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When a viscous fluid spreads underneath a deformable surface skin or crust, the peeling
dynamics at the fluid front can control the rate of advance rather than bulk self-similar
flow. For an elastic skin, this control results in a quasi-static interior blister held at
constant pressure that is matched to a narrow peeling region behind the fluid front. In
this paper, the analogous problem is considered for a skin that deforms either viscously or
plastically, or both. In particular, the deformable surface is assumed to be a thin plate of
material governed by the Herschel-Bulkley constitutive law. We examine how such a skin
controls viscous flow underneath, fed at constant flux and spreading as either a planar
or axisymmetric current. As for an elastic skin, the peeling dynamics at the viscous
fluid front again controls the rate of spreading. However, contrary to that situation,
the mathematical matching problem for viscoplastic peeling is simplified considerably
as a result of an integral constraint. Despite this, the structure of the peeling region is
complicated significantly by any plasticity in the skin, which can create a convoluted
peeling wave ahead of the main blister that features interwoven yielded and plugged
sections of the plate.

1. Introduction

A number of problems in geophysics, engineering and biology involve the spreading of a
viscous fluid beneath a surface skin or crust. In some settings, the surface layer is distinct
from the fluid, such as for geological intrusions (Michaut 2011; Bunger & Cruden 2011;
Michaut & Manga 2014; Michaut et al. 2016), the production of silicon wafers (Huang
& Suo 2002b,a), deformable channels in microfluidics (Hosoi & Mahadevan 2004; Kodio
et al. 2017), micro-scale lithography (Box et al. 2019), airway reopening (Gaver et al.
1996; Jensen et al. 2002; Grotberg & Jensen 2004) or in models of plant cell walls (Dyson
& Jensen 2010; Ali et al. 2014). In others, the skin forms atop the flow as the fluid cools,
solidifies, evaporates or reacts (Griffiths & Fink 1993; Griffiths 2000; Brož et al. 2020).

A number of theoretical and experimental models of these flows have considered the
skin layer to be a solid, thin, elastically deforming crust (e.g. Hosoi & Mahadevan (2004);
Flitton & King (2004); Lister et al. (2013); Hewitt et al. (2015); Peng & Lister (2020);
Ball & Neufeld (2018); Pedersen et al. (2019); Pihler-Puzović et al. (2015); Peng et al.
(2015); Berhanu et al. (2019)). The description of the skin and its restraining effect on the
underlying fluid flow is then compactly described by coupling membrane, Euler-Bernoulli
or Föppl-von-Kármán equations (Timoshenko & Woinowsky-Krieger 1959) for the skin
with lubrication theory for the underlying viscous spreading. An important feature of
the spreading dynamics in this problem is that it becomes limited by conditions at the
periphery of the flow: although the spreading could potentially adopt a self-similar form
(once the memory of the initial shape of a mound of fluid is lost, or the flow expands far
beyond the radius of a vent through which the fluid is pushed, and there is no longer an
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intrinsic horizontal lengthscale), the singular nature of the contact line at the periphery
prevents the convergence to such a state. Instead, the expansion is controlled by how
the elastic sheet is “peeled off” the underlying substrate by the viscous flow, becoming
quasi-steady and constant pressure over the bulk of the viscous film (Flitton & King
2004; Lister et al. 2013; Hewitt et al. 2015).

Though popular, an elastic skin is not the only possible model for the crust. Indeed, as
often argued for lava flows (Griffiths & Fink 1993; Griffiths 2000; Castruccio et al. 2013),
when the surface layer is a significantly broken-up solidified crust, other models may be
more relevant, such as a substantially more viscous fluid, or a plastic material. The latter
also applies when a solid crust is softer and forced to deform well beyond its yield point,
but without fracture. Similarly, floating crusts of ice and other complex fluids (MacAyeal
1989; Schoof & Hewitt 2013; Sayag & Worster 2019; Feltham 2008; Sauret et al. 2015)
are typically neither elastic nor viscous.

In the current paper, we reconsider the problem of a viscous fluid spreading underneath
a skin. We depart from previous analysis (e.g. Lister et al. (2013); Hewitt et al. (2015);
Peng & Lister (2020)) by adopting a model for the crust which allows that surface layer
to deform either much more viscously than the underlying fluid, or as an ideal plastic
solid. For this task, we employ a model for a viscoplastic plate which is derived from the
governing equations of a material described by a standard non-Newtonian constitutive
law, the Herschel-Bulkley law (Balmforth & Hewitt 2013; Ball & Balmforth 2021). The
derivation of the plate model follows previous work for sheets of viscous fluid (Howell
1996; Ribe 2001, 2002), and in certain limits can be reduced to that of a viscous fluid
or ideal plastic material. The model therefore provides the viscoplastic analogue of the
Föppl-von-Kármán plate equations, and connects viscous sheet models and classical
theories of plastic plates (Prager & Hodge 1951; Hopkins & Prager 1954; Hopkins &
Wang 1955; Hodge & Belytschko 1968; Lubliner 2008), whilst further adding the effects
of in-plane tensions to the latter. Our use of this viscoplastic model underscores a key
simplification that we make, namely that we take the skin to be a materially distinct
layer, not generated by solidification, reaction or evaporation. This simplification limits
the application to situations in which the gradual thickening of the skin during spreading
is not important.

Although we employ a different description for the plate, one of the questions we
address is whether peeling at the contact line still impacts the spreading dynamics. We
therefore adopt the common practice of regularizing the contact-line behaviour by pre-
wetting the substrate with a thin film of viscous fluid. Viscous fluid is then introduced and
driven underneath the plate through a source, our interest lying in the regime in which
the resulting, spreading “blister” is much deeper than the pre-wetted film. We explore in
detail the peeling layer and confirm that it exerts the same control on spreading as when
the skin is elastic.

From a mathematical perspective, the different form of the model for the viscoplastic
plate over an elastic one leads to some novel features in the peeling dynamics. If the
plate is purely viscous, it turns out that the peeling problem simplifies dramatically in
comparison to the corresponding elastic analysis. This simplification arises because of
the existence of an integral constant that permits one to avoid a detailed match between
the main blister and the peeling layer. This simplification also features when the plate
has a yield stress. However, understanding the spatial structure of the peeling layer is
rather more challenging, as a convoluted sequence of interlaced plugs and yielded zones
can arise in the plate, somewhat like in other problems with viscoplastic films (Jalaal
et al. 2021; Jalaal & Balmforth 2016).
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Figure 1. A sketch of the model problem and its geometry: a thin viscoplastic plate is pushed
upwards as a shallow film of viscous fluid is pumped underneath.

2. Model equations

2.1. Governing equations

We model a thin plate of viscoplastic fluid satisfying the Herschel-Bulkley constitutive
law lying above a shallow layer of viscous fluid flowing over a horizontal surface, as
sketched in figure 1. Both fluids are incompressible. The thickness D of the plate is
comparable to the typical depth of the viscous fluid layer H, but both are much smaller
than the characteristic horizontal lengthscale L:

ε =
H

L
≪ 1, δ =

H

D
= O(1). (2.1)

We use either a Cartesian coordinate system (x, y, z) or cylindrical polars (r, θ, z) to
describe the geometry; the normal to the underlying plane points in the z−direction.
The governing equations for an incompressible fluid with velocity field u are, discarding
inertia,

∇ ⋅u = 0, (2.2)

0 = −∇p +∇ ⋅ τ + ρg, (2.3)

where g = (0,0,−g) is gravity, ρ is the density of the fluid, p is pressure, and τ is the
deviatoric stress tensor.

In the viscous fluid, τjk = µγ̇jk, where µ is the viscosity. For the plate, on the other
hand, the Herschel-Bulkley constitutive law provides

γ̇ = 0, τ < τ
Y
,

τ = (Kγ̇n−1 +
τ
Y

γ̇
) γ̇, τ ≥ τ

Y
,

(2.4)

where τ
Y

, K and n represent the yield stress, consistency and power-law index, and

γ̇jk =
∂uj

∂xk
+
∂uk
∂xj

, γ̇ =
√

1
2∑
j,k

γ̇2jk, τ =
√

1
2∑
j,k

τ2jk. (2.5)

For τ
Y
→ 0, the Herschel-Bulkley law reduces to that for a power-law fluid (and a viscous

one if, further, n = 1); when the yield stress dominates over the rate-dependent viscous
component of the stresses, the model is equivalent to a perfectly plastic material described
by the von Mises yield condition.

The densities of the viscous fluid and plate are not necessarily the same; ρ = ρf denotes
the density of the viscous fluid, whereas ρ = ρp is that of the plate. At the interface
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between the two fluids, z = h(x, t), we apply the usual kinematic condition and demand
that stresses are continuous, ignoring any interfacial tension.

2.2. Lubrication theory for the viscous fluid

Because the fluid layer underneath the plate is relatively shallow, we exploit the lubri-
cation approximation to describe the flow dynamics. In this approximation, the pressure
becomes hydrostatic and drives a flow underneath the plate with a Poiseuille-type velocity
profile that is O(ε−1) larger than the vertical velocity. Importantly, lubrication pressures
far exceed viscous shear stresses, implying that the normal force exerted by the fluid
on the plate is primarily generated by that pressure, and that the underlying viscous
flow is not strong enough to provide a significant traction on the lower side of the plate.
The plate therefore deforms mainly in the transverse (i.e. z) direction with a relatively
weak in-plane velocity. In particular if V denotes a characteristic vertical velocity, the
horizontal velocities of the plate are O(εV).

Given these considerations, we follow conventional lubrication theory and use the
depth-integrated mass conservation equation to derive a dimensionless evolution equation
for the local fluid depth:

∂h

∂t
= ∇ ⋅ (h3∇p) + source. (2.6)

To arrive at this dimensionless form, the local fluid depth is scaled by H, horizontal
lengths by L, time by H/V and pressure with the scale,

N =
12µL2V

H3
,

which render h and p as new dimensionless variables (avoiding any corresponding no-
tation changes). The term written as source denotes the dimensionless vertical velocity
above the vent, where the viscous fluid is fed underneath the plate. If P denotes the
dimensionless fluid pressure on the underside of the plate, then

p = P + G(h − z), or ∇p = ∇P + G∇h, (2.7)

where

G =
ρfgH

N
(2.8)

characterizes the influence of gravity on the blister. Practically, we take the scales L and
V to be prescribed by the size and flow speed associated with the vent.

