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The stability of sliding spreading films of Herschel-Bulkley fluid is investigated theoreti-
cally, motivated by a dramatic fingering pattern observed experimentally and proposed
theoretically to originate from an extensional flow instability of shear-thinning fluids.
Considering the thin-film limit, we construct axisymmetrical base states and then test
their stability towards non-axisymmetrical perturbations by numerically solving the
initial-value problem. We complement the numerics with analytical solutions for early
and late times. The stability analysis demonstrates that spreading thinning films are
unstable. At late times, where the spreading of the base state becomes self-similar, non-
axisymmetrical patterns can develop strongly if the fluid has a yield stress or is sufficiently
shear thinning.

1. Introduction

Shallow films of spreading fluid feature in a wide variety of problems in the geosciences
and engineering. In a number of settings, the film spreads with little traction over a
surface, and the main resistance to flow then stems from the extensional stresses of the
material, rather than the vertical shear stresses (which control shallow flow over a sticky
substrate). For thin viscous flow, a common approach is then to exploit the low aspect
ratio of the film to develop a free-film model to compactly capture the spreading dynamics
(Oron et al. 1997; Craster & Matar 2009). This type of approach has been exploited to
explore, for example, the spreading of oil over a fluid surface (di Pietro & Cox 1979;
Koch & Koch 1995), and generalized to power-law fluids to describe the motion of ice
streams and shelves (MacAyeal & Barcilon 1988; MacAyeal 1989; Schoof & Hewitt 2013;
Pegler et al. 2012) or the deformation of the Earth’s crust (England & McKenzie 1982,
1983). Even when the surface over which the fluid flows would normally satisfy a no-slip
condition, the phenomenon of effective slip (Barnes 1995) may lubricate a polymeric fluid
to the degree that the spreading dynamics becomes more comparable to a free film (Liu
et al. 2018). Alternatively, the surface can be treated to promote significant sliding of
such fluids (Luu & Forterre 2009, 2013).

Although experiments with radially spreading free viscous films have suggested that the
flow is stable towards non-axisymmetrical disturbances (Pegler & Worster 2012; Sayag
& Worster 2019a), shear-thinning suspensions suffer a dramatic instability (Sayag et al.
2012; Sayag & Worster 2019a). An illustration of this type of instability is displayed
in figure 1, which shows an experiment in which an aqueous suspension of Carbopol
is extruded from a vent onto a shallow bath of water. Such suspensions are viscoplastic
fluids, possessing both a yield stress and shear-thinning plastic viscosity (Balmforth et al.
2014). The Xanthan gum solutions used by Sayag et al. are more commonly modelled
without a yield stress (athough one can be measureable at sufficiently high concentration).
Despite this, and the much deeper baths over which they floated the Xanthan gum, the
fingers seen in figure 1 are striking similar to those reported by Sayag et al. and also
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Figure 1. An experiment in which an aqueous suspension of Carbopol (with a density that
is almost matched with water) is extruded from a vent onto a launch stage and then onto a
shallow bath of dyed water, as sketched in (a). The pump rate is Q ' 5ml/min, the launch stage
has diameter 5cm and the water depth is about 3mm; a Herschel-Bulkley fit to the Carbopol
rheology provided by a rheometer is (n, τY ,K) = (0.41, 8.0Pa, 5.9Pa sn). Panels (b)–(e) show
photographs (from above) at the times indicated (the spatial scale is indicated by the diameter
of the launch stage). In (f) we show snapshots of the outline of the Carbopol, equally spaced
and coloured by time; the dashed circle identifies the launch stage and the inset shows the
initial condition from which pumping commenced. In (g) we plot the light intensity transmitted
through the dyed water along the cross-sections through each of the six fingers shown in (e). The
light intensity corresponding to the water bath is shown by the grey bar. The variation of this
intensity along the finger indicates the local depth of water below the finger, with a measurement
close to 0.5 suggesting very little water underneath the central parts of the fingers, and the lower
values near the stage and flow front implying deeper underlying water.

reported anecdotally in the squeeze flow of pastes and cement (Roussel et al. 2006;
Mascia et al. 2006).

To rationalize their observations, Sayag & Worster (2019b) analyzed the stability
of radial extensional flow of a power-law fluid in two dimensions in the inertialess
limit (cf. Sayag (2019) for the stability of extensional flow of a power-law fluid on a
sphere). They observed that non-axisymmetrical perturbations could grow exponentially
for limited durations of time, provided the fluid was shear thinning. Nevertheless, the
experiments feature expanding fluid films that thin as they flow radially and possess a
three-dimensional stress state, both of which may affect the linear stability. Moreover,
although the degree of instabilility becomes pronounced as the fluid is made more shear
thinning, the finite duration over which linear modes are unstable, and the potentially
stronger damping incurred at earlier and later times, may lessen the impact for typical
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laboratory experiments. In particular, focussing purely on the intervals over which
angular modes have a positive instantaneous growth rate can be misleading in comparison
to their net amplification (Ball et al. 2020a). The fingering patterns in radial extensional
flows in both Hele-Shaw cells and like that shown in figure 1 may, in fact, have an entirely
different explanation in terms of the fracture under tension of the material, facilitated
by the presence of water (Ball et al. 2020a,b).

In view of these concerns, we therefore revisit Sayag & Worster’s stability analysis but
in the context of three-dimensional, thinning films. Moreover, to generalize the theory
to apply to viscoplastic films such as the Carbopol experiments shown in figure 1, we
consider a more general constitutive law. In particular we study shallow, spreading films
of Herschel-Bulkley fluid. We thereby assess the impact of both the structure of the
extensional flow and a yield stress on Sayag & Worster’s instability.

In section 2, we formulate the theoretical problem and provide some details of the
viscoplastic version of the asymptotic reduction that furnishes a free-film-type model.
In section 3, we consider axisymmetrical spreading, constructing the base state for the
stability analysis conducted in section 4. The base state corresponds to the viscoplastic
generalization of the solutions provided by Pegler & Worster (2012) for spreading viscous
films. Additional details of the analysis of some asymptotic limits are provided in the
Appendices.

2. Formulation

Consider the spreading of a viscoplastic film that slides without friction over a hori-
zontal surface. The flow is fed by a source located at an inner radius rv that delivers
a constant flux Q with a prescribed depth. A key feature of the flow is that it is
shallow, with a typical vertical lengthscale H that is much smaller than a characteristic
horizontal (radial) scale L. We set ε = H/L � 1 for the typical aspect ratio, and define
a characteristic horizontal flow speed, V = Q/(HL). We choose L ≡ rv, but leave the
vertical lengthscale H free for the moment, demanding only that the incoming flow depth
at the vent is of order H.

In cylindrical polar coordinates, (r, ϑ, z), the governing equations for an incompressible
fluid with negligible inertia and velocity field u = (u, v, w) are

∇ · u = 0, (2.1)

0 = −∇p+∇ · τ + ρg, (2.2)

where ρ and g = (0, 0,−g) are density and gravity, and the deviatoric stress tensor and
pressure are τ and p. The Herschel-Bulkley constitutive law is

γ̇ = 0, τ < τ
Y
,

τ =

(
Kγ̇n−1 +

τY
γ̇

)
γ̇, τ > τ

Y
,

(2.3)

where τ
Y

, K and n represent the yield stress, consistency and power-law index, and the
deformation rates are given by

γ̇ =

 2ur r−1(uϑ − v) + vr uz + wr
r−1(uϑ − v) + vr 2(u+ vϑ)/r vz + r−1wϑ

uz + wr vz + r−1wϑ 2wz

 , (2.4)

and the scalars, γ̇ =
√

1

2

∑
j,k γ̇

2
jk and τ =

√
1

2

∑
j,k τ

2
jk, denote tensorial invariants.
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Above, and hereon, we use subscript to represent partial derivatives, except when re-
ferring to tensor components or the yield stress (which are further distinguished by a
different font style).

At the top surface of the fluid, located by z = h(r, ϑ, t), we have the kinematic and
stress conditions,

ht + uhr + r−1hϑ = w, (2.5)

(τ − pI) · n̂ = 0, (2.6)

(ignoring surface tension), where n̂ is the unit normal vector and I is the identity. On the
underlying surface z = 0, free sliding without penetration demands τrz = τzθ = w = 0.

