot be established with
the underlying surface δf < 1. For the cylinder, contact is possible when 1

2 δ̇
2
0 >V (1).

Figure 13: Lift-off mechanisms: (a) reverse squeeze flow, (b) avalanching.

combines fixed-load penetration with fixed-speed lift-off. The latter depends critically on the
surface interaction between the indenter and substrate. Two obvious possibilities are illustrated
for an indenting plate in figure 13: in the first, there is a partial loss of contact at the sides, with a
reverse squeeze flow underneath. For the second, an immediate loss of contact occurs wherever
normal forces are negative, with ensuing surface avalanching.

A reverse squeeze flow arises when no air or ambient fluid can fill the gap as the indenter
is lifted up, and instead suction draws material back in from the uplifted material beyond the
contact line (figure 13(a)). The free surface then collapses back towards the indenter with a profile
again predicted by the free-surface flow problem. Conservation of mass ultimately determines
the portion of the free surface that collapses backwards, and hence the maximum free surface
height. When the free surface meets the corner the pressure at the edge of the indenter becomes
atmospheric; there are then two possibilities for final lift-off. For a material with no strength
under tension, the indenter detaches completely leaving an imprint. For a viscoplastic fluid like
Carbopol, however, there is adhesion to the indenter surface, and detachment only occurs when
the lengthening filament connecting the adhered fluid to the residual layer beneath eventually
pinches off and breaks, as illustrated in figure 14. This more fluid-like phenomenon completely
destroys the impression made during the indentation phase, leaving little by way of an imprint.

Immediate detachment with avalanching occurs when air or ambient fluid migrates freely
into the gap underneath the lifted indenter. Only where the substrate material is pushed back
into the gap is any contact maintained (figure 13(b)). Once the indenter fully detaches, the base
of the imprint remains at the original penetration depth, with the collapse of the surrounding
mound of material encroaching on the sides of the initial impression. Figure 15 shows two lift off
experiments with ballotini at different initial depths for a cylindrical indenter. In figure 15(a),
the indentation is sufficiently shallow that the sides remain below the angle of friction. As a
result, almost no avalanching occurs during lift-off. However, for the deeper indentation depth in
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Figure 14: Photographs of lift-off experiments with Carbopol showing the effects of adhesion.
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Figure 15: Profiles of the ballotini surface before (blue) and after (red) the lift-off of the cylinder.
(a) Shallower indentation with minor surface motion generated by lift-off. (b) Deeper indentation,
with significant inward avalanching occurring due to lift-off.D= 0.1mm. The green line indicates
the position of the cylinder before lift-off. The white dashed lines show the angle of friction φ.

figure 15(b), the walls become steeper than the angle of friction at the contact lines. In this case,
ballotini avalanches down into the interior of the imprint during lift-off. The final profile then sits
at an angle less than the angle of friction everywhere.

8. Conclusions
In this paper, we have explored the indentation of a planar object into a plastic layer, both
theoretically and experimentally (we also provide a brief discussion of the axisymmetric
indentation of a sphere in the Appendix). On the theoretical side, we outlined a viscoplastic
lubrication analysis for a purely cohesive substrate that permits one to follow the finite
deformations during indentation that enable the indenter to sink to its final resting position and
uplift the surrounding free surface. We further provided a related analysis of dynamic indentation
with arbitrary shapes into a Mohr-Coulomb layer, based on an extension of a theory by Marshall
[23]. Both analyses can be used to predict the depth to which the indenter penetrates, given the
load, and examine the effect of that object’s inertia, which are key for modelling the formation
of an imprint. The manner in which the indenter is subsequently pulled off the layer similarly
impacts such prints, the phenomenology of which we have also commented upon.

For the experiments, we used layers of Carbopol and glass spheres (ballotini), which are
prototypical examples of a viscoplastic fluid and a granular medium. Experiments in which a
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cylinder was indented into Carbopol showed a clear dependence on the depth of the layer and
compared favourably with the predictions of viscoplastic lubrication theory; the indentations
with a sphere showed a similar level of agreement. Indentations with a plate were less successful,
likely due to a combination of non-ideal fluid rheology, finite-depth effects, and a lengthy
experimental relaxation time.