As mentioned earlier, we demand that there is a thin film of viscous fluid everywhere
underneath the viscoplastic plate with h = h0; i.e. we pre-wet the underlying plane with
viscous fluid, following common practice in thin-film theory. This device allows us to
avoid any potential problems in dealing with a true contact line (a triple-phase contour
where the two fluids and substrate meet one another). In line with the introduction of
this thin film to “regularize” the problem, we consider the limit in which its thickness is
small: h0 ≪ 1.

2.3. Viscoplastic plate model

The lubrication pressure built up underneath the plate forces this skin to deflect
upwards. As shown in Ball & Balmforth (2021), provided the plate is thin, the local
thickness D does not change to leading order, and a combination of bending stresses
and in-plane tensions oppose deformation. The centerline of the plate then lies at
HZ = 1

2
D +Hh, and W = Zt = ht denotes the dimensionless vertical plate velocity.
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The analysis in Ball & Balmforth (2021) indicates that the stresses developed in the
plate are O(P), where

P =K (
DV

L2
)

n

. (2.9)

(Note that in Ball & Balmforth (2021) there is no viscous fluid layer underneath the
plate, and we took the vertical lengthscale to be D). These stresses generate a normal
force on the plate of O(PD2/L2) that counters the load exerted by the fluid pressure
NP from below. As these must balance, we take

N =
PD2

L2
, or H = (

12µL2(2+n)

KD2+nVn−1
)

1/3

,

which gauges the depth of the blister forced by the influx of viscous fluid.
The main thrust of the reduction in Ball & Balmforth (2021) is to express the force

balance on the plate in terms of the bending moments and in-plane tensions that result
from these stresses, and to relate those moments and tensions to VW and the (suitably
scaled) in-plane velocity (H/L)VU through constitutive relations that descend from the
original Herschel-Bulkley law. The constitutive laws are written in terms of the rates
of curvature and in-plane extension, which in dimensional form are V

L2K and VD

L2 D.
The corresponding dimensionless rates are given by the tensors, K = ∇∇W and D =
1
2
δ(∇U +∇UT +∇hT∇W +∇WT

∇h), in Cartesian coordinates, or

K = (
Wrr (r−1Wθ)r

(r−1Wθ)r r−2Wθθ + r
−1Wr

) (2.10)

and

D = δ (
Ur + hrWr

1
2
r−1(Uθ − rVr − V +ZθWr +ZrWθ)

1
2
r−1(Uθ − rVr − V +ZθWr +ZrWθ) r−1(U + Vθ) + r

−2ZθWθ
)

(2.11)
in polar form, where U = (U,V ).

The dimensional bending moments and tensions are D2PM and DPΣ, where, over
the sections where the plate is yielded,

M =Γn−1{(ΥI0,n − I1,n)∆ + [2ΥI1,n − I0,n+2 + (α2
− Υ 2

)I0,n]Γ }

+
Bi

Γ
{(ΥI0,0 − I1,0)∆ + [2ΥI1,0 − I0,2 + (α2

− Υ 2
)I0,0]Γ }, (2.12)

Σ = Γn−1[I0,n∆ + (I1,n − ΥI0,n))Γ ] +
Bi

Γ
[I0,0∆ + (I1,0 − ΥI0,0)Γ ], (2.13)

with

Γ = 2K + 2Tr(K)I, ∆ = 2D + 2Tr(D)I, (2.14)

Γ 2
= 1

2
[Tr(Γ 2

) − 1
3
Tr(Γ )

2
], Υ =

Tr(∆Γ ) − 1
3
Tr(∆)Tr(Γ )

2Γ 2
, (2.15)

α2
=

Tr(∆2) − 1
3
Tr(∆)2

2Γ 2
− Υ 2 (2.16)

and

Ij,n(α,Υ ) = ∫

1
2

−
1
2

(Υ − z)j [(z − Υ )
2
+ α2]

n−1
2 dz. (2.17)
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We refer to the dimensionless yield stress parameter,

Bi =
τ
Y

P
=
τ
Y

K
(
L2

DV
)

n

, (2.18)

as the Bingham number. If the plate is not locally yielded, then Γ = 0. The original yield
condition, τ = τ

Y
, descends to the relations,

Σ2
= Bi2 (α2I20,0 + I

2
1,0) , X = Bi2 (α2ΥI20,0 + ΥI

2
1,0 − I1,0I0,2) ,

M2
= Bi2 [α2

(I1,0 − ΥI0,0)
2
+ (I0,2 − ΥI1,0 − α

2I0,0)
2] ,

(2.19)

where the three invariants,

M2
= 1

2
[Tr(M2

) − 1
3
Tr(M)

2] , Σ2
= 1

2
[Tr(Σ2

) − 1
3
Tr(Σ)

2] , (2.20)

X = 1
2
[Tr(MΣ) − 1

3
Tr(M)Tr(Σ)] . (2.21)

In the absence of inertia and any interfacial tensions, the force balance on the plate
demands that 0 = ∇ ⋅Σ and 0 = ∇ ⋅ [∇ ⋅ (M+ δhΣ)]−

ρp
ρf
G +P (in Cartesian coordinates),

or

0 =
∂

∂r
Σrr +

1

r

∂

∂θ
Σrθ +

1

r
(Σrr −Σθθ), (2.22)

0 =
1

r2
∂

∂r
(r2Σrθ) +

1

r

∂

∂θ
Σθθ, (2.23)

0 =
1

r2
∂

∂r
(r2

∂Mrr

∂r
) +

2

r2
∂2

∂r∂θ
(rMrθ) +

1

r2
∂2Mθθ

∂θ2
−

1

r

∂Mθθ

∂r

+ δ [hrrΣrr + 2(
h

r
)
rθ
Σrθ +

1

r
(hr +

1

r
hθθ)Σθθ] −

ρp

ρf
G + P (2.24)

(in polar form).

3. Planar blisters

In the planar problem, the horizontal force balance on the plate reduces to ∂Σxx/∂x = 0,
highlighting how the viscous traction exerted on the plate by the fluid underneath is too
small to appear in lubrication theory. Hence, if the plate is free at its edges, it is not
possible to build up an appreciable tension. The plate model then simplifies substantially
((∆xx, Υ,α)→ 0) to furnish the problem,

∂h

∂t
=W, (3.1)

W =
∂

∂x
[h3

∂

∂x
(P + Gh)] + source, (3.2)

∂2Mxx

∂x2
+ P = G

ρp

ρf
, (3.3)

∂2W

∂x2
= − [(n + 2) Max(∣Mxx∣ −

1
2
Bi,0)]

1
n sgn(Mxx). (3.4)

The plate is yielded when ∣Mxx∣ > Bi/2, and ∂2W /∂x2 = 0 otherwise. Symmetry demands
that

∂W

∂x
=
∂

∂x
Mxx =

∂P

∂x
= 0 at x = 0. (3.5)
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Away from the pumped-up blister, the plate rests on the pre-wetted film, so that

(W,
∂W

∂x
,
∂P

∂x
)→ 0 for x≫ 1. (3.6)

To model the influx of viscous fluid, we set

source = {
1 − x2, ∣x∣ < 1
0, ∣x∣ > 1

. (3.7)

Practically, we solve the system in (3.1)–(3.4) for a Bingham plate numerically starting
with the initial condition h(x,0) = h0. We adopt a finite spatial domain of length L, with
L mostly chosen sufficiently large that the far boundary remains sufficiently distant to
have no effect on the results (see Appendix B). The numerical scheme constructs the
instantaneous vertical velocity W and depth h(x, t) at each moment in time by solving
(3.2)–(3.4) as a boundary-value problem in space using MATLAB’s built-in solver bvp4c,
given the simple finite difference scheme for (3.1),

h(x, t) = h(x, t − dt) + 1
2
dt[W (x, t) +W (x, t − dt)],

together with the previous pair, h(x, t−dt) and W (x, t−dt), and a suitably chosen, small
time step dt. To ease the computations with Bi > 0, we also smooth the switch in (3.4)
by introducing the replacement,

Mxx = −

⎡
⎢
⎢
⎢
⎢
⎣

1
3
+ 1

2
Bi(∣

∂2W

∂x2
∣ + ε)

−1⎤
⎥
⎥
⎥
⎥
⎦

∂2W

∂x2
, (3.8)

which can be inverted to give

∂2W

∂x2
= − [

1

4
(6∣Mxx∣ − 3Bi − 2ε) +

1

4

√
(6∣Mxx∣ − 3Bi − 2ε)2 + 48ε∣Mxx∣] sgn(Mxx). (3.9)

The value of ε is taken to be sufficiently small to ensure that the main details of the blisters
are independent of the precise value of this parameter. However, as we argue below, it
is not possible to fully divorce the structure of the solution from this regularization
parameter (see, again, Appendix B).

Because the underlying plane is everywhere separated from the plate by the pre-wetted
film, there is no true contact line at the edge of the pumped-up blister. Instead, we define
an effective edge using the first position x = Xe(t) that the fluid depth reaches the pre-
wetted film thickness; i.e. h(Xe, t) = h0.

3.1. Viscous beam Bi = 0

When the plate is purely viscous (Bi = 0; n = 1), further simplifications result in

W =
∂

∂x
[h3 (

∂P

∂x
+ G

∂h

∂x
)] + source, P =

1

3

∂4W

∂x4
,

∂h

∂t
=W. (3.10)

The version of this viscous model in which the gravitational term dominates the bending
term in the evolution equation is well known (e.g. Huppert (1982)), so we consider the
opposite limit by taking G → 0. In view of scalings, and with the restriction to the
Bingham case, this parameter is given more explicitly by

G =
ρfgL

6(12µ)1/3

VD4K4/3
. (3.11)
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Figure 2. Numerical solution for a planar Newtonian plate (Bi = 0, n = 1) with h0 = 10−2 and
L = 50. (a) Evolution of the height of the blister. The red line indicates the blister’s edge Xe(t).
Also shown are snapshots of (b) vertical velocity W , (c) pressure P , and (d) moment Mxx at
the times indicated and colour coded accordingly. The dashed lines plot the asymptotic solution
for the blister from §3.1.2. The inset in (c) shows the almost uniform interior pressure. Insets in
(b,d) show a collapse of profiles in the peeling boundary layer when replotted using the scaled
variables, ξ = (x −Xe)/Lp and f = h/h0, defined in (3.17). The dot-dashed black lines plot the
numerical solution to the peeling equation (3.18).

