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Abstract

The Saffman-Taylor instability for the flow of a Herschel-Bulkley fluid through a Hele-Shaw cell is explored theoret-
ically and experimentally. The theoretical analysis adopts conventional Hele-Shaw approximations, but generalized to
account for a Herschel-Bulkley rheology and to include a model for the effective slip of the fluid over smooth walls. A
linear stability analysis is presented for fingering instabilities on both planar and axisymmetrical interfaces. The linear
instability of a planar interface is continued numerically into the nonlinear regime. It is found that certain finger widths
are selected and controlled by the yield stress. Stresses also fall sufficiently behind the fingertips to allow the yield
stress to block the cell to either side. Experiments are conducted using aqueous suspensions of Carbopol pumped into a
Hele-Shaw cell through a circular vent. Instabilities are created by first pumping a disk of Carbopol into the cell, then
either pumping air into the fluid-filled cell or withdrawing the Carbopol through the vent. In both cases, the fingers
forming on the retreating air-Carbopol interface are interrogated as a function of flux, gap size and the type of cell walls.
The instability is very different for cells with either rough or smooth walls, an effect that we attribute to effective slip.
The trends observed in the experiments are in broad agreement with theoretical predictions.

1. Introduction

The Saffman-Taylor instability arises when a more vis-
cous fluid is displaced by a less viscous one in a Hele-Shaw
cell, leading to the invasion of distinctive fingers into the
displaced fluid [1, 2]. Such fingering also arises in the dis-
placement of viscoplastic fluids, the yield stress being un-
able to control the instability [3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14]. Given the widespread occurrence of yield-
stress fluids, this has potentially important implications
in a range of industrial and environmental processes. The
purpose of the current article is to present a combined the-
oretical and experimental exploration of this latter prob-
lem.

Our theoretical study is based on the conventional Hele-
Shaw approximation for viscous fluids. This approxima-
tion employs Reynolds lubrication theory to reduce the
governing equations to a reduced model based on Laplace’s
equation. When a complex fluid is displaced in the Hele-
Shaw cell, the reduction must be generalized accordingly,
with the rheology entering via a suitable flux-pressure-
gradient relation. Here, we provide the details for a fluid
modelled by the Herschel-Bulkley constitutive law, treat-
ing the displacing fluid as inviscid. Although such a vis-
coplastic Hele-Shaw approximation has been presented be-
fore [15, 16], we provide these details here in order to fully
iron out some of the awkward wrinkles that feature in the
problem and to generalize to accommodate the effective
slip that many complex fluids suffer when flowing against

∗Corresponding author: E-mail: njb@math.ubc.ca

smooth walls [17]. In particular, we exploit a recently
proposed model for slip that has been experimentally cal-
ibrated [18]. Although it has been ignored or considered
negligible in previous literature, any effective slip in a Hele-
Shaw cell is likely to be crucial in view of the confined
geometry. Indeed, part of the purpose of the present ar-
ticle is to establish that slip has a dramatic effect on the
Saffman-Taylor instability.

With the viscoplastic version of the Hele-Shaw approx-
imation in hand, we demonstrate through linear stability
analysis that a retreating, planar interface of viscoplas-
tic fluid is unstable and examine the impact of slip. We
also consider the linear stability of retreating circular in-
terfaces, for which the initial-value problem must be solved
instead of a standard normal-mode problem. For the pla-
nar interface, we also solve the reduced model numerically
to give some insight of the nonlinear development of the
linear instability.

To complement theory, we conduct laboratory exper-
iments in a Hele-Shaw cell with aqueous suspensions of
Carbopol, which is commonly modelled with the Herschel-
Bulkley law, even though this fluid can exhibit richer be-
haviour [14, 19, 20]. The set-up of the experiments is rela-
tively simple: we first pump Carbopol into the cell through
a central vent; the advancing interface displaces air and
does not therefore suffer the Saffman-Taylor instability,
forming a circular viscoplastic disk. We then either switch
the feeder pipe to the cell and pump in air, or reverse the
pump and extract the disk. Either way, as sketched in fig-
ure 1, we set up a retreating air-Carbopol interface that is
prone to Saffman-Taylor fingering.
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Figure 1: The geometry of the three displacement problems considered in the present paper. The inset images in (b) and (c) show photographs
(from above) of experiments with a blue-coloured Carbopol suspension on smooth and rough plates respectively, as outlined in §4; the vent
is visible as the central dark circle (with a radius of 2.75mm for rough plates and 3.8mm for smooth plates), and the unstable interface, as
identified through image processing, is shown by the red dotted line.

To explore experimentally the impact of effective slip
we use cells with either smooth or roughened walls. With
smooth, plexiglass walls for our Hele-Shaw cells, the Car-
bopol suspension is expected to suffer slip [18]; we roughen
those walls with sandpaper to try to minimize any such
lubrication, following common practice in rheometry. To
gauge the degree of instability and classify the finger pat-
terns for both types of cells, we consider a number of diag-
nostics based on the shape of the interface observed from
one side.

2. Reduced model

2.1. Formulation

Consider a two-dimensional, incompressible Herschel-
Bulkley fluid between two plates with constant separation,
H. We align a Cartesian coordinate system with the mid-
plane, so that the z−axis is perpendicular to the midplane,
which lies along z = 0 (see figure 1(a)). The fluid has ve-
locity u = (u, v, w), pressure p and deviatoric stress tensor
τ . Ignoring inertia and any body forces such as gravity,
conservation of mass and momentum demand that

∇ · u = 0, (1)

∇ · τ = ∇p. (2)

The Herschel-Bulkley constitutive law is

γ̇ = 0, if τ < τ
Y
, (3)

τ =

(
Kγ̇n−1 +

τ
Y

γ̇

)
γ̇, otherwise, (4)

where

γ̇ij =
∂ui

∂xj
+
∂uj

∂xi
, γ̇ =

√
1
2

∑
i,j

γ̇2
ij , τ =

√
1
2

∑
i,j

τ2ij ,

(5)
and the parameters are the consistency K, power-law in-
dex n and yield stress τ

Y
.

Along the midplane of the slot, symmetry demands that

w = τxz = τyz = 0 on z = 0. (6)

At the walls, z = ± 1
2H, we allow the fluid to slip. In

particular, we adopt the stick-slip model,(
u
v

)
=

(
0
0

)
, if

√
τxz2 + τyz2 < τ

W
,(

τxz
τyz

)
= ∓

(
A+

τ
W√

u2 + v2

)(
u
v

)
, otherwise,

(7)

at z = ± 1
2H, where A and τ

W
denote material parameters

describing the interaction between the fluid and walls [18].

2.2. Dimensionless equations and reduction

For a narrow slot, the gap H is much less than the char-
acteristic lengthscale L for variations in the slot’s plane:
ϵ = H

2L ≪ 1. In this setting, the transverse velocity w must
be smaller than the velocity components along the slot, u
and v, by a factor of O(ϵ). Similarly, the pressure gradi-
ents driving flow must overcome the resistance stemming
from the shear stresses across the slot, implying that p is
larger than τxz and τyz, by a factor of O(ϵ−1). To bring
out such features of the problem, we remove dimensions
from the equations by setting

(x, y) = L(x̂, ŷ), z = 1
2Hẑ, (u, v) = U(û, v̂),

w = ϵUŵ, p = ϵ−1Sp̂, τ = Sτ̂ ,
(8)

where we connect the characteristic scales for stress and
velocity, S and U , using a characteristic viscosity µ∗:

S =
2µ∗U
H

, µ∗ = K

(
2U
H

)n−1

. (9)

For the moment, we leave open the choice of the scales L
and U , and establish the scaling of time t when we consider
the boundary conditions (which is where the dynamics en-
ters this Stokes-flow-type problem).
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After dropping the hat decoration identifying the di-
mensionless variables, the leading-order expression of force
balance becomes

∂p

∂x
=

∂τxz
∂z

+O(ϵ),

∂p

∂y
=

∂τyz
∂z

+O(ϵ),

∂p

∂z
= O(ϵ).

