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SUMMARY7

The formation of fold-thrust belts at convergent margins is a dynamic process.8

Accretion of weak sediments to the front of the overriding plate results in crustal9

thickening and continued flexural subsidence of the underthrusting plate. Fold-thrust10

belts are often treated as a Coulomb wedge having self-similar geometries with a11

critical taper, and either a rigid or isostatically compensated base. In this paper we12

build upon this work by developing a new dynamic model to investigate both the role13

of the thickness and material properties of the incoming sediment, and the flexure14

in the underthrusting plate in controlling the behaviour and evolution of fold-thrust15

belts. Our analysis shows that the evolution of fold-thrust belts can be dominated16
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by either gravitational spreading or vertical thickening, depending on the relative17

importance of sediment flux, material properties and flexure. We apply our model18

to the Makran accretionary prism and the Indo-Burman Ranges, and show that for19

the Makran flexure must be considered in order to explain the dip of the sediment-20

basement interface from seismic reflection profiles. In the Indo-Burman Ranges, we21

show that incoming sediment thickness has a first-order control on the variations in22

the characteristics of the topography from north to south of the Shillong Plateau.23

Key words: Continental margin: convergent; Lithospheric flexure; Dynamics: grav-24

ity and tectonics; Mechanics, theory and modelling25

1 INTRODUCTION26

A wide range of geometries of mountain ranges are formed by plate convergence. The sizes27

and thermal structures of these ranges control their rheology, and therefore their deformation28

and evolution. At one extreme, the largest ranges on Earth (e.g. the Tibetan Plateau and29

the Andes) involve the entire thickness of the lithosphere, are bounded by rigid plates that30

are thousands of kilometres apart, and involve a range of deformation mechanisms including31

seismic failure in earthquakes and thermally-activated creep (e.g. Brace and Kohlstedt 1980;32

Chen and Molnar 1983). Opinion is divided in terms of the relative dynamical importance of33

brittle deformation on faults and the more distributed deformation in the underlying ductile34

lithosphere, and in the choice of boundary conditions used on the base and lateral edges for35

models of mountain ranges (e.g. Molnar and Tapponnier 1975; England and McKenzie 1982;36

Beaumont et al. 2001; Meade 2007; Flesch et al. 2018). In this paper we examine the behaviour37

of smaller ranges over length scales of 100’s km. At some convergent margins weak sediments38

on an underthrusting plate are deformed during accretion to the front of a relatively rigid39

‘backstop’, which represents a region of the overlying plate that is stronger than the incoming40

sediments. This leads to the formation of a fold-thrust belt, or an accretionary wedge, which41

is our focus here.42

We examine a coupled system of deformation of the incoming sediment pile and flexure43

of the underthrusting plate. By developing new dynamic models, we are able to address the44

role that is played by the thickness and material properties of the incoming sediments, and45

? tvb21@cam.ac.uk
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by the elastic properties of the underthrusting plate, in the behaviour and evolution of fold-46

thrust belts. Firstly we describe the effects of changing these physical parameters on the47

geometry and deformation of the resulting fold-thrust belts. We then describe applications to48

specific regions that demonstrate the geological implications of the effects we have studied. In49

particular, we consider the Makran accretionary prism in order to demonstrate the necessity50

of including flexure in the model. We then investigate how changing the sediment thickness51

affects the geometry of fold-thrust belts by considering the Indo-Burman Ranges.52

2 PREVIOUS MODELS53

Price (1973) was the first to model a wedge-like fold-thrust belt using a continuum plastic54

rheology where the yield strength is depth independent. In Price’s model flow is driven by55

horizontal pressure gradients associated with surface slopes. The continuum plastic model56

was revisited by Elliot (1976) and Chapple (1978). By setting the strength of the interface57

between the wedge and the rigid underthrusting plate to be that of the wedge, Elliot (1976)58

showed that the gravitational force provided by the weight of the accreted sediment dominated59

the deformation. Conversely, by introducing a weaker interface between the wedge and the60

underthrusting plate, Chapple (1978) highlighted that horizontal compression associated with61

shortening can contribute to overcoming the resisting shear stress at the base of the wedge62

without the requirement of a surface slope. The analysis of Elliot (1976) and Chapple (1978)63

was then expanded by Stockmal (1983) using slipline theory to calculate the stress and velocity64

field within the wedge.65

Such models do not reflect that the material strength in a fold-thrust belt is expected to66

increase with depth due to the increasing effective overburden stress and lithification. Davis67

et al. (1983); Dahlen et al. (1984) and Dahlen (1984, 1990) used a Coulomb rheology, where68

the yield strength increases with depth and is set by the internal friction angle, for the case of69

a non-cohesive (Davis et al. 1983) or a cohesive (Dahlen et al. 1984) thrust belt. Extensions70

to these models have considered the effect of pore fluid pressures and changes in cohesion due71

to compaction and lithification (Zhao et al. 1986). In particular, Dahlen (1984) presented an72

exact solution for the stress state in a non-cohesive wedge.73

The Coulomb wedge described by Davis et al. (1983) and others relies on the hypothesis74

that the interior of the wedge is everywhere on the verge of failure (Mandl 1988). Hence, this75

model does not account for the possibility that deformation may be confined to a narrow76

zone, as observed in many fold-thrust belts where deformation is dominated by large slip on77

a few major faults (Suppe 1980). Numerical models have been developed by others to allow78
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for inhomogeneous deformation with more complex rheologies, including plastic (Borja and79

Dreiss 1989; Willett 1992), elasto-plastic (Simpson 2011), and elasto-visco-plastic (Stockmal80

et al. 2007; Ruh et al. 2012) rheologies, as well as for time-dependent stress states (e.g. Wang81

2006).82

Alongside these studies, fold-thrust belts have been described with more simplified rheolo-83

gies. In thick layers of sediment, deformation is thought to be associated with diffusion creep84

due to water assisted transport of material via diffusion at the grain scale, and is known to85

occur at low temperatures in sediments (Rutter 1983). Such a deformation mechanism would86

result in a viscous fluid rheology at large scales. Emerman and Turcotte (1983) first consid-87

ered the geometry of a fold-thrust belt with a purely viscous rheology. By using lubrication88

theory (flow in a thin viscous layer), they described a quasi-steady profile due to the balance89

of advection of the incoming sediment layer and gravitational spreading within the wedge. Ap-90

plying the model to bathymetric profiles across the Kurile, Ryukyu and Aleutian accretionary91

prisms, Emerman and Turcotte inferred sediment viscosities of between 1017 − 1018 Pas. A92

viscous rheology has also been used to investigate the asymmetry of doubly vergent orogens93

(Medvedev 2002), and to understand the length scales over which coupling to the kinematics94

of the underlying mantle is important (Ellis et al. 1995). More recently, Perazzo and Grat-95

ton (2010) demonstrated that the growth of fold-thrust belts is self-similar and showed good96

comparisons to locally averaged profiles of a variety of mountain ranges.97

Much of these analyses have either focused on a prescribed taper of the underthrust-98

ing plate (Davis et al. 1983; Dahlen et al. 1984) or assumed isostatic compensation (Ellis99

et al. 1995). However, over smaller length scales of 10’s to 100’s km, flexure of the under-100

thrusting plate plays an important role in determining the geometry of the resultant defor-101

mation (Forsyth 1985; McKenzie and Fairhead 1997), and should therefore be included for a102

full description of the fold-thrust belt evolution. Many studies have demonstrated that the103

patterns of gravity anomalies in the forelands of mountain ranges reveal the elastic flexure of104

the underthrusting plate in response to the load imposed by the mountain range (e.g. Karner105

and Watts 1983; Lyon-Caen and Molnar 1983; Jordan and Watts 2005; Haddad and Watts106

1999; Burov et al. 1990; Snyder and Barazangi 1986; Watts et al. 1995). These studies have107

been concerned with using the present-day pattern of gravity anomalies to infer the flexural108

properties of the lithosphere. More recently, numerical models have been used to consider the109

growth and evolution of the coupled system of flexure in the underthrusting plate overlain by110

shortening and thickening to form a fold-thrust belt. In particular, studies have focused on111

coupling flexure with complex rheologies such as an elasto-visco-plastic wedge (Simpson 2006,112
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2010; Stockmal et al. 2007) and a Coulomb wedge (Wang 2001). However, a simplified model113

combining wedge deformation with flexure in the underthrusting plate is yet lacking.114

