Faltings's Theorem and Isolated Points

Kenji Terao

July 30, 2024

(ロ)、(型)、(E)、(E)、 E) の(()

Faltings's theorem

Theorem (Faltings, 1983)

Let K be a number field, and let C be a non-singular algebraic curve defined over K of genus $g \ge 2$. Then C(K) is finite.

Faltings's theorem

Theorem (Faltings, 1983)

Let K be a number field, and let C be a non-singular algebraic curve defined over K of genus $g \ge 2$. Then C(K) is finite.

Theorem (Faltings, 1991)

Let K be a number field, A an abelian variety defined over K, and $X \subset A$ a closed subvariety. Then there exist finitely many translates $X_i = x_i + B_i$ of abelian subvarieties $B_i \subset A$ such that $X_i \subset X$, and

$$X(K) = \bigcup_{i=1}^n X_i(K).$$

Jacobians

Let K be a number field, C/K be a non-singular algebraic curve of genus g, and let $x \in C(K)$.

Jacobians

Let K be a number field, C/K be a non-singular algebraic curve of genus g, and let $x \in C(K)$.

Let J_C be the Jacobian of C. This is a g-dimensional abelian variety defined over K parametrizing degree 0 divisors on C up to linear equivalence:

 $J_C(L) = \{L$ -rational degree 0 divisors on $C\}/\sim$,

for all field extensions L/K.

Jacobians

Let K be a number field, C/K be a non-singular algebraic curve of genus g, and let $x \in C(K)$.

Let J_C be the Jacobian of C. This is a g-dimensional abelian variety defined over K parametrizing degree 0 divisors on C up to linear equivalence:

 $J_C(L) = \{L \text{-rational degree 0 divisors on } C\} / \sim$,

for all field extensions L/K.

Let $A_C : C \rightarrow J_C$ be the Abel-Jacobi map, defined as follows:

$$egin{aligned} \mathcal{A}_{\mathcal{C}} &: \mathcal{C}(L)
ightarrow \mathcal{J}_{\mathcal{C}}(L) \ & y \mapsto [y-x], \end{aligned}$$

for all field extensions L/K.

Suppose that C(K) is infinite.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Suppose that C(K) is infinite.

Suppose that A_C is not an embedding, so $\exists y \neq z \in C(\overline{K})$ such that

$$A_C(y) = A_C(z)$$

Suppose that C(K) is infinite.

Suppose that A_C is not an embedding, so $\exists y \neq z \in C(\overline{K})$ such that

$$A_C(y) = A_C(z) \implies (y-x) \sim (z-x)$$

Suppose that C(K) is infinite.

Suppose that A_C is not an embedding, so $\exists y \neq z \in C(\overline{K})$ such that

$$A_C(y) = A_C(z) \implies (y-x) \sim (z-x) \implies y \sim z.$$

Suppose that C(K) is infinite.

Suppose that A_C is not an embedding, so $\exists y \neq z \in C(\overline{K})$ such that

$$A_C(y) = A_C(z) \implies (y-x) \sim (z-x) \implies y \sim z.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

So C has genus 0.

Otherwise, C → J_C is a closed subvariety of the abelian variety J_C.

Suppose that C(K) is infinite.

Suppose that A_C is not an embedding, so $\exists y \neq z \in C(\overline{K})$ such that

$$A_C(y) = A_C(z) \implies (y-x) \sim (z-x) \implies y \sim z.$$

So C has genus 0.

Otherwise, C → J_C is a closed subvariety of the abelian variety J_C. By Faltings's theorem, ∃X_i = x_i + B_i such that X_i ⊂ C and

(

$$C(K) = \bigcup_{i=1}^{n} X_i(K).$$

Suppose that C(K) is infinite.

Suppose that A_C is not an embedding, so $\exists y \neq z \in C(\overline{K})$ such that

$$A_C(y) = A_C(z) \implies (y-x) \sim (z-x) \implies y \sim z.$$

So C has genus 0.

Otherwise, C → J_C is a closed subvariety of the abelian variety J_C. By Faltings's theorem, ∃X_i = x_i + B_i such that X_i ⊂ C and

$$C(K) = \bigcup_{i=1}^n X_i(K).$$

As C(K) is infinite, $\exists B_j$ of dimension 1, ie. an elliptic curve.