(10)

Evidently, (
τxz
τyz

)
= z∇p+O(ϵ). (11)

The yielded part of the constitutive law becomes

τ =
γ̇n +Bi

γ̇

 2ϵux ϵ(uy + vx) uz + ϵ2wx

ϵ(uy + vx) 2ϵvy vz + ϵ2wy

uz + ϵ2wx vz + ϵ2wy −2ϵwz

 ,

(12)
for τ ≥ Bi, where the dimensionless yield stress, or Bing-
ham number, is

Bi =
τ
Y

S
=

HτY
2µ∗U

, (13)

and we have used a shorthand subscript notation on
(u, v, w) in place of partial derivatives. At the walls, the
slip law becomes(

τxz
τyz

)
= ∓

(
UA
S

+
Bw√

u2 + v2

)(
u
v

)
, at z = ±1, (14)

if
√
τxz2 + τyz2 ≥ Bw, where

Bw =
τ
W

S
≡ τ

W

τ
Y

Bi. (15)

We assume that τ
W

< τ
Y
, and so Bw < Bi.

2.3. The flow pattern

2.3.1. Strongly sheared regions

The form of the deformation tensor on the right of equa-
tion (12) suggests that the stress tensor τ is dominated
by the components τxz and τyz. Therefore, provided that

τ2 ≈ τxz
2 + τyz

2 exceeds Bi2, we have γ̇ ≈
√
u2
z + v2z and

z∇p =

(
τxz
τyz

)
=

(
γ̇n−1 +

Bi

γ̇

)(
uz

vz

)
. (16)

That is, (
uz

vz

)
= (|z| − Y )

1
nS

1
n−1∇p sgn(z), (17)

where

S = |∇p| =
√
p2x + p2y, Y =

Bi

S
. (18)

Evidently, 1 > |z| > Y for such a solution to exist. Pro-
vided that one does, the velocity profile over this region
can be found by integrating (17), subject to the conditions(

u
v

)∣∣∣∣
z=±1

≡
(
U
V

)
= − Σ

(2 + 1
n )

Max (0, S − Bw)
∇p

S
,

(19)
where

Σ = (2 + 1
n )

S
UA

≡ (2 + 1
n )

2µ∗

HA
. (20)

It further follows that the slot-averaged flux is

1

2

∫ 1

−1

(
u
v

)
dz =

(
U
V

)
−
∫ 1

0

z

(
uz

vz

)
dz (21)

= −(2 + 1
n )

−1Q

S
∇p−

∫ Y

0

z

(
uz

vz

)
dz,

(22)

where

Q(S) =Σ Max (0, S − Bw)

+

(
1 +

nY

n+ 1

)
S

1
n [Max(0, 1− Y )]

1
n+1.

(23)

2.3.2. The pseudo-plug

In |z| < Y , the preceding solution is no longer valid, and
the approximation τ2 ≈ τxz

2+ τyz
2 motivated by the form

of γ̇ in (16) seemingly suggests that τ < Bi, implying we
must take (uz, vz) → 0. However, this conclusion is false
because if uz and vz both become small, and in particular
O(ϵ), then γ̇ = O(ϵ) and all components of τ become of
similar order in view of the factor Bi/γ̇ stemming from the
yield stress term in (12). In other words, once z → ±Y
and (uz, vz) → O(ϵ), we must instead take

u = u0(x, y, t) + ϵu1(x, y, z, t) + ...

v = v0(x, y, t) + ϵv1(x, y, z, t) + ...,
(24)

leading to

γ̇ ≈ ϵ
√
Γ2 + u2

1z + v21z,

Γ2 = 2u2
0x + 2v20y + 2(u0x + v0y)

2 + (u0y + v0x)
2

(25)

and

τ =
Bi√

Γ2 + u2
1z + v21z

 2u0x u0y + v0x u1z

u0y + v0x 2v0y v1z
u1z v1z 2w0z

 ,

(26)
with w0 = −z(u0x + v0y). Because the (dimensional) de-
viatoric stress is now given by τ ≈ τ

Y
γ̇/γ̇, the region

−Y < z < Y can be viewed as a perfectly plastic (von
Mises) material that, despite τxz and τyz continuing to be
prescribed by z∇p, actually remains yielded because of
the other components of the stress tensor. Indeed, one
may solve

z∇p =
Bi√

Γ2 + u2
1z + v21z

(
u1z

v1z

)
, (27)
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for the shear rates, u1z and v1z, in terms of the in-plane
deformation rate, Γ [21]. Nevertheless, the flow profile
−Y < z < Y is plug-like, in view of (24), leading to Walton
& Bittleston’s use of the terminology “pseudo-plug.” Only
when u0 and v0 turn out to be independent of position
does the pseudo-plug develop into a true plug [22, 23].
Consequently, since (uz, vz) = O(ϵ), we may discard the
final integral in (22), to arrive at the flux gradient relation
defined by the function Q(S) in (23).

2.3.3. The fake yield surfaces

The pseudo-plug is connected to the sheared regions
across the “fake” surfaces, z = ±Y . This connection ac-
tually takes place over a thin layer of thickness δ, where

z = ±(Y +δζ),

[
u
v

]
∼

[
u0(x, y, t)
v0(x, y, t)

]
+δα+1

[
℧(x, y, ζ, t)
Υ(x, y, ζ, t)

]
.

(28)
To relate δ to ϵ and determine the power α, we insert these
relations into (16) (using the full form of γ̇). Then,

[
(ϵ2Γ2 + δ2α∆2)n/2 +Bi

]2 δ2α∆2

ϵ2Γ2 + δ2α∆2

= z2S2 =

(
1 + δ

ζ

Y

)2

Bi2,

(29)

where

∆ =
√

℧2
ζ +Υ2

ζ . (30)

Provided δ2α ≫ ϵ2, both sides of this equation equal Bi2 to
leading order. Equating the three next-order terms implies

δSζ = δnα∆n − ϵ2BiΓ2

2δ2α∆2
. (31)

Hence,

α = n−1, δ = ϵ
2n

n+2 and Sζ = ∆n − BiΓ2

2∆2
, (32)

which confirm that δ2α ≡ ϵ
4

n+2 ≫ ϵ2. The final algebraic
equation for ∆(ζ) in (32) bridges between the limit of the
pseudo-plug solution,

∆ ∼ Γ

√
Y

2|ζ|
,

following from (27), for ζ → −∞, to the limit of the solu-
tion for the strongly sheared region,

∆ ∼ (Sζ)
1
n

given by (17), for ζ → ∞. Because the bridge arises across

a narrow region of O(ϵ
2n

n+2 ), the contribution to the flux in
(22) can be ignored.

2.4. The flux-gradient relation

An integral of the mass conservation equation across the
slot implies that

∂

∂x

∫ 1

−1

u dx+
∂

∂y

∫ 1

−1

v dy = 0. (33)

Hence, using (22), we arrive at

∇ · q = 0, q =

(
qx
qy

)
= −Q(S)

S
∇p, (34)

where |q| = Q(S) is the flux-gradient relation given by
(23), which we now repeat, but in the slightly different
form,

Q(S) =Σ Max (0, S − Bw)

+
1

S2

(
S +

nBi

n+ 1

)
[Max(0, S − Bi)]

1
n+1.

(35)

This relation recovers that derived in [14, 16] when Σ → 0,
which corresponds to eliminating any slip over the walls.
If we further take Bi = 0, we emerge with the flux-gradient
relation for a power-law fluid, and when, in addition,
n = 1, we arrive at the Newtonian law Q(S) = S. The
relations with and without slip are illustrated in figure 2
for parameter settings typical of the experiments we report
later. In the circular geometry for which we conduct those
experiments, the imposition of a constant flux through the
slot from a source or sink at the centre actually implies
that Q varies with radial position. The fluid therefore pro-
gresses along an entire section of the flux-gradient relation
in its passage through the cell; excursions for expanding
or extracted axisymmetrical flow are indicated in figure 2.

