Faltings's Theorem and Isolated Points

Kenji Terao

July 30, 2024

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Faltings's theorem

Theorem (Faltings, 1983)

Let K be a number field, and let C be a non-singular algebraic curve defined over K of genus $g \geq 2$. Then $C(K)$ is finite.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Faltings's theorem

Theorem (Faltings, 1983)

Let K be a number field, and let C be a non-singular algebraic curve defined over K of genus $g > 2$. Then $C(K)$ is finite.

Theorem (Faltings, 1991)

Let K be a number field, A an abelian variety defined over K, and $X \subset A$ a closed subvariety. Then there exist finitely many translates $X_i = x_i + B_i$ of abelian subvarieties $B_i \subset A$ such that $X_i \subset X$, and

$$
X(K)=\bigcup_{i=1}^n X_i(K).
$$

KORKARYKERKER POLO

Jacobians

Let K be a number field, C/K be a non-singular algebraic curve of genus g, and let $x \in C(K)$.

Jacobians

Let K be a number field, C/K be a non-singular algebraic curve of genus g, and let $x \in C(K)$.

Let J_C be the Jacobian of C. This is a g-dimensional abelian variety defined over K parametrizing degree 0 divisors on C up to linear equivalence:

 $J_C(L) = {L$ -rational degree 0 divisors on C }/ ∼,

KORKAR KERKER SAGA

for all field extensions L/K .

Jacobians

Let K be a number field, C/K be a non-singular algebraic curve of genus g, and let $x \in C(K)$.

Let J_C be the Jacobian of C. This is a g-dimensional abelian variety defined over K parametrizing degree 0 divisors on C up to linear equivalence:

 $J_C(L) = {L$ -rational degree 0 divisors on C }/ ∼,

for all field extensions L/K .

Let $A_C: C \rightarrow J_C$ be the Abel-Jacobi map, defined as follows:

$$
A_C : C(L) \to J_C(L)
$$

$$
y \mapsto [y - x],
$$

KORKAR KERKER SAGA

for all field extensions L/K .

Suppose that $C(K)$ is infinite.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Suppose that $C(K)$ is infinite.

▶ Suppose that A_C is not an embedding, so $\exists y \neq z \in C(\overline{K})$ such that

$$
A_C(y)=A_C(z)
$$

Suppose that $C(K)$ is infinite.

▶ Suppose that A_C is not an embedding, so $\exists y \neq z \in C(\overline{K})$ such that

$$
A_C(y) = A_C(z) \implies (y - x) \sim (z - x)
$$

Suppose that $C(K)$ is infinite.

▶ Suppose that A_C is not an embedding, so $\exists y \neq z \in C(\overline{K})$ such that

$$
A_C(y) = A_C(z) \implies (y - x) \sim (z - x) \implies y \sim z.
$$

Suppose that $C(K)$ is infinite.

▶ Suppose that A_C is not an embedding, so $\exists y \neq z \in C(\overline{K})$ such that

$$
A_C(y) = A_C(z) \implies (y - x) \sim (z - x) \implies y \sim z.
$$

KORKARYKERKER POLO

So C has genus 0.

▶ Otherwise, $C \hookrightarrow J_C$ is a closed subvariety of the abelian variety J_C .

Suppose that $C(K)$ is infinite.

▶ Suppose that A_C is not an embedding, so $\exists y \neq z \in C(\overline{K})$ such that

$$
A_C(y) = A_C(z) \implies (y - x) \sim (z - x) \implies y \sim z.
$$

So C has genus 0.

▶ Otherwise, $C \hookrightarrow J_C$ is a closed subvariety of the abelian variety J_C . By Faltings's theorem, $\exists X_i = x_i + B_i$ such that $X_i \subset C$ and

$$
C(K)=\bigcup_{i=1}^n X_i(K).
$$

KORKARYKERKER POLO

Suppose that $C(K)$ is infinite.

▶ Suppose that A_C is not an embedding, so $\exists v \neq z \in C(\overline{K})$ such that

$$
A_C(y) = A_C(z) \implies (y - x) \sim (z - x) \implies y \sim z.
$$

So C has genus 0.

▶ Otherwise, $C \hookrightarrow J_C$ is a closed subvariety of the abelian variety J_C . By Faltings's theorem, $\exists X_i = x_i + B_i$ such that $X_i \subset C$ and

$$
C(K)=\bigcup_{i=1}^n X_i(K).
$$

As $C(K)$ is infinite, $\exists B_i$ of dimension 1, ie. an elliptic curve.