Suppose that C(K) is infinite.

Suppose that A_C is not an embedding, so $\exists y \neq z \in C(\overline{K})$ such that

$$A_C(y) = A_C(z) \implies (y-x) \sim (z-x) \implies y \sim z.$$

So C has genus 0.

Otherwise, C → J_C is a closed subvariety of the abelian variety J_C. By Faltings's theorem, ∃X_i = x_i + B_i such that X_i ⊂ C and

$$C(K) = \bigcup_{i=1}^n X_i(K).$$

As C(K) is infinite, $\exists B_j$ of dimension 1, ie. an elliptic curve. Since $X_j \subset C$ and C is non-singular, $X_j = C$.

Suppose that C(K) is infinite.

Suppose that A_C is not an embedding, so $\exists y \neq z \in C(\overline{K})$ such that

$$A_C(y) = A_C(z) \implies (y-x) \sim (z-x) \implies y \sim z.$$

So C has genus 0.

Otherwise, C → J_C is a closed subvariety of the abelian variety J_C. By Faltings's theorem, ∃X_i = x_i + B_i such that X_i ⊂ C and

$$C(K) = \bigcup_{i=1}^n X_i(K).$$

As C(K) is infinite, $\exists B_j$ of dimension 1, ie. an elliptic curve. Since $X_j \subset C$ and C is non-singular, $X_j = C$. So C has genus 1. What about C(L), for any finite extension L/K?

What about C(L), for any finite extension L/K? A: Finite if $g \ge 2$, by Faltings's theorem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

What next?

What about C(L), for any finite extension L/K? A: Finite if $g \ge 2$, by Faltings's theorem.

What about

$$\Sigma^d = \left\{ y \in C : \left[K(y) : K \right] = d \right\},\,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

for $d \ge 2$?

Let $d \ge 1$. The *d*-th symmetric power of *C* is

$$C^{(d)} = C^d / S_d.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let $d \ge 1$. The *d*-th symmetric power of *C* is

$$C^{(d)}=C^d/S_d.$$

For any field extension L/K,

 $C^{(d)}(L) = \{ \text{unordered tuples } (x_1, \dots, x_d) \in C^d(\overline{K}) \}^{\mathsf{Gal}(\overline{K}/L)}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $d \ge 1$. The *d*-th symmetric power of *C* is

$$C^{(d)}=C^d/S_d.$$

For any field extension L/K,

$$C^{(d)}(L) = \{ \text{unordered tuples } (x_1, \dots, x_d) \in C^d(\overline{K}) \}^{\mathsf{Gal}(\overline{K}/L)} \\ = \{ L \text{-rational degree } d \text{ effective divisors on } C \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Let $d \ge 1$. The *d*-th symmetric power of *C* is

$$C^{(d)}=C^d/S_d.$$

For any field extension L/K,

 $C^{(d)}(L) = \{ \text{unordered tuples } (x_1, \dots, x_d) \in C^d(\overline{K}) \}^{\text{Gal}(\overline{K}/L)} \\ = \{ L \text{-rational degree } d \text{ effective divisors on } C \}.$

There is a map $\phi_d : C^{(d)} \to J_C$ given by

$$\phi_d: \qquad C^{(d)}(L) \to J_C(L)$$

 $(x_1 + \cdots + x_d) \mapsto [x_1 + \cdots + x_d - dx].$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへぐ

Suppose that $\Sigma^d = \{y \in C : [K(y) : K] = d\}$ is infinite. Note that $\Sigma^d \hookrightarrow C^{(d)}(K)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose that $\Sigma^d = \{y \in C : [K(y) : K] = d\}$ is infinite. Note that $\Sigma^d \hookrightarrow C^{(d)}(K)$. Then either

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

1. $\exists y \neq z \in \Sigma^d$ such that $\phi_d(y) = \phi_d(z)$,

Suppose that $\Sigma^d = \{y \in C : [K(y) : K] = d\}$ is infinite. Note that $\Sigma^d \hookrightarrow C^{(d)}(K)$. Then either

