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A wide range of initial value problems in fluid mechanics in particular, and in the physical
sciences in general, are described by nonlinear partial differential equations. Recourse
must often be made to numerical solutions, but a powerful, well established technique
is to solve the problem in terms of similarity variables. A disadvantage of the similarity
solution is that it is almost always independent of any specific initial conditions, with
the solution to the full differential equation approaching the similarity solution for times
t � t∗, for some t∗. But what is t∗? In this paper we consider the situation of viscous
gravity currents and obtain useful formulae for the time of approach, τ(p), for a number
of different shapes, where p is the percentage disagreement between the radius of the
current as determined by the full numerical solution of the governing partial differential
equation and the similarity solution normalised by the similarity solution. We show that

for any initial shape of volume V, τ ∝ 1/(βV 1/3γ
8/3
0 p) (as p ↓ 0), where β = g∆ρ/(3µ),

with g representing the acceleration due to gravity, ∆ρ the density difference between
the gravity current and the ambient, µ the dynamic viscosity of the fluid that makes up
the gravity current and γ0 is the initial aspect ratio. This framework can used in many
other situations, including where it is not an initial condition (in time) that is studied
but one valid for specified values at a special spatial co-ordinate.

1. Introduction

Similarity solutions play a central role in fluid mechanics (Barenblatt 2003). Many
problems in fluid mechanics lead to nonlinear partial differential equations in space
and time for unknown quantities such as velocity components, concentrations, depth
of fluid flow,...... Examples include: numerous boundary layer problems; the initial stages
of nuclear explosions; the infiltration of ground water; the relaxation of a surface-tension
dominated volume of carbon dioxide sequestered at depth in a porous geological sequence;
the osmotic flow of solvent across a membrane; and diffusion of granular media, to name
but a few situations.

The resulting equations very rarely have analytical solutions and hence resort to
numerical calculations is essential. Numerical investigation of the influence of each of
the parameters, and possible different initial conditions, would be time consuming and
need quite intricate numerical programming. Very often, at least within the problems
tackled and solved, a similarity form of solution exists whereby the partial differential
equation is transformed into an ordinary differential equation (but still nonlinear), the
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solutions to which do not obey the particular initial conditions. It is then confidentially
asserted that all solutions approach this similarity form. But what is the time taken to
do so? This is almost always thought to be a difficult problem and is generally stated as:
the solutions will be valid for t� t∗, where t∗ is some suitable time scale (but how does it
depend on the parameters of the problem). Of course there are some problems where the
solutions to the initial-value problems do not approach the similarity solutions (Acton
et al. 2001; Johnson et al. 2015) or only for special values of the physical parameters.

The point of this paper is to present the equilibration time for the particular case of a
viscous gravity current developing from an initially constrained volume of fluid V . The
ideas presented no doubt have much greater applicability; and informal discussions with
fluid-mechanical colleagues have already suggested a number of different examples.

Gravity currents occur wherever fluid of one density flows primarily horizontally into
fluid of a different density (Simpson 1997; Huppert 2006). Many different fundamental
fluid mechanical cases exist including: axisymmetric and two-dimensional geometries;
constant volume or constant flux releases; and propagation at low or high Reynolds
number. This paper will concentrate initially on the instantaneous release of a constant
volume of viscous fluid over a horizontal surface (Huppert 1982) and then discuss in the
Appendix the implications of the results for other geometries and situations.

Assuming both that the horizontal scale greatly exceeds the vertical scale, so that the
pressure is hydrostatic, and that the Bond number B = ∆ρgl2/T � 1, where ∆ρ is the
density difference between intruding and intruded fluid, g is gravity, l a horizontal scale
of the current (such as its radius) and T is surface tension, Huppert (1982) determines
that the radial horizontal component of the velocity u(r, t), where r is radius and t time,
is parabolic in the vertical component z, except close to the front of the current, which
for B � 1 plays a negligible role. The height of the unknown free surface h(r, t) then
satisfies

