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Abstract

A study is presented of the instabilities that may arise in radial displacement flows of yield-stress fluid in a Hele-Shaw
cell. Theoretically, the viscoplastic version of the Saffman-Taylor interfacial instability is predicted to arise when the
yield-stress fluid is displaced by a Newtonian one. The interface is expected to remain stable, however, if the yield-stress
fluid displaces the Newtonian one. A variety of experiments are then performed using an aqueous suspension of Carbopol.
As predicted theoretically, the Saffman-Taylor instability is observed when the Carbopol is displaced by either air or
an immiscible oil, and no instabilities are observed when the displacement is the other way around. However, when
water is used in the displacement experiments, other instabilities appear that take the form of localized fractures of the
Carbopol over the sections of the interface that are under tension. The fractures arise in both the stable and unstable
Saffman-Taylor configurations, leading to a rich range of patterns within the Hele-Shaw cell. We argue that this pattern
formation cannot be explained by a recently proposed instability of shear-thinning extensional flow, whatever the degree
of effective slip over the plates of the cell. Instead, we attribute the fractures to a reduction in the fracture energy of the

suspension when placed in contact with water.

1. Introduction

The so-called Saffman-Taylor instability [1] is well-
known to lead to labyrinthian fingering patterns when a
viscous fluid emplaced in a narrow conduit is displaced by
a second, less viscous fluid. The simplest visualization of
this phenomenon is provided by emplacing the more vis-
cous fluid in a thin rectangular slot, or Hele-Shaw cell,
and then (radially) pumping in the second fluid [2, 3, 4],
or simply pulling apart the walls allowing air to displace
the fluid interface (a popular device that has found its
way into art installations). This type of fingering insta-
bility has also been studied for complex fluids, includ-
ing both visco-elastic liquids [5, 6] and yield-stress fluids
[7, 8,9, 10, 11, 12, 13, 14, 15, 16], with potential applica-
tions to oil extraction from porous media in the petroleum
industry.

In the present study, we undertake an experimental ex-
ploration of the fingering patterns created by viscoplastic
radial displacement flows in a Hele-Shaw cell. We con-
sider both the Saffman-Taylor configuration, to examine
the viscoplastic version of classical fingering, and its in-
verse, which is expected theoretically to be stable. We
preface our discussion with theoretical background, pro-
viding details of the viscoplastic Saffman-Taylor problem
and advancing beyond previous work [7, 11]. In particular,
we treat the stability problem as an initial-value problem,
which is necessary when the base state of axisymmetrical
expansion is time-dependent (as for radial displacements)
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and a normal-mode-type approach is not strictly valid. We
further explicitly consider two types of unstable displace-
ments that can be set up in the laboratory, both sketched
in figure 1: the extraction of a disk and the expansion of
an annulus of viscoplastic fluid. The stable configuration
expected for an emplaced viscoplastic disk provides a third
type of displacement that we consider (figure 1(a)).

In our experiments, the working fluids are mainly aque-
ous suspensions of Carbopol in combination with either air
or water. We expose a rich variety of patterns that form
in the displacement flows, many of which are not driven
by instabilities of the Saffman-Taylor flow variety (see fig-
ure 1). Instead, we argue that the Carbopol gel actually
fractures in a solid-like manner when the interface is in
contact with water and under tension. This leads to a rich
range of fracturing patterns. Only when we use either air
or an immiscible liquid does the Carbopol resist fracture
and the conventional Saffman-Taylor instability appear.

Visco-elastic fracture has previously been suggested to
arise in displacement flows of other complex fluids in Hele-
Shaw cells [17, 18, 19, 9, 20]. However, this was claimed
to develop as a natural variation on the Saffman-Taylor
theme, with no critical dependence on whether the second
fluid is water-based (although van Damme et al. point
out the significance of whether the materials are misci-
ble or not). By contrast, for our Carbopol suspensions,
we show that the fracturing is definitely distinct from
Saffman-Taylor-type fingering and is critically sensitive to
the presence of water at the interface, along similar lines
to a number of other problems [21, 22, 23].

We also consider, and dismiss, an entirely different
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Figure 1: Sketches of (a) an extracted or emplaced viscoplastic disk, (b) an expanding viscoplastic annulus and (c) two-dimensional extensional
flow. For (a) and (b), images from our experiments are inset to illustrate the variety of observed non-axisymmetrical patterns. With air, the
retreating interfaces of the viscoplastic disk and annulus suffer a variant of the Saffman-Taylor instability; the advancing interface remains

stable.

Using water, fractures appear that sever the Saffman-Taylor fingers of the extracted disk, and create a flower-like and dendritic

patterns for the expanding disk and annulus. The vent is visible as the black disk at the centre of the images; the faint grey lines reveal the
overlapping edges of paper attached to the underside of the lower (transparent) plate of the cell. The fluids are dyed various shades of green

and blue (using food dye or ink) to help visualize the interfaces.

mechanism that may destabilize extensional flows of vis-
coplastic fluid [24, 25]: Sayag & Worster demonstrated
that an expanding cylinder of power-law fluid is unstable
to non-axisymmertical perturbations if sufficiently shear
thinning (as illustrated in figure 1(c)). However, this in-
stablity is two-dimensional and is not necessarily expected
in a Hele-Shaw cell where the fluid is narrowly confined
between two walls and shears substantially across the cell
when no-slip conditions hold on the plates. Nevertheless,
complex fluids are also well known to experience significant
effective slip [26]. Should that slip become extreme, and
the fluid slide freely over the walls, the flow dynamics of
the Hele-Shaw cell become more closely two-dimensional.
In this setting, the extensional flow instability of Sayag
& Worster may play a role. Indeed, it has been sug-
gested previously that sliding prompted by effective slip
may be responsible for the development of weakly non-
axisymmetrical patterns in gravity currents of Carbopol
[27]. With this in mind, we reconsider the theoretical anal-
ysis of Sayag & Worster for a yield-stress fluid (Appendix
A; figure 1(c)). That analysis suggests that the instability
is relatively weak under the conditions of our experiments
and unlikely to explain the fracture patterns we observe
in stable Saffman-Taylor configurations. In fact, wall slip,
though observed for Carbopol under similar conditions as

those for our experiments, is typically only a small fraction
of the bulk flow speed [28].

2. Theoretical background

We consider a Herschel-Bulkley fluid with consistency
K, power-law index n and yield stress 7v. The fluid is
pumped into or out of a Hele-Shaw cell of thickness H,
with flux £Q through a central hole of radius r,. We use
the cylindrical polar coordinates (r,,z) to describe the
geometry, with z = 0 representing the midplane of the
cell; see figure 1.