1. $\exists y \neq z \in \Sigma^d$ such that $\phi_d(y) = \phi_d(z)$,

2. $(\operatorname{im} \phi_d)(K)$ is infinite. By Faltings's theorem, \exists positive rank abelian subvariety $A \subset J_C$ and $y \in \Sigma^d$ such that

 $\phi_d(y) + A \subset \operatorname{im} \phi_d.$

Suppose that $\Sigma^d = \{y \in C : [K(y) : K] = d\}$ is infinite. Note that $\Sigma^d \hookrightarrow C^{(d)}(K)$. Then either

1. $\exists y \neq z \in \Sigma^d$ such that $\phi_d(y) = \phi_d(z)$,

2. $(\operatorname{im} \phi_d)(K)$ is infinite. By Faltings's theorem, \exists positive rank abelian subvariety $A \subset J_C$ and $y \in \Sigma^d$ such that

$$\phi_d(y) + A \subset \operatorname{im} \phi_d.$$

These are sufficient conditions for Σ^d to be infinite!

Suppose that $\Sigma^d = \{y \in C : [K(y) : K] = d\}$ is infinite. Note that $\Sigma^d \hookrightarrow C^{(d)}(K)$. Then either

- 1. $\exists y \neq z \in \Sigma^d$ such that $\phi_d(y) = \phi_d(z)$, $\implies \exists$ infinitely many $z \in \Sigma^d$ such that $\phi_d(y) = \phi_d(z)$.
- 2. $(\operatorname{im} \phi_d)(K)$ is infinite. By Faltings's theorem, \exists positive rank abelian subvariety $A \subset J_C$ and $y \in \Sigma^d$ such that

$$\phi_d(y) + A \subset \operatorname{im} \phi_d.$$

These are sufficient conditions for Σ^d to be infinite!

Suppose that $\Sigma^d = \{y \in C : [K(y) : K] = d\}$ is infinite. Note that $\Sigma^d \hookrightarrow C^{(d)}(K)$. Then either

- 1. $\exists y \neq z \in \Sigma^d$ such that $\phi_d(y) = \phi_d(z)$, $\implies \exists$ infinitely many $z \in \Sigma^d$ such that $\phi_d(y) = \phi_d(z)$.
- 2. $(\operatorname{im} \phi_d)(K)$ is infinite. By Faltings's theorem, \exists positive rank abelian subvariety $A \subset J_C$ and $y \in \Sigma^d$ such that

$$\phi_d(\mathbf{y}) + \mathbf{A} \subset \operatorname{im} \phi_d.$$

 $\implies \exists \text{ infinitely many } z \in \Sigma^d \text{ such that } \phi_d(z) \in \phi_d(y) + A.$ These are sufficient conditions for Σ^d to be infinite!

Isolated points

Definition

Let $y \in \Sigma^d$ be a degree d point. We say that

▶ y is \mathbb{P}^1 -parametrized if $\exists z \neq y \in \Sigma^d$ such that $\phi_d(y) = \phi_d(z)$.

- ▶ y is AV-parametrized if \exists positive rank abelian subvariety $A \subset J_C$ such that $\phi_d(y) + A \subset \text{im } \phi_d$.
- y is *isolated* if it is neither \mathbb{P}^1 nor AV-parametrized.

Isolated points

Definition

Let $y \in \Sigma^d$ be a degree d point. We say that

- ▶ y is \mathbb{P}^1 -parametrized if $\exists z \neq y \in \Sigma^d$ such that $\phi_d(y) = \phi_d(z)$.
- ▶ y is AV-parametrized if \exists positive rank abelian subvariety $A \subset J_C$ such that $\phi_d(y) + A \subset \text{im } \phi_d$.
- y is *isolated* if it is neither \mathbb{P}^1 nor AV-parametrized.

Theorem

 Σ^d is infinite if and only if there exists a non-isolated point $y \in \Sigma^d$.

Let $n \ge 3$. Consider the modular curve $X_1(n)$, which parametrizes elliptic curves with a point of order n, i.e.

 $X_1(n)(L) = \{(E, P) : E/L \text{ elliptic curve}, P \in E(L) \text{ of order } n\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $n \ge 3$. Consider the modular curve $X_1(n)$, which parametrizes elliptic curves with a point of order n, i.e.