The full flux-gradient relation contains two switches: if
S < Bw < Bi, equivalent to τxz

2 + τyz
2 < Bw

2 < Bi2

at z = ±1, the fluid is not sufficiently stressed to either
slip over the walls or deform between them. Instead, a
stagnant plug bridges across the gap. On the other hand,
S > Bi > Bw, then Bi2 < τxz

2 + τyz
2 at z = ±1, and the

shear stresses are sufficient to force the fluid to both slide
over walls and shear internally against those boundaries,
with a pseudo-plug occupying a section surrounding the
midplane. The situation Bi > S > Bw corresponds to a
stress state with Bi2 < τxz

2+ τyz
2 at z = ±1. In this case,

sliding must occur, but the shear stresses are not sufficient
to generate any internal shear adjacent to the walls. The
interpretation is that the pseudo-plug now fills the entire
slot with (U, V ) ≡ (u0, v0). Unless the sliding velocity is
independent of position, the fluid does not slide as a rigid
block, and the in-plane stress components contribute to
holding the fluid just above the yield stress, as in §2.3.2.
The flux-gradient relation Q = Σ Max (0, S − Bw) that
applies for Bi > S > Bw is, coincidentally, equivalent to
the simplified forms for flow with no-slip adopted by Cous-
sot [3] and Alexandrou & Entov [24]. Figure 2 highlights
how the fluid flow through the Hele-Shaw cells of the ex-
periments can take place entirely due to sliding where the
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Figure 2: The flux gradient relation in (35) illustrated for the pa-
rameter settings indicated and experiments with (a) expanding or (b)
extracted axisymmetrical flow from a source or sink at the centre of
the cell. The red and blue curves indicate the cases without (Σ = 0)
or with (Σ > 0) wall slip, respectively. The switches at S = Bi and
S = Bw are indicated. The thicker sections of the curves indicate the
excursion taken by fluid expanding or retreating axisymmetrically;
in each case, in the experiments an interface is positioned initially at
a radial location corresponding to Q = 1. On the right, we show the
corresponding plots of the quantity S

√
Q(S)Q′(S), which controls

the basic linear instability (see §3.1).

fluxes are lowest, and partly by sliding where the fluxes
are highest, unless slip is removed.

Note that the form of the flux-gradient relation relies on
the assumption that the sliding parameter Σ is O(1). Had
this parameter instead been O(ϵ−2), then the magnitude
of the slip velocity would have violated our asymptotic
scalings, and the implied in-plane stresses could no longer
be discarded in the leading-order force balance equations
(10). A revision of the asymptotic reduction would then be
demanded, more like that followed to describe free viscous
or viscoplastic films [25, 26, 27, 28, 29, 30].

2.5. Boundary conditions

In the Saffman-Taylor problem equation (34) must be
supplemented with the conditions holding at the fluid in-
terface, x = X(y, t). Assuming that this interface main-
tains a constant curvature across the slot (with associated
dynamic contact lines), we have an approximate kinematic
condition,

Xt + qyXy = qx, (36)

and Laplace-Young relation,

p(X, y, t) = Pamb − σK (37)

where Pamb denotes the pressure beyond the fluid, K de-
notes the interface curvature and σ is a parameter that is
related to the dimensional surface tension σ∗ by

σ =
σ∗H
2L2S

. (38)

To arrive at (36), the dimensional time must be scaled by
(2 + 1

n )L/U , given that our non-dimensionalization of the
problem implies that the average velocity across the slot
is (2 + 1

n )
−1U(qx, qy).

Finally, the fluid must be driven through the slot by im-
posing a flux condition. In the planar problem, if the net
dimensional flow speed down the slot is V, then we choose
U = (2+ 1

n )
−1V (implying that the net dimensionless flux

is unity). We further select L to be a typical finger scale,
adopting periodic boundary conditions in y. The interfa-
cial curvature is given by

K = K0 +
Xyy

(1 +X2
y )

3
2

, (39)

where K0 denotes the constant component associated with
the local meniscus.

For problems with circular geometry, we may force fluid
through the cell by imposing a flux Q through a vent of ra-
dius rv. Transforming to the curvilinear coordinates (r, θ),
we set q = (qr, qϑ) and write (34) and (36) in the alterna-
tive forms,

1

r

∂

∂r
(rqr) +

1

r

∂qϑ
∂θ

= 0, (40)

Rt + qϑRθ = qr at r = R(θ, t). (41)

We may then take L = ro, the initial radial position of
the interface, and impose the net radial velocity qr = 1 at
r = 1. This corresponds to fixing U = (2 + 1

n )Q/[2πroH].
In this case, the interface, at r = R(θ, t), has curvature
[31],

K = K0 +
R2 + 2R2

θ −RRθθ

(R2 +R2
θ)

3
2

. (42)

For an expanding interface, ro ≳ rv, but for a retreating
interface, rv ≪ ro, suggesting that any lengthscale based
on rv should be irrelevant (motivating the selection L =
ro).
For the circular problem, we may also supplement an

inner, retreating interface with a second, outer interface to
model the expanding viscoplastic annulus shown in figure
1(c). This problem was considered explicitly in [14], and
we avoid any detailed additional discussion here. We do,
however, use the analysis in [14] to provide predictions
from linear stability theory for expanding annuli in §4.
Adopting the interfacial conditions in (36)-(37) along

with (39) or (42) is common practice in theory for Hele-
Shaw cells (e.g. [1, 2, 32, 31]). However, this approxima-
tion can lead to quantitative errors in the modelling [2, 33].
Indeed, when air is displaces Carbopol in a Hele-Shaw cell
with no-slip plates, residual layers of Carbopol may be left
behind, features that were observed in the experiments we
report later with roughened plates. By contrast, no such
residual layers of air were observed when the Carbopol
displaced air. In the current theory, we adopt (36)-(37)
largely for simplicity, although the residual layers of Car-
bopol observed experimentally were relatively thin and did
not appear to significantly impact displacements.
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3. Planar fingers

With the reduced model in hand, we may explore the
dynamics of viscoplastic Saffman-Taylor fingers. We first
consider this problem for a planar interface, before turning
to circular geometry. In the planar problem, we choose the
domain length in y to be 2π (so that L is selected as the
wavelength of the most significant finger), and consider
the moving domain ςt ≤ x ≤ X = ςt + X̂(y, t), where
ς = ±1, for a problem with an advancing or retreating
interface. The kinematic condition (36) then translates to
X̂t + qyX̂y = qx − ς, whereas we impose the flux condition
qx = 1 at x = ςt.

3.1. Linear instability

The solution for a steadily advancing planar interface is
given by

X = X0(t) = X0(0) + ςt, (qx, qy) = (ς, 0),

Q = 1, p = ςS0(X0 − x), S = S0,
(43)

where S0 is the pressure gradient required to drive the
background flux, Q0 = Q(S0). For the planar problem, we
may choose characteristic scales so that Q0 = 1, as stated
above. However, in the circular problem, the background
flux varies with radial position. For a comparison with
that problem, we therefore avoid introducing this particu-
lar choice.