In the next section we build on this previous work by considering the growth of a fold-115

thrust belt in which the underthrusting plate deforms elastically in response to the evolving116

overlying fold-thrust belt. We consider a purely viscous rheology to model the long wave-117

length topography associated with fold-thrust belts on length scales much larger than indi-118

vidual faults (England and McKenzie 1982). This rheology is chosen for its simplicity, and119

ability to accommodate distributed and spatially variable deformation, and is appropriate if120

a large proportion of the deformation is by fluid-activated or thermally-activated creep mech-121

anisms (Rutter 1983). The low to absent rates of seismicity in the regions to which we apply122

our model may support this assumption (see below). In section 5.3 we will compare the results123

of our viscous model to that of a Coulomb wedge model.124

3 MODEL SETUP125

We consider a two-dimensional model of a fold-thrust belt as shown in Fig. 1. Incoming126

sediment is modelled as a viscous fluid with density ρ, and viscosity η, and the underlying127

mantle below as an inviscid fluid with density ρm. (For a submarine wedge, ρ should be128

replaced by ρ̄ = ρ − ρw, where ρw is the density of water). We take an initial configuration129

at time t = 0 in which the wedge consists of a uniform layer of sediment of thickness Ts.130

The height h(x, t) is the portion of the wedge above z = 0, and s(x, t) is the depth of the131

interface below z = 0, defined as negative in the model. The lateral extent xN is determined132

by considering the width of the topography above a threshold value as described in section 4.4.133

For distances along the x-axis much greater than xN , the layer is in isostatic balance with the134

mantle beyond the nose of the thrust belt (see Fig. 1). The underthrusting plate is modelled135

as a thin elastic beam translating horizontally with speed U towards the backstop, with136

elastic thickness Te, Young’s modulus E, Poisson’s ratio ν, and hence bending stiffness B =137

T 3
eE/12(1− ν2). The viscous sediment layer is advected with this plate towards the backstop.138

We define the convergence velocity U as the total rate of motion between the incoming plate139

and the backstop. The backstop, which is fixed at x = 0, represents a region of overlying plate140

that is stronger than the incoming sediments. Here, we assume that the backstop remains141

undeformed during the evolution of the thrust belt and prevents any flow of sediment out of142

the model domain.143

Geological and geophysical observations show that the typical vertical thickness of a thrust144

belt is much smaller than the across-strike width, therefore lubrication theory (flow in a thin145
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viscous layer) can be used to model deformation in the wedge (Schlichting and Shapiro 1979).146

The rate of change of the thickness of the wedge (h − s) due to advection of sediment and147

strain within the wedge can be written as an advection-diffusion equation (e.g. Perazzo and148

Gratton 2008),149

∂

∂t
(h− s) =

ρg

3η

∂

∂x

[
(h− s)3 ∂h

∂x

]
+ U

∂

∂x
(h− s) . (1)150

Across the wedge there is a balance between the flexural subsidence of the plate due to the mass151

of the overlying wedge and the hydrostatic restoring force of the underlying mantle as a result152

of this subsidence. This balance is defined by the Euler-Bernoulli beam equation (Timoshenko153

and Woinowsky-Krieger 1959),154

B
∂4s

∂x4
+ ρmgs = −ρg(h− s). (2)155

We apply boundary conditions by first imposing no flow of sediment through the backstop156

at x = 0,157

−ρg
3η

(h− s)3∂h
∂x

∣∣∣∣
x=0

= U (h− s)|x=0 . (3)158

We assume that loading behind the backstop does not affect the deformation of the under-159

thrusting plate and therefore impose a mechanical break in the plate at x = 0 by setting the160

bending moment and shear force to be zero,161

∂2s

∂x2

∣∣∣∣∣
x=0

=
∂3s

∂x3

∣∣∣∣∣
x=0

= 0, (4)162

respectively. We impose a uniform sediment layer thickness in the far field, which is in isostatic163

balance with the underlying mantle below,164

h→ h∞, s→ s∞ = − ρ

ρm − ρ
h∞ as x→∞, (5)165

such that h∞− s∞ = Ts is the far field sediment layer thickness. Finally, far from the loading166

in the wedge the underthrusting plate is undeformed so that deflections decay,167

∂s

∂x
→ 0 as x→∞. (6)168

There are several natural length and time scales in the problem, with which we determine169

a universal, non-dimensional problem. In the horizontal, the length scale at which the weight170

of the wedge begins to dominate over the strength of the plate is defined as the flexural171

parameter (also known as the elastogravity length scale), which has units of length,172

le =

(
B

∆ρg

)1/4

, (7)173

where ∆ρ = ρm − ρ > 0 is the density difference between the mantle and the sediment in the174

wedge. By balancing the evolution of the thickness of the wedge with the advection of sediment175
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and strain within the wedge, as described by equation 1, we may write the characteristic176

vertical height and time scales as177

H =

(
3ηUle
ρg

)1/3

, T =
le
U
. (8)178

Hence we can define non-dimensional variables179

h̃ =
h

H
≡ h

(
ρg

3ηUle

)1/3

, x̃ =
x

le
and t̃ =

t

T
≡ tU

le
. (9)180

The non-dimensional equations are therefore functions of only two parameters,181

λ =
ρ

ρm − ρ
≡ ρ

∆ρ
and H∞ = Ts

(
ρg

3ηUle

)1/3

. (10)182

The density ratio λ = ρ/∆ρ describes the proportion of the wedge thickness accommodated183

by downwards deflection of the underthrusting plate in isostatic balance. The parameter H∞184

is the ratio of buoyancy forces to the compressive forces, over the length scale of the flexural185

parameter. H∞ is therefore equivalent to the Argand number (often expressed as the ratio186

between the stress from buoyancy to the stress needed to deform the material; England and187

McKenzie 1982), with the addition of flexural effects.188

Dropping the hat decoration, the non-dimensional equations can be written as189

∂

∂t
(h− s) =

∂

∂x

[
(h− s)3 ∂h

∂x

]
+

∂

∂x
(h− s) , (11)190

∂4s

∂x4
+ s = −λh, (12)191

with boundary conditions192

(h− s)2∂h
∂x

= −1,
∂2s

∂x2
=
∂3s

∂x3
= 0 at x = 0, (13)193

h→ H∞
1 + λ

, s→ −λH∞
1 + λ

,
∂s

∂x
→ 0 as x→∞. (14)194

The total volume accumulated in the wedge due to advection is given by195

H∞t =

∫ ∞
0

(h− s−H∞) dx. (15)196

This statement of global mass conservation is a direct consequence of local mass conservation197

and the requirement of zero flow of sediment through the backstop and out of the model198

domain, given by equation 3. By varying λ and H∞, the full parameter space can be explored199

for any properties of the incoming sediment and underthrusting plate.200

In deriving this model, we have made several assumptions in order to reduce the number201

of unknown parameters. Firstly, we model the underthrusting plate as a thin elastic beam202

resting on a fluid mantle. We assume that the time scale over which the wedge evolves is203

much longer than the viscous relaxation time of the underlying mantle, and shorter than that204
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of the lithosphere (Walcott 1970; Watts et al. 2013). Secondly, by modelling the sediment as205

a viscous fluid we assume that the viscosity of the sediment is much smaller than that of the206

underthrusting plate (Brace and Kohlstedt 1980). Ellis et al. (1995) included the viscosity207

of the underlying mantle in their analysis when considering crustal thickening at convergent208

margins, and showed that the coupling to the mantle can be neglected when the wedge is209

weakly coupled to its base, or when depth of the underlying mantle is large compared with210

the deflection of the underthrusting plate, as we assume in our model. A basally driven model211

can then be used, where the underlying mantle is inviscid in comparison to the sedimentary212

wedge and only provides a hydrostatic restoring force to the wedge.213

At the backstop we impose the boundary condition that there is no flow of sediment out214

of the wedge. It would be relatively straightforward to include the subduction of deformable215

sediment in the model (Shreve and Cloos 1986). Doing so would not change the qualitative216

results of the model but would make the analysis more complex. In our analysis to follow we217

refer to the bottom of the wedge as the underthrusting plate but this should be thought of218

as the base of the deformable sediment, and we treat lithified sediment that is mechanically219

coupled to the underthrusting plate as part of the plate. In addition, we also neglect any220

erosion of the topography, which would generally smooth the topographic surface, but again221

have no impact on the qualitative results described.222

Finally, we assume a Newtonian viscous rheology for the sediment in the thrust belt,223

meaning that the stress is linearly related to the strain rate. Our model can be extended to a224

power law rheology. For a power law rheology the stress is proportional to some power of the225

strain rate, allowing effective viscosities to reduce with increased shear stress. We anticipate226

that, as for a convergent Newtonian viscous gravity current on a horizontal non-deforming base227

(Gratton and Perazzo 2009), a power law rheology would give fold-thrust belts with steeper228

surface gradients and hence imply larger bulk viscosities than the Newtonian equivalent.229