∂h

∂t
− β

r

∂

∂r

(
rh3

∂h

∂r

)
= 0, (1.1)

where

β = g∆ρ/(3µ) (1.2)

and µ the dynamic viscosity of the intruding fluid, with boundary and global conditions,

h(rS) = 0 and 2π

∫ rS(t)

0

rh(r, t)dr = V, (1.3a, b)

where rS(t) is the radial extent of the current.
An appropriate similarity variable, determined by balancing terms in (1.1) and (1.3),

or otherwise, is given by

ξ = (βV 3)−1/8rt−1/8, (1.4)

with the form of h(r, t) given by

h(r, t) = ξ
2/3
S (V/β)1/4t−1/4ψ(z ≡ ξ/ξS), (1.5)

where ξS is the value of ξ at r = rS(t) given by

rS(t) = ξS(βV 3)1/8t1/8. (1.6)

Substituting (1.4) and (1.5) into (1.1) and (1.3), Huppert (1982) finds that ψ(z) satisfies

(zψ3ψ′)′ +
1

8
z2ψ′ +

1

4
ψ = 0 (1.7)
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and

ξS =

[
2π

∫ 1

0

zψ(z)dz

]−3/8
, (1.8)

the analytical solution to which is (Pattle 1959; Huppert 1982)

ψ(z) = (3/16)1/3(1− z2)1/3 (1.9)

and

ξS = (210/34π3)1/8 = 0.894... (1.10)

The aspect ratio γ ≡ h(0, t)/rS(t), evaluated from (1.5), (1.6), (1.9) and (1.10), is hence
given by

γ = 0.594(β3V )−1/8t−3/8. (1.11)

Laboratory experiments conducted to demonstrate the validity of the approach, in
particular the neglect of contact line effects at the front, showed, for a variety of initial
geometries, including different shaped cylinders and rapidly pouring the fluid on a
horizontal base, that the relationship was very closely observed, over time scales in the
laboratory from 10 s to several weeks. We mention in passing, that the influence of rapid
rotation, small Rossby number, is quite different, leading to thin radially extending fingers
(Dalziel & Huppert; in prep).

The question to be addressed here is exactly how quickly does the initial value
problem approach this similarity solution from an arbitrary initial condition, specifying
some axisymmetric initial distribution of h(r, 0) enclosing a volume V ? The result will
clearly depend on the parameters of the problem: ∆ρ, g, µ, V and the initial (supposed
axisymmetric) distribution of h(r, 0). Any easy-to-do experiment in the laboratory illus-
trating this problem shows that departures from axisymmetry are quickly eliminated, as
suggested by the late-time, linear analyses of Grundy & Rottman (1985). The first three
parameters occur together in (1.1) in the variable β = g∆ρ/(3µ), with dimensions of
L−1T−1. The volume V has dimensions L3. Therefore the only variable with dimensions
of time is proportional to Γ ≡ 1/(V 1/3β). It thus seems reasonable to assume that the
equilibration time is linearly proportional to Γ , with the constant dependent on the initial
configuration of V .

Our numerical results, described in the next section, confirm this result. But how does
this time depend on shape, and also on configuration? Does an initially cylindrical shape
approach the similarity solution faster or slower than say a conical initial shape, both of
the same volume V ? How does an initial condition of an inverted cone compare? Do the
comparisons depend on how close to the similarity solution is considered? What initial
shape approaches the similarity solution fastest/slowest?

We determine a full relationship for the time of equilibration τ as a function of the
initial aspect ratio first for an initially circular cylinder and then compare this to the
time scale for other initial shapes. Possibly surprisingly, taller initial shapes (with the
same volume) approach the (relatively small height) similarity solution more rapidly.
This result is clearly explained in the next section. It should be noted, however, that
the time scale τ is relevant for the numerical solution of (1.1) to approach the similarity
solution (1.6), and not the collapse of an initial set-up with non-small slopes.

However, we have not yet defined exactly the equilibration time τ as a function of
p the percentage agreement. We could choose the agreement between the radius of the
similarity solution and the exact nonlinear solution (which we shall do), or other, possibly
equally convenient, definitions, such as based on the (difference of) values (of height) at
the centre, some mean difference along the whole profile,.... Each of these last two spelt-



4 T. V. Ball and H. E. Huppert

out possibilities have obvious disadvantages: either the height at the centre may (for all
time) not well reflect the form of solution or the evaluation involves an extra, somewhat
tricky, integration to determine mean differences. A discrepancy based on the radius is
simple, direct and easiest to measure in the laboratory or evaluate numerically.