2.1. Reduced model

We remove dimensions from the equations by scaling vertical and radial distances by H
and L, the horizontal velocity components u and v by V = Q/(HL), the vertical velocity
w by εV, and time by L/V. The stresses and pressure can then be scaled by the hydrostatic
measure ρgH. The net effect of these scalings is to replace the gravity term in (2.2) by
the unit vertical vector, and make the replacement Kγ̇n−1 + τ

Y
γ̇−1 → γ̇n−1 + Biγ̇−1 in

the constitutive law (2.3), where the dimensionless yield stress, or Bingham number, is

Bi =
τ
Y
HnL2n

KQn
, (2.7)

once we make the convenient choice for the vertical lengthscale,

H1+n =
KQn

ρgL2n
. (2.8)

When the dome is able to slide freely, the extensional and horizontal shear stresses
control the spreading of a shallow fluid layer and vertical shear stresses remain weak
(Liu et al. 2018; Balmforth 2018). The flow becomes plug-like throughout its depth,
with horizontal velocity components, u ∼ u(r, ϑ, t) + O(ε2) and v ∼ v(r, ϑ, t) + O(ε2).
The preceding scalings then ensure that the extensional and horizontal shear stresses
counter the pressure gradients in the force balance equations. Also, in view of (2.4), the
vertical shear rates γ̇rz and γ̇θz are O(ε) in comparison to the other components of the
deformation rate tensor, a discrepancy that carries over to the stress components in view
of the constitutive law. We therefore set (τrz, τzθ) = ε(τ̃rz, τ̃zθ), reducing the force balance
equations to

∂p

∂r
=

1

r

∂

∂r
(rτrr) +

1

r

∂τrθ
∂ϑ
− τθθ

r
+
∂τ̃rz
∂z

,
1

r

∂p

∂ϑ
=

1

r2
∂

∂r
(r2τrθ) +

1

r

∂τθθ
∂ϑ

+
∂τ̃zθ
∂z

, (2.9)

∂p

∂z
+ 1− ∂τzz

∂z
= O(ε2), (2.10)

along with the surface stress conditions,

τ̃rz + hr(p− τrr)− r−1hϑτrθ = 0, (2.11)

τ̃zθ − hrτrθ + r−1hϑ(p− τθθ) = 0, (2.12)

p− τzz = O(ε2), (2.13)

at z = h(r, ϑ, t). Thus, p = τzz + h− z.
Introducing this pressure solution into (2.9), then integrating these relations and the

continuity equation (2.1) over the fluid depth (bearing in mind the plug-like form of the
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horizontal velocity components, the stress boundary conditions and the surface kinematic
condition (2.5)) gives

hhr − [h(2τrr + τθθ)]r −
1

r
(hτrθ)ϑ +

h

r
(τθθ − τrr) = 0, (2.14)

hhϑ
r
− 1

r
[h(2τθθ + τrr)]ϑ − (hτrθ)r −

2

r
hτrθ = 0, (2.15)

ht +
1

r
(rhu)r +

1

r
(vh)ϑ = 0, (2.16)

where, on dropping the vertical shear rates, the leading-order constitutive law implies

[τrr, τθθ, τrθ] =

(
Bi

γ̇
+ γ̇n−1

)[
2ur,

2

r
(u+ vϑ),

1

r
(uϑ − v) + vr

]
, (2.17)

with γ̇ =
√
γ̇2rr + γ̇2rθ + γ̇2θθ + γ̇rrγ̇θθ.

Finally, we state the radial boundary conditions, which follow conveniently for the
reduced model by imposing net force balance at the outer edge and flux balance at the
inner edge or vent. The outer edge of the dome is defined as r = R(ϑ, t). Here, the
kinematic and stress conditions demand

Rt +
v

R
Rϑ = u, (2.18)

1

2
h2 − h

[
τrr + τθθ +

R√
R2 +R2

ϑ

(
τrr − 2

Rϑ
R
τrθ +

R2
ϑ

R2
τθθ

)]
= 0, (2.19)

τrθ −
Rϑ
R

(τθθ − τrr)−
R2
ϑ

R2
τrθ = 0. (2.20)

At the inner vent r = 1, we impose the incoming flux and depth:

2πH0u(1, ϑ, t) = 1, h(1, ϑ, t) = H0, v(1, ϑ, t) = 0. (2.21)

The model in (2.14)-(2.16) amounts to the viscoplastic generalization of models of free
(inertialess) viscous films (Oron et al. 1997; Craster & Matar 2009). With Bi → 0, we
recover the power-law fluid model popular for ice shelves (ignoring any buoyancy due to
flotation over an underlying ocean) and streams (MacAyeal & Barcilon 1988; MacAyeal
1989; Schoof & Hewitt 2013; Pegler et al. 2012), and similar to that proposed for crustal
deformation (England & McKenzie 1982, 1983). The viscoplastic model in (2.16)-(2.15)
has been considered previously in exploring the collapse by sliding of axisymmetric or
planar reservoirs (Liu et al. 2018; Balmforth 2018).

3. Axisymmetrical spreading

Axisymmetrical spreading states with

h = H(r, t), u = U(r, t), v = 0, R = R(t), [τrr, τrθ, τθθ] = [Trr(r, t), Trθ(r, t), Tθθ(r, t)]

satisfy the equations

HHr − [H(2Trr + Tθθ)]r +
H

r
(Tθθ − Trr) = 0, (3.1)

Ht +
1

r
(rHU)r = 0, (3.2)
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[Trr, Tθθ] =

(
Bi

Γ̇
+ Γ̇n−1

)[
2Ur,

2U

r

]
, Γ̇ = 2

√
U2
r +

1

r
UUr +

1

r2
U2, (3.3)

along with the boundary conditions,

Rt = U(R, t),

[
1

2
h2 − h(2Trr + Tθθ)

]
r=R

= 0, 2πH0U(1, t) = 1, H(1, t) = H0.

(3.4)
For the initial conditions, we use R(0) = 1 + 10−4 and H(r, 0) = H0, which ease the
computation of numerical solutions by commencing with a finite domain.

3.1. Generalized Newtonian limit

As shown by Pegler & Worster (2012) and illustrated in figure 2, a freely sliding,
Newtonian current converges to steady profile as it expands away from the vent, with the
outer edge approaching a constant speed. The steady profile corresponds to a constant-
flux, time-independent solution to (3.1)-(3.4) with a fixed outer edge (also displayed in
the figure). The profile is characterized by an adjustment near the vent over which the
depth adjusts from the value set at the vent to that for the H0−independent solution,

H ∼ r−1
√

3/π, U ∼ (2π)−1
√
π/3, (3.5)

which satisfies (3.1)-(3.4) but for the stress condition at the outer edge. In the solutions
of the initial-value problem, the stress condition forces a departure from (3.5) over a
region near the outer edge, where the solution remains time-dependent and given by a
local similarity solution of the form U = U(ζ), H = t−1F (ζ) and ζ ∝ r/t (cf. Pegler &
Worster (2012); Appendix A.1). The outer edge is

R ∼ 1 + Λt, Λ ≈ 0.173, (3.6)

which is compared with the numerical solutions of the initial-value problem in figure 2.
This Newtonian behaviour generalizes to the case of a power-law fluid (n 6= 1 and Bi =

0): as illustrated in figure 3, the sliding current again converges to a steady profile except
near the outer edge. The steady, H0−independent, constant flux solution generalizing
(3.5) is

H ∼ H̃0r
−2n/(n+1), U ∼ (2πH̃0)−1r−(1−n)/(n+1), (3.7)

with

H̃0 =

[
(3n2 + 1)

1

2 (n−1)(6n2 − n+ 1)

n(n+ 1)nπn

] 1
n+1

. (3.8)

The time-dependent region bordering the outer edge now has the self-similar form, H =

t−nF (ζ) U = t−
1

2 (1−n)U(ζ) and ζ ∝ rt−
1

2 (1+n), which is explored in more detail in
Appendix A.1. The self-similar form indicates that the fluid depth at the outer edge
is H(R, t) ∝ t−n, as seen in figure 2(d) (for the Newtonian case, Pegler & Worster
established H(R, t) ∼ 4t−1). The radial expansion of the outer edge is given by

R ∼ 1 + Λt
1

2 (1+n), (3.9)

where Λ depends on n; for n = 0.4, Λ = 0.328 which is again compared with the numerical
solutions in figure 3. A more detailed illustration of the approach of the solutions to the
self-similar form with n = 1 and n = 0.4 is shown in figure 4.