However, for simplicity, and because diffusion creep results in a Newtonian rheology, we use230

a Newtonian viscous fluid in our models.231

4 MODEL RESULTS232

In this section we describe the different regimes of wedge evolution due to the competition233

between elastic deformation of the underthrusting plate, advection of sediment, and strain234

within the wedge. We first give a brief overview of the key results and regimes of wedge evolu-235

tion in section 4.1. Then, in sections 4.2 and 4.3, we derive the analytical results underpinning236

these model regimes along with examples of the shapes and vertical and horizontal length237
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scales of wedges in each regime. Finally, in section 4.4 we describe the numerical solutions of238

the fully coupled system to investigate the transition between these regimes.239

4.1 Overview of regimes of wedge evolution240

The wedge evolves from early- to late-time depending on the vertical and horizontal length241

scales. We define ‘early-times’ as when the lateral extent of the wedge is much less than242

the flexural parameter le (non-dimensional extent xN � 1) and the vertical thickness of243

the wedge is much less than the incoming non-dimensional sediment height H∞/(1 + λ) =244

Ts(ρg/3ηUle)
1/3/(1 + λ), where the density ratio λ = ρ/∆ρ. We define ‘late-times’ as when245

the lateral extent of the wedge is much greater than the flexural parameter (non-dimensional246

extent xN � 1) and the vertical thickness of the wedge is much greater than the incoming247

non-dimensional sediment height H∞/(1 + λ). By balancing the sediment flux due to strain248

within the wedge with the flux due to advection of sediment on the underthrusting plate, we249

define a critical non-dimensional parameter ΛC = π1/2H3
∞/(1+λ). The evolution of the wedge250

from early- to late-time depends on the value of this parameter, and describes whether lateral251

spreading due to strain within the wedge or vertical thickening due to advection of sediment252

is the dominant mechanism for growth. From now on we will refer to lateral spreading due253

to strain within the wedge as ‘gravitational spreading’, where the lateral extent increases254

due to gravity acting on topography. For a wedge with a low viscosity, high density and255

thick incoming sediment layer, and an underthrusting plate with a small elastic thickness256

and convergence velocity (i.e. large critical non-dimensional parameter ΛC � 1), the initial257

evolution is predominantly through gravitational spreading, with little vertical thickening258

due to advection of sediment. In contrast, for a wedge with a high viscosity, low density259

and thin incoming sediment layer, and an underthrusting plate with a large elastic thickness260

and convergence velocity (i.e. small ΛC � 1), the initial evolution is predominantly through261

vertical thickening due to advection of sediment, with little gravitational spreading.262

Fig. 2 plots the lateral extent of the wedge xN against the normalised maximum topo-263

graphic height at the backstop, h0 = h(0, t). The points are calculated numerically as described264

below in section 4.4, where different symbols represent different values of the non-dimensional265

parameters H∞ and λ, and hence ΛC , with increasing time going from the bottom left to266

the top right of the graph. Fig. 2 is split into four quadrants, as shown by the vertical and267

horizontal dashed lines, to indicate the four regimes: early-time; intermediate time, gravita-268

tional spreading dominant; intermediate time, vertical thickening dominant; and late-time.269

The schematics i–iv in Fig. 2 demonstrate the key scalings for the vertical and horizontal270
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length scales of the wedge for these regimes from the theoretical analysis described below.271

The early- and late-time regimes occur in the bottom left and top right-hand quadrants,272

with scalings represented by schematics i and iv respectively. When ΛC is large (ΛC � 1)273

the wedge grows predominantly by gravitational spreading, hereafter referred to as Path 1.274

Evolving through this intermediate regime, the numerical solution passes through the bot-275

tom right-hand quadrant with scalings represented by schematic Fig. 2ii. However, when the276

parameter ΛC is small (ΛC � 1) the wedge grows predominantly by vertical thickening due277

to advection of sediment, referred to as Path 2. Evolving through this intermediate regime,278

the numerical solution passes through the top left-hand quadrant with scalings represented279

by schematic Fig. 2iii. We will now describe the analytical results underpinning these model280

regimes along with examples of the size of wedges in each regime.281

4.2 Flexural subsidence of the underthrusting plate282

The deformation of the underthrusting plate due to the mass of the overlying wedge is depen-283

dent on the lateral extent of the sediment load. For small lateral extents, where the sediment284

has not spread to lengths greater than the flexural parameter le (non-dimensional extent285

xN � 1), the loading due to the wedge can be approximated as a point force localised at the286

position of the backstop x = 0. Assuming also that the increase in the thickness of sediment is287

small compared with the total incoming sediment thickness, (h−s)−H∞ � H∞, equation 12,288

describing the flexural subsidence of the plate, reduces to289

∂4s

∂x4
+ (1 + λ)s ' −λH∞. (16)290

Boundary conditions at the backstop and in the far field can now be applied (equations 13291

and 14) with the condition of zero shear force being replaced by the approximation of a point292

loading force,293

∂3s

∂x3

∣∣∣∣∣
x=0

= −λH∞t. (17)294

Hence the deflection of the underthrusting plate for xN � 1 is given by295

s = −λH∞
1 + λ

[
1 +
√

2(1 + λ)1/4te−mx cosmx
]
, (18)296

where m = (1 + λ)1/4/
√

2. The maximum deflection is
√

2λH∞t/(1 + λ)3/4 with oscillations297

that decay to the far field deflection −λH∞/(1 + λ), with decay rate and wavelength 1/m.298

When the lateral extent of the sediment load is much greater than the flexural parameter299

(xN � 1), the underthrusting plate can no longer support the topography. The pressure due300

to the deflection of the plate is now dominated by a balance between the loading of the wedge301
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and the hydrostatic restoring force of the underlying mantle. For large lateral extents, the302

wedge therefore transitions into isostatic balance where303

s(x, t) = −λh(x, t), (19)304

except near the nose region, where flexure of the plate remains important on length scales305

comparable to the flexural parameter.306

4.3 Height of topography307

4.3.1 Early-time308

The evolution of the height of the wedge h depends on the relative height of the wedge309

compared with incoming non-dimensional sediment height H∞/(1 + λ) above z = 0. Initially,310

the height of the wedge is small compared with the height of the advected sediment layer,311

h0 −H∞/(1 + λ) � H∞/(1 + λ). In addition, the added load of the wedge is insufficient to312

significantly deform the plate and hence the underthrusting plate remains undeformed with313

s ' −λH∞/(1 + λ). We can therefore linearise the governing equation for the height of the314

wedge above the far field sediment height. A scaling of equation 11 suggests that initially315

thickening due to advection is small,316

h

t
∼ H3

∞h

x2
� h

x
provided xN � H3

∞, (20)317

giving height and extent scales h−H∞/(1 + λ) ∼ H−1/2∞ t1/2 and xN ∼ H3/2
∞ t1/2. In this limit318

the topography of the wedge is self-similar. Therefore, we may define the similarity variable319

ζ = x/(4H3
∞t)

1/2 and write h = H∞/(1 + λ) + t1/2f(ζ), s ' −λH∞/(1 + λ), where f is a320

solution to the non-linear ordinary differential equation321

∂2f

∂ζ2
+ 2ζ

∂f

∂ζ
− 2f = 0 ⇒ f = c1ζ + c2

[
π1/2ζ erfc(ζ)− exp(−ζ2)

]
, (21)322

and c1, c2 are constants of integration that need to be determined by applying boundary323

conditions at the backstop and in the far field. Linearising the boundary conditions (equations324

13 and 14),325

H2
∞
∂h

∂x

∣∣∣∣
x=0

= −1 and h(x→∞)→ H∞
1 + λ

, (22)326

and applying these to the general solution for f (equation 21), then gives an expression for327

the topographic height of an accretionary wedge in the early-time regime,328

h =
H∞

1 + λ
+

2t1/2

(πH∞)1/2

[
exp

(
− x2

4H3
∞t

)
− π1/2x

2(H3
∞t)

1/2
erfc

(
x

2(H3
∞t)

1/2

)]
. (23)329

This analytical result is shown by Perazzo and Gratton (2008) for a viscous convergent gravity330
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current on a horizontal, non-deformable base. The maximum topographic height is H∞/(1 +331

λ)+2t1/2/(πH∞)1/2 which decays monotonically to the far field sediment layer height H∞/(1+332

λ), with lateral extent given by xN ∼ 2H
3/2
∞ t1/2. Equation 23 for the topographic height along333

with equation 18 for the deflection of the underlying plate defines the early-time regime where334

lateral extent of the wedge is much less than the flexural parameter le and the vertical height335

is much less than the non-dimensional incoming sediment height H∞/(1 +λ). Applying these336

bounds (xN � 1 and h0−H∞/(1 + λ)� H∞/(1 + λ)) to the scalings from equation 23 gives337

a time scale for the early-time regime,338

2H3/2
∞ t1/2 � 1 and

2t1/2

(πH∞)1/2
� H∞

1 + λ
⇒ t� min

{
πH3
∞

4(1 + λ)2
,

1

4H3
∞

}
. (24)339

To indicate when the early-time regime may be appropriate in nature, we consider a340

wedge with common values of parameters of sediment thickness, viscosity and density Ts =341