Considering small perturbations about the planar state,
we set

X = X0(t) + X̂ℓ(t)e
iℓy, p = ςS0(X0 − x) + pℓ(x, t)e

iℓy,
(44)

where ℓ = 1, 2, ..., is the wavenumber, and then discard
terms in the equations of the reduced model that are non-
linear in the amplitudes X̂ℓ and pℓ. We first arrive at the
relations,

S = S0 − ς
∂pℓ
∂x

eiℓy, (45)

(qx, qy) = (ςQ0, 0)−
(
Q′(S0)

∂pℓ
∂x

,
iℓQ0

S0
pℓ

)
eiℓy, (46)

which then imply

∂2pℓ
∂x2

=
ℓ2Q0pℓ
S0Q′(S0)

, (47)

or

pℓ = A(t) exp

[
ℓ(x−X0)

√
Q0

S0Q′(S0)

]
, (48)

for some A(t), if we assume that the viscoplasic fluid ex-
tends to x → −∞. From the developments of (36) and
(37), we then find

dX̂ℓ

dt
= −ℓA

√
Q0Q′(S0)

S0
and A− ςS0X̂ℓ = σℓ2X̂ℓ.

(49)

Hence,

X̂ℓ(t) = X̂ℓ(0) exp

−ℓ

√
Q0Q′(S0)

S0
(ςS0 + σℓ2)t

 . (50)

As long as the flux-gradient relation is always increasing
(Q′(S) > 0, which is the case for the constitutive laws
considered here, as illustrated in figure 2), the advancing
interface is therefore always stable; the retreating interface
is unstable to the ℓth mode if S0 > σℓ2.

Equation (50) predicts a most unstable wavelength
given by 2π

√
3σ/S0, with a growth rate equal to

2
3S0

√
Q0Q(S0)′/3σ. The factor, S0

√
Q0Q′(S0), indicates

how the rheology enters the linear problem to impact sta-
bility. Notably, as highlighted by figure 2, the addition
of slip leads to a reduction in this factor, suggestive of a
corresponding reduction in the degree of instability for our
experiments. Also, in the limit Q0 → 0 without slip, we
must have S0 → Bi, implying that the dimensional, most
unstable wavelength is proportional to

√
σ∗H/τ

Y
(cf. [3]).

Similarly with slip, when S0 → Bw, the dimensional most
unstable wavelength is proportional to

√
σ∗H/τ

W
. More

generally, the prediction in (49) can be compared with ex-
perimental results in planar geometry. Further analysis is
necessary for circular geometry, however, in view of the
time dependence of the axisymmetric flow [14].

3.2. Nonlinear fingers

3.2.1. Numerical scheme

To look at the initial development of unstable viscoplas-
tic Saffman-Taylor fingering, we solve (34), (36) and (37)
numerically for Bingham fluid (n = 1) beginning from the
initial condition, X̂(y, 0) = 20+10−2 cos y (the choice of 20
for the mean position ensures that the boundary at x = −t
plays no role in the dynamics).

To solve (34) at each instant of time, and given the
current position of the interface, we first map the domain
into a fixed rectangle by introducing the variable ξ = (x−
ςt)/(X − ςt) = (x − ςt)/X̂. We then adopt a fixed grid
in y and use the fast Fourier transform to evaluate spatial
derivatives in that direction. This turns (34) into a set of
coupled ODEs in ξ, that can be solved using MATLAB’s
in-built solver bvp5c. The grid in y has 64 or 128 points;
bvp5c introduces an adaptive grid with a variable number
of points for ξ. To accelerate the computations we also
exploit the reflection symmetry about y = π to further
halve the grid in y.

In solving (34), we also smooth the switch in the flux-
pressure-gradient relation at Q = 0 by replacing Q(S) in

(34) by
√

Q2 + εS2, where ε is a small regularization pa-
rameter. Practically, ε is chosen to be 10−2 or smaller,
and the effect of this regularization is gauged by varying
the precise value. The regularization also leads to a pre-
scribed pressure solution over any true plugs, which would
otherwise be indeterminate.
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With the solution for the pressure in hand, we construct
the flux at the interface, and then advance the interface
position x = X(y, t) in time, using (36). For this task, we
employ MATLAB’s implicit integrator, ode15s.

Note that the mapping ξ = (x− ςt)/X̂ implicitly limits
the numerical strategy to fingers that do not thin behind
the advancing finger tip. i.e. to interfacial shapes for
which x = X(y, t) is single valued. For the Newtonian
problem, it is known that fingers can develop such thinned
sections at late times [34, 35]. Such shapes are inaccessible
for the current numerical scheme and the computation is
necessarily stopped when Xy becomes too large.

3.2.2. Solutions without slip

Figures 3 and 4 compare numerical solutions for retreat-
ing interfaces of Newtonian (Bi = Σ = 0) and non-slipping
Bingham (Bi = 2, Σ = 0) fluid. For the two solutions, the
surface tension parameter is chosen so that only the first
(ℓ = 1) Fourier mode in y is unstable (σ = 0.5 for Bi = 0,
and σ = 1 for Bi = 2). The development of Saffman-
Taylor instability on the interface is similar between the
two solutions with the interface deforming into a growing
finger. The main difference between the two solutions is
that, for the Bingham case, the flux falls significantly ad-
jacent to the rearward portions of the interface, with the
stress decreasing to the yield stress there. The progress of
the lagging parts of the interface thereby become arrested,
and fluid retreats only along the front of the finger. For the
Newtonian case, instead, the interface slows at the back,
but does not halt.

A main feature of the numerical solutions in figures
3 and 4 is the lengthening of the interface x = X(y, t)
along the sides of the finger, which become relatively flat.
The mapping used to solve (34) on a rectangular domain
becomes problematic in this situation, with the limited
spatial resolution prompting the development of short-
wavelength oscillations in y. We terminate the compu-
tations before these spurious features become too severe,
but they are visible in some of the final solutions shown in
the figures, particularly in the yield surface of the Bingham
cases.

Alexandrou & Entov [24] have previously given solutions
for the advance of a finger of inviscid fluid at constant
speed into a cell filled with a (miscible) yield-stress fluid.
As mentioned earlier, however, these authors exploit an
approximation of the flux-gradient relation that is more
similar to the purely sliding law we have derived here (i.e.
(35) with Bi → ∞). Nevertheless, their solution possesses
plugs on either side of the advancing finger, somewhat like
those seen in figure 4(a). The development of the blocked
section of the cell along the lines y = 0 and 2π is shown
in more detail in figure 4(c). The retreat of the yield sur-
face here appears to match that of the interface at late
times, suggesting that the solution may indeed converge
to a steadily translating form.

Further evidence for such convergence is shown in fig-
ure 5, which presents solutions with varying Bingham

numbers, holding all other parameters fixed. Plotted are
snapshots of the interface in the frame of the fingertips;
i.e. after shifting the origin to (x, y) = (Xtip, π) where
Xtip(t) = Min(X). This shift increasingly collapses the
profile of the fingertips near x = Xtip as time progresses,
suggesting the convergence to a steadily propagating form.
The profiles also highlight how the finger widths ∆ and
speed of advance vtip depend on Bingham number, with
the finger narrowing and becoming faster as the yield stress
increases. In figure 5, the width is estimated by measur-
ing where the yield surface intersects the interface for each
final solution.

The limiting tip speed and finger width are connected
since in any steadily translating final state, mass conser-
vation demands that ∆vtip = π. As the plug is still in
expansion at the end of the computations and the fin-
gertip is accelerating, the measurements of v−1

tip and ∆/π
plausibly bracket the limiting relative finger width (the
viscoplastic analogue of Saffman & Taylor’s λ parameter).
Evidently, with surface tension, a particular finger width
is selected, as found previously in the Newtonian problem
[2, 34, 35, 36]. Here, the finger width is further controlled
by the yield stress, which constricts the fingers and lowers
the relative width ∆/π below 1

2 , the bound encountered
in the Newtonian problem for σ → 0.