2.1. Reduced model

Following classical theory for a Hele-Shaw cell [29], the
slot-averaged flux q satisfies

Q(S;Bi,n
V.q=0, q=—¥Vp, (1)
where S = |Vp|, the in-plane gradient operator is V, and

the flux function,

1 1+1
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Q= (n+1+nY)Sw, (2)



with
Y == (1-Y)y =Max(1-Y,0). (3)

To arrive at this dimensionless model, the characteris-
tic lengthscale scale L = r, is used to scale distances
in the plane of the Hele-Shaw cell (i.e. the radial co-
ordinate 7), and the cell half-thickness 2H for z. The
velocity and time scales are V = Q/(2nLH) and L/V.
The pressure p is scaled by 12u,VL/H?, where pu, =
FK(2+ L) (2V/H)""". The dimensionless yield stress,
or Bingham number, is

Bi— Y7
610V

(4)

In the analysis leading to (1)—(2), the shear stresses across
the slot (7, and 7,9) provide the main resistance to the
flow driven by the pressure gradient, establishing a char-
acteristic flow profile across the gap. Provided Y < 1,
that profile consists of fully sheared layers adjacent to the
walls of the cell, sandwiching a central plug-like flow over
-Y < 2z <Y, if Y reaches unity (the dimensionless wall
position), the plug-like layer fills the gap to form a rigid
blockage.

The flux-pressure-gradient relation (2) is illustrated in
figure 2 and has two key limits: for Bi — 0, Q@ — S %, cor-
responding to the limit of a power-law fluid. In addition,
ifn=1,Q — S and (1) reduces to Laplace’s equation, in
the usual manner of viscous Hele-Shaw flow. For Bi > 1,
Q — (2n+1)(1—=Y)*%Bi" /(n+ 1), which demands that
S = O(Bi) and Y — 1. This limit corresponds to a per-
fectly plastic material with a specific sliding law applying
at the walls dictated by the yielded boundary layers that
remain there.

Experimentally, one can conveniently set up a configura-
tion susceptible to Saffman-Taylor fingering by extracting
a disk of yield-stress fluid from the cell, with either air or
another Newtonian fluid with relatively small viscosity on
the outside (figure 1(a)). Conversely, when the yield-stress
fluid is pumped into the cell to emplace a viscoplastic disk,
the interface is expected to remain stable. To explore ei-
ther situation theoretically, we consider a viscoplastic disk
with edge located at r = R(1,t) satisfying the kinematic
condition,

0 q- 90\, . 3
<8t+r aﬂ)qu at r = R. (5)

We can also set up another arrangement to study the
viscoplastic version of Saffman-Taylor fingering by first
pumping viscoplastic fluid within the cell, and then switch-
ing the feeder tube to pump in a second Newtonian fluid.
This creates an expanding annulus of viscoplastic fluid for
which the outer interface remains stable but the inner edge
may lose axisymmetry and develop fingers (figure 1(b); cf.
[30]). Kinematic conditions of the form (5) then apply

at the inner and outer edges of the annulus located at
r=R,(9,t) and r = R, (V,1).

For a given flux and at comparable radii, the instan-
taneous growth rate of disturbances to an unstable inter-
face is not expected to be very different between these two
scenarios. However, for the extracted disk, the unstable
interface has an compressive hoop stress. Conversely, for
the expanding annulus, the unstable inner interface has a
hoop stress (7gg) that is tensile. We return later to this
important difference.

For either scenario, the mathematical formulation is
closed by applying pressure conditions at the interfaces.
To simplify this task, we ignore the pressure drops aris-
ing from the viscous resistance of the Newtonian fluid sur-
rounding the viscoplastic disk or annulus, and assume that
the interfaces have no curvature across the cell. The pres-
sure conditions are then p = kKC[R] at r = R for the disk,

and
p= { Pin — HIIC[RIL
K’OIC[ROL

r=R,,

r=R (6)

0

for the annulus. Here, P;, denotes the inlet pressure, the
curvature of each interface is given by

_ R?+2(0R/d9)2 — RO*R/99?
B [R? + (OR/0V)?)3

K[R] (7)

(cf [4]), and (k,k,,k,) denote dimensionless interfacial
tensions parameters (the dimensional tensions scaled by

H2 /(12 VL2)).

2.2. Azisymmetrical flow

When the net dimensionless flux is constant and equal
to 27, an axisymmetrical flow is possible, driven by a lo-
cal radial pressure gradient, S — S(r,t), satisfying the
algebraic relation,

L= Q(s:n.Bi). (®)

For an expanding disk, the flux is directed outwards and
the background pressure gradient is negative; for an ex-
tracted disk, the flux is directed inwards and the back-
ground pressure gradient is positive. The single interface

is therefore at
r=TR(t) = /R% — 20t, (9)

where R, denotes its initial position and ¢ = F1 identi-
fies an advancing or retreating interface, respectively. For
the expanding annulus, the pressure gradient is necessarily
negative; the corresponding circular fluid edges are

R,(t) = VI+2i=R,(t),

R, (t) = /R2 +2t =R, (1), (10)

where R, is now the initial outer radius.
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Figure 2: Flux functions for different (a) Bingham numbers Bi = 0, 1, 2 and 3 (with n = 1) and (b) different power-law exponents n = %, %,

3 and 1 (with Bi = 1).

2.8. Linear stability
Linear non-axisymmetrical perturbations, with depen-

dence ¢’ and a pressure distinguished by a hat decora-
tion, satisfy

10 ,0p m*p L omPp

- — | === in,Bi) = ——= 11

r Or <TQ 8r) 28 (&:n, Bi) r3S’ (11)
where

, 1 (n+1) (n+1) 2

@ Cr [(n+1DS+nBi n(S-Bi) S|’ (12)

2.3.1. Planar instability

We may recover the viscoplastic version of the Saffman-
Taylor instability for a single planar interface from (11) by
switching radial derivatives for Cartesian ones, replacing
the left-hand side by Q'p.., and introducing the planar
transverse wavenumber ¢ = m/r on the right. The inter-
face, now at = X + X(t)e'v, travels at a fixed speed
under a constant pressure gradient of magnitude S in the
absence of the transverse perturbations with amplitude
X(t). We take the viscoplastic fluid to lie to the left of
the interface; when that fluid is advancing, the interface
moves to the right with a speed @ and the pressure gradi-
ent is —&; in retreat, the interface moves left with speed
—@ under a pressure gradient S. Thence,

’p Q.
922 SiQ’p’ (13)
or
p=—(08 — kl*)X exp <i€y+ €| S%/|:UX|> , (14)

after linearizing about the undisturbed position of the in-
terface, x = X, given that the pressure condition there
becomes ﬁ—I—US)A(e’[y = HZQXe“}y, where o = F1 again dis-
tinguishes the cases of an advancing or retreating interface
(i.e. the sign of the background pressure gradient). The

linearized kinematic condition, X; = —Q'p,, now gives
dx QQ’ o
o = g (08 =kt (15)

The retreating interface is therefore unstable to trans-
verse perturbations with wavenumbers |¢| < \/S/k, with
the wavelength of maximum growth given by 27/¢ =
274/3k/S. Notably, because one must exceed a thresh-
old pressure gradient for force flow, S remains finite for
@ — 0, and so the most unstable wavelength remains fi-
nite in the limit that the flow rate ceases (for finite in-
terfacial tension), in contrast to the viscous version of the
problem (¢f. [7, 8]). In particular, in dimensional terms
and the perfectly plastic limit (S — Bi), the most unstable
wavelength is 2mL/3k/Bi = 7\/6H~v/7y. Note that the
growth rate implied by (15) is a little different from that
presented by [7] because we avoid any approximation of
the flux-pressure-gradient relation in (2) (similarly the re-
sults for radial flow with a single interface are also slightly
different from those presented by both [7] and [11]).