4 km, µ = 1020 Pas and ρ = 2400 kg m−3 respectively, where the underthrusting plate has an342

elastic thickness of Te = 20 km, Young’s modulus E = 1011 Pa, Poisson’s ratio ν = 0.25, and343

convergence velocity U = 4 mm yr−1, with an underlying mantle of density ρm = 3300 kg m−3344

(H∞ = 0.91, λ = 2.7). For an age of t = 0.1 Myr, this gives a maximum topographic height of345

∼ 450 m above the far field sediment height, with lateral extent of ∼ 8 km. From equation 18,346

the maximum deflection of the plate is ∼ 43 m with decay rate and wavelength ∼ 54 km.347

Substituting these parameters into time scale given in equation 24 shows that the conditions348

for early-time regime behaviour are satisfied provided t� 1 Myr. Hence these behaviours are349

not expected to be observed except in the very early stages of wedge growth. On Fig. 2 this350

early-time regime represents the bottom left-hand quadrant where xN � 1 and h0−H∞/(1+351

λ)� H∞/(1 + λ). This example is marked as a red star in the bottom left-hand quadrant of352

Fig. 2, and is demonstrated by the schematic i.353

4.3.2 Intermediate time: gravitational spreading dominant354

After this early-time regime the wedge can either grow by gravitational spreading or vertical355

thickening. If the wedge spreads laterally more rapidly than it thickens vertically, referred to356

as Path 1 (Fig. 2), it can reach an intermediate regime where the lateral extent of the wedge is357

much greater than the flexural parameter le but the vertical height of the wedge is still much358

less than the non-dimensional sediment height H∞/(1 + λ). Applying these bounds (xN � 1359

and h0 −H∞/(1 + λ) � H∞/(1 + λ)) to the solution for the early-time topographic height,360

equation 23, gives a condition for evolution along Path 1,361
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2H3/2
∞ t1/2 ∼ 1 and

2t1/2

(πH∞)1/2
� H∞

1 + λ
⇒ ΛC ≡

π1/2H3
∞

1 + λ
� 1, (25)362

where ΛC is the critical non-dimensional parameter defined above, the effect of which is363

described below.364

Since the lateral extent of the wedge is much greater than the flexural parameter (xN � 1),365

the wedge is in isostatic balance and the deflection of the plate is linearly proportional to the366

topographic height, given by equation 19. Substituting this expression for the deflection s367

into equation 11, and carrying out a similar analysis to above, gives an expression for the368

topography of a wedge in the intermediate regime evolving along Path 1,369

h =
H∞

1 + λ
+

2t1/2

(π(1 + λ)H∞)1/2

[
exp

(
−(1 + λ)x2

4H3
∞t

)
− (π(1 + λ))1/2x

2(H3
∞t)

1/2
erfc

(
(1 + λ)1/2x

2(H3
∞t)

1/2

)]
.(26)370

The maximum topographic height is H∞/(1+λ)+2t1/2/(π(1+λ)H∞)1/2 which decays mono-371

tonically to the far field sediment layer height H∞/(1 +λ), with lateral extent given by xN ∼372

2H
3/2
∞ t1/2/(1 +λ)1/2. To demonstrate evolution of a wedge along Path 1, we consider a wedge373

with sediment thickness, viscosity and density Ts = 10 km, µ = 1020 Pas and ρ = 2400 kg m−3374

respectively, where the underthrusting plate has an elastic thickness of Te = 20 km, Young’s375

modulus E = 1011 Pa, Poisson’s ratio ν = 0.25 and convergence velocity U = 4mm yr−1, with376

an underlying mantle of density ρm = 3300 kg m−3 (H∞ = 2.3, λ = 2.7). Substituting these377

values into equation 25 gives critical non-dimensional parameter ΛC = 5.6 � 1, hence we378

would expect the wedge to evolve along Path 1. Taking a wedge of age t = 5 Myr gives a379

maximum topographic height of ∼ 1.1 km above the far field sediment height, maximum de-380

flection of the plate of ∼ 2.8 km and a lateral extent of ∼ 120 km. On Fig. 2 this intermediate381

regime evolving along Path 1 represents the bottom right-hand quadrant where xN � 1 and382

h0 −H∞/(1 + λ)� H∞/(1 + λ). This example is marked as a purple triangle in the bottom383

right-hand quadrant of Fig. 2, and is demonstrated by the schematic ii. This evolution repre-384

sents regions where the incoming sediment layer is thick with low viscosity and high density,385

and the underthrusting plate has a small elastic thickness and small convergence velocity.386

4.3.3 Intermediate time: thickening dominant387

If the wedge thickens vertically more rapidly than it spreads laterally, it follows an alternative388

evolution referred to as Path 2. Along this second trajectory the wedge can reach an interme-389

diate regime where the lateral extent of the wedge is still much less than the flexural parameter390

but the vertical height of the wedge is much greater than the non-dimensional sediment height391

H∞/(1 + λ). Applying these bounds (xN � 1 and h0 −H∞/(1 + λ) � H∞/(1 + λ)) to the392
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solution for the early-time topographic height, equation 23, gives a condition for evolution393

along Path 2,394

2H3/2
∞ t1/2 � 1 and

2t1/2

(πH∞)1/2
∼ H∞

1 + λ
⇒ ΛC ≡

π1/2H3
∞

1 + λ
� 1. (27)395

Since the vertical height of the wedge is much greater than the non-dimensional incoming396

sediment height H∞/(1 + λ), the height of the wedge reaches a quasi-static balance where397

strain driven by lateral pressure gradients, which results in gravitational slumping and hence398

diffusive behaviour, balances the advection of the sediment layer by the underthrusting plate.399

The governing equation for the thickness of the wedge (equation 11) simplifies to400

0 =
∂

∂x

[
(h− s)3∂h

∂x

]
+

∂

∂x
(h− s). (28)401

Integrating equation 28, assuming the underthrusting plate remains relatively undeformed402

s ' −λH∞/(1 + λ), and applying boundary conditions at the backstop and at the nose403

(equations 13 and 14), gives the expression for the topographic height404

h = −λH∞
1 + λ

+
[
H3
∞ + 3(xN − x)

]1/3
. (29)405

Using the statement of global conservation of mass (equation 15), we find that the lateral406

extent xN is the real root of407

H∞

(
1

4
H3
∞ + xN + t

)
=

1

4
(H3
∞ + 3xN )4/3. (30)408

Equation 29 describes a cube root profile where the topographic height no longer explicitly409

depends on time (although there is an implicit time dependence through the lateral extent410

xN ), and hence can be described as quasi-static. For example, consider a wedge with sediment411

thickness, viscosity and density Ts = 1 km, µ = 1020 Pas and ρ = 2400 kg m−3 respectively,412

where the underthrusting plate has an elastic thickness of Te = 20 km, Young’s modulus413

E = 1011 Pa, Poisson’s ratio ν = 0.25 and convergence velocity U = 4 mm yr−1, with an414

underlying mantle of density ρm = 3300kg m−3 (H∞ = 0.23, λ = 2.7). Substituting these415

values into equation 27 gives critical non-dimensional parameter ΛC = 0.0056� 1, hence we416

would expect the wedge to evolve along Path 2. Taking a wedge of age t = 1 Myr gives a417

maximum topographic height of ∼ 1.7 km above the far field sediment height, with lateral418

extent ∼ 3.7 km. From equation 18 the maximum deflection of the plate is ∼ 110 m with419

decay rate and wavelength ∼ 54 km. On Fig. 2 this intermediate regime evolving along Path420

2 represents the top left-hand quadrant where xN � 1 and h0 −H∞/(1 + λ)� H∞/(1 + λ).421

This example is marked as an orange square in the top left-hand quadrant of Fig. 2, and is422

demonstrated by the schematic iii. This path represents regions where the incoming sediment423
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layer is thin with a high viscosity and low density, and the underthrusting plate has a large424

elastic thickness and a high convergence rate.425

4.3.4 Late-time426

Ultimately, the evolution of a wedge along both Path 1 or Path 2 will transition into the427

late-time regime where the lateral extent of the wedge is much greater than the flexural428

parameter (xN � 1) and the height of the wedge is much greater than the non-dimensional429

sediment height (h0 −H∞/(1 + λ) � H∞/(1 + λ)). Since the lateral extent is much greater430

than the flexural parameter (xN � 1) the wedge is in isostatic balance with deflection given431

by equation 19. As in the intermediate regime along Path 2, the wedge is in a quasi-static432

state where strain balances the advection of the sediment layer by the underthrusting plate.433