Figure 5 also highlights another feature of the finger
solutions, namely that scaling the interface position by
the finger width ∆ leads to some collapse of all the pro-
files. This scaling is equivalent to that noted by Pitts [37]
in the Newtonian Saffman-Taylor problem. In the cur-
rent viscoplastic problem, we may rationalize this obser-
vation by noting that when the finger becomes relatively
thin and surrounded by a plug, the domain adopted in y
must become secondary in setting the finger profile, raising
the question of what lengthscale sets the width. The key
points are that the pressure gradient S must remain O(Bi)
in order to drive the finger forward, so p ∼ S∆ ∼ Bi∆,
whereas the capillary stress demands that the pressure is
p ∼ σ∆−1. Thus, ∆ ∼

√
σ/Bi, and since this prescribes

the only relevant lengthscale, a collapse is implied by the

scaling of the profile by ∆. The scaling of ∆ with Bi−
1
2

is indeed observed for the solutions shown in figure 5 (see
the inset panel on the right). In dimensional terms, be-
cause our surface tension parameter is given by (38), we
conclude that the finger width is set by the lengthscale√

σ∗H/τ
Y
, which also corresponds to the wavelength of

the most unstable mode in the plastic limit (see §3.1; [3]).

3.2.3. Slippy solutions

Numerical solutions including slip are shown in figure
6; again, the surface tension parameter is chosen so that
only the ℓ = 1 mode is unstable. For the solution shown
at the top of figure 6(a), the slip parameter Σ is set to
a value so that the viscoplastic fluid is internally yielded
when it is uniformly withdrawn from the cell (i.e. S0 >
Bi). However, although the fluid is consequently internally
yielded to begin with, once an unstable finger develops, the
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Figure 3: Numerical solution for a retreating, planar interface of Newtonian fluid (n = 1, Bi = Σ = 0; σ = 0.5). In panel (a), we display three

snapshots of the flux Q(x, y, t), together with a succession of the equally spaced previous snapshots of the retreating interface x = X̂(y, t)

(equally spaced by 0.5). The panels on the right show time series of (b) ⟨X̂2⟩ (angular brackets denoting a spatial average) and (c) the
maximum (blue) and minimum (red) interface positions. In (b), the dashed lines show the expected linear growth and the stars indicate the
times of the snapshots of Q shown in (a).

Figure 4: Numerical solutions for a retreating interface of non-slipping Bingham fluid (n = 1, Bi = 2, Σ = 0; σ = 1). Three snapshots of
Q(x, y, t) are again displayed in (a), along with previous interface positions (equally spaced by 0.25). The dotted (green) contours show the

yield surfaces. The panels on the right show time series of (b) ⟨X̂2⟩ and (c) the maximum (blue) and minimum (red) interface positions. In
(b), the dashed lines show the expected linear growth and the stars indicate the times of the snapshots of Q shown in (a). In (c), the shaded
region shows the extent of the growing plug along y = 0 and 2π.
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Figure 5: Numerical solutions for a retreating interface of non-slipping Bingham fluid (n = 1, Σ = 0; σ = 1) with varying Bi (as indicated).
Snapshots of the interface in the frame of reference of the finger tip are shown in the top row (i.e. in the frame with origin at (x, y) = (Xtip, π)
where Xtip = Min(X)). The snapshots are roughly equally spaced by intervals equal to a fiftieth of the final time in each computation. The
lower panel shows the times series of Min(X) and Max(X) for all the solutions. The lower left inset shows the profiles of the all the finger
tips, rescaled by the finger width ∆, defined as the vertical distance between the final yield points on the interface. The right-hand insets
show the final speed of the fingertips vtip, then its inverse and ∆/π against Bi.

Figure 6: Numerical solutions for a retreating interface of slipping Bingham fluid (n = 1, Bi = 2) with (Σ, σ) = ( 1
2
, 2
5
) (top) and (Σ, σ) = ( 3

4
, 2
3
)

(bottom); Bw = 1
5
Bi. In (a), the final solution for Q(x, y, t) is plotted along with a succession of previous interface positions (equally spaced

by 0.25). The dashed (green) contours show the internal yield surfaces where S = Bi; the (red) dotted lines show the contours Q = 0.1. The

panels on the right show time series of (b) ⟨X̂2⟩ and (c) the maximum (blue) and minimum (red) interface positions. In (b), the dashed lines
show the expected linear growth. In (c), the solution from figure 4 is shown by the dash-dotted lines. The stars indicate where the pressure
gradient S reaches Bi; the small circles indicate where the cell first becomes blocked (S reaches Bw for Σ > 0, or Bi for Σ = 0).
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stress declines sufficiently to either side of the finger that
S falls below Bi there (at the time indicated by the blue
star in figure 6(c)). The fluid over these portions of the
cell then deforms entirely as a sliding pseudo-plug.

The second case, shown at the bottom of figure 6(a), has
a different value for Σ, such that the fluid purely slides in
uniform withdrawal (i.e. Bw < S0 < Bi). The develop-
ment of an unstable finger, however, now raises the stress
near the finger tip such that the fluid eventually fully yields
internally there. The red star in figure 6(c) indicates the
moment that internal yielding first arises.

For the solutions shown in figure 6, the solution for the
pressure gradient over the nearly blocked parts of the cell
becomes particularly sensitive to the spatial resolution and
the regularization parameter ε. We cannot, therefore, re-
liably identify any rigid regions, or the detailed shape of
any yield surfaces where S = Bw. Nevertheless, the com-
putations suggest that the yield stress is reached at the
leftmost point of the interface close to the end of both
computations in figure 6) (at the times indicated by the
filled circles). Before this happens, the computations do
reliably indicate relatively low fluxes to the left of the cell,
as highlighted by the contours where Q = 0.1 that are
also indicated in figure 6(a). The shape of these contours
is more like the yield surfaces presented by Alexandrou &
Entov, which might be due to the similarity between the
two flux-gradient relations when S < Bi.

Although the solutions with slip in figure 6 suggest that
the fluid may block the cell at late times, the plugs ap-
pearing in the solution without sliding (figure 4(a)) are
rather more pronounced. In particular, reliably detected
plugs and yield surfaces arise without slip, with the stress
certainly falling below the yield point well before the com-
putation in figure 4 terminates. By contrast, with slip the
pressure gradient declines more gradually (see figure 6(c)),
but a better numerical scheme is called for to determine
the late-time behaviour.

4. Circular interfaces and experiments

4.1. Experimental details

Our experimental arrangement consists of a cell formed
by two plates of acrylic separated by spacers. We con-
sidered gaps of thickness H = 1.7mm, 3.3mm and 4.7mm.
Fluid or air could be pumped into or out of the cell through
a pipe connected to a hole drilled into the lower plate.
Pump rate Q varies from 5ml/min to 100ml/min. Ad-
ditional acrylic sheets or weights were placed above the
spacers to help maintain the uniformity of the gap and
reduce any deformation of the plates. The fidelity of this
arrangement was verified by monitoring the axisymmetry
and radial advance of Saffman-Taylor stable displacements
through the cell. The acrylic walls were either left in their
smooth original state or roughened by 60 grit sandpaper
to try to eliminate any effective slip. The hole through
which fluid was pumped had a radius of rv = 2.75mm for
roughened cells, or rv = 3.8mm for smooth the cells.

For the experimental fluid, we used aqueous suspensions
of Carbopol (Ultrez 21, neutralized with sodium hydrox-
ide, corresponding to an example of one of the suspensions
used and reported by [38]; concentration 0.13% and den-
sity ρ ≈ 1g/cm3). Throughtout the experiments we used
three different solutions made up to this concentration.
A Herschel-Bulkley fit of the flow curves measured in a
rheometer (Kinexus Malvern fitted with roughened paral-
lel plates) gave average rheological parameters of

τ
Y
= 7.0±0.3 Pa, K = 5.3±0.1 Pa sn−1, n = 0.42±0.01.

(51)
Figure B.16 in Appendix B compares flow curves with the
Herschel-Bulkley fit. Some other experiments using corn
syrup (viscosity 8.2Pa s; density 1.4 g/cm3) are reported
in Appendix A.