2.8.2. An expanding or extracting viscoplastic disk

For the disk, we write the disturbed interface posi-
tion and pressure as R(¥,t) = R(t) + R(t)e" and
p = pA(r,t)e™”. The linear perturbations satisfy (11)
subject to the boundary conditions,

PR =0 & pA(Rt)=(m*—1)—5 —0S(R), (16)

K
=3
which correspond to specifying the flux at the vent r = 1
and linearing the outer pressure condition around the po-
sition of the undisturbed interface. The similarly lin-
earized kinematic condition then provides the instanta-
neous growth rate,
dR 1
15 = —[Q'p}]r=r — =
We may extract a stability condition directly from (17)
as follows: by multiplying (11) by p4 and rearranging, it
follows that pAp2 > 0, in view of the pressure condition at
the vent in (16). But Q' > 0 (see figure 2), and so the sign
of [Q'pA],—r is given by that of p4(R,t) in (16). Thus,
the interface is stable when o = —1 (implying p4 (R,t) > 0
and therefore [Q'p#],—r > 0) and can only be unstable if
o = +1. In other words, the advancing interface (emplaced
disk) is stable, but the retreating interface (extracted disk)
may be unstable.

R™ (17)
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Figure 3: Interface perturbation amplitude R(t) for an extracted disk with R, = 26.3, m = 2,4,...,16, Bi = 0.38, n = 0.38 and x = 0.5,
taking H = 1.7mm, Q = 22ml/min, £ = r, = 3.8mm, and initial radius of 10cm (experimental parameters of §3.1). In (a), the amplitudes
are plotted against time; R(t) is plotted against R(t) in (b). The dashed (red) lines show the corresponding results for Bi = 0. The shape of
the interface when the mean radius is about 5 R, is shown in (c), assuming a linear superposition of the modes m = 1,2, ...,16 with random

phases and initial amplitudes of O(10~7L).

For the extraction of a Newtonian disk, the pressure
solution is given by
(r™ + r=™)[(m2 — 1)k — R]Rei™?
R2 (Rm + R—m) ’

D —

leading to the instantaneous growth rate,

1@ ~ (mR*™ —m —1)

g = R3(R?™ +1)

[R —(m* = 1)x] - (18)

ﬁ.

For a relatively small vent, R > 1 and we recover the
growth rate, (m — 1)[1 — m(m + 1)k/R]/R?, derived by
Wilson [4] and Paterson [2].

In the opposite limit of large yield stress, Bi > 1, and
taking k = O(Bi), we find

P~ [(m2 — 1)% — Bi] Re™V x

{1 +m2(nr+1) [M]w} (19)

The instantaneous growth rate is then
L AR m? 9 K
—~ (R —1) [1-(m 1)732} . (20
Both (18) and (20) highlight the important role of surface
tension in regularizing the Saffman-Taylor instability.
Numerical solutions for an extracted disk are shown in
figure 3 for n = Bi = 0.38, parameter settings that are
guided by the experiments of §3.1 (¢f. figures 5 and 6). At
smaller times (larger radii), the effect of interfacial ten-
sion (parametrized here by setting x = 0.5) is relatively
low, leaving the higher wavenumber modes as the most
unstable. That tension grows in importance due to the
increasing curvature of the interface as the disk shrinks,
gradually stabilizing the higher—m modes and promoting
the importance of the lower angular wavenumbers. For the
parameters chosen, the most unstable modes have m = 11
or 12 when the mean radius of the interface is about half

of its initial value. This is illustrated further in figure 3(c),
which shows a sample pattern created by formulating a lin-
ear superposition of the first sixteen angular modes with
equal initial amplitudes of 10~7£ and random phases. For
comparison, we note that the most unstable wavenumber
of the planar instability problem implies a dominant an-
gular wavenumber of m = {R = R/S/3k. At the end of
the computation, this provides a useful, if quantitatively
inaccurate, estimate of m = 15.0.

Figure 3 also includes solutions for Bi = 0, which am-
plify less quickly than those for Bi > 0. This observation
is in line with the expectation that the viscoplastic prob-
lem is more unstable than the Newtonian one because of
its higher effective viscosity contrast across the interface.

2.8.8. An expanding viscoplastic annulus
For the annulus, the linearized pressure conditions de-
mand that

[ [S—k,(m?=1)/rY R, ™, r=TR,,
p= 2 r=7TR

7 5
[S + ko (m? —1)/r?]R, e™

where R, (t)e™ and R (t)e"™” denote the shifts to the
inner and outer edges. We may therefore find two solu-
tions to (11), p*(r,t)e™™” and po (r,t)e’™?, satisfying the
conditions,

L[ S=Kk,m?*=1)/r* atr=R,
p { 0 at r =R, (22)
and
0 atr =R
nNoO — I
p _{S+no(m21)/r2 at r =R, (23)

The desired linear solution is then,

b= [R,(t)p" (r,t) + R, (£)p° (r,)]e"™?.
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Figure 4: Numerical solutions for an expanding annulus, showing (a) |R, (t)| and (b) |Ro ()| for m =1, 2, ..., 7, starting from the initial

conditions R, (0) = 1 and R, (0) = 0, with Bi = 0.39 (blue, solid lines) and Bi = 0 (red dotted lines), and n = 0.38. Times are shown in
seconds, taking H = 1.7mm, Q = 20ml/min, and £ = r, = 3.8mm (experimental parameters of §3.1). Interfacial tension is included, assuming
k; = Ko = 0.073. The inset in (b) shows a snapshot of the final state, assuming that the different modes in m are linearly superposed and

all initialized with amplitudes of O(1079L) and random phases. The downward spikes in |RO (t)] correspond to zero crossings.

The linearizations of the kinematic conditions now furnish
the system

dR . )
L @B TR, QR L (20)
dt -R,
dRo _ I AT D /20 —2\ D
= QBB @ IR (29)

Numerical solutions of for |R, (¢)| and |R,, ()| for an ex-
panding annulus with (n,Bi) = (0.38,0.39) and m = 1,2,
..., 7 are shown in figure 4, beginning with the initial con-
ditions, R,(0) = 1 and R, (0) = 0. The choices for n
and Bi are again values guided by the experiments in §3.1
(cf. figure 5), and interfacial tension is included at both
edges, taking k, = k, = 0.073 (corresponding to adopting
the surface tension of water for 7, and +y,). The interfa-
cial tension stabilizes the higher modes at early time, but
this effect declines as the edges expand and curvatures de-
crease, until all the modes begin to grow with rates that
increase with m. This competition leaves the m = 6 mode
as the strongest at the end of the computation (see figure
4(c)); the most unstable wavenumber of the corresponding
planar problem suggests a dominant angular wavenumber
of m = ¢R ~ 9.8. Once again, the Newtonian problem
with Bi = 0 is less unstable.