Substituting the deflection (equation 19) into the governing equation for the quasi-static wedge434

(equation 28), integrating and applying boundary conditions at the backstop and the nose435

(equations 13 and 14), the topographic height is given by436

h =

[
H3
∞

(1 + λ)3
+

3(xN − x)

(1 + λ)2

]1/3
. (31)437

Again, using the statement of global conservation of mass (equation 15), we find the lateral438

extent xN is the real root of439

H∞

(
H3
∞

4(1 + λ)
+ xN + t

)
=

1

4(1 + λ)
(H3
∞ + 3(1 + λ)xN )4/3. (32)440

Equation 31 describes a cube root profile where the topographic height of the wedge no longer441

explicitly depends on time (although there is an implicit time dependence through the lateral442

extent xN ). For example, consider a wedge with sediment thickness, viscosity and density443

Ts = 2 km, µ = 1019 Pas, ρ = 2400 kg m−3 respectively, where the underthrusting plate has an444

elastic thickness of Te = 20 km, Young’s modulus E = 1011 Pa, Poisson’s ratio ν = 0.25 and445

convergence velocity U = 20 mm yr−1, with an underlying mantle of density ρm = 3300 kg m−3446

(H∞ = 0.57, λ = 2.7). For an age of t = 20 Myr, the wedge would have maximum topographic447

height ∼ 2.3 km above the far field height, maximum deflection of the plate of ∼ 6.3 km,448

with lateral extent ∼ 130 km. On Fig. 2 this late-time regime represents the top right-hand449

quadrant where xN � 1 and h0 −H∞/(1 + λ) � H∞/(1 + λ). This example is marked as a450

pink diamond in the top right-hand quadrant of Fig. 2, and is demonstrated by the schematic451

iv.452

The analytical solutions derived above describe the limiting case in each of the four regimes453

shown in Fig. 2. However, a given fold-thrust belt will lie along an evolutionary transition454
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between these solutions. In order to fully understand how a fold-thrust belt evolves, in the next455

section we solve this coupled system numerically. In particular, we describe the full evolution456

of two wedges, one evolving along Path 1, and one evolving along Path 2.457

4.4 Numerical solutions458

We solve the coupled system of non-dimensional equations for the evolution of the topographic459

height and the flexural subsidence of the underthrusting plate given by equations 11 and 12460

along with boundary conditions at the backstop and in the far field (equations 13 and 14),461

and global mass conservation (equation 15). The numerical scheme uses a finite difference462

Crank-Nicolson algorithm with an adaptive time and spatial step, and a predictor-corrector463

scheme to handle the non-linearities.464

Fig. 2 plots the vertical topographic height against the lateral extent for seven different465

numerical simulations with different values of non-dimensional parameters H∞ and λ (see466

legend inset). Note that the location of the lateral extent xN is determined by considering467

the width of topography above a threshold value such that h(xN , t)−H∞/(1 + λ) = 10−3 at468

the edge of the wedge, consistent in all simulations. The transition between evolution along469

Path 1 or Path 2 depends on the critical non-dimensional parameter ΛC = π1/2H3
∞/(1 + λ).470

Fig. 2 shows that by decreasing ΛC the evolution moves from Path 1 to Path 2 with the471

transition occurring when ΛC ∼ 1. In dimensional form, the transition occurs when ΛC =472

π1/2T 3
s ρg/(3ηUle(1 + ρ/∆ρ)) ∼ 1. Hence, by decreasing the sediment thickness and density473

and/or increasing the sediment viscosity and elastic thickness and convergence velocity of the474

underthrusting plate, evolution moves from predominantly gravitational spreading along Path475

1 to predominantly vertical thickening along Path 2.476

We now describe in more detail the two numerical simulations with the largest and small-477

est values of ΛC . Fig. 3a plots the profiles of the topographic height (blue lines) and plate478

deflection (red lines) with parameters H∞ = 3.2, λ = 3.0 and ΛC = 14.5 � 1 for times479

t = 5×10−4, 10−3,..., 102, where Fig. 3b (inset) is a zoom of profiles at early times (t ≤ 10−1).480

Evolution of the wedge is along Path 1, where gravitational spreading dominates over vertical481

thickening. Fig. 3c is a log-log plot of the maximum topographic height (blue squares) and482

maximum plate deflection (red triangles) against time. The dotted and dashed lines plot the483

early- and late-time solutions respectively for the maximum topographic height (blue, equa-484

tions 23 and 31) and the maximum plate deflection (red, equations 18 and 19) and show good485

agreement with the numerical solution for small and large times. The green dashed line plots486

the solution between the early- and late-times for the height of the topographic wedge, defined487
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as the intermediate solution, for evolution along Path 1 (equation 26). Although it does well488

to describe the points around t ∼ 1, the intermediate solution largely overlaps the early-time489

and late-time solutions and hence does not provide any further information about the growth490

of the wedge. However, we would anticipate this solution to be more useful (i.e. describe the491

evolution when both the early- and late-time do not apply) when there is a larger separation492

between the early- and late-time i.e. for larger ΛC . This evolution describes a wedge with493

a thick incoming sediment layer of large density and small viscosity, and an underthrusting494

plate with a small elastic thickness and low convergence velocity.495

Fig. 3d plots the profiles of the topographic height (blue lines) and plate deflection496

(red lines) with parameters H∞ = 0.4, λ = 3.0 and ΛC = 0.03 � 1 for times t = 5 ×497

10−4, 10−3,..., 102, where Fig. 3e (inset) is a zoom of profiles at early times (t ≤ 1). Evo-498

lution of the wedge is along Path 2, where vertical thickening dominates over gravitational499

spreading. Fig. 3f is a log-log plot of the maximum topographic height (blue squares) and500

maximum plate deflection (red triangles) against time. The dotted and dashed lines plot the501

early- and late-time solutions respectively for the maximum topographic height (blue, equa-502

tions 23 and 31) and the maximum plate deflection (red, equations 18 and 19) and again shows503

good agreement with the numerical solution for small and large times. The green dashed line504

plots the solution between early- and late-times for the height of the topographic wedge (the505

intermediate solution) for the evolution along Path 2 (equation 29). This intermediate solu-506

tion does well to describe the points around t ∼ 1 where both the early-time and late-time507

solution do not apply: the numerical solution given by the blue squares sits in between the508

blue dot-dashed and dashed lines for the early- and late-time solutions respectively, but sits509

very close the green dashed line of the intermediate solution. This evolution describes a wedge510

with a thin incoming sediment layer of small density and large viscosity, and an underthrust-511

ing plate with a large elastic thickness and high convergence velocity. Comparing the profiles512

of the two wedges (Figs 3a,d) there is a clear difference in the nose region of the wedge where513

there is a prominent flexural depression and bulge when ΛC = 0.03� 1 compared with when514

ΛC = 14.5� 1. This forms at early times, Fig. 3e, and then propagates as a steady structure515

at the nose, Fig. 3d. This flexural depression and bulge demonstrates that, even at late times516

when the wedge is in isostatic balance, flexure remains important on length scales compa-517

rable with the flexural parameter le. Away from the nose, the general shape of the profiles518

look similar, however the underlying balance of forces changes significantly between the two519

regimes, from gravitational spreading dominant to advection dominant, which is what defines520

the ‘regimes’.521
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5 DISCUSSION AND APPLICATIONS522

The model described above considers how changing the properties of the wedge (density,523

viscosity, age, incoming sediment thickness) and properties of the underthrusting plate (elastic524

thickness, convergence velocity) affect the evolution of the wedge. We now discuss the effects525

of changing two key parameters: the incoming sediment thickness Ts and elastic thickness Te.526

Fig. 4 shows the evolution of a wedge in 5 Myr intervals for t = 5 − 50 Myr, convergence527

velocity U = 4 mm yr−1, viscosity η = 1020 Pas, sediment and underlying mantle densities ρ =528

2400 kg m−3, ρm = 3300 kg m−3 (density ratio λ = 2.7). Figs 4a–c show a wedge in isostatic529

balance for which we neglect the elastic thickness of the plate (Te = 0 km) with increasing530

sediment thicknesses Ts = 2, 4 and 10 km. Figs 4d–f show the evolution of an identical series of531

wedges now resting on a underthrusting plate with an increased elastic thickness of Te = 20 km532

(Young’s Modulus E = 1011 Pa and Poisson’s ratio ν = 0.25). Substituting these values into533

the critical non-dimensional parameter ΛC gives ΛC = 0.045, 0.36 and 5.6 for corresponding534

incoming sediment thicknesses Ts = 2, 4 and 10 km. Hence, both Fig. 4 and the values of535

