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Theorem (Faltings, 1991)

Let K be a number field, A an abelian variety defined over K, and
X C A a closed subvariety. Then there exist finitely many
translates X; = x; + B; of abelian subvarieties B; C A such that
X; Cc X, and

n

X(K) = Xi(K).

i=1
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Let K be a number field, C/K be a non-singular algebraic curve of
genus g, and let x € C(K).

Let Jc be the Jacobian of C. This is a g-dimensional abelian
variety defined over K parametrizing degree 0 divisors on C up to
linear equivalence:

Jc(L) = {L-rational degree 0 divisors on C}/ ~,

for all field extensions L/K.

Let Ac : C — Jc be the Abel-Jacobi map, defined as follows:

AC . C(L) — Jc(L)
y = ly —x],

for all field extensions L/K.
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Proof of Faltings's theorem

Suppose that C(K) is infinite.

» Suppose that Ac is not an embedding, so Jy # z € C(K)
such that

Acy)=Ac(z) = (y—x)~(z-x) = y~z

So C has genus 0.

» Otherwise, C < J¢ is a closed subvariety of the abelian
variety Jc. By Faltings’s theorem, 3X; = x; + B; such that
X; C C and

As C(K) is infinite, 3B; of dimension 1, ie. an elliptic curve.
Since X; C C and C is non-singular, X; = C.
So C has genus 1.
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What next?

What about C(L), for any finite extension L/K?
A: Finite if g > 2, by Faltings's theorem.

What about
T ={ye C:[K(y): Kl=d},

for d > 27
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Symmetric powers of curves

Let d > 1. The d-th symmetric power of C is
cd = cd/s,.
For any field extension L/K,

(L) = {unordered tuples (x1,...,xq) € Cd(W)}Ga'(R/L)

= {L-rational degree d effective divisors on C}.

There is a map ¢4 : C(4) — Jc given by

b : CO(L) — Je(L)
(x1 4+ +xq) = [x1+ -+ xqg — dx].
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Proof of Faltings's theorem (again)

Suppose that ¥9 = {y € C : [K(y) : K] = d} is infinite. Note that
¥4 < C(K). Then either

1. dy # z € £9 such that ¢4(y) = ¢a(2),
= 3 infinitely many z € X9 such that ¢4(y) = ¢q4(2).

2. (im ¢4)(K) is infinite. By Faltings's theorem, 3 positive rank
abelian subvariety A C Jc and y € ¥9 such that

¢a(y) + A Cimgq.
= Jinfinitely many z € £9 such that ¢4(z) € ¢4(y) + A.

These are sufficient conditions for ¥ to be infinite!
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Isolated points

Definition
Let y € 9 be a degree d point. We say that
> y is Pl-parametrized if 3z # y € ¥ such that ¢4(y) = ¢4(2).
» y is AV-parametrized if 3 positive rank abelian subvariety
A C Jc such that ¢g4(y) + A C im¢yg.
» v is isolated if it is neither P1- nor AV-parametrized.

Theorem
Y9 is infinite if and only if there exists a non-isolated point y € ¥9.
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elliptic curves with a point of order n, i.e.

X1(n)(L) = {(E, P) : E/L elliptic curve, P € E(L) of order n}.

An isolated point on Xj(n) of degree d corresponds to an
“exceptional” elliptic curve with point of order n defined over a
number field of degree d.

Theorem

Let E be an elliptic curve defined over a cubic field K, and let
P € Eiors(K). Then ord(P) € {1,...,16,18,20}, each of which
occurs infinitely often, or ord(P) =21, K = Q({o)™ and

E:y’4+xy+y=x>—x*>—5x+5.
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More generally, let H < GLy(Z/nZ), for some n > 1, with —/ € H.
There exists a modular curve Xy which parametrizes elliptic curves
with mod n Galois representation contained in H. In other words,

Xu(L) = {E/L: P ,(Gal(Q/L)) < H}/ ~ .

An isolated point on Xy corresponds to an “exceptional” elliptic
curve with given Galois representation.

Conjecture (Serre's uniformity conjecture)

Let E be an elliptic curve defined over Q, and let p > 37 be prime.

Then pi ,(Gal(Q/Q)) = GLa(Z/pZ).
Equivalently,

Conjecture

Let p > 37 be prime. Then Xps(p) has no isolated points of degree
L