3. Experiments

The theoretical analysis of §2 indicates that the retreat-
ing interfaces of an extracted disk and an expanding an-

nulus of viscoplastic fluid suffer the viscoplastic version of
the classical Saffman-Taylor instability. Conversely, the
advancing interface of a expanding viscoplastic disk re-
mains stable. Because the basic state of axisymmetrical
expansion is time-dependent, the linear initial-value prob-
lem must be solved to determine which angular modes are
the most unstable for a retreating interface, particularly
because the changing curvature of the undisturbed inter-
face impacts the stabilizing effect of surface tension. We
now explore the experimental versions of these scenarios,
paying particular attention to whether the Newtonian fluid
is water.

The experiments involved pumping aqueous suspensions
of Carbopol (Ultrez 20, with concentrations of between
0.15-0.45% by weight, and neutralized with sodium hy-
droxide) into or out of a cell made from plexiglass plates.
Spacers between the plates furnishes cells with gaps of
thickness ranging from 1.7mm to 4.3mm. We used fits
to the flow curves obtained from a rheometer (Kinexus
Malvern rheometer fitted with roughened parallel plates)
to estimate Herschel-Bulkley parameters for the Carbopol
solutions.

When the test was aimed at exploring the displacement
of a Newtonian fluid by Carbopol, we pumped the gel into
either an empty cell (so that the Carbopol displaced air),
or first filled the gap with a viscous liquid. When the test
demanded that we displace the gel, we began by pumping
Carbopol into the cell to form a disk with a given radius.
We then either reversed the pump to extract the Carbopol,



or switched the inlet pipe and pumped in a Newtonian
fluid to create an expanding viscoplastic annulus. In the
extraction tests, we either left the gap empty to study
displacement by air, or surrounded the Carbopol with a
displacing viscous liquid.

A first observation is that the Carbopol remains largely
axisymmetrical when pumped into an empty (air-filled)
cell (we show an example of this later in figure 14). Evi-
dently, any imperfections in the surfaces and alignment of
the walls are not sufficiently significant to desymmetrize
the flow. Moreover, there is no sign that effective slip over
the plexiglass plates precipitates the extensional flow in-
stability described by Sayag & Worster (see Appendix A).
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Figure 5: Experiments withdrawing a disk of Carbopol surrounded
by air (left, flux Q@ ~ 22ml/min) or pumping air into an annulus
of Carbopol (right, @ ~ 20ml/min). Shown are snapshots of the
unstable interface, colour coded by time, with the final distribution of
Carbopol shown shaded and the vent indicated by a small black disk.
The initial Carbopol radius is about 10cm and the cell has thickness
‘H = 1.7mm; the rheology is (n, 7y, K) = (0.38,22Pa,13Pa s™).

3.1. Viscoplastic Saffman-Taylor fingers

The displacement of Carbopol by air provides a conve-
nient illustration of the viscoplastic analogue of classical
Saffman-Taylor fingering. Our two versions of this problem
are shown in figure 5. On the left side of figure 5, snapshots
of the evolving, unstable interface are displayed when a
disk of Carbopol in an air-filled cell is withdrawn through
the vent. A finger pattern develops characterized by a
distinctive set of angular modes; just before the strongest
finger breaks through to the vent (which occurs when the
average radius is about half the initial one), modes with
m = 12 or so dominate the pattern. The second exper-
iment, on the right of the picture, is a test when air is
pumped into an annulus of Carbopol; the interface ini-
tially expands axisymmetrically, but then develops a non-
axisymmetrical pattern, this time characterized by a lower
angular wavenumber. At the end of the test, the pattern
has dominant components with m around 7.

For the expanding annulus, there was little variability in
the dominant wavenumbers when the flux was varied from
Q ~ 10ml/min upto 40ml/min or so. Moverover, similar

results and patterns were found when we pumped immis-
cible Newtonian fluids into the cell instead of air. In par-
ticular, we used mineral spirits and a paraffin-based lamp
oil, with viscosities comparable or slightly higher than that
of water (about 1 or 3 mPa s, respectively), and tensions
at an interface with water expected to be about half the
surface tension of water in air.

The relatively weak fingering patterns observed in fig-
ure 5 are suggestive of Saffman-Taylor fingers controlled
by a relatively strong interfacial tension. For the case
of the expanding annulus, the most unstable wavenum-
ber compares well with the result expected theoretically
in §2.3.3 (see figure 4). The insensitivity of the dominant
wavenumbers to the flux Q can also matched by theoretical
computations. Despite this, for the extracted viscoplastic
disk, experimental observations are only consistent with
the theoretical expectations of §2.3.2, as shown in figure
3, if the surface tension parameter x is taken to be seven
times larger than expected, assuming the Carbopol has a
surface tension comparable to water. The reason for this
discrepancy is not clear.

Similar viscoplastic Saffman-Taylor fingering patterns to
those in figure 5 are presented by [9] for radial displace-
ment tests in thinner Hele-Shaw cells, and by [10, 14, 15,
16] for experiments in which the plates were pulled apart.
However, the fingering is stronger and more labyrinthian
in structure.

.
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Figure 6: Withdrawal of Carbopol from a cell filled with blue-
coloured water. (Pump rate Q ~ 20ml/min; gap H = 1.7mm;
rheology (n, Ty, K) = (0.38,22Pa,13Pa s™). The images in the top
row show the Saffman-Taylor-like pattern which develops relatively
slowly; the lower images on the right display rapidly propagating
fractures. In the main panel, the interface is plotted at a succession
of times, with the colour representing time; the final distribution of
Carbopol is shown shaded.



3.2. Fracture patterns

3.2.1. In extraction

When we repeat the extraction experiment (i.e. that
on the left side of figure 5) with water filling the cell
around the Carbopol, the water-Carbopol interface ini-
tially evolves much as in the air-displacement test: the
interface shrinks around the vent, then suffers a mild fin-
gering instability characterized by angular wavenumbers
of m = 12 or so; see figure 6. Subsequently, however, a
very different behaviour arises in which some of the con-
cave sections of the interface abruptly tear apart, creating
what appear to be fractures of the gel across the entire
gap of the Hele-Shaw cell. These fractures then propa-
gate rapidly into the gel at angles close to the azimuthal
direction, rather than radially (the direction in which the
Saffman-Taylor fingers typically break through to the vent
at the end of an air-displacement test). The fractures
thereby disfigure the fingering pattern, severing several
of the Saffman-Taylor fingers and leaving a rather more
complicated looking structure. The locations at which the
fractures first form correspond to the positions along the
interface with greatest concavity, suggestive of the areas
with highest tensile stress. Thus, with water as the dis-
placing fluid, the extraction experiment clearly shows a
primary, weak Saffman-Taylor-type instability, followed by
a secondary, but strong, tearing instability.