We expect that τ is infinite for zero p, and a monotonically decreasing function of p (it
should take less time to be less accurate). However, as p approaches 0 does τ increase:
exponentially; like a power law; logarithmically; or ....? The answer, at least for this
problem, seems to be as the inverse of p. For a completely different problem in detail, it
could be different. For example, Grundy & Rottman (1985) state that for the equivalent
problem of a high Reynolds number gravity current the corresponding shallow water
equations have a similarity solution which is approached in an oscillatory manner. This
different case is discussed fully in a companion paper by Webber & Huppert (in prep).

2. Numerical Evaluations

We employed a numerical program to solve (1.1) subject to a variety of initial con-
ditions, h(r, 0). The program uses a Crank-Nicolson predictor-corrector scheme where
spatial gradients are evaluated by central differences. To reduce computational cost, the
finite difference scheme is combined with adaptive grid size and time stepping.

Preliminary runs with both a circular cylinder and a hemisphere lead to similarly
smooth results – we were worried that the discontinuities in height associated with a
cylinder might lead to unreliable results – and so we initially opted mainly for the simpler
initial condition of a right cylinder of radius r0 and height h0 (with initial aspect ratio
γ0 = h0/r0 and volume V = πh0r

2
0 = πγ0r

3
0). The first set of runs was undertaken with

h0 = r0 = 1 for various values of β. Figure 1 shows the resulting shapes and a comparison
between the numerically determined radial extent rN and the similarity solution rS for
β = 1. The numerically evaluated radii as functions of time normalised by β1/8[c.f.(1.6)]
for various values of β are shown in figure 2, which also displays the similarity solution
(1.6). The numerically determined radius, whose initial value is 1, is always in excess of
that for the similarity solution, for which the initial value is zero. (But see a different
interpretation discussed at the end of this section). The numerical radii approached those
given by the similarity solution (1.7) as t−7/8, the temporal derivative of (1.6), as shown
in figure 3 for various values of β. Figure 4a presents the time τ taken for the numerically
evaluated radius to be within 15, 10, 5% of the similarity solution as a function of β. This
confirms that, as predicted, τ varies inversely with β (for fixed initial conditions), and acts
as a check of the validity and accuracy of the numerical program. It also indicates that

for a circular cylinder of initial unit height and radius, βV 1/3γ
8/3
0 τ = (0.093, 0.18, 0.45)

for approaches of 15, 10, 5% respectively.
We then considered initial conditions of different r0 = h0 (γ0 = 1). Figure 4b presents

τ as a function of V ; and an inverse relationship was again determined, as predicted.
Numerical integrations were then conducted for r0 = 1 and a variety of h0 and hence γ0.
The results, displayed in figure 5, along with previous figures, present τ as a function of
β, V and γ0 to indicate that for any initial circular cylinder

βV 1/3γ
8/3
0 τ = 2.76 p−1[1− 0.036p+ 0(p2)] (2.1)

for approaches to within p. This indicates the somewhat surprising and possibly counter-
intuitive result that the larger the initial aspect ratio, and hence the larger the initial
height for fixed initial shape and volume, the more rapidly the solution approaches the
similarity solution, which is based on the assumption of vanishingly small aspect ratio.



Similarity solutions and viscous gravity current adjustment times 5

0 0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

Figure 1. a) The shapes taken up by an initial circular cylinder with r0 = h0 = 1 and β = 1
for t = 0, 10−4, 10−3, 10−2, ..., 103 and b) the curves of the radial extent as determined by the
full numerical calculations (rN (t); solid) and similarity solutions (rS(t); dashed), respectively.
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Figure 2. Radius divided by β1/8 as a function of time for an initial circular cylinder of unit
radius and height for β = 1/10, 1/3, 1, 3, 10 and the similarity solution rS depicted by the black
dashed line. The larger the value of β the closer the collapse is to the similarity solution at a
fixed time.