 $X_1(n)(L) = \{(E, P) : E/L \text{ elliptic curve}, P \in E(L) \text{ of order } n\}.$

An isolated point on $X_1(n)$ of degree d corresponds to an "exceptional" elliptic curve with point of order n defined over a number field of degree d.

Let $n \ge 3$. Consider the modular curve $X_1(n)$, which parametrizes elliptic curves with a point of order n, i.e.

 $X_1(n)(L) = \{(E, P) : E/L \text{ elliptic curve}, P \in E(L) \text{ of order } n\}.$

An isolated point on $X_1(n)$ of degree d corresponds to an "exceptional" elliptic curve with point of order n defined over a number field of degree d.

Theorem

Let E be an elliptic curve defined over a cubic field K, and let $P \in E_{tors}(K)$. Then $ord(P) \in \{1, ..., 16, 18, 20\}$, each of which occurs infinitely often, or ord(P) = 21, $K = \mathbb{Q}(\zeta_9)^+$ and

$$E: y^2 + xy + y = x^3 - x^2 - 5x + 5.$$

More generally, let $H \leq GL_2(\mathbb{Z}/n\mathbb{Z})$, for some $n \geq 1$, with $-I \in H$. There exists a modular curve X_H which parametrizes elliptic curves with mod n Galois representation contained in H.

More generally, let $H \leq GL_2(\mathbb{Z}/n\mathbb{Z})$, for some $n \geq 1$, with $-I \in H$. There exists a modular curve X_H which parametrizes elliptic curves with mod n Galois representation contained in H. In other words,

$$X_H(L) = \{E/L : \overline{\rho}_{E,n}(\operatorname{Gal}(\overline{\mathbb{Q}}/L)) \leq H\}/\sim .$$

More generally, let $H \leq GL_2(\mathbb{Z}/n\mathbb{Z})$, for some $n \geq 1$, with $-I \in H$. There exists a modular curve X_H which parametrizes elliptic curves with mod n Galois representation contained in H. In other words,

$$X_H(L) = \{E/L : \overline{
ho}_{E,n}(\operatorname{Gal}(\overline{\mathbb{Q}}/L)) \leq H\}/\sim .$$

An isolated point on X_H corresponds to an "exceptional" elliptic curve with given Galois representation.

More generally, let $H \leq GL_2(\mathbb{Z}/n\mathbb{Z})$, for some $n \geq 1$, with $-I \in H$. There exists a modular curve X_H which parametrizes elliptic curves with mod n Galois representation contained in H. In other words,

$$X_H(L) = \{E/L : \overline{\rho}_{E,n}(\operatorname{Gal}(\overline{\mathbb{Q}}/L)) \le H\}/\sim .$$

An isolated point on X_H corresponds to an "exceptional" elliptic curve with given Galois representation.

Conjecture (Serre's uniformity conjecture)

Let E be an elliptic curve defined over \mathbb{Q} , and let p > 37 be prime. Then $\overline{\rho}_{E,n}(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})) = \text{GL}_2(\mathbb{Z}/p\mathbb{Z}).$

More generally, let $H \leq GL_2(\mathbb{Z}/n\mathbb{Z})$, for some $n \geq 1$, with $-I \in H$. There exists a modular curve X_H which parametrizes elliptic curves with mod n Galois representation contained in H. In other words,

$$X_H(L) = \{E/L : \overline{
ho}_{E,n}(\operatorname{Gal}(\overline{\mathbb{Q}}/L)) \leq H\}/\sim .$$

An isolated point on X_H corresponds to an "exceptional" elliptic curve with given Galois representation.

Conjecture (Serre's uniformity conjecture)

Let E be an elliptic curve defined over \mathbb{Q} , and let p > 37 be prime. Then $\overline{\rho}_{E,n}(Gal(\overline{\mathbb{Q}}/\mathbb{Q})) = GL_2(\mathbb{Z}/p\mathbb{Z}).$

Equivalently,

Conjecture

Let p > 37 be prime. Then $X_{ns}(p)$ has no isolated points of degree 1.