3.1.1. Numerical results

A numerical solution to (3.10) for G = 0 is shown in figure 2. Once pumping commences
a blister rises up above the vent (spanning ∣x∣ < 1). The blister then expands sideways
as the less viscous fluid from the vent is driven under the much more viscous plate. As
observed in spreading flow underneath elastic sheets, the blister quickly settles into a
quasi-steady shape in which the fluid pressure is almost uniform, with the overlying skin
evolving in the same manner as a viscous beam under a spatially uniform, time-dependent
load (cf. the “glass-blowing” solutions of Ribe (2001)). At this stage, the expansion is
controlled by a thin layer at the edge over which the viscous plate is peeled off the pre-
wetted film and pressure gradients become significant. The figure shows details of the
main blister, as well as the peeling layer. Time series of some of the global features of the
blister are plotted in figure 3, for both the solution shown in figure 2 and more solutions
with varying h0. Plotted, in particular, are the maximum depth

hmax(t) = h(0, t),

edge position Xe(t), and central vertical velocity and pressure, W (0, t) and P (0, t). These
attributes can be predicted by the matched asymptotic analysis of the blister and peeling
layer; see §3.1.2.
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Figure 3. Time series of (a) maximum height hmax(t) and edge position Xe(t), and (b) central
vertical velocity and pressure, W (0, t) and P (0, t), for a planar Newtonian plate (Bi = 0, n = 1
and L = 50) with differing pre-wetted layer thicknesses (h0 = (0.5, 1, 2, 4, 8)× 10−2). The arrows
in (a,b) show the trends with increasing h0.

Figure 4 shows solutions for some variations on the basic spreading problem, namely
for blisters in which the plate is terminated closer to the source, or when the pumping
is turned off after a time t = ts. The blisters under a shorter plate reach the edges after
an initial period of expansion, the peeling layer then stops advancing, prompting a faster
growth of the thickness. In fact, since the pressure becomes largely uniform, the second
relation in (3.10), along with the boundary condition and unit flux, predicts that

W ∼
5

4L
(1 −

x2

L2
)

2

& h ∼
5t

4L
(1 −

x2

L2
)

2

, (3.12)

in agreement with the numerical solutions in figure 4. When the pump rate is terminated
after t = ts, the solution quickly converges to a steady state with P = 0 throughout. The
blister then largely remains at the shape it possessed when pumping ceased, because
there is no levelling by gravity or interfacial tension. The final shape is now given by the
peeling analysis, described next.

3.1.2. Peeling analysis

When the pressure becomes approximately uniform, P ≈ P (t), over the bulk of the
blister, the quasi-static evolution of the shape is dictated by

P (t) ∼
1

3

∂4W

∂x4
, (3.13)

subject to the symmetry conditions ∂W /∂x = ∂3W /∂x3 = 0 at x = 0. At the edge,
x→Xe(t), the condition h→ h0 must be supplemented with further conditions reflecting
how the blister matches with the peeling layer. In particular, as indicated below, the
peeling layer possesses a much shorter spatial scale than the main blister. The mismatch
in first derivatives then demands that ∂W /∂x→ 0 for x→Xe, leaving a further condition
to be imposed on ∂2W /∂x2 that we identify below. All this parallels the analysis required
for an elastic skin (Lister et al. 2013; Hewitt et al. 2015).

An additional constraint on the main blister arises from mass conservation:

2

3
t ∼ ∫

Xe

0
(h − h0)dx or

2

3
∼ ∫

Xe

0
W dx. (3.14)
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Figure 4. Numerical solutions for a planar Newtonian plate in which the edges x = ±L are
closer to the vent or pumping ceases at t = ts (with h0 = 10−2 and L = 50). Shown are (a-c)
surface plots of h(x, t) above the (x, t)−plane, with red lines indicating the blister’s edge Xe(t).
Also shown are time series of (d) Xe(t) and (e) hmax(t) and W (0, t). The solution from figure
2 is shown in (a) and by the solid blue lines in (d,e). The other two surface plots show solutions
with (b) L = 3 and (c) ts = 50. Panels (d,e) show solutions with L = 1.3, 2 and 3 (green dashed
lines) and ts = 1, 5 and 20 (red dotted lines). The blue stars and red triangles indicate the
predictions of the peeling analysis in §3.1.2 (with t ≡ ts for the latter); the green triangles show
the predictions in (3.12). The insets show the final snapshots of the solutions in (d,e), with the
small filled circles indicating x = Xe(t), and the faint grey lines in the inset in (e) showing the
evolution of h(x, t) for the solution of figure 2.

Hence,

W ∼
5

4Xe
(1 −

x2

X2
e

)

2

, (3.15)

and so the blister has a curvature rate of

∂2W

∂x2
∣
x→Xe

∼
10

X3
e

(3.16)

at the edge.
In the peeling layer, the solution takes the form of a travelling wave with

h ∼ h0f(ξ), W ∼ −
Ẋeh0
Lp

f ′(ξ), ξ =
x −Xe(t)

Lp
, Lp = ( 1

3
h30)

1
6 ≪ 1, (3.17)
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where (from (3.10), given f → 1 for ξ →∞)

f − 1 = f3fV I . (3.18)

This equation can be solved numerically, enforcing three boundary conditions on the
right, to ensure that f → 1 for ξ →∞. To the left, we must impose conditions guided by
matching: the solution for the main blister possesses derivatives that are O(1) for x→Xe.
But the scaling of the peeling solution indicates that ∂2W /∂x2 → −Ẋeh0f

′′′/L3
p = O(1),

whereas ∂mW /∂xm = O(h
1−m

2

0 ), which is small for m = 1 and large for m > 2. Hence to
accomplish the match we must impose ∂W /∂x = 0 at x→Xe for the main blister solution
(as noted earlier), and eliminate the higher derivatives of the peeling-layer solution,
corresponding to the conditions (f IV , fV ) → 0 for ξ → −∞. A sixth condition (such as
f = 1 at the right-hand point of the computational domain) is required to eliminate the
translational invariance of (3.18).

This construction furnishes a solution for the peeling region, which, in principle, then
provides a matching condition for the edge curvature in (3.16). However, unlike in other
peeling problems (e.g. Flitton & King (2004); Lister et al. (2013); Hewitt et al. (2015)),
the peeling equation in (3.18) has an even number of derivatives, which implies the
existence of an integral. By multiplying the peeling equation (3.18) by f ′, rearranging
and integrating we find

1

2
(f ′′′)2 − f ′′f IV − f ′fV + f−1 −

1

2
f−2 = constant. (3.19)

But, on the left for large ∣ξ∣, the asymptotic form of the solution is

f ∼ aξ3 + bξ2 + cξ −
1

120a2
log ξ + ... (3.20)

(for some constants a, b and c), whereas f → 1 on the right. Hence

[
1

2
(f ′′′)2]

ξ→−∞
=

1

2
, (3.21)

or f ′′′ → −1. Therefore, the limiting curvature rate of the peeling-layer solution to the
left is

∂2W

∂x2
∼
h0Ẋe

L3
p

. (3.22)

Matching (3.16) with (3.22) implies that

Ẋe ∼
10L3

p

h0X3
e

=
10

X3
e

√
1
3
h0 , (3.23)

and so (given (3.15))

Xe(t) ∼ (1 + 40
√

1
3
h0t)

1/4

, hmax(t) ∼
1

8
√

3h0
[(1 + 40

√
1
3
h0t)

3/4

− 1] + h0. (3.24)

Evidently, the solution arrives at the peeling-controlled, uniform-pressure state for times

of O(h
−

1
2

0 ) (given that Xe is O(1); cf. figures 2 and 4).
Finally, one can integrate (3.1) (after changing variables to x/Xe(t) to account for the

motion of the edge), to show that

h ∼ hmax (1 −
∣x∣

Xe
)

3

(1 +
3∣x∣

Xe
) . (3.25)
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The scalings in (3.24) are compared with the numerical solutions in figure 3. The
numerical solution of the peeling equation (3.18) is also compared with the finer spatial
structure of the numerical solution in figure 2.

Note that a simple scaling analysis of (3.10) implies that P ∼X2
eh

−3
maxḣmax ∼X

−4
e ḣmax.

That is,X2
e ∼ hmax. But mass conservation also implies thatXehmax ∼ t, and so hmax ∼ t

2
3

and Xe ∼ t
1
3 . These scalings, which would characterize a self-similar solution to (3.10),

disagree with (3.24), as in the problem for an elastic skin. The reason for this disagreement
lies in the singular limit h0 → 0 evident in (3.24), which demonstrates how the pre-wetted
film is essential in permitting the contact line to move; without this regularization, no
solution is possible, and, in particular, a similarity solution does not exist (cf. Flitton &
King (2004); Hewitt et al. (2015)).

Both sets of scalings are also different from those suggested by Griffiths & Fink
(Griffiths & Fink 1993) to characterize spreading resisted by a viscous skin. In their
scaling theory, the crust has a variable thickness, as that carapace is assumed to result
from solidification as a thermal boundary layer advances into the flow. However, the
effect of the deepening of the skin can be removed by setting their thermal diffusivity
equal to t−

1
2 . This results in estimates of hmax ∼ t

0 and Xe ∼ t
1 for a line source. These

are different to what we derive here because Griffiths & Fink assume that the resistance
of the surface layer stems from vertical shear, rather than viscous bending (as underlying
(3.24)) or extension (which would control the outflow if the tension in the skin overcame
the bending stresses). Given that the skin floats atop a much less viscous shear flow, it
is hard to see when significant vertical shears could be developed over that crust. The
results of Griffiths & Fink for a circular blister (point source) and a plastic skin are also
different to what we derive below for the same reason.