Suppose that $C(K)$ is infinite.

▶ Suppose that A_C is not an embedding, so $\exists y \neq z \in C(\overline{K})$ such that

$$
A_C(y) = A_C(z) \implies (y - x) \sim (z - x) \implies y \sim z.
$$

So C has genus 0.

▶ Otherwise, $C \hookrightarrow J_C$ is a closed subvariety of the abelian variety J_C . By Faltings's theorem, $\exists X_i = x_i + B_i$ such that $X_i \subset C$ and

$$
C(K)=\bigcup_{i=1}^n X_i(K).
$$

As $C(K)$ is infinite, $\exists B_i$ of dimension 1, ie. an elliptic curve. Since $X_i \subset C$ and C is non-singular, $X_i = C$.

Suppose that $C(K)$ is infinite.

▶ Suppose that A_C is not an embedding, so $\exists y \neq z \in C(\overline{K})$ such that

$$
A_C(y) = A_C(z) \implies (y - x) \sim (z - x) \implies y \sim z.
$$

So C has genus 0.

▶ Otherwise, $C \hookrightarrow J_C$ is a closed subvariety of the abelian variety J_C . By Faltings's theorem, $\exists X_i = x_i + B_i$ such that $X_i \subset C$ and

$$
C(K)=\bigcup_{i=1}^n X_i(K).
$$

As $C(K)$ is infinite, $\exists B_i$ of dimension 1, ie. an elliptic curve. Since $X_i \subset C$ and C is non-singular, $X_i = C$. So C has genus 1.

What about $C(L)$, for any finite extension L/K ?

KE K K Ø K K E K K E K V R K K K K K K K K

What about $C(L)$, for any finite extension L/K ? A: Finite if $g \geq 2$, by Faltings's theorem.

KO KKOKKEKKEK E DAG

What next?

What about $C(L)$, for any finite extension L/K ? A: Finite if $g \geq 2$, by Faltings's theorem.

What about

$$
\Sigma^d = \{y \in C : [K(y) : K] = d\},\
$$

for $d > 2$?

Let $d \geq 1$. The d-th symmetric power of C is

$$
C^{(d)}=C^d/S_d.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Let $d \geq 1$. The d-th symmetric power of C is

$$
C^{(d)}=C^d/S_d.
$$

For any field extension L/K ,

$$
C^{(d)}(L) = \{ \text{unordered tuples } (x_1, \ldots, x_d) \in C^d(\overline{K}) \}^{\text{Gal}(\overline{K}/L)}
$$

Let $d \geq 1$. The d-th symmetric power of C is

$$
C^{(d)}=C^d/S_d.
$$

For any field extension L/K ,

$$
C^{(d)}(L) = \{\text{unordered tuples } (x_1, \ldots, x_d) \in C^d(\overline{K})\}^{\text{Gal}(\overline{K}/L)}
$$

= $\{L\text{-rational degree } d \text{ effective divisors on } C\}.$

Let $d > 1$. The d-th symmetric power of C is

$$
C^{(d)}=C^d/S_d.
$$

For any field extension L/K ,

$$
C^{(d)}(L) = \{\text{unordered tuples } (x_1, \ldots, x_d) \in C^d(\overline{K})\}^{\text{Gal}(\overline{K}/L)}
$$

= $\{L\text{-rational degree } d \text{ effective divisors on } C\}.$

There is a map $\phi_{\bm d}:C^{(\bm d)}\rightarrow J_C$ given by

$$
\phi_d: \qquad C^{(d)}(L) \to J_C(L)
$$

$$
(x_1 + \cdots + x_d) \mapsto [x_1 + \cdots + x_d - dx].
$$

Suppose that $\Sigma^d = \{y \in C : [K(y) : K] = d\}$ is infinite. Note that $\Sigma^d\hookrightarrow \mathcal{C}^{(d)}(\mathcal{K}).$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Suppose that $\Sigma^d = \{y \in C : [K(y) : K] = d\}$ is infinite. Note that $\Sigma^d \hookrightarrow \mathit{C}^{(d)}(\mathit{K}).$ Then either

1. $\exists y \neq z \in \Sigma^d$ such that $\phi_d(y) = \phi_d(z)$,

Suppose that $\Sigma^d = \{y \in C : [K(y) : K] = d\}$ is infinite. Note that $\Sigma^d \hookrightarrow \mathit{C}^{(d)}(\mathit{K}).$ Then either

1. $\exists y \neq z \in \Sigma^d$ such that $\phi_d(y) = \phi_d(z)$,

2. $(\text{im } \phi_d)(K)$ is infinite. By Faltings's theorem, \exists positive rank abelian subvariety $A\subset J_C$ and $\mathcal{y}\in \Sigma^d$ such that

 $\phi_d(v) + A \subset \text{im } \phi_d$.