The explanation is in the closeness of r0 to the initial value of the similarity solution
(r = 0 at t = 0) and thus larger value of γ0 (for fixed h0) or alternatively, the closer the
initial cylinder is to the delta function initial condition of the similarity solution.

The appearance -8/3 power of γ0 in (2.1) is explained as follows (somewhat surprisingly
at first sight, for all shapes!). Consider the non-dimensionalisation of (1.1) for any
particular shape in terms of its initial radius r0 and height at the origin (or maximum?)
h0 with γ0 = h0/r0 by

h = h0H r = r0R and t = T/(βV 1/3). (2.2)
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Figure 3. Plot of [rN (t)−rS(t)]/β1/8, where rN and rS are the numerical and similarity solution
radial extents respectively, for an initial circular cylinder with r0 = h0 = 1 for five values of β
and two (dashed) curves ∝ t−7/8 to confirm this is the correct functional form as t→∞.
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Figure 4. The equilibration time τ for an initial circular cylinder of a) unit height as a function
of β, confirming that τ ∝ β−1; and b) β = 1 and equal height and radius, confirming that

τ ∝ V −1/3.

Then (1.1) becomes in these variables, with unit initial values of both H and R,

∂H

∂T
− γ

8/3
0

R

∂

∂R

[
RH3

(
∂H

∂R

)]
= 0, (2.3)

indicating that for a given shape - any given shape - the time for adjustment varies

proportional to γ
−8/3
0 , as suggested by (1.11).

An alternative explanation of this result is that the only time scale (within a multi-
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Figure 5. The equilibration time τ for an initial circular cylinder of unit radius and height γ0
as a function of γ0, demonstrating that τ ∝ γ−8/3
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Figure 6. a) The shapes taken up by an initial ‘top hat’ profile with β = 1 for
t = 0, 10−4, 10−3, 10−2, ..., 102 and b) the curves of the radial extent as determined by the
full numerical calculations (rN (t); solid) and similarity solutions (rS(t); dashed), respectively.

plicative constant), say T , of the nonlinear diffusion equation (1.1) is given by

T = r21/(βh
3
1), (2.4)

for some r1 and h1. Equating these to r0 and h0 respectively, we write

T = r20/(βh
3
0) ∝ 1/(βV 1/3γ

8/3
0 ). (2.5)

However, if we instead equate r1 to rS(t), as given by (1.6) and h1 to h(r, t) as given
by (1.5), we find that T = t, i.e. the time scale varies linearly with the time since
initiation, somewhat suggesting that the real solution and the similarity solution have
never sufficient time to get really close.

We also considered three ‘top hat’ initial profiles, denoted by “cylinder J : 1”, where

r0 = J, 0 6 h 6 1/J, (2.6a)



8 T. V. Ball and H. E. Huppert

0 0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25

0

1

2

3

Figure 7. Numerically determined solutions as a function of t for an inverse cone along with
the values of rN (t) determined alongside rS(t) given by the similarity solution.
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Figure 8. Numerically determined solutions as a function of t for an extended cosoid along
with the values of rN (t) determined alongside rS(t) given by the similarity solution.

= 1, 1/J 6 h 6 1, (2.6b)

for J = 2, 3 and 5, as sketched in figure 6 for J = 2. The numerical integrations indicate
that

βV 1/3γ
8/3
0 τ ≡ τ ′ = 4.90 p−1[1− 0.020p+ 0(p2)] (J = 2), (2.7a)

= 16.3 p−1[1− 0.021p+ 0(p2)] (J = 3), (2.7b)

= 79.6 p−1[1− 0.022p+ 0(p2)] (J = 5), (2.7c)
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Initial Shape A ε p0

circular cylinder 1:1 2.76 0.036 4.1
cylinder 2:1 4.90 0.020 2.0
cylinder 3:1 16.3 0.021 2.2
cylinder 5:1 79.6 0.022 2.5
inverted cone 20.4 0.049 8.1
hemisphere 3.14 0.026 -1.7
inverted hemisphere 305 0.058 12.4
ellipsoid 3.10 0.024 -1.7
extended cosoid 61.2 0.042 11.5