For the ballotini, indentations with a cylinder had the surprising feature that the penetration
depth and contact length were insensitive to the layer depth. This is potentially unexpected
in view of the Carbopol experiments and classical results from slipline theory, which suggest
that deformation spans the substrate when the width of the indenter is comparable to layer
depth (which was certainly the case in the experiments). The lack of a prominent layer-depth
dependence is, however, anticipated by the Mohr-Coulomb shallow-layer theory; evidently,
the varying contact length and layer thickness during indentation are sufficient to offset the
dramatic pressure rise underneath the indenter which would otherwise characterize the confined
deformation and prompt a significant dependence on layer depth.

Our success in reproducing the dynamics of indentation into a viscoplastic fluid suggests
that lubrication theory offers a convenient pathway to study the formation of an imprint or
the migration of structures over plastic layers. For biological inference from footprints, one can
supplement the modelling of the indentation phase with a complementary analysis of the lift-off
stage. In principle, this would provide a relatively simple theoretical description of the formation
of the footprint, allowing one to concisely decipher the controlling combinations of physical
parameters and how the imprint depends upon them. Currently, most theoretical investigations
into indentations into plastic layers proceed via numerical computation (e.g. [11]); viscoplastic
lubrication theory offers a largely analytical alternative. Despite this, the main challenge for a
layer of non-cohesive material is to adequately capturing the flow dynamics outside the indenter
in order to avoid an unrealistic or empirical prescription for the deformation of the free surface
(which we were forced into here; see figure 10).
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A. Indentation of a sphere
The analysis described in §3 can be extended to model shallow axisymmetric indentation by a
sphere of radius R, for which

h(r, t) = h(0, t) + r2/(2R), (A 1)

where r is the radial coordinate. The analysis then follows that of the two-dimensional case
described where the depth-integrated mass conservation (3.12) can now be written as

∂h

∂t
+

1

r

∂

∂r

(
r

∫h
0
udz

)
= 0. (A 2)

The squeeze flow now occupies r < rc(t) and the substrate resistance is 2π
∫rc
0 p(r, h, t)rdr.

Otherwise, the lubrication theory proceeds much as in the main text.
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Figure 16: Indentations of the sphere into Carbopol layers of different depth h0, with data plotted
as in figure 7. In (b) and (d), the dashed line shows the G/M→ 0 limit, ξC → 2

√
δ and (A 3).

In the plastic limit, V → 0, following the analysis in §3(f), we obtain

M= 4π

(
ξC −

√
2(1− δ) tan−1 ξC√

2(1− δ)

)
+ 1

4πGξ
4
C

(A 3)

and

δξ2
C
− 1

4ξ
4
C
=
G2

120
(ηC − 1)3(8ηC2 + 9ηC + 3) +

ξCG
3

(ηC − 1)2(2ηC + 1), (A 4)

where now ξC = rc/
√
h0R. Again, we find the limits ξC = 2

√
δ for G � 1 and ηC → 1 (or ξC →√

2δ) for G � 1. Now, however, contact δ= 1 is established whenM→ 4πξC with

ξ2
C
− 1

4ξ
4
C
=
G2

240
( 12ξ

2
C
− 1)3(4ξ4

C
+ 9ξ2

C
+ 6) +

rcG
3

( 12ξ
2
C
− 1)2(ξ2

C
+ 1). (A 5)

Here, contact is an artefact of the neglect of the rate-dependent stress: for η→ 0, viscous effects
become important for any finite V in (3.21) and the plastic limit is no longer valid.

Experiments were also conducted with a sphere, characteristic length R= 7.4 cm, using the
setup described in §5(a). Figure 16 shows a plot of the penetration depth and contact length for
the sphere. As with the cylinder described in the main text, the viscoplastic lubrication theory
compares well with the experiments.
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