ΛC demonstrate that, as described in the previous section, decreasing the incoming sediment536

thickness causes the evolution to transition from Path 1 (Fig. 4f), to Path 2 (Fig. 4d; decreasing537

ΛC), where vertical thickening dominates over gravitational spreading.538

For the smallest sediment thickness, Ts = 2 km in Figs 4a and 4d, increasing the elastic539

thickness gives profiles with a higher maximum topographic elevation for small lateral ex-540

tents. This is consistent with a stronger plate providing additional support to topography. In541

addition, increasing the elastic thickness gives a shallower dip to the deflection of the under-542

thrusting plate behind the nose of the wedge, with a flexural depression and bulge in front543

of the nose of the wedge, see Figs 4d and 4e. This feature is present because flexure becomes544

important when topography varies on length scales comparable with the flexural parameter545

le, for example near the nose. As the incoming sediment thickness increases the elastic thick-546

ness of the plate has less of an impact on the profiles. This effect is clearly shown in Figs 4c547

and 4f for Ts = 10 km where the profiles of the wedge for the isostatic and flexural case are548

almost identical. By increasing the incoming sediment thickness, the critical non-dimensional549

parameter ΛC increases causing the transition to isostatic balance to occur at earlier times.550

Hence, we would expect that changing the elastic thickness would have less of an impact for551

wedges with larger sediment thicknesses.552

In order to examine the effects described in our model, we now consider the Makran553

accretionary prism and the Indo-Burman Ranges. In the analysis we will refer to specific554

values of the incoming sediment thickness, viscosity and density, and the elastic properties555
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and convergence velocity of the underthrusting plate. However, the aim is to illustrate the556

importance of flexure and incoming sediment thickness on the evolution of fold-thrust belts557

in general, rather than to imply these ranges are particularly unusual.558

5.1 Makran accretionary prism559

The Makran accretionary prism, Fig. 5a, is one of the largest accretionary wedges on Earth.560

With a large sediment thickness on the incoming plate of ∼ 7 km (Kopp et al. 2000; White561

1982), the Makran accretionary prism is formed due to the subduction of the Arabian plate562

beneath southern Iran and Pakistan. The convergence rate between Arabia and eastern563

Iran/western Pakistan varies from 19.5 ± 2 mm yr−1 in the west to 27 ± 2 mm yr−1 in the564

east (Vernant et al. 2004). Accretion of sediment into the wedge is thought to have started565

in the Eocene (Byrne et al. 1992), however an imbricate zone of upper Cretaceous rocks have566

been identified in the northern part of the Makran (Dolati 2010), which may represent the567

onset of sediment accretion. These observations give a possible age range for the onset of568

growth of the accretionary wedge of 30− 90 Myr.569

Fig. 5b shows three topographic profiles across the Makran centered on 59.5oE, 61oE570

and 63oE (red, green and blue lines respectively). The profiles show a negligible along-strike571

change in topography suggesting a two-dimensional model is appropriate. Fig. 5c plots the572

sediment-basement interface from seismic reflection profiles at 62.9oE (solid black line, Kopp573

et al. 2000). The blue dots plot the inferred subduction interface at 62oE (Penney et al. 2017)574

based on the location of earthquakes interpreted as occurring on the subduction interface or575

within the subducting plate. In the following comparisons, we take the middle topographic576

profile at 61oE (as there is negligible along strike variation) along with the sediment-basement577

and plate interface datasets shown in Fig. 5c. We assume the backstop of the wedge is located578

roughly at 27.5oN based on the location of the Jaz Murian and Maskel depressions, which579

low elevations and low seismic strain rates suggest are relatively undeformed. However, we580

will show that the position of the backstop only affects the age of the wedge in the numerical581

simulations, and not our overall conclusions regarding the controls on the evolution of the582

wedge.583

We consider the effects of flexure in the Makran accretionary prism by calculating two584

models with different elastic thicknesses, but with the same incoming sediment thickness,585

viscosity and density, underlying mantle density, and underthrusting plate convergence rate.586

First we consider a flexural model with incoming sediment thickness Ts = 7 ± 1 km, con-587

vergence velocity U = 25 ± 5 mm yr−1 and mantle density ρm = 3300 kg m−3. We then find588
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an elastic thickness, viscosity, density and age that best reproduces the observed topogra-589

phy and sediment-basement interface from 195 numerical simulations for different values of590

non-dimensional sediment thickness H∞. For all input parameters, we failed to reproduce591

observations from the Makran accretionary prism for small sediment densities, suggesting sig-592

nificant sediment compaction. Hence, we take a higher estimate of λ = 5.0, ρ = 2750 kg m−3.593

For the range of sediment thicknesses and convergence rates, we find a good fit to the594

observations for an elastic thickness of Te = 18− 24 km (flexural parameter le = 56− 69 km)595

with incoming sediment viscosity η = 0.9 − 1.5 × 1020 Pas and an age of between t = 44 −596

66 Myr, given by parameters H∞ = 0.68 − 0.95, ΛC = 0.094 − 0.25. A comparison between597

the numerical simulation and the observations for Ts = 7 km and U = 25 mm yr−1 is plotted598

in Fig. 6c giving Te = 20 km, η = 1.1× 1020 Pas and t = 42 Myr. The critical non-dimensional599

parameter ΛC = π1/2H3
∞/(1 + λ) = 0.094− 0.25� 1 suggests that the Makran accretionary600

prism evolved along Path 2 where vertical thickening was the dominant growth mechanism,601

although testing this hypothesis would require tectonic reconstructions beyond the scope of602

the present study. The lateral extent and topographic height of the Makran accretionary603

prism are plotted on the regime plot in Fig. 2 given by the black hexagram labelled ‘M’ and604

shows that the Makran is now in the late-time regime. As a result, only the nose region of the605

sediment-basement interface, where flexure is important, can constrain the elastic thickness.606

Therefore, a wide range of elastic thicknesses, Te = 18 − 24 km, can fit the observations.607

Such elastic thicknesses are consistent with previous studies on the elastic thickness of the608

Arabian plate in the Makran zone (Chen et al. 2015), and with observed elastic thicknesses609

for oceanic lithosphere elsewhere (Craig and Copley 2014). Our estimate of the sediment610

viscosity is slightly higher than estimated previously in some studies (Shreve and Cloos 1986;611

Emerman and Turcotte 1983) but similar to other recent studies of viscous wedges (Medvedev612

2002; Copley and McKenzie 2007). Finally, the estimated age of t = 44− 66 Myr is consistent613

with the geology but is primarily a function of the choice of location of the backstop, and614

hence volume of sediment accumulated in the wedge. As the wedge is in the late-time regime,615

the topographic height and plate deflection are given by equations 31 and 19, which do not616

explicitly depend on time, although there is an implicit time dependence through lateral extent617

xN . As a result, the choice of backstop location determines the age of the wedge but not any618

other parameters in the model.619

The second model we consider is in isostatic balance (Te = 0 km), but otherwise has the620

same parameter values as the model described above. Fig. 6a plots the numerical profiles621

for the topographic height and base of the sediment with elastic thicknesses Te = 0 km in622
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isostatic balance (solid red lines) and Te = 20 km (solid blue lines) for t = 10, 20, 30, 40623

and 50 Myr. The topography is almost identical in the two models, apart from the flexural624

depression and bulge at the nose of the wedge observed in the flexural model. However,625

there is a significant difference between the two models in the depth to the base of the626

sediment, particularly behind the nose where the dip of the base of the sediment is much627

more gentle in the flexural model compared with the isostatic model. Figs 6b and 6c then628

compare these models for t = 42 Myr in each case, with the data for the topographic height629

and sediment-basement interface (solid black lines with open circles). The topography agrees630

well in both cases. When considering the base of the sediment, particularly the comparison631

with the seismic reflection profiles, a flexural model with elastic thickness Te = 20 km does632

a better job at reproducing the observed geometry than the purely isostatic model where633

the elastic thickness is neglected. This result suggests that flexure is necessary to explain634

the dipping sediment-basement interface as observed in seismic reflection profiles, and hence635

shows the importance of modelling flexure in the underlying plate.636

5.2 Indo-Burman Ranges637

The Indo-Burman Ranges were formed by accretion of sediment from the underthrusting638

Indian plate as it subducts beneath southeast Asia (Ni et al. 1989; Stork et al. 2008; Steckler639

et al. 2016), see Fig. 7a. The fold-thrust belt is thought to have developed since the late640

Oligocene (Soibam et al. 2015). Two topographic sections, north and south of the Shillong641