The convergence of the steady states to (3.5) or (3.7) therefore guarantees that the
initial depth H0 has little impact on the evolution, and the self-similar structure at the
edge permits the current to become steady behind the flow front. At late times, the
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Figure 2. Sample Newtonian solutions (n = 1, Bi = 0), showing snapshots (with colour

representing time) of (a) H(r, t) and (b) U(r, t), and time series of (c) R(t) and (d)

Hmin(t) = H(R, t) for H0 = 0.5, 1 and 2. The times of the snapshots are indicated in (c)
and (d). The insets in (a) and (b) show the corresponding, true, steady solutions with a fixed
outer radius given by that of the final solutions to the initial-value problem. Also included in
(c) and (d) are the results for the solutions for power-law fluid shown in figure 3. The dots in
(c) show the predictions in (3.6) and (3.9); in (d), the dots show 4t−1 and 0.8t−0.4.

self-similar structure occupies the bulk of the current. By contrast, as we see below,
because the rates of extension decay with radius, the effect of the yield stress gradually
amplifies towards the outer edge when Bi 6= 0. This prevents any approach to such a
steady profile, qualitatively changing the spreading dynamics and introducing a different
self-similar late-time structure.
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Figure 3. Solutions for power-law fluid (n = 0.4, Bi = 0), showing snapshots (colour
representing time) of (a) H(r, t) and (b) U(r, t), for H0 = 1, 1.5 and 2. The time series of

R(t) for these solutions is included in figure 2(c), as well as the times of the snapshots. The
insets show the corresponding, true, steady solutions with a fixed outer radius given by that of
the final solutions to the initial-value problem. The dots show (3.7) and (3.9).

3.2. Sample numerical solutions

Figure 5 displays a numerical solution to (3.1)-(3.4) for n = 0.4 and Bi = H0 = 1. For
this viscoplastic material, the fluid initially expands outwards at constant speed, but the
advance then slows, damming up the flow and causing the dome to deepen near the vent.
The dynamics is therefore different to that for a Newtonian or power-law fluid (Bi = 0).
In particular, the expansion of the viscoplastic dome slows towards the weaker advance
R ∝ t1/2 over long times, and the dome continues to thicken at the vent and thin at the
outer edge.

As shown in figure 6, varying the depth at the vent, H0, alters the solution at earlier
times, delaying the build up of material nearby. However, the solutions with different H0

subsequently converge to similar forms over longer times and larger radii. Thus, aside
from a thin region near the vent, the solutions again become insensitive to H0.

The viscoplastic evolution over even longer times is illustrated in figure 7 (for n = Bi =
1). This example shows more clearly the convergence of the outer radius to R ∼ Λ

√
t/Bi,

for a constant Λ ≈ 1
2 and dependence on Bi that is rationalized below. We further plot

snapshots of the solution against the scaled radial coordinate ζ = r/R(t) and scale
the horizontal flow speed U(r, t) by Λ

√
tBi. The rescalings emphasize how the solution

converges to a self-similar form in which H ∼ BiF (ζ) and U ∼ ΛU(ζ)/
√
tBi, with
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Figure 4. A comparison of numerical solutions of the initial-value problem (solid
lines) with self-similar solutions (dots) for (a) Newtonian (n = 1, Bi = 0)
and (b) power-law fluid (n = 0.4, Bi = 0). Plotted are the scaled variables

t
1

2
(1−n)(r/R)−(1−n)/(n+1)U ≡ ζ−(1−n)/(n+1)U(ζ) and tn(r/R)2n/(n+1)H ≡ ζ2n/(n+1)F (ζ)

against ζ ≡ r/R(t) every 100 time units. The two panels present the initial-value problem
solutions shown in figures 2 and 3, with colour again representing time (from red to blue, as
indicated by the arrows), and omitting the earliest snapshot in each computation.

ζ = r
√

Bi/t/Λ. Such self-similar solutions arise because the decline of the strain rates
over long times paves the way to a plastic limit of the problem in (2.14)-(2.21). This limit
is analyzed in more detail in §3.4, which provides a direct construction of the self-similar
states. That corresponding to the long-time limit of the solution of the initial-value
problem in figure 7 is also included there for comparison.

3.3. Early time solution, t� 1

For small times, we set r = 1 + δx and t = δt̂, where δ � 1 and x and t̂ are O(1). In
this limit, the variables remain close to their values at vent and so

H = H0 + δH1(x, t̂), U = (2πH0)−1 + δU1(x, t̂), R = 1 + δR1(t̂).

At leading order, (3.1) and (3.3) become

∂

∂x

[
1

2
H2

0 −H0(2Trr + Tθθ)

]
= 0, (3.10)

(Trr, Tθθ) =

(
Bi

Γ̇
+ Γ̇n−1

)(
2U1x,

1

πH0

)
, Γ̇ =

√(
2U1x +

1

2πH0

)2

+
3

4π2H2
0

.

(3.11)
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Figure 5. Sample solution for n = 0.4 and Bi = H0 = 1, showing snapshots of (a) H(r, t) and

(b) U(r, t), and time series of (c) R(t) − 1 and (d) Hmax(t) (solid) and Hmin(t) (dashed). The
stars in (c) and (d) indicates the times of the snapshots in (a) and (b). Slopes of unity and 1

2
are indicated in (c).

Figure 6. Sample snapshots of H(r, t) for n = 0.4 and Bi = 1 for varying H0. The inset shows

time series of R(t).

In view of the stress conditions at the edge, we therefore have

1

4
H0Γ̇ = (Bi + Γ̇n)

√
Γ̇ 2 − 3

4π2H2
0

, U1x =
1

2

√
Γ̇ 2 − 3

4π2H2
0

− 1

4πH0
. (3.12)

That is, U1x is constant, and so U = (2πH0)−1 + U1x(r − 1) in terms of the original
variables. For Bi� 1, we arrive at the limit,

Γ̇ →
√

3

2πH0
, U1x → −

1

4πH0
, (3.13)
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Figure 7. Numerical solution for n = Bi = H0 = 1, showing snapshots of (a) H(r, t)/Bi and (b)

U(r, t)
√
tBi/Λ every 100 time units, plotted against r/R(t), with Λ ≈ 1

2
. The dots and darker

(blue) line show the self-similar solution of §3.4 with ε� 1. In (c) and (d), we plot times series

of R(t), Hmax(t) (solid) and Hmin(t) (dashed). The dashed line in (c) shows R = Λ
√
t/Bi, and

the initial linear scaling is indicated. In (e) and (f), solutions with H0 = 1, 2, 4, 6, 8 and 12 are
plotted at the times indicated and again compared with the similarity solution; time series of
the edge R(t) for the solutions with H0 > 1 are included in (c) as the lighter grey lines, and (d)
includes Hmax(t) and Hmin(t) for H0 = 2 and 4.

whereas for a Newtonian fluid,

Γ̇ → 1

4πH0

√
12 + π2H4

0 , U1x →
πH2

0 − 2

8πH0
. (3.14)

Hence, U always decreases away from the vent in the plastic limit, but more generally it
may increase for a sufficiently deep inflow.
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Continuing on, the mass conservation and kinematic conditions become

H1t̂ +H0U1x +
H1x

2πH0
+

1

2π
= 0 & R1t̂ = (2πH0)−1. (3.15)

The first can be solved using the method of characteristics, noting that H1 = 0 for x = 0.
In terms of the original variables, we find

H = H0 −H0(1 + 2πH0U1x)(r − 1) & R = 1 + (2πH0)−1t. (3.16)

3.4. Plastic similarity solution in the long-time limit

In the plastic limit, Γ̇ → 0, the system (2.14)-(2.21) admits a similarity solution
described by