Suppose that $\Sigma^d = \{y \in C : [K(y) : K] = d\}$ is infinite. Note that $\Sigma^d \hookrightarrow \mathit{C}^{(d)}(\mathit{K}).$ Then either

1. $\exists y \neq z \in \Sigma^d$ such that $\phi_d(y) = \phi_d(z)$,

2. (im ϕ_d)(K) is infinite. By Faltings's theorem, \exists positive rank abelian subvariety $A\subset J_C$ and $\mathcal{y}\in \Sigma^d$ such that

$$
\phi_d(y)+A\subset \text{im }\phi_d.
$$

KORKAR KERKER SAGA

These are sufficient conditions for Σ^d to be infinite!

Suppose that $\Sigma^d = \{y \in C : [K(y) : K] = d\}$ is infinite. Note that $\Sigma^d \hookrightarrow \mathit{C}^{(d)}(\mathit{K}).$ Then either

- 1. $\exists y \neq z \in \Sigma^d$ such that $\phi_d(y) = \phi_d(z)$, \implies ∃ infinitely many $z \in \Sigma^d$ such that $\phi_d(y) = \phi_d(z)$.
- 2. (im ϕ_d)(K) is infinite. By Faltings's theorem, \exists positive rank abelian subvariety $A\subset J_C$ and $\mathcal{y}\in \Sigma^d$ such that

$$
\phi_d(y)+A\subset \text{im }\phi_d.
$$

YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + 4 D + + E + + D + + E + + O + O + + + + + + + +

These are sufficient conditions for Σ^d to be infinite!

Suppose that $\Sigma^d = \{y \in C : [K(y) : K] = d\}$ is infinite. Note that $\Sigma^d \hookrightarrow \mathit{C}^{(d)}(\mathit{K}).$ Then either

- 1. $\exists y \neq z \in \Sigma^d$ such that $\phi_d(y) = \phi_d(z)$, \implies ∃ infinitely many $z \in \Sigma^d$ such that $\phi_d(y) = \phi_d(z)$.
- 2. $(\text{im } \phi_d)(K)$ is infinite. By Faltings's theorem, \exists positive rank abelian subvariety $A\subset J_C$ and $\mathcal{y}\in \Sigma^d$ such that

$$
\phi_d(y)+A\subset \text{im }\phi_d.
$$

YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + 4 D + + E + + D + + E + + O + O + + + + + + + +

 \implies \exists infinitely many $z \in \Sigma^d$ such that $\phi_d(z) \in \phi_d(y) + A.$ These are sufficient conditions for Σ^d to be infinite!

Isolated points

Definition

Let $y \in \Sigma^d$ be a degree d point. We say that

▶ y is \mathbb{P}^1 -parametrized if $\exists z \neq y \in \Sigma^d$ such that $\phi_d(y) = \phi_d(z)$.

KORKAR KERKER ORA

- ▶ y is AV-parametrized if ∃ positive rank abelian subvariety $A \subset J_C$ such that $\phi_d(y) + A \subset \text{im } \phi_d$.
- \blacktriangleright y is *isolated* if it is neither \mathbb{P}^1 nor AV-parametrized.

Isolated points

Definition

Let $y \in \Sigma^d$ be a degree d point. We say that

- ▶ y is \mathbb{P}^1 -parametrized if $\exists z \neq y \in \Sigma^d$ such that $\phi_d(y) = \phi_d(z)$.
- ▶ y is AV-parametrized if ∃ positive rank abelian subvariety $A \subset J_C$ such that $\phi_d(v) + A \subset \text{im } \phi_d$.
- \blacktriangleright y is *isolated* if it is neither \mathbb{P}^1 nor AV-parametrized.

Theorem

 Σ^d is infinite if and only if there exists a non-isolated point $\mathsf{y} \in \Sigma^d$.

KORKAR KERKER ORA

Let $n > 3$. Consider the modular curve $X_1(n)$, which parametrizes elliptic curves with a point of order n , i.e.