Plateau (marked as ‘SP’ in Fig. 7a), are shown in Fig. 7 as blue and red lines. The surface642

geology within the Indo-Burman Ranges is characterised by progressively older rocks from643

west to east. South of the Shillong Plateau, sedimentary rocks in the central part of the range644

are composed of an Eocene sequence (‘inner’ Indo-Burman wedge), with a western portion645

of younger rock composed of Neogene fluvio-deltaic sediments and turbidites (‘outer’ Indo-646

Burman wedge) (Sikder and Alam 2003; Khin et al. 2014, 2017). The eastern margin of the647

Indo-Burman Range is characterised by upper-Cretaceous and Triassic deep water sediments,648

Mesozoic metamorphics and Jurassic ophiolite assemblages (Brunnschweiler 1974; Mitchell649

1993). North of the Shillong Plateau, the western portion of the Indo-Burman wedge comprises650

of an Oligocene sedimentary sequence, with a region towards the east of Cretaceous sandstones651

overlying mafic volcanics of a Jurassic ophiolite suite (Ghose and Singh 1980; Brunnschweiler652

1966). The region of ophiolites and metamorphics that straddle the length of the range is653

taken to represent a rigid backstop, which allows the fold-thrust belt to form (marked on654

Fig. 7a, black dashed line; Figs 7b–c, grey shaded region).655
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Along the Indo-Burman Ranges from north to south of the Shillong Plateau there is a656

significant change in both foreland sediment thickness and the topography of the wedge. In657

the north, the Indo-Burman Ranges are bounded to the west by the lowlands of Assam. The658

sediment thickness ranges from zero, where the crystalline basement is exposed at the surface659

(e.g. Mikir Hills, marked as ‘M’ in Fig. 7a), up to ∼ 5 km (Dasgupta et al. 2000) in the660

northeastern corner of the syntaxis. The average shown by Dasgupta et al. (2000) is ∼ 2 km.661

The topography is characterised by a narrow range width and steep surface slopes near the662

range front, shown as the blue lines on Fig. 7b. South of the Shillong Plateau, the Indo-Burman663

Ranges are bounded by the Surma Basin (marked as ‘SB’ in Fig. 7a) and the Bengal Basin,664

where the sediment thickness in the foreland is significantly larger (∼ 15 − 22 km; Curray665

1991; Alam et al. 2003). The Indo-Burman Range has a larger width and shallower surface666

slopes than to the north of the Shillong Plateau, shown as red lines on Fig. 7c.667

The sedimentary sequences that make up the fold-thrust belt to the west of the backstop668

in the Indo-Burman Ranges were originally deposited in a series of basins with a common669

sediment source from the Ganges and Brahmaputra river networks (Steckler et al. 2008; Govin670

et al. 2018). Hence, we expect the lithology of the sediment in the north and south Indo-671

Burman wedge to be similar. This similarity suggests that this region may provide insights672

into the effects of changing sediment thickness on the formation of a fold-thrust belt.673

The lower-crustal depth and strike-slip style of earthquakes in the Indo-Burman Ranges674

suggest they are occurring within the underthrusting Indian plate (Mitra et al. 2005). Hence,675

the earthquake locations do not constrain the depth of the thrust interface. In the analysis676

to follow we therefore focus on the geometry of topography in the region, rather than the677

(unknown) geometry of the underthrusting plate.678

The Indo-Burman Ranges have shallower surface slopes and larger range widths where the679

foreland sediment thickness is larger, south of the Shillong Plateau. This observation is con-680

sistent with the effect of increasing sediment thickness shown in Fig. 4. To investigate further,681

we consider two models in isostatic balance with different incoming sediment thicknesses, but682

otherwise the same parameter values. We assume isostatic balance as we do not have infor-683

mation about the underthrusting plate needed to constrain the elastic thickness. However, as684

shown in Fig. 4, the qualitative behaviour of changing sediment thickness is independent of685

the elastic thickness, and hence this does not affect our conclusions. We consider a range of686

sediment densities ρ = 2400 − 2750 kg m−3, with mantle density ρm = 3300 kg m−3 (density687

ratio λ = 2.7−5.0). We then find the viscosity, convergence velocity and sediment thicknesses688

in the north and south that best reproduce the observations of topography. From the estimate689
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that the formation of the fold-thrust belt started in the Oligocene (Soibam et al. 2015), we690

take an age of t = 30 ± 10 Myr. However this choice only affects the quantitative parameter691

values determined, not the qualitative interpretations. For the estimated range of ages and692

sediment densities, we find incoming sediment thickness in the north of Ts(north) = 2.1−2.3 km693

and in the south of Ts(south) = 4.7− 5.0 km, with sediment viscosity η = 3.0− 8.8× 1019 Pas694

and underthrusting plate convergence velocity U = 2.8− 8.8 mm yr−1 for both the north and695

the south.696

The estimate of incoming sediment thickness in the north is consistent with the observation697

that the foreland sediment thickness can range from zero to ∼ 5 km in places (Dasgupta698

et al. 2000) with an average of ∼ 2 km. In the south, however, the estimate of Ts(south) =699

4.7− 5.0 km is significantly less than the observation ∼ 15− 22 km from seismic data (Curray700

1991; Alam et al. 2003). It has been suggested that temperatures and pressures at large701

depths in the sediment layer are sufficient for metamorphism to take place (Curray 1991).702

If this is the case, only the upper deformable portions of the sediment layer may be playing703

a role in the growth of the wedge. Given that our model estimates the effective deformable704

sediment thickness, we would expect to underestimate the true sediment thickness, as the705

deeper parts will be dewatered, lithified, and effectively part of the rigid Indian plate. Crucially,706

our models reproduce a thicker sediment sequence to the south than north of the Shillong707

Plateau, consistent with the observations. Sikder and Alam (2003) observe a detachment708

in seismic reflection data at around 4s two-way travel time, corresponding with a depth of709

roughly ∼ 5 km, which is consistent with more recent studies (Betka et al. 2018), and hence710

supports our estimate of the effective deformable sediment thickness. The value of sediment711

viscosity η = 3.0 − 8.8 × 1019 Pas is consistent with previous studies on the Indo-Burman712

Ranges (Copley and McKenzie 2007) and on sediments under similar conditions (Nino et al.713

1998; Gratier et al. 1999; Connolly and Podladchikov 2000). Finally, the convergence velocity714

of U = 2.8− 8.8 mm yr−1 is consistent with the total rate of convergence of 5− 10 mm yr−1 in715

this area from present-day geodetic data (Steckler et al. 2016), but we note there is a trade-off716

with estimating the age of the fold-thrust belt, the sediment volume, and changes in either of717

these quantities through time.718

Fig. 8a plots numerical profiles for the topographic height of a wedge with sediment719

thicknesses Ts(north) = 2.2 km (solid blue lines) and Ts(south) = 5.0 km (solid red lines) for720

t = 10, 20, 30, 40 and 50 Myr, with convergence velocity U = 3.8 mm yr−1, viscosity η = 5.0×721

1019 Pas, and sediment and underlying mantle densities ρ = 2400 kg m−3, ρm = 3300 kg m−3.722

This comparison again shows that for larger sediment thicknesses, the wedge formed has a723
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larger range width with a shallower topographic slope. Figs 8b and 8c plot the comparisons724

between topographic data in the northern and southern part of the Indo-Burman Ranges725

respectively (solid black lines with open circles) with the numerical profiles for an age of726

t = 30 Myr (blue and red solid lines). By increasing the sediment thickness by more than a727

factor of two going from the north to the south, the difference in surface slopes and range728

widths can be reproduced. The discrepancy in Fig. 8b between the back of the wedge in729

the numerical simulation and the backstop inferred from the geology is due to choosing the730

same age for the fold-thrust belt in the north and south. However, the mismatch between the731

observations and the model is small given the uncertainties in the location of the backstop.732

Our results therefore suggest that the incoming sediment thickness is playing a first-order role733

in the development of topography in the Indo-Burman Ranges.734

5.3 Comparison with Coulomb wedge theory735

In our model we use a purely viscous rheology to describe the incoming sediment. As a result736

of this choice of rheology, the shear stresses are unbound. The shear stress can be written as737

τ = η
∂u

∂z
= −ρg∂h

∂x
(h− z), (33)738

which is maximum at the base, z = s. For example, for the flexural model proposed for the739

Makran shown in Fig. 6c, the maximum shear stress at the base is ∼ 8 MPa, in agreement740

with that calculated by Penney et al. (2017) of ∼ 5− 35 MPa. For the Indo-Burman Ranges,741

the maximum shear stress is calculated for the base of northern profile, shown in Fig. 8b,742

to be ∼ 1 MPa. Hence, for both comparisons the shear stress is low, and is consistent with743

the levels of stress under which rocks can deform at geological strain rates by creep. Unlike744