3.2. Viscoplastic beam

Solutions for a viscoplastic beam with Bi = 0.1, n = 1 and G = 0 are shown in figure
5. For the plate to deform upwards with positive curvature at the centre, but bend back
down to pre-wetted film near x = Xe(t) with negative curvature, there must be yielded
regions at both the centre and edge of the blister. Owing to the implied switch of sign
of the bending moment, these yielded regions necessarily become separated by a plug
spanning 0 < X1 < ∣x∣ < X2 < Xe, with Mxx = 1

2
Bi at ∣x∣ = X1 and Mxx = − 1

2
Bi at

∣x∣ = X2. The figure indicates the borders of the plug, as well as the edge of the blister.
Also shown are some snapshots of the vertical velocity, pressure and bending moments,
which highlight the main characteristics of the solution.

As for the viscous plate, after a short transient, the main blister again evolves into a
quasi-steady state with an almost uniform pressure distribution (see panel (b)). Outside
the main blister another peeling layer arises characterized by relatively sharp gradients
near x =Xe(t). However, the wavetrain over the peeling layer is rather more complicated
than for a viscous plate: a sequence of interlaced plugs and yielded zones appear, which
are difficult to capture numerically and sensitive to our regularization of the constitutive
law (Appendix B). The first two plugs are indicated in the surface plot of h(x, t) in panel
(a); the computed bending moment and pressure distribution of (b) and (d) are not
reliable beyond these two plugs, and are not plotted accordingly. Despite such flaws in
the numerical solution, the main blister and first two plugs of the wavetrain are reliably
computed, being insensitive to the detailed structure of the more distant parts of the
wavetrain (cf. figure 14 in Appendix B).

The main attributes (hmax(t), Xe(t), W (0, t) and P (0, t)) of the blisters in computa-
tions with different Bingham numbers are shown in figure 6. Also plotted are the time
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Figure 5. Numerical solution for a planar Bingham plate (n = 1) with Bi = 0.1 (h0 = 10−2,
ε = 10−9 and L = 30). (a) A surface plot of h(x, t). The red solid and dashed lines show the
edges and plugs of the main blister. The first two plugs of the peeling layers are shaded grey.
Also plotted are snapshots of (b) P (x, t), (c) W (x, t) and (d) Mxx(x, t) at the times indicated
(colour coded in time, from red to blue). The pressure plot is divided into a magnification of
the main blister (top) and the full pressure variation (bottom; vertically offset for clarity). The
black dashed lines show the asymptotic solution for the main blister; the black solid lines are
constructed from numerical solutions of the peeling equation (with matched values for B̌). In
(c), the black dots indicate the edges of the plug in the main blister. The inset in (c) shows a
magnification of the peeling layer, with W and x replotted using the scaled variables, ξ and −fξ,
defined in (3.36); the solutions of the peeling equation are offset for clarity.

series of the plug borders. All this data matches satisfyingly with the viscoplastic version
of the peeling analysis of §3.1.2, outlined below. Although the yield stress adds some
twists into this analysis, the route taken is largely the same as for the viscous theory.

3.2.1. Main viscoplastic blister

We focus on a Bingham plate with n = 1 and neglect gravity (G ≪ 1). For a uniform-
pressure blister,

Mxx ∼M0 −
1
2
Px2,

∂2W

∂x2
= −3Max (∣Mxx∣ −

1
2
Bi,0) sgn(Mxx), (3.26)

where M0(t) is the central bending moment. Over the central yielded region, ∣x∣ < X1,
where sgn(Mxx) > 0, equation (3.26) indicates that

W ∼W (0, t) + 1
8
Px4 − 3

2
(M0 −

1
2
Bi)x2. (3.27)

In the yielded region at the edge [X2,Xe], sgn(Mxx) < 0 and we find instead

W ∼ 1
8
P (x4 − 4X3

e ∣x∣ + 3X4
e ) −

3
2
(M0 +

1
2
Bi)(x2 − 2Xe∣x∣ +X

2
e ). (3.28)
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Figure 6. Numerical results for a planar Bingham plate (n = 1) with Bi = 0.01, 0.1, 0.2, 0.3, 0.4,
0.5 (h0 = 10−2, ε = 10−8 and L = 30), plotting time series of (a) hmax(t) and Xe(t), (b) W (0, t)
and P (0, t), and (c) the yield points X1(t) and X2(t). The dashed lines show the predictions
based on (3.42) and the viscoplastic peeling theory. The curves are colour-coded by Bingham
number and the arrows indicate the trend with increasing Bi.

Over the plug in between, W (x, t) is linear in x. Overall, mass conservation still demands
(3.14). Piecing together the various parts of the profile then furnishes

P ∼
2Bi

X2
2 −X

2
1

, Mxx ∼
Bi(X2

1 +X
2
2 − 2x2)

2(X2
2 −X

2
1)

, (3.29)

W ∼
Bi

4(X2
2 −X

2
1)

×

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

[x4 − 6X2
1x

2 − 3X4
1 + 3(X2 −Xe)

2(X2 +Xe)
2] , x ≤X1,

[3(X2 −Xe)
2(X2 +Xe)

2 − 8X3
1x] , X1 < x ≤X2,

(x −Xe)
2 [x2 + 2Xex + 3X2

e − 6X2
2 ] , x >X2,

(3.30)

where the yield points are determined by the algebraic problem,

X3
1 = (Xe −X2)

2
(X2 +

1
2
Xe), (3.31)

20(X2
2 −X

2
1) = 3Bi[2(X5

2 −X
5
1) +X

3
e (3X

2
e − 5X2

2)]. (3.32)

The curvature rate at the edge is

∂2W

∂x2
∣
x=Xe

∼
3Bi(X2

e −X
2
2)

(X2
2 −X

2
1)

. (3.33)

For Bi → 0, (X2,X1) → Xe/
√

3 and Bi/(X2
2 − X

2
1) → 5/X5

e , recovering the results
in the viscous limit. Conversely, the plastic limit arises when X2 → Xe and X1 → 0,
corresponding to the development of viscous hinges at the centre and edge that permit
the deflection of an otherwise straight, rigid beam. In detail, (3.31)-(3.32) reduce to

X3
1 ∼

3

2
Xe(Xe −X2)

2 & 4 ∼ 9BiXe(Xe −X2)
2, (3.34)

giving

X1 ∼ (
2

3Bi
)

1
3

, X2 ∼Xe −
2

3
(XeBi)

−
1
2 &

∂2W

∂x2
∣
x=Xe

∼
4Bi

1
2

X
3
2
e

. (3.35)
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3.2.2. Viscoplastic peeling layer

Over the peeling layer, we search for another quasi-steady wavetrain with the form,

ξ =
x −Xe

Lp
, h ∼ h0f(ξ), Mxx ∼

Ẋeh0
3L3

p

M̂(ξ), Lp = ( 1
3
h30)

1
6 . (3.36)

The problem then reduces to

f ′ = (f3M̂ ′′′
)
′, f ′′′ = Max [∣M̂ ∣ − B̌,0] sgn(M̂), (3.37)

where

B̌ =
3BiL3

p

2Ẋeh0
=

√
3h0Bi

2Ẋe

. (3.38)

Although this rescaled Bingham number appears small due to the factor of
√
h0, the

denominator is also expected to become small at late times, promoting the size of B̌. In
fact, as shown below, Ẋe = O(

√
h0), rendering B̌ order one.

Provided that f → 1 and M̂ ′′′ → 0 for ξ → ∞, we may integrate the first relation in
(3.37) once, to find

f − 1

f3
= M̂ ′′′, f ′′′ = Max [∣M̂ ∣ − B̌,0] sgn(M̂). (3.39)

These peeling equations must be integrated from the left, where a match with the outer
yielded region of the main blister is needed, to the right, where f → 1 and ∣M̂ ∣ → B̌. As
for the viscous plate, the match to the blister demands that we again eliminate some of
the higher derivatives of the peeling-layer solution on the left, which in this case are M̂ ′

and M̂ ′′. The boundary conditions to impose to the right, however, are less transparent.
One option is to assume that the peeling solution meets the plugged pre-wetted film at

a finite position, and then impose f = 1, f ′ = f ′′ = 0 and ∣M̂ ∣ = B̌ there. This construction
is illustrated in figure 7(a) for B̌ = 0.1. Four possible solutions are shown, allowing for
zero, one, two or three extrema in the bending moment M̂(ξ). The addition of each
extremum, analogous to each oscillation of the Newtonian peeling solution, corresponds
to the inclusion of an additional plug and yielded region over the peeling layer. For the
planar beam, however, and as illustrated by the dashed lines in the figure, these solutions
are not acceptable because a continuation of M̂(ξ) into the pre-wetted film to the right
unavoidably leads to further breaches of the yield stress (no further boundary conditions
are available to ensure that the derivatives of M̂(ξ) vanish at the final yield point).

Although the solutions shown in figure 7(a) cannot provide an acceptable peeling-layer
structure for a viscoplastic beam, we point out below in §4.1 that they may be relevant
for a circular blister. Moreover, these solutions clearly demonstrate a convergence to a
common form on the left of the peeling region as one adds more extrema in the bending
moment. This suggests that one can build a true peeling-layer solution by including
an infinite sequence of plugs and yielded regions, with the bending moment continually
oscillating between ± 1

2
Bi. Such a construction is supported by numerical solutions of the

initial-value problem like that shown in figure 5, and further arguments are provided in
Appendix A. Figure 7(b) presents several other numerical solutions to the peeling layer
(3.39) that construct more of the sequence by imposing different right-hand boundary
conditions (as stated in the caption). The plugs widen and the yielded regions narrow with
the progression along the wavetrain, and it proves numerically challenging to construct
longer wavetrains than those plotted.

Fortunately, such a construction can again be avoided when matching with the main
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Figure 7. Numerical solutions of the peeling equation (3.39). In (a), the solution is assumed
to meet the plugged pre-wetted film after passing through zero, one, two or three extrema in
bending moment, corresponding to differing numbers of interwoven plugs and yielded regions.