 $X_1(n)(L) = \{ (E, P) : E/L \text{ elliptic curve}, P \in E(L) \text{ of order } n \}.$

Let $n > 3$. Consider the modular curve $X_1(n)$, which parametrizes elliptic curves with a point of order n , i.e.

 $X_1(n)(L) = \{ (E, P) : E/L \text{ elliptic curve}, P \in E(L) \text{ of order } n \}.$

An isolated point on $X_1(n)$ of degree d corresponds to an "exceptional" elliptic curve with point of order n defined over a number field of degree d.

Let $n > 3$. Consider the modular curve $X_1(n)$, which parametrizes elliptic curves with a point of order n , i.e.

 $X_1(n)(L) = \{(E, P) : E/L$ elliptic curve, $P \in E(L)$ of order n.

An isolated point on $X_1(n)$ of degree d corresponds to an "exceptional" elliptic curve with point of order n defined over a number field of degree d.

Theorem

Let E be an elliptic curve defined over a cubic field K, and let $P \in E_{tors}(K)$. Then ord $(P) \in \{1, \ldots, 16, 18, 20\}$, each of which occurs infinitely often, or $\text{ord}(P) = 21$, $K = \mathbb{Q}(\zeta_9)^+$ and

$$
E: y^2 + xy + y = x^3 - x^2 - 5x + 5.
$$

More generally, let $H \leq GL_2(\mathbb{Z}/n\mathbb{Z})$, for some $n \geq 1$, with $-I \in H$. There exists a modular curve X_H which parametrizes elliptic curves with mod *n* Galois representation contained in H.

More generally, let $H \leq GL_2(\mathbb{Z}/n\mathbb{Z})$, for some $n \geq 1$, with $-I \in H$. There exists a modular curve X_H which parametrizes elliptic curves with mod n Galois representation contained in H . In other words,

$$
X_H(L) = \{E/L : \overline{\rho}_{E,n}(\text{Gal}(\overline{\mathbb{Q}}/L)) \leq H\}/\sim.
$$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

More generally, let $H \leq GL_2(\mathbb{Z}/n\mathbb{Z})$, for some $n \geq 1$, with $-I \in H$. There exists a modular curve X_H which parametrizes elliptic curves with mod n Galois representation contained in H . In other words,

$$
X_H(L) = \{E/L : \overline{\rho}_{E,n}(\text{Gal}(\overline{\mathbb{Q}}/L)) \leq H\}/\sim.
$$

An isolated point on X_H corresponds to an "exceptional" elliptic curve with given Galois representation.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

More generally, let $H \leq GL_2(\mathbb{Z}/n\mathbb{Z})$, for some $n \geq 1$, with $-I \in H$. There exists a modular curve X_H which parametrizes elliptic curves with mod n Galois representation contained in H . In other words,

$$
X_H(L) = \{E/L : \overline{\rho}_{E,n}(\text{Gal}(\overline{\mathbb{Q}}/L)) \leq H\}/\sim.
$$

An isolated point on X_H corresponds to an "exceptional" elliptic curve with given Galois representation.

Conjecture (Serre's uniformity conjecture)

Let E be an elliptic curve defined over Q, and let $p > 37$ be prime. Then $\overline{\rho}_{E,n}(\textsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})) = \textsf{GL}_2(\mathbb{Z}/p\mathbb{Z})$.

KORKAR KERKER ORA

More generally, let $H \leq GL_2(\mathbb{Z}/n\mathbb{Z})$, for some $n \geq 1$, with $-I \in H$. There exists a modular curve X_H which parametrizes elliptic curves with mod n Galois representation contained in H . In other words,

$$
X_H(L) = \{E/L : \overline{\rho}_{E,n}(\text{Gal}(\overline{\mathbb{Q}}/L)) \leq H\}/\sim.
$$

An isolated point on X_H corresponds to an "exceptional" elliptic curve with given Galois representation.

Conjecture (Serre's uniformity conjecture)

Let E be an elliptic curve defined over Q, and let $p > 37$ be prime. Then $\overline{\rho}_{E,n}(\textsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})) = \textsf{GL}_2(\mathbb{Z}/p\mathbb{Z})$.

Equivalently,

Conjecture

Let $p > 37$ be prime. Then $X_{ns}(p)$ has no isolated points of degree 1.

KORKAR KERKER ORA