ζ ≡ Bi1/2r

Λt1/2
, F (ζ) ≡ H

Bi
, U(ζ) ≡ Λ−1(tBi)1/2U, [Trr(ζ), Tθθ(ζ)] ≡ Bi−1[Trr, Tθθ],

(3.17)
and satisfying

0 = FFη − [F (2Trr + Tθθ)]ζ + (Tθθ − Trr)
F

ζ
, (3.18)

(Trr, Tθθ) =

(
U2
ζ +

1

ζ
UUζ +

1

ζ2
U2

)− 1

2
(
Uζ ,
U
ζ

)
, (3.19)

1

2
ζ2Fζ = (ζUF )ζ , (3.20)

subject to

U(1) =
1

2
and

[
1

2
F 2 − F (2Trr + Tθθ)

]
ζ=1

= 0 (3.21)

at the edge of the dome, ζ = 1 or R = Λ
√
t/Bi, and

2πζF0UΛ2 = 1 and F = F0 ≡
H0

Bi
(3.22)

at the vent.
Awkwardly, in the initial-value problem, the vent is located at ζ = ε = Λ−1

√
Bi/t,

which shrinks constantly in time. We can only therefore expect convergence to the self-
similar solution of (3.18)-(3.21) if that solution becomes independent of ε for ε → 0.
Alternatively, one can adjust the initial-value problem and apply the inner boundary
condition on a vent with radius, r = Λε

√
t/Bi, to permit an exact similarity solution.

An analysis of the singular point at the edge ζ = 1 indicates that

F
U

}
→
{

A(1− ζ)1/3
1
2 + 1

4 (1− ζ)
for ζ → 1, (3.23)

for some constant A. Rather than employing the inner boundary conditions in (3.22),
one can therefore fix A and solve (3.18)-(3.21) as a shooting problem, integrating from
a point close to the outer edge into the inner edge at ζ = ε. On arrival, one then
determines the value of F0 corresponding to that choice of A. In practice, this procedure
provides solutions only for larger values of ε, as the integration becomes relatively stiff for
ζ → 0. Instead, one can then switch to solving (3.18)-(3.21) as a boundary-value problem,
using the shooting solution as an initial guess. Sample solutions and their behaviour are
illustrated in figure 8. Evidently, the bulk of the solution is insensitive to the choices of
both F0 and ε.
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Figure 8. Similarity solutions solved (a)-(b) by shooting for five values of A over the range
[1.0112, 1.0465], and (c)-(d) as boundary-value problems for varying ε at fixed F0 = 8.57 (darker
blue) and varying F0 for fixed ε = 0.00625 (lighter grey). The blue dots in (c)-(d) show the
shooting solution used to initiate the boundary-value computations. The red dashed and dotted
lines indicate the approximations shown by the legends (with A = 1). In (e) and (f), solutions
are continued to still smaller ε (as indicated by the stars) using the alternative inner boundary

condition F (ε) = −
√

3 log ε.

Note that 2Trr + Tθθ � 1 throughout the interval in ζ, leading to the simple approxi-
mations,

F ∼ −
√

3 log ζ & U ∼ 1
2ζ
− 1

2 , (3.24)

the first of which can be bridged to the limit for ζ → 1 by the interpolant,

F ∼ −[
√

3−A+A(1− ζ)−2/3] log ζ. (3.25)

Also, the approximation for F (ζ) in (3.24) permits one to construct solutions for arbi-
trarily small ε by employing the alternative boundary condition F (ε) = −

√
3 log ε, in

place of F (ε) = F0. This alternative construction takes advantage of the limiting form
of the solution for ε→ 0, namely F ∝ − log ζ and U ∝ −(ζ log ζ)−1 (see figure 7(f) and
Appendix B.1). The logarithmic growth of the fluid depth for ζ → 0 corresponds to the
piling up of material close to the vent in figure 7.

Finally, turning to the inner flux condition in (3.22), we observe that

Λ = [2πεF (ε)U(ε)]−
1

2 → 0.4897 for ε→ 0, (3.26)

in view of the numerical solutions in figure 8(c). Thus, despite the corresponding loga-
rithmic divergence of the fluid depth as ζ → 0, the solution does become independent of
the vent radius.
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4. Stability analysis

To study nonaxisymmetrical perturbations to the base flows of §3, we set

h = H(r, t) + ĥ(r, t)eimϑ, u = U(r, t) + û(r, t)eimϑ, (4.1)

v = v̂(r, t)eimϑ, R = R(t) + R̂(t)eimϑ, (4.2)

where m is the angular wavenumber. The amplitudes {ĥ, û, v̂, R̂} satisfy the linearized
equations,

0 =
[
H(ĥ− 2τ̂rr − τ̂θθ)− ĥ(2Trr + Tθθ)

]
r
− im

r
Hτ̂rθ +

H

r
(τ̂θθ − τ̂rr) +

ĥ

r
(Tθθ − Trr) ,

(4.3)

0 =
1

r

(
r2Hτ̂rθ

)
r
− im

[
H(ĥ− 2τ̂θθ − τ̂rr)− ĥ(2Tθθ + Trr)

]
, (4.4)

ĥt +
1

r
[r(Uĥ+Hû)]r +

im

r
Hv̂ = 0, (4.5)

where the perturbations to the stress components are given by

τ̂rr = αrrûr +
1

r
βrr(û+ imv̂), τ̂θθ = αθθûr +

1

r
βθθ(û+ imv̂), (4.6)

τ̂rθ = µ

[
r
∂

∂r

(
v̂

r

)
+
im

r
û

]
, (4.7)

with

αrr = 2

[
µ+ 4µ′Ur

(
2Ur +

1

r
U

)]
, βrr = 8µ′Ur

(
2

r
U + Ur

)
, (4.8)

αθθ =
8

r
µ′U

(
2Ur +

1

r
U

)
, βθθ = 2

[
µ+

4

r
µ′U

(
2

r
U + Ur

)]
, (4.9)

µ =
1

Γ̇
(Bi + Γ̇n), µ′ = − 1

2Γ̇ 3
[Bi + (1− n)Γ̇n]. (4.10)

The outer boundary conditions, after a Taylor expansion about the unperturbed edge,
are

R̂t = UrR̂+ û

H
(
ĥ− 2τ̂rr − τ̂θθ

)
− ĥ (2Trr + Tθθ) +

[
1
2H

2 −H(2Trr + Tθθ)
]
r
R̂ = 0

τ̂rθ − imR̂(Tθθ − Trr)/R = 0

 at r = R.

(4.11)
At the vent we demand

û = ĥ = v̂ = 0 at r = 1. (4.12)

These equations can be solved numerically as an initial-value problem. Alternatively,
once the base states have converged to self-similar form (power-law or plastic), the
corresponding solutions are independent of time once expressed in terms of the simi-
larity coordinates. This permits one to reduce the relevant linear stability analysis to
a conventional eigenvalue problem via the coordinate change described in Appendices
A.2 and B.2. Before heading down either route, we first consider the early-time limit in
which this stability problem simplifies substantially and becomes analytically solvable
(cf. Sayag & Worster (2019b)).
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4.1. Early times, t� 1

For the early-time solution derived in §3.3, the coefficients in (4.3)-(4.7) become
constant to leading order in the small parameter δ. Moreover, assuming that M = mδ =
O(1) and the perturbation amplitudes all remain of comparable order, the leading-order
terms in the force-balance equations (4.3)-(4.4) are those with the highest radial and
angular derivatives. Thus,

0 = (2τ̂rr + τ̂θθ)x + iMτ̂rθ = (2αrr + αθθ)ûxx + iM(µ+ 2βrr + βθθ)v̂x −M2µû,

0 = (τ̂rθ)x + im(2τ̂θθ + τ̂rr) = µv̂xx + iM(µ+ αrr + 2αθθ)ûx −M2(βrr + 2βθθ)v̂,
(4.13)

where the coefficients are given by the early-time limits of (4.8)-(4.10) (with U/r →
(2πH0)−1, Ur → U1x and the stress components and Γ̇ given by (3.11)-(3.12)). These
two relations can be combined into

0 = ûxxxx +ΣM2ûxx + ΓM4û, (4.14)

with

Σ =
3(βrrαθθ − αrrβθθ) + µ(2αθθ + αrr + 2βrr + βθθ)

µ(2αrr + αθθ)
, Γ =

2βθθ + βrr
2αrr + αθθ

. (4.15)

Similarly, the boundary conditions become

û = 0, v̂ = 0 at x = 0, (4.16)

and

(2αrr + αθθ)ûx + (2βrr + βθθ)iMv̂ = 0

µ(v̂x + iMû)− iMR̂(Tθθ − Trr) = 0

}
at x = X ≡ (2πH0)−1t̂. (4.17)

This system is closed, with the time dependence entering through the motion of the outer
edge, R̂t̂ = δ[U1xR̂+ û(X, t̂)], and the depth perturbation following separately from (4.5).