Plotted are M̂(ξ) (main panel) and f ′′(ξ) (inset) for B̌ = 0.075 (blue lines). The stars indicate
where the peeling solutions meet the pre-wetted film. The dashed lines indicate the trend of the
bending moment if it is continued to the right. In (b), peeling solutions constructed by fixing

M̂ = −1− B̌ and M̂ ′ = M̂ ′′ = 0 to the left, and then imposing M̂ ′ = 0, ∣M̂ ∣ = B̌ and the constraint

in (3.40) (with the constant equal to 1
2
) on the right. In the main panel M̂/B̌ is plotted against

ξ for B̌ = 0.1, 0.2, ..., 0.6 (translated in ξ to align the first yield point); the inset shows the
corresponding solutions for f ′′(ξ), along with that for B̌ = 0. The solutions with B̌ = 0.3, ..., 0.6
are those that are also plotted in figure 5. The lighter (red) line in (a) shows the solution with
four plugs constructed using the boundary conditions adopted in (b).

blister because the equations in (3.39) admit another integral:

f ′M̂ ′′
− f ′′M̂ ′

+ 1
2
[Max(∣M̂ ∣ − B̌,0)]

2
+ f−1 −

1

2
f−2 = constant (3.40)

(obtained by multiplying the first equation by f ′ and then performing some algebra).
Since (M̂ ′, M̂ ′′, f−1, f−2)→ 0 on the left, and (f, ∣M̂ ∣)→ (1, B̌) on the right, we arrive at

1
2
[Max(∣M̂ ∣ − B̌,0)]

2
∣
ξ→−∞

= 1
2
, (3.41)

which again implies (3.22).
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The match with (3.33) now gives

Ẋe ∼ (
X2
e −X

2
2

X2
2 −X

2
1

)Bi
√

3h0. (3.42)

This equation reduces to the viscous plate problem detailed in §3.1.2 for Bi→ 0, and, in
the plastic limit (with X2 →Xe and X1 → 0), gives

Xe(t) ∼ (1 + 10
√

1
3
Bih0t)

2/5

, hmax(t) ∼
2

3
√

3Bih0
[(1 + 10

√
1
3
Bih0t)

3/5

− 1] + h0.

(3.43)
Note that, strictly speaking, when the peeling layer matches directly onto the plug of the
main blister, a different set of matching conditions are needed because W is necessarily
a linear function there. Consequently, the matching conditions on the peeling solution
become revised to f ′′′ = M̂ ′′ = 0, and the scalings must be modified. We now have that
Max(∣M̂ ∣ − B̌,0) = 0 to both right and left, and so the integral constant (3.40) implies
[Ŵ ′M̂ ′]

ξ→−∞
= 1

2
, demanding that we impose the condition Wx → Ẋ2

e /2h0 for x→Xe on

the blister solution. But this condition eventually also leads to (3.43) and so this limit
requires no new considerations.

The results from integrating (3.42) in combination with (3.32) from the initial condition
Xe(0) = 1 are compared to the numerical data in figure 6, along the implied predictions
for the other bulk attributes of the blister, using (3.29)-(3.30). Again, the plastic scalings
are different from those expected from a simple scaling analysis (and similarity solution):
balancing terms in (3.1)-(3.4) when the yield stress dominates suggests that P ∼ Bi/X2

e ∼

X2
eh

−3
maxḣmax, and so (Xe, hmax) ∼ t

1
2 .

4. Circular plate

We turn now to axisymmetric spreading from a circular vent. When δ = H/D ≪ 1,
so that the viscoplastic plate is much thicker than the film of viscous fluid underneath,
tensions remain unimportant and the main resistance to flow stems from bending stresses.
We consider this simpler situation first, before more briefly considering the situation
where tensions can become important.

4.1. Circular plate without tension

For the bending of an axisymmetric plate without tension, we first record the model
equations written in polar coordinates (r, θ):

W = ht =
1

r

∂

∂r
(rh3

∂P

∂r
) + source, 0 =

∂2Mrr

∂r2
+

2

r

∂Mrr

∂r
−

1

r

∂Mθθ

∂r
+ P, (4.1)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

[
Mrr

Mθθ
] = − ( Γn−1

2n+1(n+2)
+ Bi

4Γ
) [
Γrr
Γθθ

] , M ≥ 1
4
Bi,

Γ = 0, M < 1
4
Bi,

(4.2)

Γrr = 4
∂2W

∂r2
+

2

r

∂W

∂r
,

Γθθ = 2
∂2W

∂r2
+

4

r

∂W

∂r
,

M ≡

√
1
3
(M2

rr +M
2
θθ −MrrMθθ),

Γ ≡

√
1
3
(Γ 2

rr + Γ
2
θθ − ΓrrΓθθ).

(4.3)

Note that the yield condition implies that the plugged regions of the plate must have
a vertical velocity that is independent of radius (unlike in the planar problem, where
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rotations described by linear functions of x can be rigid). We again adopt a parabolic
profile for the influx of viscous fluid, so that

source = {
1 − r2, r < 1
0, r > 1

. (4.4)

4.1.1. Main blister

Assuming that the pressure again becomes uniform in radius within the blister r <

Xe(t) (a feature that we confirm below), we may rescale the variables so that

r = ηXe, W = PX4
ew(η),

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Γ
Γrr
Γθθ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= PX2
e

⎡
⎢
⎢
⎢
⎢
⎢
⎣

γ(η)
γrr(η)
γθθ(η)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

M
Mrr

Mθθ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= PX2
e

⎡
⎢
⎢
⎢
⎢
⎢
⎣

m(η)
mrr(η)
mθθ(η)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (4.5)

From (4.1)-(4.3), we then arrive at the canonical problem, for n = 1,

0 =m′′

rr +
2

η
m′

rr −
1

η
m′

θθ + 1, [
mrr

mθθ
] = −

1

12
(1 +

3B̂

γ
)[
γrr
γθθ

] , B̂ =
Bi

PX2
e

, (4.6)

γrr = 4w′′
+

2

η
w′, γθθ = 2w′′

+
4

η
w′, γ ≡

√
1
3
(γ2rr + γ

2
θθ − γrrγθθ), (4.7)

with the boundary conditions, w(1; B̂) = w′(1; B̂) = 0, which are required for a match
towards the pre-wetted film. This problem was solved in Ball & Balmforth (2021). Sample
numerical solutions for w = w(η; B̂) are shown in figure 8. Although the shape of the
solution is not very sensitive to B̂, the amplitude varies significantly (see panels (a) and
(b)). Two other key quantities can be constructed from these solutions:

K(B̂) = w′′
(1; B̂) & I(B̂) = ∫

1

0
w(η; B̂) η dη, (4.8)

as displayed in figure 8(c,d).
For B̂ → 0, we obtain the result for a viscous plate:

w(r; 0) =
3

64
(1 − η2)2, K(0) =

3

8
, I(0) =

1

128
. (4.9)

In the limit B̂ → B̂crit ≈ 0.184, the solution limits to a perfectly plastic state (cf. Hopkins
& Wang (1955); Eason (1958)) with w = O((B̂crit − B̂)2), giving I(B̂) = O((B̂crit − B̂)2).
In that limit, w(η) develops narrow viscoplastic hinges at the edge, the net result of
which is that K(B̂) = w′′(1; B̂) = O(B̂crit − B̂), as seen in figure 8(c).

4.1.2. Peeling layer

The reduced scale of the peeling layer implies that, over this region, the main balances
in (4.1)–(4.3) are

W = ht ∼
∂

∂r
(h3

∂P

∂r
) ,

∂2Mrr

∂r2
∼ −P, Mθθ ∼

1
2
Mrr, Mrr ∼ −

1

3

∂2W

∂r2
−

1

2
Bi sgn(

∂2W

∂r2
) .

(4.10)
But this system admits the same quasi-steady, travelling-wave solution as in the planar
problem with the form (3.36) and (3.38), except that ξ = (r −Xe)/Lp. Thus, the blister
solution must again satisfy the matching condition,

∂2W

∂r2
∣
r→Xe

∼
Ẋe

√
1
3
h0
, (4.11)
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Figure 8. Solutions for a uniformly loaded axisymmetric Bingham plate, showing (a) the profiles

of five solutions for w(η; B̂) (colour coded by B̂), (b) w(0; B̂) and (c) K(B̂) = w′′(1; B̂) against

B̂, then (d) I(B̂) = ∫
1

0 w(η; B̂)ηdη, (e) B̂ and (f) K(B̂)/I(B̂) against Bi
1
4Xe, The stars in

(b–d) indicate the five values for B̂ in (a). The dashed lines show w(0; B̂) ∼ 6.37(0.184 − B̂)2,

K ∼ 3.58(0.184 − B̂) and I ∼ (0.184 − B̂)2.

leading to

Ẋe ∼ PX
2
e

√
1
3
h0 K(B̂). (4.12)

The mass conservation constraint (∫
Xe

0 Wrdr = 1
4
) also imposes

1

4
∼ PX6

e I(B̂), or BiX4
e ∼

B̂

4I(B̂)
. (4.13)

Hence,

X4
e Ẋe ∼

1
4

√
1
3
h0
K(B̂)

I(B̂)
, (4.14)

where B̂ ≡ Bi/(X2
eP ) is determined from Xe(t) as in (4.13) (see figure 8(e,f)). Also,

ḣmax =W (0, t) ∼
w(0; B̂)

4X2
e I(B̂)

. (4.15)

For Bi→ 0 (B̂ → 0), we arrive at

Xe(t) ∼ (1 + 60
√

1
3
h0t)

1
5

& hmax(t) ∼
1

8
√

3h0
[(1 + 60

√
1
3
h0t)

3
5

− 1] + h0.

(4.16)
Conversely, in the plastic limit, for which we may use the limiting forms of the functions
K(B̂) and I(B̂) for B̂ → B̂crit, we find

Xe(t) ∼ (1 + 7.23
√

Bih0t)
1
3
, hmax(t) ∼

1

1.51
√

Bih0
[(1 + 7.23

√
Bih0t)

1
3
− 1] + h0.

