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Faltings’s theorem

Theorem (Faltings, 1983)

Let K be a number field, and let C be a non-singular algebraic
curve defined over K of genus g ≥ 2. Then C (K ) is finite.

Theorem (Faltings, 1991)

Let K be a number field, A an abelian variety defined over K, and
X ⊂ A a closed subvariety. Then there exist finitely many
translates Xi = xi + Bi of abelian subvarieties Bi ⊂ A such that
Xi ⊂ X, and

X (K ) =
n⋃

i=1

Xi (K ).
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Jacobians

Let K be a number field, C/K be a non-singular algebraic curve of
genus g , and let x ∈ C (K ).

Let JC be the Jacobian of C . This is a g -dimensional abelian
variety defined over K parametrizing degree 0 divisors on C up to
linear equivalence:

JC (L) = {L-rational degree 0 divisors on C}/ ∼,

for all field extensions L/K .

Let AC : C → JC be the Abel-Jacobi map, defined as follows:

AC : C (L) → JC (L)

y 7→ [y − x ],

for all field extensions L/K .
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Proof of Faltings’s theorem

Suppose that C (K ) is infinite.

▶ Suppose that AC is not an embedding, so ∃y ̸= z ∈ C (K )
such that

AC (y) = AC (z) =⇒ (y − x) ∼ (z − x) =⇒ y ∼ z .

So C has genus 0.

▶ Otherwise, C ↪→ JC is a closed subvariety of the abelian
variety JC . By Faltings’s theorem, ∃Xi = xi + Bi such that
Xi ⊂ C and

C (K ) =
n⋃

i=1

Xi (K ).

As C (K ) is infinite, ∃Bj of dimension 1, ie. an elliptic curve.
Since Xj ⊂ C and C is non-singular, Xj = C .
So C has genus 1.
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What next?

What about C (L), for any finite extension L/K?

A: Finite if g ≥ 2, by Faltings’s theorem.

What about
Σd = {y ∈ C : [K (y) : K ] = d} ,

for d ≥ 2?
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Symmetric powers of curves

Let d ≥ 1. The d-th symmetric power of C is

C (d) = Cd/Sd .

For any field extension L/K ,

C (d)(L) = {unordered tuples (x1, . . . , xd) ∈ Cd(K )}Gal(K/L)

= {L-rational degree d effective divisors on C}.

There is a map ϕd : C (d) → JC given by

ϕd : C (d)(L) → JC (L)

(x1 + · · ·+ xd) 7→ [x1 + · · ·+ xd − dx ].
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Proof of Faltings’s theorem (again)

Suppose that Σd = {y ∈ C : [K (y) : K ] = d} is infinite. Note that
Σd ↪→ C (d)(K ).

Then either

1. ∃y ̸= z ∈ Σd such that ϕd(y) = ϕd(z),

=⇒ ∃ infinitely many z ∈ Σd such that ϕd(y) = ϕd(z).

2. (imϕd)(K ) is infinite. By Faltings’s theorem, ∃ positive rank
abelian subvariety A ⊂ JC and y ∈ Σd such that

ϕd(y) + A ⊂ imϕd .

=⇒ ∃ infinitely many z ∈ Σd such that ϕd(z) ∈ ϕd(y) + A.

These are sufficient conditions for Σd to be infinite!
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Isolated points

Definition
Let y ∈ Σd be a degree d point. We say that

▶ y is P1-parametrized if ∃z ̸= y ∈ Σd such that ϕd(y) = ϕd(z).

▶ y is AV-parametrized if ∃ positive rank abelian subvariety
A ⊂ JC such that ϕd(y) + A ⊂ imϕd .

▶ y is isolated if it is neither P1- nor AV-parametrized.

Theorem
Σd is infinite if and only if there exists a non-isolated point y ∈ Σd .
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Isolated points on modular curves

Let n ≥ 3. Consider the modular curve X1(n), which parametrizes
elliptic curves with a point of order n, i.e.

X1(n)(L) = {(E ,P) : E/L elliptic curve,P ∈ E (L) of order n}.

An isolated point on X1(n) of degree d corresponds to an
“exceptional” elliptic curve with point of order n defined over a
number field of degree d .

Theorem
Let E be an elliptic curve defined over a cubic field K, and let
P ∈ Etors(K ). Then ord(P) ∈ {1, . . . , 16, 18, 20}, each of which
occurs infinitely often, or ord(P) = 21, K = Q(ζ9)

+ and

E : y2 + xy + y = x3 − x2 − 5x + 5.
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Isolated points on modular curves

More generally, let H ≤ GL2(Z/nZ), for some n ≥ 1, with −I ∈ H.
There exists a modular curve XH which parametrizes elliptic curves
with mod n Galois representation contained in H.

In other words,

XH(L) = {E/L : ρE ,n(Gal(Q/L)) ≤ H}/ ∼ .

An isolated point on XH corresponds to an “exceptional” elliptic
curve with given Galois representation.

Conjecture (Serre’s uniformity conjecture)

Let E be an elliptic curve defined over Q, and let p > 37 be prime.
Then ρE ,n(Gal(Q/Q)) = GL2(Z/pZ).

Equivalently,

Conjecture

Let p > 37 be prime. Then Xns(p) has no isolated points of degree
1.
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