Figure 7: Blue-coloured water pumped into an annulus of (light
green) Carbopol in a cell of thickness 3.3mm, with pump rate
Q ~ 40ml/min. (Rheology: n = 0.4, 7y = 17Pa, K = 9.8Pa s™).

8.2.2. For a wviscoplastic annulus

A similar fracture phenomenon arises when water is
pumped into an annulus of Carbopol rather than air. Fig-
ures 7-9 display three such tests. The experiment in figure
7 shows the dendritic fracture network that arises from
pumping blue-coloured water into a light-green disk of
Carbopol. In this example, no weak Saffman-Taylor-like
instability appears like that seen on the left of figure 5.
Instead, fractures emerge directly from the vent; the den-
dritic pattern forms as the fractures, which propagate in
almost straight lines, repeatedly split into two conduits of

Figure 8: Blue-coloured water pumped into an annulus of (light
green) Carbopol in a cell with thickness 1.7mm at pump rate
Q ~ 10ml/min. (Rheology: n = 0.4, Ty = 17Pa, K = 9.8Pas™).

Figure 9: Blue-coloured water pumped into an annulus of (light
green) Carbopol in a 4.3mm thick cell at pump rate Q ~ 10ml/min.
(Rheology: n =0.4, 7y = 17Pa, K = 9.8Pa s").

Gap thickness

\J

Figure 10: A collage of final fracture patterns for different fluxes
(10, 20, 40 and 60 ml/min) and gap thicknesses (1.7, 3.3 and 4.3mm).
Pure type-II fracture modes (distinguished by the lighter and broader
blue colours) appear in the top left experiment; type-I modes char-
acterize all the others, with the three tests at the bottom right fea-
turing coexisting type-1I fractures. (Rheology: n = 0.4, 7v = 17Pa,
K =9.8Pas™).

roughly equal size, or spawn multiple smaller side branches
without the main conduit changing direction. Overall, the
invasive pattern is very different from that in the extrac-
tion experiments. The key difference is that the expand-
ing Carbopol annulus is in a state of tension throughout,
rather than compression as for the extracted disk. Tear-
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Figure 11: Relative frequency distribution of the angle between split
fractures or side branches, showing the experiment with (Q,H) =
(20ml/min, 1.7mm) and the data set taken from all the experiments
except that particular test.

ing under tension is therefore immediately possible for
the expanding annulus, whereas Saffman-Taylor fingering
must develop first for the extracted disk to create locally
favourable sites along the interface at which to fracture.

Nevertheless, fractures of this type, in which the gel
tears across the whole gap of the Hele-Shaw cell, are not
the only possibility. The second experiment, shown in fig-
ure 8, displays a second phenomenon: initially a dendritic
fracture pattern starts to emerge, but then a more dif-
fuse and wider mode of invasion appears that at first sight
is more reminiscent of traditional Saffman-Taylor fingers.
The new mode is not, however, a fingering displacement,
but is actually a different form of fracturing: the Carbopol
now fractures off one of the confining plates, rather than
internally across the cell, arising either due to the imposed
normal or shear stresses there. In other words, a second,
boundary mode of fracturing appears. As evident from the
images in the figure, the second mode propagates faster
than the first one, with the more diffuse conduits reaching
the edge of the Carbopol disk first, thereby draining most
of the water pumped into the cell.

Although full-gap fractures characterized many of the
displacements in our experiments, the wall mode could
also emerge by itself. This is illustrated by the final exper-
iment of figure 9, which also corresponds to the cell with
the widest gap. In such cases, it is possible that the gel
fractures primarily off the wall below the Carbopol once
the water is introduced through the feeder pipe attached
to the lower plate, before there is time to tear across the
entire gap. Aside from such cases, full-gap fractures form
earlier than those along the walls, presumably as a result
of higher tensile stress concentrations within the gap. A
summary of the final fracture patterns in a suite of ex-
periments in which we varied both the pumping rate and
cell thickness is shown in figure 10. Mode-I-type fractures
(i.e. tears across the slot) feature in all but the thickest
cells at the lowest fluxes, which exhibit mode-II-type frac-
tures (against the wall). The two fracture modes co-exist
at the highest fluxes in the narrower cells. However, addi-
tional experiments, not shown in this figure (but see fig-
ure 8), also demonstrated that competing fracture modes
could arise in the narrower cells at low fluxes, obscuring
the conditions favouring each mode. Overall, the num-

ber of fractures increases with the flux, due mostly to an
enhancement in the frequency at which splittings or side
branchings occur, promoting the complexity of the pat-
terns. Another notable feature in figure 10 is that the
width of the conduits created by the fractures is relatively
insensitive to the flux, but does depend on the gap thick-
ness. All that said, apart from a difference in scale, the
patterns are similar along diagonals in the figure.

Measurements of the angles formed when fractures split
or side branches appear are shown in figure 11. Each of the
tests in figure 10 shows little discernible differences in these
angle distributions (the figure compares the measured an-
gles for one of the tests with the corresponding data for all
the others), reflecting how the underlying process is insen-
sitive to the flow rate and cell geometry. The distributions
show little structure other than a broad peak around 75 de-
grees and a standard deviation of 20 degrees, over a range
from 30 to 120 degrees. This phenomenology is different
from that observed in [19] for Hele-Shaw displacement ex-
periments with a colloidal gel, where “visco-elastic” frac-
ture patterns were observed with splitting angles close to
90 degrees.

Additional details of the evolution of the fracture pat-
terns in a subset of the tests (those in the widest cell) are
shown in figure 12. Once a fracture appears, the surround-
ing Carbopol becomes largely arrested, with fluid motion
primarily taking place at the fracture tip. The tips of the
main fractures advance at roughly constant rate, as seen by
the regular spacing of the snapshots of the interface, taken
every two seconds. Most of the side branches quickly stop
progressing to form dead-ended conduits.

The conduits displayed in figure 12 also maintain a fairly
uniform width along their lengths, except at the junctions
where the fractures divide. This feature is brought out
in more detail in figure 13, which illustrates how conduit
widths vary with radial position from the vent for the final
patterns of the tests with pure mode-I fractures in figure
10. For simplicity, the widths are extracted by consider-
ing the intersections of the fractures with circular arcs (see
panel (a)) and so the measured widths are not strictly per-
pendicular to the conduits. However, the measurements
are then averaged over all the fractures to remove any ori-
entation effects, and then plotted against radius (panel
(b)). The roughly constant width of the conduit is then
evidenced, leading us to take the mean over the radial po-
sitions shown in (b). We then plot the result against gap
thickness H in panel (c), bringing out how the conduit
width depends on cell geometry (but not flux). In partic-
ular, the width appears to be roughly proportional to H,
as in immiscible viscous fingering regularized by surface
tension (see §2.2.7 and [2]), or miscible viscous fingering
and visco-elastic fracture [3, 17] (although the constant
of proportionality looks somewhat different, being closer
to 4 there), but unlike linear viscoplastic Saffman-Taylor
instability (see §2.2.6 and [7, 8]).