(4.17)

As indicated by figure 8(f), provided Bi
1
4Xe < 1 at the beginning of the constant-pressure

phase, (4.14) predicts that the blister expands first at the viscous rate in (4.16) before
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Figure 9. Axisymmetric Bingham plates (n = 1) without tension. (a) A surface plot of h(r, t)
above a density plot of log10 ∣P ∣, over the (r,

√
t)−plane for Bi = 0.1. The red line indicates

the edge of the blister Xe(t), and the grey shading shows the plugs. On the right, time series
of (b) hmax(t) and W (0, t) and (c) Xe(t) and P (0, t) are plotted for solutions with varying
Bingham number (Bi = 0, 0.1, 0.2, 0.3, 0.5, 0.8; h0 = 10−2, ε = 10−6 and L = 20). The curves
are colour-coded by increasing Bi (from blue to red), and the expected long-time power laws for
a viscous and plastic plate are indicated. The dashed lines show the predictions of the peeling
analysis (integrating (4.14)).

switching to the plastic one in (4.17) at later times. The corresponding scalings of the

non-existent similarity solution are Xe ∼ t
1
4 and hmax ∼ t

1
2 for a viscous plate, and Xe ∼ t

3
8

and hmax ∼ t
1
4 for a plastic one.

Note that, although the peeling equations in (4.10) admit the travelling-wave solution
in (3.36) and (3.38), there is one important difference with the planar problem: for the
viscoplastic beam of §3.2, the stress state is fully determined over each plug as the
one bending moment, Mxx, becomes continued through those unyielded regions with
the higher derivatives specified by continuity at the previous yield point. This feature
implies that the peeling-layer solutions shown in figure 7(a) are unacceptable, because
the finite higher derivatives of Mxx, as rescaled into M̂ , prompt further breaches of
the yield condition. By contrast, for the circular blister, the leading-order expression of
force balance over the peeling region, ∂2Mrr/∂r

2 + P ∼ 0, only constrains Mrr, and the
angular component Mθθ remains unspecified. The stress state is therefore indeterminate.
Consequently, if one can find a solution for the two components that satisfies both force
balance and the yield condition, the implication is that one can consistently continue the
peeling-layer solutions shown in figure 7(a) into the plugged pre-wetted film. In other
words, one can, in principle, connect the blister to the pre-wetted film through a peeling
layer with a finite number of plugs and yielded zones. We illustrate this feature of the
circular blister problem below.

4.1.3. Numerical solutions

We construct numerical solutions to (4.1)-(4.3) for circular blisters using a similar
numerical scheme to that outlined in §3 for the planar problem. This includes a similar,
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convenient regularization of the constitutive law, which in this case replaces (4.2) with

[
Mrr

Mθθ
] = −(

Γn−1

2n+1(n + 2)
+

Bi

4(Γ + ε)
) [
Γrr
Γθθ

] , (4.18)

for all values of M . This regularization removes the indeterminacy of the stress state over
the plugs, selecting certain solutions for Mrr and Mθθ where M < 1

4
Bi. The value of ε is

taken to be sufficiently small to ensure that the solution for the blister over the yielded
regions is insensitive to the precise value of this parameter.

Figure 9 presents numerical solutions, showing details of an example with Bi = 0.1, and
then the bulk characteristics, [Xe(t), hmax(t), W (0, t), P (0, t)], for various values of Bi.
The evolution of the profile of the axisymmetric viscoplastic blister is qualitatively similar
to that in the planar problem (comparing figure 9(a) with figure 5(a)), with the main
blister again evolving at constant pressure after a short transient. The plug structure is,
however, different: the main blister always remains fully yielded and the peeling layer
connects the main blister to the prewetted film without passing through any or only a
single intervening plug. In other words, the viscoplastic wavetrain over the peeling layer
is more restricted. In figure 9(b,c), the bulk properties of the blister compare satisfyingly
with the predictions of the peeling analysis, derived from numerically integrating (4.14)
from the initial condition Xe(0) = 1.

Figure 10 shows further details of the spatial structure of the blister for three Bingham
numbers. For a purely viscous plate (Bi = 0; figure 10(a,d,e)), the numerical solutions
display the collapses expected over the main blister (§4.1.1) and peeling layer (§4.1.2),
and compare well with the asymptotic solutions predicted for each region. Note that the
peeling region can be identified in the plots of the two moments as the region over which
2Mθθ matches Mrr.

For the viscoplastic plates, the structure of the main blister is again reproduced by the
quasi-static analysis of §4.1.1. Over the peeling layer, however, there are complications
because of the plug that occasionally intervenes between the main blister and the pre-
wetted film. If no such plug arises, one expects a peeling-layer solution that directly
connects the main blister to the pre-wetted film, as illustrated by the narrowest example
in figure 7(a). In fact, this solution is independent of Bingham number because that
parameter can be eliminated from the peeling equations (3.37) and features only as an
additive constant when there is just one yield point. In other words, the peeling-layer
solution is identical to the Newtonian one, but for the subtraction in M̂ = f ′′′ − B̌ (the
moment being negative). This feature is exploited in figure 10(g,i), in which the scaled
moments (M̂rr, M̂θθ) + B̌ are plotted over the peeling layer, where

(M̂rr, M̂θθ) = (Mrr,Mθθ)
3L3

p

h0Ẋe

.

Were the peeling solution to contain an intervening plug and therefore depend on B̌, as
for the other solutions in figure 7(a), a different comparison would be required for each
snapshot, B̌ =

√
3h0Bi/(2Ẋe) varying with time.

The plots of the moments in figure 10 also highlight how Mθθ ≠
1
2
Mrr over the plugs in

the peeling layer. This is the feature mentioned earlier that adds the freedom to allow the
peeling layer to plug up without passing through an infinite wavetrain (the distinctive
feature of the planar viscoplastic blister). Awkwardly, however, the occasional emergence
of an intervening plug over the peeling layer embeds additional, history-dependent spatial
structure there that detracts from any comparison of the numerical solutions with the
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Figure 10. Axisymmetric Bingham plates without tension (n = 1, h0 = 10−2, ε = 10−6 and
L = 20) for (a,d,e) Bi = 0, (b,f,g) Bi = 0.1 and (c,h,i) Bi = 0.8. Panels (a-c) show density plots of
log10(Max[0,M − 1

4
Bi]) over the (r, t)−plane. The red line shows the edge of the blister Xe(t),

and the dark blues areas in (b,c) indicate the plugs. Below are plotted snapshots of the moments
Mrr and 2Mθθ. In (d,f,h), the moments compared with quasi-static solutions from §4.1.1 (dots
and dotted lines), with the viscous solution in (d) scaled for a collapse over the main blister
(cf. (4.5)). For (e,g,i), the moments are scaled as in the peeling analysis (cf. §4.1.2 and (3.36)),

(M̂rr, M̂θθ) = (Mrr,Mθθ)
3L3

p

h0Ẋe
, and compared with asymptotic solutions (dots, dotted lines)

that connect the blister to the pre-wetted film without any intervening plugs. In (d,r,g,i), the
times of the snapshots are t = 50,100, ...,250 (from blue to red); for (f,h), t = 100, and the
invariant M is also shown. The solid grey lines in (f,h) indicate ± 1

2
Bi.

simplest peeling-layer solution. The failure of 2Mθθ to match Mrr over the intervening
plugs also renders irrelevant the other peeling-layer solutions in figure 7(a).
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4.2. Effects of tension

For a viscous, axisymmetric plate with tension, the model reduces to

W = ht =
1

r

∂

∂r
(rh3

∂P

∂r
) + source, (4.19)

[Mrr,Mθθ] = −
1

12
[Γrr, Γθθ] = −

1

6r
[2rWrr +Wr, rWrr + 2Wr] , (4.20)

[Σrr,Σθθ] = [∆rr,∆θθ] =
2δ

r
[2r(Ur + hrWr) +U, r(Ur + hrWr) + 2U] . (4.21)

0 =
∂

∂r
Σrr +

1

r
(Σrr −Σθθ), (4.22)

0 =
1

r2
∂

∂r
(r2

∂Mrr

∂r
) −

1

r

∂Mθθ

∂r
+ δ [hrrΣrr +

1

r
hrΣθθ] + P. (4.23)

We solve these equations numerically for different values of δ.
Figure 11 shows numerical solutions with δ = 0, 0.1, 1 and 10. For δ = 0, the peeling

analysis of §4.1 applies, as confirmed in the figure. When δ > 0, the growth of blister height
coupled with the decreasing vertical velocity implies that tension eventually dominates
bending at sufficiently late times. Although the solutions with δ = 1 and 10 in figure
11 both reach this phase by the end of the computations, that with δ = 0.1 does not.
The emergence of relatively strong tension adjusts the late-time scalings of the solution.
Some further details of the solution with δ = 10 are shown in figure 12. The radial velocity
U(r, t) and stress Σrr(r, t) are less localized than W (r, t), decaying like r−2 in the far
field. The bending moment is, however, strongly concentrated near the edge at late times.
Simultaneously, the pressure distribution again becomes relatively flat over the blister.