Table 1. The constants ε and A in the relationship τ ′ ≡ Ap−1[1 − εp + 0(p2)] for various
initial shapes and the corresponding maximum percentage divergence if the similarity solution
is started at t = t0 < 0 such that rS(0) = rN (0).

with the right-hand side to be compared with 2.76 [1 − 0.036p + 0(p2)] for J = 1. Here,
unlike the case for the cylinder there is choice about what values to take for the aspect
ratio. We have taken γ0 = 1/2, 1/3 and 1/5 for J = 2, 3 and 5 respectively.

For an inverted cone, τ is given by

τ ′ = 20.4 p−1[1− 0.049p+ 0(p2)], (2.8)

as shown on figure 7.
The values that make up the right-hand side for various shapes is indicated in table

1. The relatively small values of ε indicate that the variation of τ with p is dominated
by τ ∝ 1/p with the constant of proportionality dependent on the initial shape, and of

course (βV 1/3γ
8/3
0 )−1. Thus, to first order, at least, it takes ten times longer to attain

1% accuracy than 10%. Is this mainly 1/p dependence true for all such problems?
A different style of comparison is to consider the similarity solution initiated at t = t0 <

0, i.e. starting the similarity solution “early” so the similarity and numerical solutions
obey rS(0) = rN (0). The relative error is then zero (p = 0) initially, and returns to being
proportional to 1/p for large times, t� t0. We thus expect only a range 0 6 |p| 6 |p0| to
be possible using this interpretation, where the sign of p0 defines whether the numerical
solution is greater (positive) or smaller (negative) than the adjusted similarity solution.
A p0 < 0 indicates that although they start together, the radius of the similarity solution
always exceeds that of the numerical solution. Our eight investigated shapes yield p0’s
from -1.7 to 11.5 as shown in table 1.

3. Some Numerical Values

a) In the original experiments of Huppert (1982), ν was either 13.2 cm2s
−1

or, for one

experiment, 1110 cm2s
−1

, while V lay between 220 and 933 cm3. Thus, with ∆ρ = ρ
because the density of the overlying air can be neglected, β = 24.8 or 0.295 cm−1s−1 and
(βV 1/3)−1 was between 0.004s and 0.007s except for the one experiment, with a high
viscosity fluid, with V = 338 cm3, for which it was 0.5s, all very much less than the time
taken to initiate the flow, by pouring fluid onto the surface or raising a container. Thus
the approach to the similarity solution is on a time scale that is very rapid compared to
the first reading at 10s.

b) The original idea of Huppert’s work was to understand and analyse the data of the
formation of the lava dome of the Soufrière of St. Vincent in 1979 (Huppert et al. 1982).
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They found that over a time of 100 days a volume of 41 m3 of lava was extruded (and
47 m3 over 150 days). From the data Huppert et al. determined that the viscosity of the
lava was 2× 1012 poise. Thus β = 1.5× 10−7m−1s−1 and V 1/3 = 3.45 m (over 100 days),
leading to (βV 1/3)−1 ≈ 106 s ∼ 11 days, suggesting that the lava dome had ample time
to adjust to the similarity solution.

Actually, the data suggested that because of the gradual intrusion of magma into the

lava dome V = ct1.36 m3, where c = 0.0248 m3s
−1.36

(and the data were fitted to a
similarity solution for a volume increase like tα, where α was determined from the data).
In general, with V = ctα, β and c have dimensions L−1T−1 and L3T−α respectively.
Thus the only combination of β and c of dimensions T is (cβ3)−1/(3+α) and so for the
lava dome of St Vincent, τ ∝ (cβ3)−0.230, which becomes 1.20× 105s ∼ 1.4 days.

c) The shape of seven large volcanic lava domes on Venus were accurately measured
during the Magellan expedition (McKenzie 1992). Comparisons of the observed shape
were made with: the Newtonian fluid model of Huppert (1982); a Bingham fluid model
incorporating a yield stress (Nye 1952; Fink 1987; Blake 1990); and a model in which the
spreading is controlled by the thin, highly viscous crust of the outer surface of the dome
(Fink & Griffiths 1990). The last was proposed because of numerous complaints about
the model of Huppert (1982), applied as described in the last subsection.