We may therefore solve (4.14) subject to (4.16)-(4.17), and then determine the instan-
taneous growth rate, which we express in terms of the original variables,

G(t) = R̂−1R̂t = U1x + R̂−1û(R, t). (4.18)

Despite this rewrite, the growth rate on the t̂−timescale is evidently of O(δ), and so
perturbations are predicted to grow far less quickly than the rate of expansion of the
base state (X = δ−1(R − 1) = (2πH0)−1t̂). Also, because depth perturbations decouple
from the force balance in this limit (and H = H0), the situation is similar to the
two-dimensional extensional flow problem considered by Sayag & Worster (2019b) (the
viscoplastic version of which is explored further by Ball et al. (2020a)). The two problems
are not, however, equivalent because, for the sliding shallow current, the radial flow field
is not incompressible and the stress state is fully three-dimensional with τθθ 6= −τrr. We
enjoy the impact of both features on the stability characteristics below.

Irrespective of the rheology, the perturbation amplitude û → 0 for MX = m(R −
1) → 0, and so the instantaneous growth rate G → U1x ≡ Ur(1) for the lower angular
wavenumbers. This term corresponds to the geometrical spreading contribution discussed
by Sayag & Worster (2019b), which is always equal −1 in their incompressible two-
dimensional problem. Here, in contrast, U1x can become positive for sufficiently large H0

(see figure 9) owing to the thinning of the base state as the fluid leaves the vent when the
inflow is relatively deep (cf. figure 2). In such cases, the base state is therefore unstable
at early times.
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In the Newtonian limit, Σ → −2 and Γ → 1, leading to

G(t) =
πH2

0 − 2

8πH0
+

(6− πH2
0 )

8πH0

9(MX)2 − 5 sinh2(MX)

9(MX)2 + 1 + 15 cosh2(MX)
, MX ≡ m(R− 1).

(4.19)
The first term corresponds to U1x and controls the growth if MX → 0; for MX � 1,
on the other hand, G→ (πH2

0 − 3)/(6πH0). All wavenumbers become unstable if H0 >√
3/π.
In the plastic limit, Bi� 1, we find Σ = 1 and Γ = 1

4 , giving an instantaneous growth
rate,

G = − 1

16πH0

[
1 + 3 cos

(
m
√

2(R− 1)
)]
. (4.20)

In this case, U1x < 0 and so instability can only appear when MX is not small. In fact,
although G(t) is sometimes positive, there is no net growth, with the average decay rate
of (8πH0)−1. Thus, the spreading shallow plastic current is initially more stable than
two-dimensional plastic extensional flow as a result of its different stress state and rate
of extension.

Sample instantaneous growth rates away from either of these limits are shown in
figure 9. Although G always oscillates in the plastic limit, the instantaneous growth
rate eventually reaches a limit G∞ for MX → ∞ for any finite Bi, defining a time-
independent growth rate that is independent of m. This limit is also plotted in figure
9(c) for several values of n and H0.

At early times, the spreading flow is therefore unstable to nonaxisymmetrical per-
turbations provided the inflow is sufficiently deep and the yield stress is not too large.
However, the growth rate is small (O(δ) on the timescale at which the relatively narrow
annulus expands), and so the fluid is expected to spread beyond the small-time regime
before there is much exponential growth. We demonstrate this feature explicitly below
in §4.2 on numerical solving of the full initial-value problem.

4.2. Numerical results

To proceed beyond the limit of a relatively narrow annulus, we solve the linear stability
equations numerically beginning with the initial conditions, R̂(0) = 1 and ĥ(r, 0) = 0.
Figure 10 displays solutions for Newtonian fluid with three values of m and H0. For the
entrance depths chosen (H0 = 1, 3 and 5), the stability theory for early times predicts
exponentially growing instabilities at early times (πH2

0 > 2). For wavenumbers of m = 2
and 10, the instantaneous growth rate G = G0 = U1x for MX � 1 characterizes the
amplification until the base state has spread beyond a narrow annulus. The highest
wavenumber of m = 100, however, is sufficiently large to trigger a transition towards the
growth rate G = G∞ applying in the limit MX � 1.

Once the fluid has spread beyond the early-time regime, instability gradually switches
off, giving way to a late-time algebraic decay relative to the expansion of the base state
(the perturbations actually continue to grow algebraically in time in this latter phase, but
with a power of time that is less than that of R(t) ∼ t). This decay becomes independent
of the entrance depth H0 at the latest times, with a weak dependence on m. During this
evolution, the linear solutions do not inherit a great deal of spatial structure, although
they become more localized to the outer edge at later times and for higher wavenumber
(figure 10(b)).

The late-time power-law decay corresponds to the convergence of the perturbations
towards a self-similar spatial structure equivalent to that of the base state (§3.1), in

which ζ = r/R and [û(r, t), v̂(r, t), ĥ(r, t)] = û(R, t)[Ǔ(ζ), V̌(ζ), F̌ (ζ)/R]. Figure 10(c)-(e)
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Figure 9. Instantaneous growth rates G(t) as function of Bi and MX = m(R − 1) for (a)
H0 = 2

3
and (b) H0 = 4

3
, with n = 1. The blue curves highlight the contour G = 0. In (c) and

(d), we plot the limiting growth rates G0 = U1x and G∞ = limM→∞(G) against Bi for n = 0.25,
0.4, 0.6, 0.8 and 1, with the values of H0 indicated.

illustrates this structure over longer times for the case with H0 = 1 and m = 2. Further
details of this limit are given in Appendix A.2, where the transformation to the similarity
variables facilities a standard normal-mode-style stability analysis. That analysis predicts
that the Newtonian problem is stable; the damping rates and perturbation amplitudes
are indicated in figure 10 and compare well with the results from numerical solution of
the initial-value problem. Note the increasingly abrupt rise in ĥ(r, t) near the outer edge,
emerging because the base state develops an infinite slope in the self-similar limit.

Figure 11 shows an analogous set of examples with a yield stress. In this case, the
expansion of the basic spreading flow out-competes the perturbations in the early-time
limit (with R̂/R̄ decaying), but modes begin to grow relative to the base state at later
times. The lowest yield-stress case for Bi = 0.1 displays little overall amplification of the
linear modes, with the lowest angular wavenumber remaining strongest at the termination
of the computation. For Bi = 1, the modes (with m = 2 to 16) grow at comparable late-
time rates. With Bi = 10, however, the higher wavenumber modes amplify quicker and
substantially. Unlike the Newtonian case, the perturbations do not become confined to
the outer edge as the fluid expands, but retain significant amplitudes throughout the
fluid, displaying spatial oscillations that narrow with increasing angular wavenumber
(figure 11(b)), a feature mirroring results in the two-dimensional problem of (Sayag &
Worster 2019b). For the higher values of m, the perturbation to the edge R̂(t) also begins
to oscillate in time with a frequency that increases with m.