To rationalize the observed late-time scalings for relatively strong tension, we follow the
strategy outlined by Peng & Lister (2020) for a blister underneath an elastic sheet with
both bending and tension (though we avoid a detailed matched asymptotic expansion).
As in that problem, the constant pressure of the quasi-static main blister eventually
becomes countered in the normal force balance (4.23) by the tension terms, rather than
bending forces. Those tension terms can be written as δX−2

e η−1(ηhηΣrr)η. Thus,

Σrr ∼ −
ηPX2

e

2δhη
, (η

1
2Σrr)η =

3δU

Xeη
3
2

, (η
1
2U)η =

η
1
2ΣrrXe

4δ
−
η

1
2hηWη

Xe
,

which, after a little algebra, can be combined into a differential equation for H(η) =

h(r, t)/hmax(t), given the power-law form of hmax(t) and Xe(t). In view of the mass
conservation constraint,

X2
ehmax ∫

1

0
ηH(η) dη ∼ 1

4
t,

the dominant balances over the main blister then imply that

h ∼ hmax ∼
t

X2
e

, W ∼W (0, t) ∼
1

X2
e

, U ∼
t

X5
e

, (4.24)

Σrr ∼ Σ(0, t) ∼
δt

X6
e

, P ∼ P (0, t) ∼
δ2t2

X10
e

. (4.25)

The peeling layer, on the other hand, is still dominated by bending, which conflicts
with its omission for the main blister. To connect the blister with the peeling layer,
an intermediate region with a reduced spatial scale is therefore needed over which
the bending and tension terms first counter one another in the normal force balance.
The intermediate region is evident in the snapshots of Mrr plotted in figure 12(b): the
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Figure 11. Axisymmetric Newtonian plate including tension, with δ = 0, 0.1 1 and 10 (from red
to blue); h0 = 10−2 and L = 50. Plotted are time series of (a) hmax(t) and W (0, t), and (b) Xe(t)
and P (0, t), then snapshots of (c) h(r, t)/hmax(t) and (d) W (r, t)/W (0, t) against η = r/Xe(t)
at the times indicated (stars in (a); arrows showing the temporal sequence and the solutions
with different δ are vertically offset for clarity). A seventh snapshot, at t = 500, is shown for
the δ = 10 solution. The black dashed lines show the predictions of the peeling analysis without
tension. Late-time scalings for strong tension are indicated in (a,b).
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Figure 12. Axisymmetric Newtonian plate including tension, for δ = 10, h0 = 10−2 and L = 50.
Snapshots of (a) U(r, t)/[Xe(t)Σ(0, t)], and (b) Σrr(r, t)/Σ(0, t) and tMrr(r, t)/Σ(0, t) for the
solution from figure 11 at the same times (t = 12, 25, 60, 130, 250 and 500). The time series of
Σ(0, t) is shown in the inset to (a), along with the expected long-time scaling.

bending moment is small over the main blister but reaches significant amplitudes over
the intermediate region to the left of the edge x =Xe(t), or η = 1. The scale of this region
is ∆(t) ≪Xe(t), and, here, the main normal-force balance becomes

Mrr

∆2
∼
δhrΣrr
∆

.

Moreover, the tension remains Σrr ∼ δtX
−6
e in order to match with the main blister, and

hr ∼ tX
−3
e so that the slopes also match (h itself becomes small, O(δhmax), within the
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Xe(t) hmax(t)

Planar, viscous Bi = 0, n = 1 h
1/8
0 t1/4 h

−1/8
0 t3/4

Planar, plastic Bi ≠ 0, n = 1 (Bih0)1/5t2/5 (Bih0)−1/5t3/5
Planar, power-law Bi = 0, n ≠ 1 h

1/(3n+5)
0 t2/(3n+5) h

−1/(3n+5)
0 t3(n+1)/(3n+5)

Axisymmetric, viscous Bi = 0, n = 1, δ ≪ 1 h
1/10
0 t1/5 h

−1/5
0 t3/5

Axisymmetric, plastic Bi ≠ 0, n = 1, δ ≪ 1 (Bih0)1/6t1/3 (Bih0)−1/3t1/3
Axisymmetric, power-law Bi = 0, n ≠ 1, δ ≪ 1 h

1/[2(2n+3)]
0 t1/(2n+3) h

−1/(2n+3)
0 t(2n+1)/(2n+3)

Axisymmetric, viscous, Bi = 0, n = 1, δ = O(1) h
3/46
0 δ4/23t7/23 h

−3/23
0 δ−8/23t9/23

with tension

Table 1. Summary of spreading laws.

intermediate region). But the bending moment must still match with that in the peeling
layer to the right of the intermediate region, demanding

Mrr ∼
W

∆2
∼
Ẋe
√
h0
.

Thus,

Xe ∼ h
3
46

0 δ
4
23 t

7
23 , hmax ∼ h

−
3
23

0 δ−
8
23 t

9
23 , W (0, t) ∼ h

−
3
23

0 δ−
8
23 t−

14
23 ,

P (0, t) ∼ h
−

15
23

0 δ
6
23 t−

24
23 , Σ(0, t) ∼ h

−
9
23

0 δ−
1
23 t−

19
23 .

We also note that ∆X−1
e ∝ t−

6
23 , rationalizing the somewhat slow narrowing of the

intermediate region on the scale of η = r/Xe(t). That said, the scaling ∆∝ t
1
23 indicates

that this region widens very slowly with time over the original radial scale (a feature that
is indeed observed for the bending moment of the numerical solution).

5. Discussion

In this paper we have considered the spreading of a viscous fluid underneath a planar
or circular viscoplastic plate described by a Herschel-Bulkley constitutive law. We have
considered the specific situation in which the viscous fluid is pumped at constant flux into
a narrow gap between the plate and a flat solid substrate, to push up a growing blister
against bending stresses. As for viscous flow underneath an elastic plate (e.g. Lister et al.
2013; Hewitt et al. 2015; Peng & Lister 2020), the interior of the blister develops quasi-
statically at constant pressure, and the spreading dynamics is controlled by conditions
within a distinctive peeling region at the edge of the blister. We have determined the form
of this spreading dynamics for planar and circular blister, paying particular attention to
the limits of a very viscous or plastic plate, and exploring the effect of tension in the case
of a viscous circular plate.

A novelty of viscoplastic peeling is that the mathematical matching problem simplifies
considerably owing to the existence of a special “peeling integral”. This integral constant
permits one to avoid any detailed analysis of the peeling region and immediately place a
constraint on the rate of curvature at the edge of the blister. This dictates the spreading
rate along the lines of Tanner’s law for spreading droplets (cf. Tanner 1979; Lister et al.
2013), as shown in table 1 for viscous and plastic blisters. Nevertheless, the spatial
structure of the peeling layer has some interesting features, including a sequence of
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interwoven plugs and yielded regions in the plate, somewhat like in other problems with
viscoplastic films (Jalaal et al. 2021; Jalaal & Balmforth 2016).

In all the analysis presented, we have focused on the Bingham plate without exploring
the consequences of n ≠ 1, an important point in view of the fact that most experimental
materials have a power-law viscosity. For n ≠ 1, the analysis becomes more complicated,
with the shape of the main blister being given by a hypergeometric function and a
different peeling equation to analyse. Despite this, using simple scaling arguments, we
can write down the spreading laws expected for a power-law viscosity, as shown in table
1; more detailed analysis is left for future work.

For viscous flow underneath an elastic skin there have been numerous experiments to
complement and confirm theoretical models (Lister et al. 2013; Pihler-Puzović et al. 2015;
Ball & Neufeld 2018; Berhanu et al. 2019). An equivalent experiment could be envisaged
for the viscoplastic version studied here. For this task, two experimental fluids must
be chosen with a sufficient viscosity difference that the approximation of zero viscous
traction by the underlying fluid is valid. To avoid potential complications observed for
fluids with a common solvent (Ball et al. 2021, 2022), the fluids must be immiscible. For
example, one could employ Carbopol, a commonly used experimental yield stress fluid,
for the plate, and a perfluorinated oil for the viscous fluid. Such experiments, with the
Carbopol concentration tuned to furnish suitable effective viscosity contrasts, might then
test the spreading laws proposed in table 1. However, the finer details of the viscoplastic
blister, such as the structure of the wavetrain, make experimental validation difficult
without the use of carefully designed techniques (e.g. Jalaal et al. (2018)).
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Appendix A. Viscoplastic wavetrain

Beyond the blister edge there exists a quasi-steady wavetrain which decays into the
far-field pre-wetted film (assuming a sufficiently long domain). Over the wavetrain, the
height is approximately equal to the pre-wetted film height (h ∼ h0) and the bending
moment oscillates through a sequence of plugs buffered by narrow yielded regions where
Mxx ≈ ±

1
2
Bi; see figure 13. With the approximation, f3M̂ ′′′ ≈ M̂ ′′′, (3.37) then reduces

to

f − 1 = M̂ ′′′, f ′′′ = Max [∣M̂ ∣ − B̌,0] sgn(M̂). (A 1)

In order to decay to the pre-wetted film, however, the plugs and yielded regions must
scale differently. To see this, let f − 1 = %F(%

1
3 ξ) and M̂(ξ) =M(%

1
3 ξ) for % ≪ 1. Then

(A 1) becomes, over the plugs,

F =M
′′′, F

′′′
= 0. (A 2)

The change of argument, needed to balance terms in (A 2), highlights how the length
of the plugs must become relatively long (on the original scale of the peeling layer).
Conversely, over the yield section centred at ξ = ξ∗, we set

χ = %−
1
3 (ξ − ξ∗), f = 1+%φ0 +%

4
3 (ξ − ξ∗)φ

′

0 +%
7
3Φ(χ), M = ± 1

2
Bi+%

4
3Υ (χ), (A 3)
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Figure 13. A planar Bingham plate with Bi = 0.2 (h0 = 10−2, ε = 10−10, L = 30), plotting (a)
h(x, t) and (b) Mxx for t = 1, 1.2, ..., 2, then magnifications of (c) ∂W /∂x and (d) ∂2W /∂x2
around the first plug in the train (the boxed region in (a)) at t = 1.4. The grey lines in (b) plot
the yield surfaces Mxx = ±Bi/2. The insets show magnifications of the first plug in (a) (the dots
show the yield points of the final snapshot), and the second yielded region in (c,d) (indicated
by the boxes in the main panels). The dotted lines show fitted cubic profiles for ∂W /∂x. The
inset in (b) plots the lengths of the yielded regions and plugs against % =Max(∣h/h0 − 1∣), where
the maximum is taken over each yielded region or to the right of each plug.

to obtain

0 ∼ Υ ′′′, Φ′′′ = Υ. (A 4)

Again, the rescaling of ξ reflects a change of scale; this time, the narrowing length of the
yielded sections. With the preceding forms of the solutions over the plugs and yielded
sections, the derivatives of M̂ and f can all be made to match at the yield points, provided
that we also impose the limits M̂ ′ → 0 at the borders of each plug (cf. figure 13).