Nevertheless, McKenzie (1992) found clear evidence that Huppert’s model fitted the
data very well; and the other two suggestions lead to poor fits. McKenzie’s results indicate
that the viscosities of the different domes varied between 4.5× 1014 and 1· 0× 1017 Pa s
and their volumes between 176 and 1046 km3. With ρ = 3000 kg m−3, g = 8.87 m s−2, β

varies between 8.9× 10−11 and 2.0× 10−8km−1s
−1

and (βV 1/3)−1 between 0.16 and 63
yr.

Alternatively, one of the very largest studied lava domes is Olympus Mons on Mars
(diameter 625 km, height 25 km) with an area which could cover most of France, or
the state of Arizona, for comparison. The values of the relevant parameters are g =

3.7 ms−2, µ ∼ 104 Pa s, ρ = 3000 kgm−3 and V = 4 × 106 km3. Thus β ∼ 0.4 km−1s
−1

and (βV 1/3)−1 ∼ 10−1 s, suggesting that the extrusion of Olympus Mons was well
approximated by the similarity solution in part because of its large volume.

4. The inverse problem

We have so far only considered direct problems – given a question, determine the
answer. However, the analysis initiates a number of interesting inverse problems –
given the answer, determine the initial conditions. The first is: what is the minimum
number of R(r, t) (or the cross section of the current) to determine all the unknowns
g,∆ρ, ν, V, initial shape, r0 (h0 then follows from V and initial shape). The first part of
the answer is that dynamic parameters g, ∆ρ and ν can never be determined individually;
at best only the value of β = g′/3ν. The second is whether rN (r, 0+) is permissi-
ble, in which case V, initial shape and r0 are immediately known. Knowing in addition
rN (r, t1), t1 � 0+, with the help of table 1 (possibly extended), one can evaluate β. This
would be done by evaluating p1 = [rN (t1) − rS(t1)]/rS(t1), which with the appropriate
form of (2.1) (for the determined initial shape), and with τ = t1, yields the value of β.

If, alternatively, one is only given photos (i.e. cross sections) for longish times t, one

can immediately evaluate V , and the value of βγ
8/3
0 /A, but no more. No matter how

many (long time) profiles one has access to, nothing about the initial shape, or the value
of β can be determined.

In summary, given photographs of the initial shape and some long time state of an
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experiment, one can determine all parameters (up to finding? β). However, given as many
late-time photographs as you desire, nothing can be determined about the initial shape
or the value of β.

5. Summary

We have shown that the time scale for any initial condition of volume V to approach

the similarity solution of (1.1) and (1.3) scales as (βV 1/3γ
8/3
0 )−1, where γ0 is the initial

ratio of height at the centre to radius, with variations in the premultiplicative constant
dependent on the exact shape. Further, the time for approach is inversely proportional
to the percentage difference between the radii of the current as determined by the
full (nonlinear) solution and the similarity solution. Numerical calculations show that
the time scale to equilibrate can vary between milliseconds in the laboratory to tens
of years on Venus. The concepts put forward have several immediate generalisations,
including: two-dimensional viscous gravity currents; axisymmetric and two-dimensional
gravity currents in a porous medium; and high Reynolds number currents. Of course
we have determined the time scales of solutions of (1.1), derived under the assumption
of vanishingly small slopes, and (1.3), for arbitrary initial conditions. We have not
determined the time scale for a real collapse which, especially for high initial aspect
ratios, would lead to a quite different equation than (1.1). Indeed, the influence of
vertical velocities would need to be incorporated and the governing equation would be
more complicated. Nevertheless, we hypothesise that the time scales to approach the
(small aspect ratio) similarity solutions are not very different.