As discussed in Appendix B.2, stronger instability at higher m, oscillatory growth and
persistent spatial oscillations also feature for the linear modes in the self-similar plastic
limit. The analysis there, in fact, predicts a (power-law) growth rate that increases as
m2, implying a rather singular limit to the stability problem. The enhanced amplification
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Figure 10. Solutions of the initial-value problem for linear perturbations to Newtonian
spreading flow (n = 1, Bi = 0), showing (a) time series of the perturbed radius scaled by
the base state radius for the values of H0 and m indicated, and (b) the perturbed radial velocity
û for H0 = 1 at the times indicated (successively offset and with the colour coding representing

m as in (a)). The inset to (a) shows the early-time behaviour of R̂(t) along with the asymptotic
predictions of §4.1 (dashed); the dotted lines show the power laws t−0.8 (top), t−0.81 and t−0.76

(bottom) predicted by the analysis in Appendix A.2. In (c)–(e), with m = 2 and H0 = 1,

the solutions for û(r, t), v̂(r, t) and ĥ(r, t) are scaled and plotted against r/R(t) every 50 time
units upto the extended time of t = 103; the dashed lines show the self-similar solutions from
Appendix A.2, taking ε = 0.006.
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Figure 11. Solutions of the initial-value problem for linear perturbations to Bingham spreading
flow (n = 1, Bi > 0) with H0 = 1. (a) Time series of the perturbed radius scaled by the base

state radius, R̂/R, for the values of m indicated; the solid lines show results for Bi = 1, the
dotted lines for Bi = 0.1 and the dot-dashed lines for Bi = 10 (computations are terminated

when |R̂|/R̄ = 106). The black dashed lines show the growth expected from §B.2, based on

the final value of ε = R
−1

. The inset shows the early-time behaviour of R̂(t) along with the

approximation eU1xt (dashed). (b) Snapshots of (û, v̂, (2π)−1ĥ)/Max(û) at t = 100 for Bi = 1
(solid, dashed and dotted, respectively, with the colour coding representing m as in (a)). (c)
The final snapshots of v̂ for Bi = 10. The dots show the corresponding self-similar solutions of
§B.2; for the complex modes with m = 8 and 16, a constant phase is chosen arbitrarily.

at larger Bi and m seen in figure 11 evidently points to the emergence of this divergent
behaviour. A quantitative comparison of the numerical results in this figure with the
self-similar solutions is not possible, however, because these Bingham computations have
yet to converge to self-similar form. Moreover, since the vent radius is not fixed but
expanding in the similarity solutions, such a comparison only makes sense if results are
insensitive to the position and conditions at the inner edge, which is far from the case in
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Figure 12. Solutions of the initial-value problem for linear perturbations for power-law fluid
(Bi = 0) for the values of n indicated and H0 = 2. In the main panels, perturbed radius scaled
by the base state radius is plotted for (a) m = 4 and (b) m = 1. The dotted lines indicate
the power laws tλr predicted for the self-similar solutions in §B.2. The insets show the final
snapshots of v̂.

the plastic limit. Despite this, if we take the value of ε = R −1 implied at the end of the
computations for Bi = 10 (which is the closest to the plastic limit) and compute λ using
the analysis in §B.2, we emerge with a qualitative guide to the instantaneous growth
rate (see the dashed lines in the main panel of figure 11(a)). Similarly, the corresponding
self-similar solutions broadly reproduce the spatial structure of the final snapshots (figure
11(c)).

The addition of a yield stress therefore significantly destabilizes the spreading, shallow
current at late times. The situation is somewhat similar for a power-law fluid (Bi = 0),
with a decrease of n playing the same role as an increase in Bi. Figure 12 presents results
for m = 4 and 1, with a variety of values for n. For these two modes, the linear stability
analysis of the self-similar solutions in §A.2 predicts instability for n slightly less than 0.2
and 0.55, respectively, with the m = 4 mode having a finite frequency. These predictions
are again broadly reproduced in the numerical computations. Moreover, unlike in the
plastic limit, a more detailed comparison of the mode shapes shows satisfying agreement
(see §B.2), primarily because the perturbations decay more strongly towards the inner
boundary, rendering the solutions less sensitive to the inflow conditions. The growth rates
also remain bounded, at least with finite n.
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5. Discussion

In this paper we have investigated the stability of sliding viscoplastic films. This
work is motivated by experiments in which a dramatic non-axisymmetrical instability
appears in radially expanding films of Xanthan gum solution (Sayag et al. 2012; Sayag &
Worster 2019a) and Carbopol suspensions (figure 1; Ball et al. (2020b)). Sayag & Worster
(2019b) rationalized these observations in terms of an instability of two-dimensional,
radial extensional flow of a power-law fluid. However, this instability may be weak under
typical experimental conditions (Ball et al. 2020a) and different for base flows that thin
as they spread and possess three-dimensional stress states. In view of this, and to provide
a theoretical discussion that is also relevant for yield-stress fluids, we considered in this
paper the instability of spreading thinning films of Herschel-Bulkley fluids.

As a first step, we constructed axisymmetrical spreading states. Without a yield stress,
power-law fluids develop a steady flow structure near the source but evolve to a self-
similar form further away, as discussed by Pegler & Worster (2012) for Newtonian fluid.
The addition of a yield stress eliminates such states, however, because the continued fall
of the rate of extension as the fluid spreads inexorably promotes the importance of the
yield stress in comparison to the viscous stresses. Instead, the current reaches a different
self-similar regime corresponding to a plastic limit dominated by the yield stress; i.e. flow
dictated by perfectly plastic deformation (Prager & Hodge 1951).

A linear stability analysis of the base states demonstrates the instability of Sayag &
Worster (2019b) and Sayag (2019) still operates for a spreading thinning film, although
the details are somewhat different. The dynamics breaks down into an early-time phase
wherein the spreading current remains a relatively narrow annulus, and a late-time, self-
similar regime. In the early time phase, the thinning of the base flow can drive linear
instability provided the yield stress is not too large, although amplification is always weak,
with perturbations growing more slowly than the expansion of the base state. Currents
with relatively strong yield stresses are linearly stable at early times, in contrast to the
viscoplastic version of Sayag & Worster’s two-dimensional problem (Ball et al. 2020a).

In the late-time, self-similar regime, non-axisymmetrical perturbations subside in
Newtonian fluids, in line with experimental observations (Pegler & Worster 2012; Sayag
& Worster 2019a). However, with either a yield stress or a sufficiently strongly shear-
thinning viscosity, non-axisymmetrical perturbations begin to grow relative to the ex-
pansion of the base state. In the plastic limit, to which the fluid inevitably approaches
whenever there is a yield stress, the instability becomes especially pronounced, the linear
stability analysis predicting singular behaviour. The viscoplastic, spreading and thinning
current therefore appears to be rather more unstable than its two-dimensional analogue,
but only over late times when the fluid has expanded over distances well exceeding the
initial radius. Of course, it is also true that our exploration has been limited to a linear
analysis and it is conceivable that nonlinearity plays a more intrusive role.

Awkwardly, in experiments like that shown in figure 1, the nonaxisymmetrical patterns
develop immediately, as soon as the fluid leaves the launch stage and begins to thin
above the ambient bath. There is also evidence from both the free-surface experiments
and from other experiments in Hele-Shaw cells that an extensional flow instability
cannot be the complete story (Ball et al. 2020a,b): in order to develop extensional flow
without significant shear across the spreading film, one must avoid any friction with the
underlying surface. This was achieved by Sayag et al. and in the Carbopol experiment
of figure 1 by floating the complex fluid over a bath of water. Particularly with the
Carbopol experiment, however, the water bath is relatively shallow, and there is little
sign that much water remains underneath the Carbopol a short distance from the launch
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stage. In experiments in which Carbopol was pumped into water-filled Hele-Shaw cells,
there was similarly little evidence for relatively thick residual wall layers of water. For
both experiments it is likely that there is therefore significant shear across the film.
Despite this, fingering patterns still develop, and appear much like the Xanthan gum
experiments of Sayag et al., which use much deeper water baths. Crucially, if a different,
immiscible liquid with comparable viscosity (such as paraffin or mineral oil) is used for the
ambient fluid the experiments are substantially different, with non-axisymmetric patterns
potentially eliminated entirely. Thus, interfacial interaction with the bath appears to play
an important role. In fact, the Hele-Shaw experiments (Ball et al. 2020a) suggest that
a completely different mechanism might be at play: the fracture under tension of the
material, exacerbated by the presence of water. How the extensional flow instability
competes or cooperates with fracture to create the finger pattern remains unclear.
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Appendix A. Self-similar solutions for Bi = 0