As illustrated in figure 1 we explore two versions of the
Saffman-Taylor problem: the fingering of a retreating cir-
cular interface either on the outside of an extracted disk
(panel (b)) or the inside of an expanding annulus (panel
(c)). Both experiments begin by emplacing an initial disk
of Carbopol in the cell; the advancing interface of this disk
always remained stable. For the extracted disk, the pump
was then reversed; for the annulus, the feeder pipe was
exchanged for another that delivered a constant flux of air
into the cell. A camera position above the cell recorded
images of the air-Carbopol interfaces, which were then dig-
itized by image processing (see the inset images in figure
1). The first images are taken a short time after pumping
is initiated in order to avoid any start-up effects and to
allow the inner interface to expand beyond the vent for
the annulus tests. The experiments have three variable
parameters: the volume of the initial disk Vinit, the cell
gap H, and the pump rate Q.
From the recorded interfaces we extracted the areal foot-

print of the Carbopol and translated this to the volume V
within the cell (for comparison with that expected from
the flux Q). We further measured the instantaneous ra-
dius R(ϑ, t), expressed in terms of an angular variable,
ϑ = 2πs/s

T
, based on the ratio of the local arc length, s,

to the total arc length, s
T
. We break this periodic variable

down into its Fourier series to consider each angular mode,
and use the scaled standard deviation,

S
R
=

√
⟨(R/Rav − 1)2⟩, (52)

as a convenient measure of the strength of the fingering
instability, where the angular brackets indicate the average
over ϑ. The variable ϑ is not equal to the polar angle θ, but
avoids the problems that develop once the fingers become
nonlinear and render the radius a multi-valued function of
θ. Moreover, in the linear regime, ϑ and θ are equivalent.

4.2. Viscoplastic fingers and the impact of slip

Sample results for fingers forming on the retreating in-
terface of an expanding annulus and extracted disk are
presented in figures 7 and 8, respectively. In both cases,
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Figure 7: Repeated experimental tests for expanding annuli in cells with either rough or smooth plates, plotting the standard deviation of
the radius SR =

√
⟨(R/Rav − 1)2⟩ against the volume V of air in the cell. For the rough cell, the test is repeated seven times; for the smooth

cell, the test is repeated four times. The fainter lines show the individual tests; the average, with errorbars based on the standard deviation,
are shown with darker lines. For both cells, outlines of the interface are shown for four sample tests. Parameters: H = 1.7mm, Vinit = 50ml
and Q = 53ml/min for rough plates or Q = 45ml/min for smooth plates. The outlines are all separated by one second.

Figure 8: A similar plot to figure 7, but for experimental extractions of a disk, and for the volume V of Carbopol in the cell. The tests are
repeated five times in the rough cell and six times in the smooth cell. Parameters: H = 1.7mm, Vinit = 50ml, and Q = 45ml/min for rough
plates and Q = 23ml/min for smooth plates. The outlines are all separated by one second.

time series of the diagnostic in (52) are shown, along with
sample series of outlines of the unstable interface, for both
smooth and roughened cells. The retreating interface loses
its initial axisymmetry after a short period, developing the
distinctive fingers of the Saffman-Taylor instability. The
tests are halted when the longest finger approaches either
the outer air-Carbopol interface (for the annulus), or the
vent (for the extraction). For the former, the outer inter-
face largely maintains its axisymmetry until shortly before
the longest finger breaks through it (cf. figure 1(c)).

A main conclusion that one immediately draws from fig-
ures 7 and 8 is that the development of the instability is
very different in rough and smooth cells, a feature that
must be due to effective slip. In particular, the fingers de-
velop significantly more rapidly in the rough cells. Once
formed, the fingers also lengthen faster in the roughened
cells, with the rearward sections of the interface barely
moving at late times; by contrast, in the smooth cells, the

entire interface looks to remain in motion (cf. §3.2.2 and
3.2.3). These features are illustrated further in figure 9,
which shows the advance of all the tips and roots of the
fingers (i.e. the local radial maxima and minima of the
interface) detected in the annulus experiments shown in
figure 7.

The finger pattern arising in the experiments is never the
same if the test is repeated, as illustrated by the sample
interface outlines shown in figures 7 and 8. For example,
for the experimental conditions used in the tests of fig-
ure 7, between 4 and 7 fingers appear on the interface of
the expanding annulus in the rough cells; between 7 and
9 fingers appear on the interface in the smooth cells. The
fingers typically have different strengths and angular po-
sitions relative to one another between tests (confirming
the uniformity of the gap). We attribute the variability
in the finger patterns to the impact of minor differences
in the initial conditions, which prompts the growth of a
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Figure 9: Experimental time series of the local, radial maxima and
minima (the finger tips and roots) for the tests of figure 7, with the
results for rough plates in (a), and those for smooth plates in (b).
The fainter dotted lines and symbols show all the extrema (above a
threshold level exceeding the noise in the original images); the lighter
solid lines show the global maxima (red) and minima (blue). The
darker solid lines show the averages over all the repeated tests, and
the black dashed line is Rav(t).

different selection of the unstable angular Fourier modes.1

In order to reduce the impact of this variability on the
diagnostics we employ to characterize the finger patterns,
tests are repeated a number of times (typically between
three and seven times), and the results are averaged over
these repetitions (see figures 7 and 8).

4.3. Trends

The effect of the initial emplaced volume Vinit is illus-
trated for annulus experiments in roughened cells in fig-
ure 10. Relatively small initial disks (Vinit = 5 or 10ml)
develop fingers that amplify sharply and quickly break
through to the outer edge. However, increasing the ini-
tial volume above about 25ml leads to finger patterns that
develop in much the same manner, except near the final
moments when the longest finger breaks through. Indeed,
for V > 25ml, the variation in the time series of the di-
agnostic (52) with Vinit observed in figure 10 is less than
the variability seen between the seven repetitions of the
V = 50ml tests in figure 7 (as indicated by the error bars
for that case). There is also no obvious trend in figure
10 for Vinit > 25ml. Such observations therefore led us
to take Vinit = 50ml for the remainder of the experiments
(corresponding to an initial radius of about 10cm in the
cell with a gap of H = 1.7mm) and otherwise ignore this
parameter.

Trends with varying gap size and flux are illustrated for
annulus experiments with rough and smooth cells in fig-
ure 11. The most significant variation is with cell size,
with any increase in H significantly reducing the number

1In a few cases, the angular positions of the fingers do repeat
between tests, suggesting spatial imperfections; this effect largely
appears to be unimportant.

Figure 10: Expanding annuli experiments in roughened cells with
different initial volumes Vinit (as indicated), showing the standard
deviation of the radius SR against the volume V of air in the cell,
plus sample outlines of the interface. Each test is conducted at least
three times, except for the test with the largest initial annulus, which
was conducted only once. The inset shows corresponding predic-
tions of the linear stability theory, assuming an initial spectrum with

R̂m(0) = m− 3
2 . The most amplified mode has wavenumber m = 8

or 9. Parameter settings: H = 1.7mm, with Q increasing monoton-
ically from 41ml/min for the smallest Vinit up to 68ml/min for the
largest initial volume. Time difference as above.

of the fingers and their strength (figure 11(a)). The effect
of varying flux is less dramatic for rough plates in figure
11(b), with the most obvious trend being that a single fin-
ger dominates more quickly as the flux is lowered. The
highest flux with smooth plates displays a stronger insta-
bility, but the lower fluxes again remain comparable.

4.4. Comparison with linear theory

To complement the experiments we solve the linear sta-
bility problem in circular geometry. Because the base state
is time-dependent, a normal-mode analysis of the kind out-
lined in §3.1 is not valid. Instead, we solve the linear equa-
tions as an initial-value problem after breaking down the
problem into each angular Fourier mode with wavenumber
m, and considering separately the paired interfaces of the
expanding annulus or the single interface of the extracted
disk (see [14]).