Equations (A 4) indicate that M ∓ 1
2
Bi is quadratic and ∂W /∂x is cubic over the

yield sections. The boundary-layer structure in ∂W /∂x is clearly visible in the numerical
solution shown in figure 13, as are the locally parabolic and small pieces of Mxx or
∂2W /∂x2 over the narrow yielded sections.

At this stage, it is also possible to understand the structure of the wavetrain: to achieve
a convergence to the pre-wetted film, the train must pass through a succession of widening
plugs and narrowing yielded sections. Over the plugs, the bending moment switches
between ± 1

2
Bi, with vanishing first derivative, whilst f is quadratic and can be made

to approach f − 1 = O(%) and f ′ = O(%
4
3 ) at the right-hand border (figure 13(a)). This

corresponds to demanding that the solution to the left of the plugs satisfy three conditions
(just as the viscous peeling equation must satisfy three boundary conditions for ξ →∞).
However, because ∂W /∂x is constant over each plug, that gradient must be reduced
instead over the subsequent yielded section. In particular, there, the cubic form of Wx



28 Ball & Balmforth

0 5 10

-0.5

0

0.5

0 5 10

-0.3

-0.2

-0.1

0

0.1

0.2

0 5 10 15

-0.1

-0.05

0

0.05

2.5 3 3.5 4

-0.05

0

0.05

3 4 5

-0.05

0

0.05

0 10 20 30

-0.5

0

0.5

0 10 20 30

-0.3

-0.2

-0.1

0

0.1

0.2

0 10 20 30 40 50

-0.1

-0.05

0

0.05

Figure 14. Numerical results for a planar Bingham (n = 1) plate with Bi = 0.1 and h0 = 10−2

at the times indicated, for (a–c) varying regularisation ε = 10−3, 10−6, 10−9 with L = 30, and for
(d–f) varying domain lengths L = 10, 30, 50 with ε = 10−9. Insets in (a,b) show magnifications
(the boxed regions in (a,b)). The grey lines indicate the yield points Mxx = ±Bi/2 = ±0.05.

can be adjusted so that Wx → 0 to leading order to the right. This leads to the step-like
structure of that quantity in figure 13(c), with each step lowering the value by a factor

of O(%
1
3 ).

All this implies that the viscoplastic wavetrain, unlike that for a viscous plate, in-
evitably becomes spatially extended. The decaying spatial structure of the wavetrain
is also especially sensitive to numerical error and our regularization of the constitutive
law. Both lead to an artificial truncation of the sequence of yielded zones beyond some
distance from the main blister. For these reasons we avoid showing too much of the
details of the more distant parts of the wavetrain, as discussed below.

Appendix B. Numerical parameters

In the figures in the main text, we avoid showing too much detail of the wavetrain as
it is sensitive to the regularisation and the length of the domain. In order to quantify
these effects, focusing on the planar problem, we vary the regularisation parameter ε
and the length of the domain L and compare with the solutions shown in figure 5 for
Bi = 0.1, h0 = 10−2, ε = 10−9 and L = 30. In figure 14(a-c) we vary ε and show comparisons
at three time snapshots, chosen as representative times of the numerical solutions used.
As the regularisation parameter is increased, less of the wavetrain is captured, with the
blister passing through zero, one or two intervening plugs at t = 100 for ε = 10−3, 10−6

and 10−9 respectively. Despite this the main blister shape remains largely unchanged. We
choose to use a regularisation parameters ε = 10−8 − 10−9 for figures 5 and 6 to capture
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the bulk dynamics, and a smaller parameter ε = 10−10 in figure 13 when we want to focus
on the first few intervening plugs.

Figure 14(d-f) shows the effect of changing the domain length L, where boundary
conditions W = ∂W /∂x = h3∂P /∂x = 0 at x = L are placed setting the vertical velocity,
its gradient and the flux to zero. It is evident that the smaller domain size of L = 10
truncates the wavetrain before the regularisation is able to have an influence. In contrast,
as the domain is increased to L = 50 the moment does not change as the regularisation has
already caused the moment to decrease to zero before x = 30. This observation motivates
the choice of a domain length of L = 30 for figures 5 and 6.
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Brož, P., Krỳza, O., Wilson, L., Conway, S. J., Hauber, E., Mazzini, A., Raack, J.,
Balme, M. R., Sylvest, M. E. & Patel, M. R. 2020 Experimental evidence for lava-like
mud flows under martian surface conditions. Nature Geoscience 13 (6), 403–407.

Bunger, A. P. & Cruden, A. R. 2011 Modeling the growth of laccoliths and large mafic sills:
Role of magma body forces. Journal of Geophysical Research: Solid Earth 116, B02203.

Castruccio, A., Rust, A. C. & Sparks, R. S. J. 2013 Evolution of crust-and core-dominated
lava flows using scaling analysis. Bulletin of volcanology 75 (1), 1–15.

Dyson, R. J. & Jensen, O. E. 2010 A fibre-reinforced fluid model of anisotropic plant cell
growth. Journal of Fluid Mechanics 655, 472–503.

Eason, G. 1958 Velocity fields for circular plates with the von mises yield condition. J. Mech.
Phys. Solids 6 (3), 231–235.

Feltham, D. L. 2008 Sea ice rheology. Annu. Rev. Fluid Mech. 40, 91–112.
Flitton, J. C. & King, J. R. 2004 Moving-boundary and fixed-domain problems for a sixth-

order thin-film equation. European Journal of Applied Mathematics 15 (6), 713–754.
Gaver, D. P., Halpern, D., Jensen, O. E. & Grotberg, J. B. 1996 The steady motion of

a semi-infinite bubble through a flexible-walled channel. Journal of Fluid Mechanics 319,
25–65.

Griffiths, R. W. 2000 The dynamics of lava flows. Annual review of fluid mechanics 32 (1),
477–518.

Griffiths, R. W. & Fink, J. H. 1993 Effects of surface cooling on the spreading of lava flows
and domes. Journal of Fluid Mechanics 252, 667–702.

Grotberg, J. B. & Jensen, O. E. 2004 Biofluid mechanics in flexible tubes. Annu. Rev. Fluid
Mech. 36, 121–147.

Hewitt, I. J., Balmforth, N. J. & De Bruyn, J. R. 2015 Elastic-plated gravity currents.
European Journal of Applied Mathematics 26 (1), 1–31.



30 Ball & Balmforth

Hodge, P. G. & Belytschko, T. 1968 Numerical methods for the limit analysis of plates. J.
Applied Mech. 35 (4), 796.

Hopkins, H. G. & Prager, W. 1954 On the dynamics of plastic circular plates. Zeitschrift für
angewandte Mathematik und Physik ZAMP 5 (4), 317–330.

Hopkins, H. G. & Wang, A. J. 1955 Load-carrying capacities for circular plates of perfectly-
plastic material with arbitrary yield condition. J. Mech. Phys. Solids 3 (2), 117–129.

Hosoi, A. E. & Mahadevan, L. 2004 Peeling, healing, and bursting in a lubricated elastic
sheet. Physical review letters 93 (13), 137802.

Howell, P. D. 1996 Models for thin viscous sheets. Europ. J. Applied Mathematics 7 (4),
321–343.

Huang, R. & Suo, Z. 2002a Instability of a compressed elastic film on a viscous layer.
International Journal of Solids and Structures 39 (7), 1791–1802.

Huang, R. & Suo, Z. 2002b Wrinkling of a compressed elastic film on a viscous layer. Journal
of Applied Physics 91 (3), 1135–1142.

Huppert, H. E. 1982 The propagation of two-dimensional and axisymmetric viscous gravity
currents over a rigid horizontal surface. Journal of Fluid Mechanics 121, 43–58.

Jalaal, M. & Balmforth, N. J. 2016 Long bubbles in tubes filled with viscoplastic fluid.
Journal of Non-Newtonian Fluid Mechanics 238, 100–106.

Jalaal, M, Seyfert, C, Stoeber, B & Balmforth, NJ 2018 Gel-controlled droplet
spreading. Journal of Fluid Mechanics 837, 115–128.

Jalaal, M., Stoeber, B. & Balmforth, N. J. 2021 Spreading of viscoplastic droplets. Journal
of Fluid Mechanics 914, A21.

Jensen, O. E., Horsburgh, M. K., Halpern, D. & Gaver III, DP 2002 The steady
propagation of a bubble in a flexible-walled channel: asymptotic and computational
models. Physics of Fluids 14 (2), 443–457.

Kodio, O., Griffiths, I. M. & Vella, D. 2017 Lubricated wrinkles: Imposed constraints
affect the dynamics of wrinkle coarsening. Physical Review Fluids 2 (1), 014202.

Lister, J. R., Peng, G. G. & Neufeld, J. A. 2013 Viscous control of peeling an elastic sheet
by bending and pulling. Physical review letters 111 (15), 154501.

Lubliner, J. 2008 Plasticity theory . Courier Corporation.

MacAyeal, D. R. 1989 Large-scale ice flow over a viscous basal sediment: Theory and
application to ice stream b, antarctica. Journal of Geophysical Research: Solid Earth
94 (B4), 4071–4087.

Michaut, C. 2011 Dynamics of magmatic intrusions in the upper crust: Theory and applications
to laccoliths on earth and the moon. Journal of Geophysical Research: Solid Earth 116,
B05205.

Michaut, C. & Manga, M. 2014 Domes, pits, and small chaos on europa produced by water
sills. Journal of Geophysical Research: Planets 119 (3), 550–573.

Michaut, C., Thiriet, M. & Thorey, C. 2016 Insights into mare basalt thicknesses on the
moon from intrusive magmatism. Physics of the Earth and Planetary Interiors 257, 187–
192.

Pedersen, C., Niven, J. F., Salez, T., Dalnoki-Veress, K. & Carlson, A. 2019
Asymptotic regimes in elastohydrodynamic and stochastic leveling on a viscous film.
Physical Review Fluids 4 (12), 124003.

Peng, G. G. & Lister, J. R. 2020 Viscous flow under an elastic sheet. Journal of Fluid
Mechanics 905, A30.
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