A.1. Base states

We set

ζ =
r

Λt
1

2 (1+n)
, F (ζ) = tnH, U(ζ) = Λ−1t

1

2 (1−n)U. (A 1)

The equations for the base state become

Uζ =
F

8M
− Z

4MF
− U

2ζ
, Fζ =

(n− ζ−1U − Uζ)F
U − 1

2 (n+ 1)ζ
, Zζ = 2MF

(
U
ζ

)
ζ

, (A 2)

where Z(ζ) ≡ t2n[ 12H
2 −H(2Trr + Tθθ)] and

M(ζ) ≡
(

2
√
U2
ζ + ζ−1UUζ + ζ−2U2

)n−1
. (A 3)

The outer boundary conditions are

U → 1
2 (1 + n), Z → 0, for ζ → 1, (A 4)

which leaves free the amplitude of a singular solution of the form (1−ζ)(3n−1)/4 for n > 1
3

(in which case F → 2M(3n − 1)) or (1 − ζ)(1−3n)/3(n+1) for n < 1
3 (and F → 0). The

solution is therefore fully specified by the inner boundary condition, which corresponds
to the match to the steady profile in §3.1:

F → H̃0(Λζ)−2n/(n+1), U → ζ(Λζ)−2/(n+1)

2πH̃0

, (A 5)

and

Z → 1
2F

2 − 2n(3n− 1)(1 + 3n2)(n−1)/2(1 + n)−nF (U/ζ)n. (A 6)
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The last relation proves convenient to impose the inner boundary condition at a finite
position, ζ = ε, with ε sufficiently small to ensure that its value has little impact on the
solution. Finally, the inner flux condition demands

1 = 2πrHU → Λ2ζFU (A 7)

at ζ = ε, which determines Λ, and therefore the position of the outer edge, R ≡ Λt
1

2 (1+n).
For example, we find Λ = 0.173 for n = 1 and Λ = 0.328 for n = 0.4. The corresponding
self-similar solutions are plotted in figure 4 and compared with the (suitably scaled)
solutions of the initial-value problems in figures 2 and 3 (including factors of the powers
of ζ required to suppress divergence for ζ → 0).

A.2. Linear stability

To explore the linear stability, we set

h = t−n[F (ζ) + tλeimϑF̌ (ζ)], u = Λt−
1

2 (1−n)[U(ζ) + tλeimϑǓ(ζ)], (A 8)

v = imΛtλ−
1

2 (1−n)eimϑΨ(ζ), R = Λt
1

2 (1+n)[1 + tλeimϑŘ], (A 9)

F̌ =
X̌ − ζF Ǔ

ζ[U − 1
2 (n+ 1)ζ]

, Y̌ = ζ2MF

(
Ǔ − Ψ
ζ

+ Ψζ

)
, (A 10)

and

tλ−2neimϑŽ(ζ) = H(ĥ− 2τ̂rr − τ̂θθ)− ĥ(2Trr + Tθθ). (A 11)

The linear equations can then be written as

Ǔζ =
[ζF − 2M(2ζUζ + U)]F̌ − ζŽ − F (2β̃rr + β̃θθ)(Ǔ −m2Ψ)

(2α̃rr + α̃θθ)ζF
, (A 12)

X̌ζ = m2FΨ − ζ(1 + λ)F̌ , (A 13)

Žζ =
2M

ζ2
(ζUζ − U)F̌ +

F

ζ2
[(α̃rr − α̃θθ)ζǓζ + (β̃rr − β̃θθ)(Ǔ −m2Ψ)]− m2

ζ3
Y̌ , (A 14)

Ψζ =
Ψ − Ǔ
ζ

+
Y̌

ζ2MF
, (A 15)

Y̌ζ = [ζF − 2M(2U + ζUζ)]F̌ − ζF (2α̃θθ + α̃rr)Ǔζ − F (2β̃θθ + β̃rr)(Ǔ −m2Ψ), (A 16)

where (α̃rr, α̃θθ, β̃rr, β̃θθ) = tn−1(αrr, αθθ, βrr, βθθ). At the unperturbed outer radius ζ = 1,
we impose

Ǔ = [λ+ 1
2 (n+ 1)− Uζ ]Ř, Ž + ZζŘ = 0, Y̌ − 2MF (U − Uζ)Ř = 0. (A 17)

and set Ψ(ε) = X̌(ε) = Ǔ(ε) = 0 to ensure that the solution does not diverge at the inner
boundary (although the solution appears to be insensitive to these conditions as long as
it remains regular for ζ → 0 and n and m are not too small).

The numerical solution of this linear problem furnishes only stable eigenvalues with
λr ≡ Re(λ) < 0 for the Newtonian problem (n = 1). However, a reduction in n increases
λr and eventually unstable modes appear; see figure 13. The m = 1 mode becomes
unstable for n slightly below 0.6 (and remains real); instabilities with higher wavenumber
require n < 1

3 , and are complex with frequencies λi ≡ Im(λ) 6= 0. Solutions for the
perturbation amplitudes are compared with numerical solutions of the Newtonian initial-
value problem in figure 10, and figure 14 displays a selection of solutions for Ψ(ζ) for
various values of n, ε and m. The cases with different ε are hard to distinguish in figure
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Figure 13. Eigenmodes of the linear stability problem for self-similar solutions with Bi = 0,
showing (a) λr and against m for n = [0.1, 0.15, 0.2, 0.4, ..., 1] and λi against m for
n = [0.1, 0.15, 0.2], and (b) λr against n for m = 1. In both panels, data for ε = 10−3 (solid),
0.01, 0.05 and 0.1 (all dashed) are shown.

Figure 14. Eigenfunctions Ψ for (a) n = 1, (b) n = 0.4 and (c) n = 0.1, with ε = 0.1 (dashed)
and 0.01 (solid). Modes with m = 1, 4 and 10 are plotted (as indicated by color). The dash-dot
lines show more m = 1 solutions for ε = 10−3. In (c), the real parts of the complex modes with
m > 1 are plotted. The dots show numerical solutions of the initial-value problem at t ≈ 300
for a selection of the cases (m = 10 in (a); m = 1 and 4 in (b); m = 4 in (c)).

14, except at smaller m and n where the solutions become sensitive to ε because the
corresponding mode shapes fail to decay towards the inner boundary and begin to pile
up against it. Also, the flattening out of the growth-rate curves in figure 13(a) can be
rationalized by a WKB-style analysis in the limit m � 1, where the solutions decay
rapidly away from the outer boundary and depend on the spatial coordinate m(1 − ζ).
The analysis is complicated by the presence of the singular point at ζ = 1, and the fact
that its nature switches for n = 1

3 , but otherwise predicts that λ becomes independent
of m.
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Appendix B. Plastic self-similar solutions

B.1. The limit ε→ 0

Writing

Z = F ( 1
2F − 2C), 2Uζ +

U
ζ

= γ̇C(ζ),
√

3
U
ζ

= γ̇S(ζ) & 1 = C2 + S2,

(B 1)
the equations for the axisymmetrical similarity solution read

Fζ =
FU(
√

3C + S)

ζS(ζ − 2U)
, Uζ =

U
2Sζ

(√
3C − S

)
, Zζ =

F

ζ

(
C −

√
3S
)
. (B 2)

For ζ → 0, the solution for F diverges logarithmically, whereas |C| is bounded by unity.
Thus, Z → F 2/2. The first and last equations in (B 2) can then only be consistent if C →
−S/
√

3, or (C, S) → 1
2 (−1,

√
3). This further implies that F ∼ −2 log ζ and U ∝ ζ−1;

logarithmic corrections obscure this limit in the numerical solutions. In particular, we
note that C ∼ −S/

√
3+2/F , retaining the next correction. Thence, Uζ ∼ −(1−2/F )U/ζ,

which furnishes U ∼ −c(ζ log ζ)−1, for some constant c, as seen in figure 8(f).

We may also observe from (B 2) that (ζFU)ζ ∼ O(ζ) for ζ → 0. It follows that

[ζFU ]ζ→0 =

∫ 1

0

F (ζ)ζdζ ≈ 0.664, (B 3)

using the computations in figure 8(c), which simply corresponds to mass conservation for
the self-similar solution. This result leads to the limit in (3.26).