If the fractures open up into conduits of constant width
proportional to H, the constant flux imposed in the ex-



Figure 12: Snapshots of expanding interfaces every 2 seconds in the slot of thickness 4.3mm with the fluxes shown, and colour coded by time
(with distance measured in cm). (Rheology: n = 0.4, 7y = 17Pa, K = 9.8Pa s").
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Figure 13: Measurements of conduit width for the final patterns of
the tests in figure 10 with pure mode-I fractures. These are ex-
tracted by considering the intersection of the fractures with circular
arcs (discounting conduits less than about 0.2mm wide; panel (a)).
The average width over all the fractures is plotted against radial
position from the vent in (b), and then averaged again over radius
and plotted against gap thickness in (c). The inset of (c) replots
the data, scaling the averaged width by gap thickness H. In (d), we
show the maximum radial advance of the fractures against time for
the various tests. The symbol convention used to plot all the data is
shown by the legend in this panel. Finally, in (e), we plot the time
taken for the fractures to first reach a radius of 9cm against the flux;
the inset replots this data against ’HQ/Q.

periments demands that the tips must advance linearly
in time, as suggested by the uniformly spaced interface
snapshots of figure 12. Further evidence for this feature
(save for a short transient at early times, and a final phase
where the fractures approach the outer edge of the Car-
bopol) is shown in figure 13(d), which plots the maximum
radial extent of the fracture pattern against time. The
time required for the pattern to reach a fixed radial po-
sition should therefore depend on the combination H?/Q,
as seen in panel (e), in which the data for the time to reach
a fixed radial position are largely collapsed.
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Mineral spirits

Figure 14: Carbopol (with yield stress 12Pa) pumped with rate Q ~
10ml/min into a H = 4.3mm cell filled with the Newtonian fluids
indicated. Shown are snapshots of the interface, equally spaced and
coloured by time (with distance measured in cm).

3.2.3. For an interface stable against Saffman-Taylor

Finally, we consider the problem in which we pump Car-
bopol into a Hele-Shaw cell displacing a Newtonian fluid.
The Saffman-Taylor instability is not expected to oper-
ate in this setting, and indeed the interface expands ax-
isymmetrically when the cell is filled with either air or an
immiscible Newtonian fluid of similar viscosity to that of
water; see figure 14. Nevertheless, the interface is now
in a state of expansion, and therefore tension, which po-
tentially sets the stage for fractures to appear. Indeed,
when the gap is filled by water, as shown by the examples
in figures 14 and 15, cracks spanning the cell appear at
the interface. These features destroy the axisymmetry of
the interface, but remain relatively localized and expand
in step with the interface. This results in relatively weak
pattern of instability. Note that, in these experiments, to
ensure that the interface was circular at the outset of the
test, we first pumped a small amount of Carbopol into
an empty cell (to a radius of about a centimetre), then
poured the water into the rest of the cell around the em-
placed disk. We also used suspensions with a wider range
of Carbopol concentrations; table 1 lists the parameters
of the Herschel-Bulkley fits (we use the yield stress as a
convenient label for each).

As illustrated in figures 16 and 17, the degree of non-



Figure 15: Carbopol (with yield stress 12Pa) pumped into water in a 4.3mm thick cell at pump rate Q ~ 10ml/min. On the left of each
snapshot, the cell has smooth plexiglass walls; on the right, the walls have been roughened with 60-grit sandpaper.

30
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Figure 16: Carbopol with the yield stresses indicated pumped into a 4.3mm thick cell at pump rate Q ~ 10ml/min. (a) shows snapshots
of the interface, equally spaced and coloured by time (with distance measured in cm); the lower plots show the interfaces rescaled by the
maximum radius, eliminating the first few to remove the initial transient. On the right, we plot (b) the difference in maximum and minimum

radii Rmaz — Rmin and (c) the scaled difference (Rmax

axisymmetry in the fracture pattern depends on the Car-
bopol concentration and flux. To quantify this feature,
we observe that the difference between the maximum and
minimum radii, R, and R, scales approximately
with Rgy = /72 + Qt/(7H) after an initial transient (fig-
ure 16(b-c)). Thus we formulate the average ((Rmaz —
Rinin)/Rav), for volumes over the range, 10 < V' < 60ml.
This diagnostic is plotted against 7v and Q in figure 18;
additional experiments in cells with different gap width are
also shown. Evidently, the implied strength of the pattern
decreases with yield stress and flux, and increases with the
gap thickness. The scaling of R4 and Ryn with Rg,
suggests that the fracture patterns may evolve into a self-
similar form; some additional evidence for this is provided
in figures 16 and 17, which replots the snapshots of the
interface after scaling distance by the maximum radius.
Figure 18 also plots the number of clearly identifiable
fractures at the end of the tests, which indicates the typical
spacing of these features given that a comparable amount
of Carbopol was pumped into the cell each time. The
fracture spacing is not very sensitive to the Carbopol con-
centration, but certainly decreases as the flux is increased
or the gap reduced (c¢f. figures 16 and 17; note that the
smaller corrugations evident in the first set of interfaces in
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— Rpmin)/Rav, all colour coded by 7y.

figure 17 are not the result of independent fractures, but
are the corners of the four primary cracks that become
swept sideways by the radial expansion).

A more insidious effect is provided by the plates of the
cell themselves: for the most part we used smooth plexi-
glass for the cell. However, in view of the likely presence
of wall slip, we also performed tests with plates that were
roughened with sandpaper to reduce any effective sliding.
A comparison between tests in smooth and roughened cells
is shown in figure 15. The cracks spanning the smooth cell
open further in radius and are more numerous around the
interface. This suggests that there is an additional contain-
ment effect for roughened walls, limiting the development
of the fractures, that perhaps results from the elimination
of wall slip.

One interesting feature brought out by the plots of the
interface at successive instants in figures 16 and 17 is the
fractures sometimes isolate almost straight pieces of the
interface that become advected out radially without any
change of shape. As these sections, and the adjoining,
apparently unyielded material, separate from one another
under the radial expansion, fresh fluid flows into the gaps,
creating distinctive, petal-like structures. The relatively
regular spacing of the fracture then lends a flower-like ap-



Figure 17: Carbopol with yield stress 51Pa pumped into a 4.3mm
thick cell at the fluxes indicated. Shown are snapshots of the inter-
face, equally spaced in the amount of pumped fluid, and coloured
by time (with distance measured in cm); the lower plots show the
interfaces rescaled by the maximum radius, eliminating the first few
to remove the initial transient.

r~ (Pa) 51 45 39 35 30 21 12
K (Pas®™ 29 25 24 23 20 12 9
n 0.38 038 037 036 036 039 0.39

Table 1: Herschel-Bulkley fits for the different Carbopol concentra-
tions used in the tests of §3.2.3.

pearance to the fracture pattern.