We thank John Lister, who wrote the numerical program on which our own program
was based, and John Chapman, Christophe Claret and Grae Worster, with whom we
have had a number of interesting conversations. During part of this work Thomasina
Ball was supported by a grant from the James Bridgwater Trust, to which she, and
Herbert Huppert, are grateful. The paper answers a number of questions put to Huppert
many times since 1982 by his good friend and close colleague, Dan McKenzie. Huppert
is grateful to Dan for his patience in being informed of the answers.

Appendix. Straightforward Extensions

The aim of this Appendix is to derive rather simple extensions to the results obtained
in the main body of the paper.

a) Two-dimensional viscous gravity currents.

The governing equations for a two-dimensional gravity current of area A propagating
along the x-axis from x = 0 to x = xN (t) are (Huppert 1982)

ht − β(h3hx)x = 0, ( 1)∫ xN (t)

0

hdx = A. ( 2)

Suitable similarity variables and solutions are given by

y = (βA3)−1/5xt1/5/ηN , ( 3)
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h(x, t) = (3/10)1/3η
2/3
N (A2/β)1/5t−1/5(1− y2)1/3, ( 4)

xN = ηN (βA3)1/5t1/5, ( 5)

with

ηN =

[
1

5

(
3

10

)1/3

π1/2Γ (1/3)/Γ (5/6)

]−3/5
= 1.411... ( 6a, b)

Thus

γ0 ≡ h(0, t)/xN = (3/10)1/3η
−1/3
N (β2A2)−1/5, ( 7)

and the only time scale is 1/(βA1/2).
If we now introduce new dimensionless variables via

x = x0X, h = h0H and t = T/(βA1/2), ( 8a, b, c)

(5.1) becomes

HT − γ5/20 (H3Hx)x = 0. ( 9)

Thus, we suggest

A1/2βτγ
5/2
0 = p−1fa(p, shape), ( 10)

where fa is a function of p and the shape, but not dimensions, of the initial area of fluid.

b) Two-dimensional gravity currents in a porous medium

The governing equations for a two-dimensional flow in a porous medium (Phillips,
1991) with geometry as in a) is

ht − α(hhx)x = 0, ( 11)

where

α = k∆ργ/(φµ) or ∆ρgb2/(12µ), ( 12a, b

with k representing the permeability of the porous medium and φ the porosity in a flow
often modelled in the laboratory as between two parallel plates apart a small distance
b, along with ( 2). A suitable similarity variable and solution for this combination are
(Huppert & Woods 2005)

ξ = (9αA)−1/3xt−1/3, ( 13)

h(x, t) = (92/3/6)(A2/12)1/3(1− ξ2)t−1/3, ( 14)

and

xN = (9αAt)1/3. ( 15)

Thus

γ0 ≡ h(l, t)/xN = (91/3/6)(A/α2)1/3t−2/3, ( 16)

and the only time scale is A1/2/α.
With ( 8) and

t = A1/2T/α, ( 17)
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( 11) becomes

HT − γ3/20 (HHX)X = 0, ( 18)

and therefore

αA−1/2γ
3/2
0 τ = p−1fb(p, shape). ( 19)

c) Axisymmetric gravity currents in a porous medium

For this situation the governing equations are (Lyle et al. 2005)

ht −
a

r
(rhhr)r = 0, ( 20)

2π

∫ rn(t)

0

rhdr = V/φ ≡W, ( 21a, b)

(correcting an error in Lyle et al. (2005), where φ was inadvertently omitted.)
Appropriate similarity variable and solution are

z = (αW )−1/4rt−1/4/zN , ( 22)

h(r, t) =
π

2

−1/2
(W/α)1/2(1− z2)t−1/4, ( 23)

rN = 2(αW/π)1/4t1/4. ( 24)

Thus

γ0 ≡ h(0, t)/rN =
1

4
(W/πα3)1/4t−3/4, ( 25)

and the only time scale is W 1/3/α.
Introducing

r = r0R, h = h0H and t = W1/3T/α ( 26a, b, c)

into ( 19), we determine that

Hr −
γ0
R

4/3
(RHHR)R = 0, ( 27)

and it hence follows that

τ = (W 1/3/α)γ
−4/3
0 p−1fc(p, shape). ( 28)
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