Given an initial spectrum for the linear, angular Fourier
modes, one could also formulate suitable superpositions for
a direct comparison of theory and experiment. However,
as the initial states in the experiments project randomly
onto these modes, formulating such an initial spectrum is
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Figure 11: Expanding annuli experiments with different (a,c) gap size (Q = 53ml/min in (a), 45ml/min in (c); Vinit/H = 294cm2), and (b,d)
flux (H = 1.7mm, Vinit = 50ml), as indicated. For (a,b) the plates are roughened; in (c,d), the plates are smooth. The diagnostic SR (t) is
plotted against area, V/H, in (a,c) and volume, V , in (b,d). The insets show the predictions of linear stability theory for the same gaps and

fluxes (holding all other parameters fixed in each case), assuming an initial spectrum with R̂m(0) = m− 3
2 . The numbers indicate the angular

wavenumber m of the most amplified mode at the end of each time series.

challenging, particularly since the experimental Fourier se-
ries are contaminated by noise and image-processing arte-
facts. The theoretical model also features a relatively
crude treatment of the interface that likely introduced
order-one discrepancies (cf. [1, 2, 37]) and renders sus-
picious any detailed quantitative comparison with exper-
iment. Consequently, we opt for a more qualitative com-
parison.

More specifically, we first observe that the Fourier se-
ries of R(ϑ, t) for the first snapshot of the interface is

approximately given by a power-law m− 3
2 over the range

1 < m < 33 (the best fit exponent is −1.41) for both the
annulus and extraction experiments (see figure 12). We
then use this spectrum to initialize the modes in the linear
stability analysis, adopt the Herschel-Bulkley fit in (51),
match the average radius of the first snapshot ro = L and
the experimental parameters, (Q,H, Vinit), and assume
that the surface tension is that of water (cf. [39, 40]).
For the comparison with tests in roughened Hele-Shaw
cells, we assume that the roughening the plates fully re-
moves any effective slip. For the tests with smooth cells,
we adopt the wall-slip model outlined in §2.1 with pa-
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Figure 12: Fourier mode amplitudes experimentally observed for the
first snapshots of the tests shown in figures 7 (red) and 8 (blue), for
both rough and smooth plates. The modes are scaled by the power

in modes 5 < m < 33, and the dashed lines shows m− 3
2 .
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rameters A = 1.56 × 104 Pa sm−1 and τ
W

= 0.18τ
Y
,

guided by the calibrations of [18] (although those cali-
brations do not correspond precisely to the experimental
conditions or fluids that we use here). All this translates
to dimensionless parameter settings of (Bi, σ,Σ,Bw) =
(0.31, 0.014, 0, 0.057) and (0.29, 0.028, 0.21, 0.051), for the
rough and smooth plates of figure 7 (respectively), or
(Bi, σ,Σ,Bw) = (0.75, 7.1 × 10−4, 0, 0.135) and (0.9, 1.3 ×
10−3, 1, 0.16), for those of figure 8.

Figure 13 presents amplification factors, |R̂m|/R0(t) as
densities over the (V,m)−plane for the experiments of
figures 7 and 8. Here, generalizing §3.1, we set R =
R0(t) + R̂m(t)eimθ for the perturbed unstable interface in
the linear stability analysis, where r = Ro(t) =

√
1± 2t is

the (dimensionless) unperturbed position. When a single
mode is excited, this amplification factor corresponds to
S

R
(t)/S

R
(0).

For the annulus experiments in figure 13(a,b), the linear
theory predicts that the most amplified modes are similar
to those seen experimentally. Roughened cells are also pre-
dicted to be rather more unstable than smooth cells in line
with the arguments in §3.1, numerical observations [7] and
experimental observations of displacements of viscoplastic
foams [4]. Despite this qualitative agreement, the amplifi-
cations predicted theoretically are rather higher than those
seen experimentally (by a factor of ten or so), as found pre-
viously for Newtonian Saffman-Taylor fingering [41]. For
the smooth cells, the most amplified modes are predicted
to be higher in wavenumber than seen experimentally, and
for rough cells the amplifications are again about ten times
too high.

One possible explanation for the discrepancy in ampli-
fication factor is that the finger patterns do not remain
in the linear regime for the duration of the experimental
time series (cf. [41]). However, a more likely explanation
is that the theory systematically overestimates the degree
of growth in the higher wavenumbers, as we highlight in
figure 14. This figure compares a selection of experimental
Fourier mode amplitudes with theoretical predictions for
the experiments of figures 7 and 8. Although comparisons
of this kind are often obscured by experimental variabil-
ity, some of the tests show satisfying repeatability (e.g.
the mode m = 3 in figure 14(a), with relatively low error
bars). Moreover, one sees clearly in figure 14 that the the-
oretical amplification factors are consistent with observa-
tions for the lower modes. Once the angular wavenumber
reaches m = 6 or higher, however, the theory overesti-
mates growth, a feature that becomes steadily worse until
surface tension cuts off the range of growing wavenum-
bers. This overestimation is not only a property of the
viscoplastic fingering problem: as we show in Appendix
A, the experiments that we conducted with corn syrup
also demonstrate the same discrepancy. Therefore, the
issue may well point to a limitation of the Hele-Shaw ap-
proximation for our experiments (which is not altogether
surprising in view of our simplistic treatment of the inter-
face).

Note that the third case in figure 14, for extractions in
roughened cells, has amplification factors that are almost
exponential (on this semi-logarithmic plot, the dashed
lines are almost straight), because the radius of the in-
terface does not vary by much throughout the tests. The
planar linear stability analysis of §3.1 therefore applies ap-
proximately, with ℓ ≈ m. For the other experiments, the
curvature of the amplification factors emphasizes the time-
dependent axisymmetric state.

Because the theory probably overestimates the growth
of high wavenumbers, diagnostics of the kind in (52) are
inevitably also overestimated. Nevertheless, we continue
with this diagnostic to explore whether the trends observed
experimentally in §4.3 can be broadly reproduced by the
model. The predictions of this analysis for the annulus
tests (varying one of (Vinit,H,Q) whilst fixing the others)
are included as insets in figures 10 and 11. The agree-
ment is qualitative, if not quantitative, barring the sharp
upturns in S

R
(t) at the end of the experiments where the

longest finger is about to break through the outer interface.
The trends in initial volume are similar to those observed
in weakly-nonlinear analysis and nonlinear simulations for
displacement of a Newtonian annulus [42, 43]. However
the trends with varying flux are less well captured. De-
spite this, the most amplified modes predicted by the lin-
ear stability analysis are, once more, in fair agreement
with the trends in the observed numbers of fingers. This
is consistent with observations from separating plate ex-
periments [8, 13] and planar Saffman-Taylor experiments
[4, 5] that show agreement with the theoretical wavelength
of the most unstable mode in §3.1 (cf. [3]).

Note that model results for smooth plates in figures 11,
13 and 14 predict that the fluid deforms mostly by both
sliding and internal shear. Only in the test with the lowest
flux in figure 11(d) does a significant fraction of the fluid
eventually fall below the internal yield criterion given by
S = Bi (cf. figure 2). In particular, this arises for radii
that are about four times the initial position of the inner
interface.