B.2. Linear stability

For the perturbations to the similarity solution we set

h = Bi[F (ζ) + tλeimϑF̌ (ζ)], u = Λt−
1

2 Bi−
1

2 [U(ζ) + tλeimϑǓ(ζ)], (B 4)

v = imΛtλ−
1

2 Bi−
1

2 eimϑΨ(ζ), R = Λt
1

2 Bi−
1

2 [1 + tλeimϑŘ]. (B 5)

Now we define Y̌ , Ž and X̌ through the relations

Y̌ =
ζ2F

Γ̇

(
Ǔ − Ψ
ζ

+ Ψζ

)
, Ž = (F − 2C)F̌ − F (2τ̌rr + τ̌θθ), (B 6)

F̌ =
X̌ − ζF Ǔ
ζ(U − 1

2ζ)
& Γ̇ = 2

√
U2
ζ +
UUζ
ζ

+
U2

ζ2
≡
√

3U
ζS

, (B 7)

where the normal stress perturbations are

(τ̌rr, τ̌θθ) =
1

2F
[(F − 2C)F̌ − Ž]

(
1 +

C

S
√

3
,− 2C

S
√

3

)
. (B 8)
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The linearized equations for the perturbations can then be written as

Ǔζ =
ζΓ̇ [(F − 2C)F̌ − Ž]− 2FS(S −

√
3C)(Ǔ −m2Ψ)

4ζFS2
, (B 9)

X̌ζ = m2FΨ − ζ(1 + λ)F̌ , (B 10)

Žζ =
1

ζ
(C −

√
3S)F̌ +

1

2ζS
(S +

√
3C)[(F − 2C)F̌ − Ž]− m2

ζ3
Y̌ , (B 11)

Ψζ =
Ψ − Ǔ
ζ

+
Γ̇ Y̌

ζ2F
, (B 12)

Y̌ζ = ζ(F − C −
√

3S)F̌ − ζ

2S
(S − C

√
3)[(F − 2C)F̌ − Ž]. (B 13)

The boundary conditions are, at ζ = ε,

Ψ = F̌ = Ǔ = 0 (B 14)

and, near the unperturbed outer radius ζ = 1,

Ǔ ∼ (λ+ 3
4 )Ř, Ž ∼

√
3FŘ, Y̌ ∼

√
3FŘ. (B 15)

The singular point at the edge again impacts the linear stability problem: in order to shift
the outer boundary, the perturbation to the depth at ζ = 1 must diverge according to F̌ ∼
−FζŘ. The dependent variables above, however, avoid any divergences. Nevertheless,
one must be careful to exclude solutions to (B 9)-(B 13) that diverge more strongly than
implied by (B 15). Indeed, we find numerical evidence for infinitely many solutions with
Real(λ) close to −1 that possess unphysical behaviour at the edge. Eliminating these
leaves a finite set of physically relevant modes that can be unstable.

Numerical solutions to the linear stability problem are shown in figures 15–16. The
first figure displays a pair of unstable modes that arises for smaller angular wavenumbers
m for a base state with ε = 0.05. With increasing m, the eigenvalues of these modes pass
through a curious sequence of interactions wherein the pair either splits into distinct,
real values or collide into a complex conjugate pair. Overall, the growth rate λr increases
with m2, whereas the frequency of the conjugate pair scales with m. As displayed by the
eigenfunctions for Ǔ(ζ) included in the plot, the modes acquire more spatial oscillations
as m increases. At higher m, further unstable modes appear, but at the values of m
plotted, no other growing eigenvalues were found. Some additional analytical progress is
possible in the high-wavenumber limit using WKB theory: the eigenfunctions acquire an
oscillatory structure given by exp( 1

2 im
√

2 log ζ), with a more slowly varying amplitude
that is roughly independent of m.

Growth rates for varying domain sizes (i.e. ε) are shown in figure 16. Notably, the
growth rates appear to diverge in the limit ε→ 0, with λr = O(ε−am2) and 1.5 < a < 2.
Conversely, the instability is much reduced in the limit of a relatively narrow annulus, ε→
1, where further asymptotic analysis demonstrates that λr ≈ (1−ε)2m2/12. In the plastic
limit, the instability is therefore markedly different from the two-dimensional instability
explored by Sayag & Worster (2019b). For that problem, the instantaneous growth rate is
maximized for m = 1 and all the higher angular modes pass repeatedly through phases of
stability and instability as the fluid expands (Ball et al. 2020a). Here, the instability grows
monotonically with the expansion of the dome and the shorter-wavelength modes amplify
fastest, at least until angular wavelength becomes comparable to the thickness of the
dome and the shallow-layer approximation breaks down. Consequently, the extensional
flow instability appears to be stronger for a thinning expanding dome.
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Figure 15. Eigenvalues λ = λr + iλi against m for a base state with A = 1.03 (F0 = 5.86)
and ε = 0.05. The eigenvalues are computed treating m as an real number; the solution with
integer m are shown as circles, coloured according to whether they are real (blue and red, with
the former having a λ greater than that of the latter) or complex (green). The insets show the
mode shapes for Ǔ(ζ).

Figure 16. Eigenvalues λ = λr + iλi against m for the values of ε indicated (with A = 1.029112
for ε = 0.015, A = 1.03 for ε = 0.05, and A = 1 for the cases with larger ε). The dashed lines
show the linear and quadratic curve of figure 15.
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Luu, Li-Hua & Forterre, Yoël 2013 Giant drag reduction in complex fluid drops on rough
hydrophobic surfaces. Physical review letters 110 (18), 184501.

MacAyeal, Douglas R 1989 Large-scale ice flow over a viscous basal sediment: Theory and
application to ice stream b, antarctica. Journal of Geophysical Research: Solid Earth
94 (B4), 4071–4087.

MacAyeal, Douglas R & Barcilon, Victor 1988 Ice-shelf response to ice-stream discharge
fluctuations: I. unconfined ice tongues. Journal of Glaciology 34 (116), 121–127.

Mascia, Salvatore, Patel, MJ, Rough, SL, Martin, PJ & Wilson, D Ian 2006 Liquid
phase migration in the extrusion and squeezing of microcrystalline cellulose pastes.
European journal of pharmaceutical sciences 29 (1), 22–34.

Oron, Alexander, Davis, Stephen H & Bankoff, S George 1997 Long-scale evolution of
thin liquid films. Reviews of modern physics 69 (3), 931.

Pegler, Samuel S, Lister, John R & Worster, M Grae 2012 Release of a viscous power-
law fluid over an inviscid ocean. Journal of fluid mechanics 700, 63–76.

Pegler, Samuel S & Worster, M Grae 2012 Dynamics of a viscous layer flowing radially
over an inviscid ocean. Journal of fluid mechanics 696, 152–174.

di Pietro, ND & Cox, RG 1979 The spreading of a very viscous liquid on a quiescent water
surface. The Quarterly Journal of Mechanics and Applied Mathematics 32 (4), 355–381.

Prager, W. & Hodge, P. G. 1951 Theory of perfectly plastic solids. Wiley.
Roussel, Nicolas, Lanos, Christophe & Toutou, Zahia 2006 Identification of bingham

fluid flow parameters using a simple squeeze test. Journal of non-newtonian fluid
mechanics 135 (1), 1–7.

Sayag, Roiy 2019 Rifting of extensional flows on a sphere. Physical Review Letters 123 (21),
214502.

Sayag, Roiy, Pegler, Samuel S & Worster, M Grae 2012 Floating extensional flows.
Physics of Fluids 24 (9), 091111.

Sayag, Roiy & Worster, M Grae 2019a Instability of radially spreading extensional flows.
Part 1: Experimental analysis. Journal of Fluid Mechanics 881, 722–738.

Sayag, Roiy & Worster, M Grae 2019b Instability of radially spreading extensional flows.
Part 2: Theoretical analysis. Journal of Fluid Mechanics 881, 739–771.

Schoof, Christian & Hewitt, Ian 2013 Ice-sheet dynamics. Annual Review of Fluid
Mechanics 45, 217–239.