We close by briefly comparing the Carbopol tests with
an experiment with a different viscoplastic fluid: joint
compound (a commercially available, kaolin-based mate-
rial) diluted with water to a concentration where the yield
stress is about 50 Pa. Pumping this fluid into an empty
Hele-Shaw cell again generates a smooth, axisymmetrically
expanding interface. But with water in the cell, the inter-
face rapidly develops a fracture pattern somewhat like in
the Carbopol tests; see figure 19. However, for this ma-
terial the interface appears to have very little integrity,
breaking up due to the creation of many fine cracks and
developing a rougher appearance. Larger V-shaped cracks
subsequently develop from some of the fine structure, giv-
ing the pattern another flower-like shape. Again, there is
evidence for self-similarity: the last images on the right of
figure 19 are plotted with an expanding scale (as evidence
from the grid on the paper backing to the cell).

Note that the opacity of the joint compound permits us
to look for any residual layers of (dyed) water attached
to the walls of the cell left behind by the displacing vis-
coplastic fluid. Such observations do indeed reveal thin
layers of water buffering the cell wall near the advancing
interface. However, these layers are not wide, implying the
joint compound largely displaces the water from the sur-
face. Tests in which Carbopol displaced dark ink showed
the same feature. Thus, there appears to be little addi-
tional lubrication of the viscoplastic fluids at the plates
due to residual wall layers of water.
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Figure 18: The average scaled radial difference, ((Rmaz —

Rimin)/Rav), for 10 < V < 60ml, and number of fractures plot-
ted against (a) 7y (for Q@ ~ 10ml/min, H = 4.3mm), (b) Q (for
Ty = 12, 51Pa, H 4.3 mm) and (c) H (for Q ~ 10ml/min,
7y = 12, 51Pa). The error bars in (a-c) correspond to the max-
imum and minimum values of the non-axisymmetry measure over
volumes 10 < V' < 60ml.

4. Discussion

In this paper, we have summarized the theoretical anal-
ysis of the classical Saffman-Taylor fingering, as modified
by a yield stress and examined previously by Coussot [7].
In this case, we delved into further details of the stability
problem, considering the two radial displacement problems
illustrated in figure 1. The interface bordering a viscoplas-
tic fluid is stable if advancing into a low-viscosity Newto-
nian fluid, but unstable if retreating. The instability is
exacerbated by the yield stress, which raises the effective
viscosity contrast across the interface. Our analysis incor-
porates the time dependence of the base state by solving
the linear initial-value problem, thereby accounting for the
evolving impact of surface tension and identifying the most
unstable angular modes.

In Appendix A, we provide further theoretical discussion
of another flow instability that might be relevant in a Hele-
Shaw cell if the viscoplastic fluid suffers substantial wall
slip over the plates. In this situation, the flow may become
almost two dimensional, bringing up the possibility that a
recently discovered instability of shear-thinning power-law
fluids in radial extensional flow [24, 25] may activate non-
axisymmetrical patterns. In Appendix A, we generalize
the theoretical discussion of this instability to Herschel-
Bulkley fluids. Although we find that the instability is
still present with a yield stress, it seems unlikely to be
sufficiently strong to become prominent in a Hele-Shaw
cell.

Our theoretical discussion complements a variety of lab-
oratory experiments conducted with aqueous suspensions
of Carbopol displacing or displaced by either air, water or
oil. The viscoplastic version of the Saffman-Taylor insta-
bility is observed when air is pumped into a cell filled with
Carbopol, or when a disk of Carbopol emplaced in the cell



Figure 19: Joint compound with a yield stress of around 50 Pa. On the left, the images have the same scale; on the right, the images are
cropped to bring out the structure of the edge and self-similar evolution (the scale can be judged from the size of the grid on the paper

backing to the cell).

is withdrawn. For the former experiments, theoretical pre-
dictions appear to be in fair agreement with experimental
observations: the most unstable angular wavenumber is
roughly consistent with the patterns observed (assuming
interfacial tensions to be comparable to the surface tension
of water). Curiously, for the extraction problem, the com-
parison is less satisfying, with the linear stability theory
predicting higher wavenumbers that seen experimentally.
Similar discrepancies were observed by Derks et al. [14] in
plate-separation experiments.

Both experiments show dramatic differences when per-
formed with water as the second fluid: in the extraction
experiment, a similar viscoplastic Saffman-Taylor instabil-
ity is observed initially. Although the angular wavenum-
bers are slightly higher than for air displacement, they are
not significantly so, which is surprising in view of the fact
that the two fluids are now miscible. Interfacial tension
effects are therefore minimal, and so the most unstable
wavelengths are expected to scale down to the thickness of
the cell [3]. This surprise is compounded by a secondary
instability that appears when the finger pattern has devel-
oped sufficiently to create concave sections of the interface.
The tension generated over these pieces of the interface
then causes the Carbopol to fracture; the cracks rapidly
propagate in an almost angular direction, severing fingers
and disfiguring the pattern.

In the experiments in which water is pumped into a
Carbopol-filled cell, the entire expanding interface is under
tension and the fractures form immediately, supplanting
any Saffman-Taylor fingering. Dendritic fracture patterns
then advance rapidly into the cell. Two types of fractures
are observed: the most common consist of cracks across
the cell, but a second variety can also appear in which the
Carbopol fractures off the cell walls.

The fractures do not occur when other immiscible flu-
ids are used instead of water, with Saffman-Taylor fingers
appearing much like in the air displacement experiments.
Also, the fractures are not sensitive to whether the wa-
ter was distilled, taken directly from a tap, or coloured
with ink. We further added sugar to raise the viscosity
by up to a factor of about ten (and potentially change the
interfacial interaction with the Carbopol), with no qual-
itative effect on the fracturing and a minimal quantita-
tive one. The experiments therefore clearly distinguish
Saffman-Taylor fingering from fracture patterns, and sug-
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gest the main property of the second fluid that is required
for the latter is that it is water-based.

When Carbopol was pumped into a cell filled with
either air or an immiscible oil, the interface remained
axisymmetrical, indicating that no shear-thinning exten-
sional flow instability of the kind explored in Appendix
A operates in this configuration. Once more, however,
pumping Carbopol into a water-filled cell can lead to non-
axisymmetrical patterns. We identified the culprit to again
be the fracturing of the expanding interface under tension.
In this setting the fractures do not develop strongly but re-
main localized close to the interface, becoming effectively
contained by the yield stress of the fluid, the narrow gap
and the inability to slide freely over the cell walls.