5. Conclusion

In this paper we have provided a theoretical and exper-
imental study of Saffman-Taylor fingering in a yield-stress
fluid displaced in a Hele-Shaw cell by a weakly viscous
fluid. The theory adopts the conventional Hele-Shaw ap-
proximation, generalized to account for both the yield-
stress rheology and the possibility that effective slip takes
place at the cell walls. Roughened cells, assuming that slip
is removed, are predicted to be more prone to instability
than smooth ones (with slip). Such a significant effect of
slip is similar to that observed for displacement flows in
channels by Taghavi [44]. Without slip and for low flow
speeds (corresponding to the plastic limit), planar, non-
linear viscoplastic Saffman-Taylor fingers are predicted to
achieve a width set by

√
σ∗H/τ

Y
(where σ∗ is the sur-

face tension, τ
Y

the yield stress and H the thickness of
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Figure 13: Linear stability numerical predictions for the amplification factors, |R̂m|/R0(t), of the angular mode m when the volume within
the unstable interface is V . Panels (a,b) correspond to the annulus experiments of figure 7, for the rough and smooth cells, respectively (c,d)
correspond to the extractions in rough and smooth cells in figure 8. The red points indicate the most amplified mode for m > 1.
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Figure 14: Experimentally observed and numerically predicted mode amplitudes |R̂m|/R0, for the angular wavenumbers m indicated (colour
coded from red to blue for increasing m). The experiments correspond to those in figures 7 and 8, and the panels are laid out as in figure 13.
The solid lines and error bars show the average, plus or minus the standard deviation, of the repeated tests; in (a), the dotted lines show the
results for each test. The dashed lines are the theoretical predictions, scaled to match the observed averages at a particular volume.

the cell), in agreement with the wavelength of the most
unstable mode [3]. To either side of the advancing finger,
the yield stress arrests flow, blocking the cell there. With
slip, the blockages are less severe.

Our experiments were conducted by displacing suspen-
sions of Carbopol with air in the circular geometries of an
expanding annulus or extracted disk. The Hele-Shaw cells
were made using acrylic plates. For a comparison with
theory assuming no slip, we roughened the acrylic walls
with sandpaper. Other techniques have been employed to
remove slip, such as treating the surfaces chemically [45].
Here, however, we aimed for a relatively simple and robust
technique, roughening the plates to mimic the process used
in complementary rheometry.

To compare with the theoretical results incorporating
a model for effective slip, we left the acrylic plates in
their original smooth state, matching earlier experiments
with measured slip parameters [18]. We also conducted
some tests in which we applied a hydrophobic treatment
to the plates to try to approach the opposite extreme
and promote slip yet further. These tests were less suc-
cessful, however, the interaction of the surface treatment
with the Carbopol leading to spatially variable slip prop-
erties. Exploring the dynamics of yield-stress fluids on

super-hydrophobic surface is certainly worthy of further
exploration.

Our comparisons of theory and experiment were based
on the evolving angular Fourier spectra, the number of
fingers and their length. These measurements were taken
starting a short while after each test commenced in or-
der to minimize the influence of any initial transients or
entrance effects at the feeder pipe. At this initial mo-
ment, the Fourier mode amplitudes were observed to take
a power-law dependence on angular wavenumber, a fea-
ture that guided the initialization of corresponding linear
stability computations. The modes subsequently evolved
independently (at least until late times when the fingers
significantly distorted the basis axisymmetrical flow), with
different wavenumbers amplified most strongly at different
times. In other words, the dynamics was linear, and the
most unstable mode changed with time. The precise finger
pattern was not therefore imprinted at the commencement
of each experiment (supporting our strategy for discarding
initial transients and entrance effects), and the observed
initial spectrum facilitated a mode-by-mode comparison
with linear stability theory.

In agreement with theoretical predictions, fingering in
roughened cells was rather more pronounced than in
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smooth cells, a feature that must be due to wall slip.
Also in accord with the linear theory, fingers were wider
in thicker cells, but insensistive to flux (see §4.3 and figure
11). Despite the relatively crude treatment of the interface
in the theory, the amplification rates of the lower angular
wavenumbers observed in the experiments match theoret-
ical predictions fairly well; the growth of higher wavenum-
bers is overpredicted theoretically.

One could also advance beyond linear theory and try
to establish connections between the experiments and the
nonlinear finger computations. However, for our nonlinear
analysis, we chose a surface tension parameter such that
only the first Fourier mode was unstable. This choice elim-
inates any finger interactions, which limits the comparison
with experiments. Nevertheless, by studying a single fin-
ger, we were able to compute the nonlinear dynamics accu-
rately and demonstrate some qualitative agreement with
the experiments. In particular, in roughened cells the lag-
ging interface between nonlinear fingers largely came to
rest, in agreement with experimental observations.

However, this conclusion is not obviously relevant to
applications involving flow in porous media, where the
tortuosity of the pore space could prevent slip occurring.
In these situations, the inertial effects that we neglected
may become more relevant at higher volume fluxes. The
asymptotic nature of the model is lost when incorporating
such terms in the theory; we leave this extension for future
work.

Appendix A. Experiments with corn syrup

We also conducted a brief suite of experiments using
expanding annuli of corn syrup (a Newtonian fluid with a
viscosity of about 8.2 Pa s and initial volume Vinit = 50ml)
in a cell with gapH = 3.3mm and fluxQ = 59ml/min. Be-
cause this fluid satisfies a no-slip condition on the plates,
we took this opportunity to modify the manner in which
we initiated each experiment and control more carefully
the shape of the finger pattern. In particular, by adding
small pieces of tape to one of the plates at certain loca-
tions close to the vent, we introduced an array of localized
protrusions with a given angular spacing designed to kick
a particular Fourier mode. This device was less successful
when using Carbopol, as in the experiments of §4, because
we mostly used roughened plates to remove effective slip,
and the protrusions then had little effect.

Figure A.15 show the results from tests kicking modes
m = 3 to 9, as well as a control experiment in which no
protrusions were placed in the cell. As can be seen from
the top row of snapshots of the evolving interface, the fin-
ger patterns kicked by protrusions with m = 6 to 8 largely
maintain that angular symmetry until the end of each test.
By contrast, the patterns kicked with lower wavenumber
(m = 3 to 5) lose that symmetry as the interface expands,
generating additional fingers; that perturbed with m = 9
becomes distorted by the growth of lower wavenumbers.

Thus, for these particular experimental parameters, it ap-
pears that wavenumbers over the range 5 ≤ m ≤ 8 are
preferred, in line with the shape of the interface develop-
ing in the test without protrusions.

The plots in figure A.15 also break the interface shape,
r = R(ϑ, t) =

∑
m R̂m(t)eimϑ, down into the lower Fourier

modes with 3 ≤ m ≤ 9. Even though each of the tests
is kicked differently by the protrusions, these individual
modes grow at largely the same rate and differ mainly in
initial amplitude (as highlighted in the plots, where the
mode amplitudes are scaled to align the data at an in-
termediate volume), except when they reach appreciable
amplitude, or are obscured by noise. Consequently, the
diagnostic S

R
(t) in (52) also differs largely by a purely

multiplicative factor. Notable exceptions to this rule are
modes that are excited initially with relatively low ampli-
tudes (and become impacted by noise), and the m = 3 and
4 modes of the first test, which rapidly becomes overtaken
by the m = 6 mode and thereafter decay, presumably as
a result of nonlinear effects. Therefore, we conclude that
the modes grow mostly in the linear regime, and the detail
manner in which the interface is perturbed is significant
only in selecting the initial amplitudes. As for the Car-
bopol experiments of §4, the first snapshot of the interface
shows an initial distribution for those amplitudes that fol-
lows the power law m− 3

2 , discounting the specially excited
mode (see the inset panel in figure A.15).

Also included in the mode amplitude plots are the pre-
dictions of linear stability analysis. These predictions im-
ply that the most amplified modes are m = 6, 7 and 8 (us-

ing R̂m(0) ∝ m− 3
2 ), and match well with the observations

for the lower modes (m = 3 to 5), but then increasingly
overestimate growth at higher wavenumber. That feature,
and how it again contaminates the prediction for S

R
(t),

mirror the results reported in the main text for Carbopol.

Appendix B. Flow curves

Figure B.16 plots the flow curves of three Carbopol sus-
pensions used in the experiments described in the main
text in section §4.
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