Coulomb wedge theory that includes a yield stress, our model does not aim to explain brittle745

deformation. For a purely viscous rheology, the strain rate is linearly proportional to the shear746

stress, ξ̇ = τ/η. Equation 33 shows that the strain rate increases linearly with depth and is747

proportional to gradients in surface topography. At late-times, the topography of our model748

wedges exhibit concave-downward profiles with increasing surface gradients towards the toe749

of the wedge. Hence, we would expect to see the largest strain-rates at depth and towards750

the toe; a feature analogous to the strain rate pattern for Coulomb wedge theory as described751

by Willett (1992).752

A key feature of Coulomb wedge theory is that everywhere in the interior of the wedge is753

on the verge of failure by the same mechanism, i.e. thrust faulting at the angle of sliplines.754

In contrast, our model allows for distributed and spatially variable deformation. The main755
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distinguishing feature between our viscous model and Coulomb wedge theory is the surface756

topography of wedges produced. Unlike the linear taper from cohesionless Coulomb wedge757

theory, a viscous rheology produces a range of topographies from concave-upward to concave-758

downward as the wedge evolves in time. As seen from the comparisons with the Makran759

accretionary prism and the Indo-Burman Ranges, these shapes are consistent with observa-760

tions from a range of locations. However, a clear direction for future work will be to examine761

the extent to which this is globally true.762

6 CONCLUSION763

We have presented an analytical and numerical model to describe the growth of a fold-thrust764

belt due to the accretion of sediments from the underthrusting plate. In particular, we have765

examined a balance between advection of sediment and gravitational spreading within an766

accretionary wedge coupled to the flexural subsidence of the underthrusting plate. Our analysis767

shows that the evolution of accretionary wedges is crucially dependent on two non-dimensional768

parameters: the non-dimensional sediment thickness H∞ = Ts(ρg/3ηUle)
1/3 and the density769

ratio λ = ρ/∆ρ, where Ts, ρ, η are the incoming sediment thickness, density and viscosity, U is770

the convergence rate of the incoming plate, and le is the flexural parameter, the length scale at771

which the weight of the wedge begins to dominate over the strength of the plate. We describe772

early- and late-time regimes of the wedge and demonstrate two paths of evolution between773

these regimes, where the wedge either grows predominantly through gravitational spreading774

(Path 1) or through vertical thickening due to advection of sediment (Path 2) depending on775

the size of the critical non-dimensional parameter ΛC = π1/2H3
∞/(1 + λ). In addition, we776

solve the coupled system numerically to understand the transition between these regimes and777

explore the parameter space more widely.778

The generality of our model allows conclusions to be drawn in a multitude of locations.779

We have considered the particular examples of the Makran accretionary prism and the Indo-780

Burman Ranges, to investigate the importance of sediment thickness and elastic thickness781

(flexure of the underthrusting plate) in the growth of a fold-thrust belt. We have shown that782

flexure is important in the Makran accretionary prism in order to understand dip in the783

sediment-basement interface from seismic reflections profiles. In the Indo-Burman Ranges, we784

have shown that a lateral contrast in sediment thickness plays an important role in generating785

the different styles of topography north and south of the Shillong Plateau.786
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Figure 1. Schematic showing the two-dimensional theoretical model for the cross-section of a fold-

thrust belt with the physical parameters in the system defined as topographic height h, plate deflection

s, lateral extent xN , incoming sediment thickness Ts, sediment and mantle densities ρ and ρm, and

viscosity η, and underthrusting plate with elastic thickness Te and convergence velocity U .
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Figure 2. Regime plot. Graph of horizontal extent xN plotted against maximum vertical topographic

height h0 normalised by the sediment thickness above z = 0, H∞/(1+λ), for seven different numerical

simulations for different values of parameters H∞ and λ, and hence ΛC , see legend. (i-iv) Schematics

of different regimes of propagation: (i) Early-time regime, (ii) intermediate regime along Path 1, where

gravitational spreading dominates, (iii) intermediate regime along Path 2, where vertical thickening

due to advection of sediment dominates, and (iv) late-time regime. The red star, purple triangle, orange

square and pink diamond refer to specific examples of wedges in each regime as described in section 4.3.

The black hexagram labelled ‘M’ refers to the Makran accretionary prism, see section 5.1.
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Figure 3. (a) Plot of profiles of the topographic height (blue lines) and plate deflection (red lines)

for a wedge evolving along Path 1 with parameters H∞ = 3.2, λ = 3.0, ΛC = 14.5 for t = 5 ×

10−4, 10−3...102, where (b) (inset) is a zoom in of profiles at early times for t ≤ 10−1. (c) Log-log plot

of the maximum topographic height h0 (blue squares) and maximum plate deflection s0 (red triangles)

against time for each profile shown in (a–b). The dotted and dashed lines plot the early- and late-time

solutions respectively for the maximum topographic height (blue) and the maximum plate deflection

(red). The intermediate solution is given by the green dashed line. See legend for more details. (d–f)

Same as (a–c) but for evolution along Path 2 with parameters H∞ = 0.4, λ = 3.0, ΛC = 0.03, where

(e) (inset) is a zoom in of profiles at early times for t ≤ 1.
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Figure 4. Dimensional plot of the growth of a fold-thrust belt considering the effects of increasing

sediment thickness Ts and elastic thickness Te. (a–c) Evolution of a wedge for t = 5 − 50 Myr and

sediment thicknesses Ts = 2, 4, 10 km respectively in isostatic balance with no elastic thickness (Te =

0 km). (d–f) Evolution of a wedge with the same sediment thicknesses as plots (a–c) but with elastic

thickness Te = 20 km (Young’s modulus E = 1011 Pa, Poisson’s ratio ν = 0.25). In both cases, all

other parameters remain the same with convergence velocity U = 4 mm yr−1, viscosity η = 1020 Pas,

sediment and underlying mantle densities ρ = 2400 kg m−3, ρm = 3300kg m−3.
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Figure 5. (a) Map of the Makran with cross sections at 59.5◦E, 61◦E and 63◦E marked by red,

green and blue boxes respectively. Dashed lines indicate the region over which profile is averaged.

The Jaz Murian and Maskel depressions are marked by ‘JM’ and ‘M’. (b) Averaged topographic

profiles using a 10 km Gaussian filter plotted from north to south. (c) Sediment-basement interface

from seismic reflection data at 62.9◦E (solid black line, Kopp et al. 2000) and inferred subduction

interface at 62◦E Penney et al. (2017) based on the location of earthquakes interpreted as occurring

on the subduction interface or within the subducting plate (blue dots).
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Figure 6. (a) Numerical profiles of the topography and sediment-basement interface for isostatic

model with Te = 0 km (red lines) and flexural model with Te = 20 km (blue lines) for t = 10, 20, 30, 40

and 50 Myr. (Sediment thickness Ts = 7 km, convergence velocity U = 25 mm yr−1, viscosity η =

1.1 × 1020 Pas, and sediment and underlying mantle densities ρ = 2750 kg m−3, ρm = 3300 kg m−3,

density ratio λ = 5.0). (b) Isostatic model with Te = 0 km for t = 42 Myr (red line) plotted against

data for topography and sediment-basement interface (solid black line with open circles). (c) Flexural

model with Te = 20 km for t = 42 Myr (blue line) plotted against data for topography and sediment-

basement interface (solid black line with open circles).
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Figure 7. (a) Map of the Indo-Burman Ranges with cross-sections through the northern (blue line)

and southern (red line) portion of the range. Dashed lines indicate the region over which the profile

is averaged. The Shillong Plateau is marked by ‘SP’, the Mikir Hills by ‘M’, and the Surma Basin by

‘SB’. Estimate of location of the backstop given by the black dashed line. (b) Averaged topographic

profile using a 10 km Gaussian filter along the northern cross-section (blue line) with error bar of

one standard deviation. Grey shaded area indicates estimate of the backstop. (c) Same as (b) for the

southern cross-section.
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Figure 8. (a) Numerical profiles of the topography for sediment thicknesses Ts(north) = 2.2 km (solid

blue lines) and Ts(south) = 5.0 km (solid red lines) for t = 10, 20, 30, 40 and 50 Myr. (Convergence

velocity U = 3.8 mm yr−1, viscosity η = 5.0× 1019 Pas, and sediment and underlying mantle densities

ρ = 2400 kg m−3, ρm = 3300 kg m−3, density ratio λ = 2.7). (b) Numerical profile with Ts(north) =

2.2 km for t = 30 Myr (solid blue line) plotted against topographic data for northern cross section of

Indo-Burman Range (solid black line with open circles). (c) Numerical profile with Ts(south) = 5.0 km

for t = 30 Myr (solid red line) plotted against topographic data for southern cross section of Indo-

Burman Range (solid black line with open circles). All models are in isostatic balance with Te = 0 km.
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