Finally, it has been pointed out that the Saffman-Taylor
instability can be critically affected by the wettability
properties of the two fluids participating in the displace-
ment [12, 31, 32]. Such effects do not appear to play any
role in our experiments, as illustrated by our displacements
involving either air or oil: these two fluids are expected to
wet the plates very differently at their interface with Car-
bopol. However no qualitative differences were observed.
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Appendix A. Two-dimensional viscoplastic, ex-

tensional flow instability

Consider a two-dimensional Herschel-Bulkley fluid flow-
ing out from a source with flux Q and radius r,,. We again
write the governing equations in dimensionless form, us-
ing a similar scaling of the governing fluids equations to
82, except we scale the stress by K(V/L£)™. Then, ignoring
inertia, force balance and incompressibility demand

_ 10 2 1 (97}9
br=13% (") r 09’ (A1)
1 9 O0Toe
Py = ;E(T Trg) + W (AQ)
and
(ru), + vy =0, (A.3)



where p and {7, 70,790} denote the pressure and de-
viatoric stress components, (u,v) is the velocity field,
and the (t,r,1) subscripts are a shorthand notation for
partial derivatives. Assuming that the fluid always re-
mains yielded as it is driven through the cell (demanding
Ter2 + Too? > BiQ), the constitutive law can be written as

] = (v n f) 2y (g — )/ +v,), (AA)

where
¥ = VAuZ + [(up —0)/r + v, ]2 (A.5)
and the Bingham number is
. Tyﬂn
Bi= . A.
YT Kyn (A.6)

The outer radius of the fluid is given by r = R(9,t). Here,
the kinematic and stress conditions demand

R + %Rﬂ — (A7)
R? R? R
(1 + Rg) p— (1 - Rﬁ) Ter + Z%M =0 (AS8)
and R2 R,
(1 — Rg) Tro + 2?%‘1‘ = 07 (Ag)

in the absence of any interfacial tension or forces exerted
by the adjacent fluid.

When the flow remains axisymmetrical, a base outflow
is established with

1 2 A

u=-, R=+V1+2t, 4=, T = —Bi— =,
T r ren
(A.10)
2" 2"
p=2Biln (R> —Bi+—(1—n)r 2 —"-R7?". (A.11)
r n n

Along the lines summarized by Sayag & Worster, we
may analyze the linear stability of this state towards non-
axisymmetrical disturbances with azimuthal wavenumber
m. The perturbations to the solution in (A.10)—(A.11),
which we denote by adding a hat decoration and with de-

pendence e satisfy the relations,
o 2 1 07
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The boundary conditions are @(1,9,t) = 09(1,9,t) = 0
(fixed inflow at the vent), and

2 R n
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at r = v/1 + 2t (the unperturbed outer radius).

As in conventional Stokes problems, the system dynam-
ics enters only through the motion of the boundary; i.e.
the interface r = R(9,t) — /T + 2t+R(t)e"™’. The equa-
tions for the linear perturbations can therefore be solved
as a spatial problem at each moment in time, with the
solution being proportional to R(t) The result can then
be fed into the kinematic condition, R, = i, to define an
instantancous growth rate G(t) = R;/R. Evidently,

R(t) = R(0) exp [ /0 G(f)di] = A(t)R(0),  (A.16)

where the amplification factor A(t) can be evaluated at
some nominal time to furnish a convenient measure of the
strength of instability.

Figure A.20 displays numerical solutions to the linear
stability problem for m = 2, 3, ..., 10, using the rheological
parameter settings n = 0.4 and Bi = 0 or 1 (such values
are guided by the experiments conducted in §3, which use a
Carbopol solution with that shear-thinning exponent and
operating conditions corresponding to Bi = O(1)). As
found by Sayag & Worster, each azimuthal wavenumber
passes through an interval over which the instantaneous
growth rate is positive, implying mode growth. However,
as indicated by the growth factor A(t), for Bi = 0 the
actual degree of amplification is small, with only the m = 2
mode amplifying above the initial value over its window
of instability, and damping over longer times suppressing
every mode. Modes grow slightly more significantly with
Bi = 1, although the overall picture is much the same.
This is emphasized further in figure A.21, which shows the
maximum possible amplification factor for a selection of
modes as a function of Bi. Note that, as observed by Sayag
& Worster, the instantaneous growth rate G(t) collapses
to a common form for the higher-order modes (m > 1)
when plotted against mt, implying significant limitations
on the corresponding amplification factor A(t).

At least with these choices for the rheological parame-
ters, the extensional flow instability therefore seems rather
weak, particularly in the limit of a power-law fluid (Bi =
0). The inclusion of surface tension likely suppresses the
instability yet further, especially at high wavenumber. The
m = 1 mode is, however, different: this mode remains
unstable over a relatively long interval (see figure A.22),
sufficient to permit a substantial amount of amplification.
Nevertheless, as this mode corresponds mostly to a side-
ways shift of the expanding fluid column, the instability
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Figure A.20: Instantaneous (a,b) growth rates G(¢) and (c,d) amplification factors A(t) for m = 2, 3, 4 ..., 10 and Bi = 0 (a,c) and Bi =1
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Figure A.21: Maximum amplification factors Aqe over 0 < t < 100
against Bi for m =2, 3, ..., 6. (n =0.4)
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Figure A.22: Instantaneous growth rates for the m = 1 mode with
the values of Bi indicated, as well as the Bi > 1 limit. (n = 0.4)
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is not expected to generate a pattern with the form of
multiple “fingers”.

For large yield stress (Bi > 1), we may solve the lin-
ear stability problem analytically: from (A.13) we observe
that 7, remains O(1), whilst p and 7,y must both become
O(Bi) in order to balance the largest terms in (A.12) and
(A.15). Thus, the first two relations in (A.12) decouple
from the others and imply that

070
oY

2
~ —=m?Bicos 6,
(A.17)
in view of the leading-order boundary conditions, where

V142t
+ I'=+vm?2—-1.

O =Tlog—,
r
These relations can be substituted back into the remainder
of (A.12) and (A.13) to find 4. After a little algebra, the
kinematic condition then furnishes the handy result,

2
D~ ;Bi(cos@—i—l“sin@) &

(A.18)

adB

= G(t) ~ %sin[I‘ log(1 + 26)] — cos[T" log(1 + 2¢)].

(A.19)
For m > 1 and t < 1, we find G — — cos(2mt), which
is analogous to a result provided by Sayag & Worster in
the limit n <« 1 for a power-law fluid. However, the
result in (A.19) applies for all wavenumbers and times.
The progress of numerically computed growth rates to the
Bi > 1 limit is illustrated in figure A.23 for modes with
m = 4. The limit in (A.19) has a curious oscillatory struc-
ture, explored in detail by Sayag & Worster. The repeated
intervals with positive growth rate highlight how the insta-
bility is potentially more powerful in the perfectly plastic



1
m = 4; Bi= 1, 10, 100, 1000

0.5 -
= L
s O

Co vl L

T T
A\

M|

Y

MR A

1072 107"

10°

t

10’

Figure A.23: Instantaneous growth rates for the m = 4 mode with the values of Bi indicated. The (red) line marked Bi >> 1 shows the

prediction (A.19). (n =0.4)

limit. Nevertheless, the m = 1 mode still dominates over
longer times, with the growth rate actually growing log-
arithmically with ¢: G(t) ~ log(1 + 2t) — 1 (¢f. figure
A.22).

In summary, we have generalized the linear stability the-
ory for extensional flow of two-dimensional shear-thinning
fluids to the Herschel-Bulkley model, thereby incorporat-
ing a yield stress and examining the perfectly plastic limit.
In general, the instability appears to be relatively weak,
with exception of the m = 1 model where substantial am-
plification is possible. This mode corresponds to a side-
ways shift of the expanding cylinder and is unlikely to
create multiple fingers.
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