Maps between isolated points on modular curves

Kenji Terao

September 19, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

By Faltings' theorem, there are infinitely many degree d points on a curve C over a number field K if and only if there exists an infinite family parametrized by \mathbb{P}^1 or by some abelian variety.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

By Faltings' theorem, there are infinitely many degree d points on a curve C over a number field K if and only if there exists an infinite family parametrized by \mathbb{P}^1 or by some abelian variety.

An isolated point is one which does not belong to such an infinite family.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Isolated points

Let $f : C \to D$ be a non-constant map of curves, let $x \in C$ be a closed point, and let $y = f(x) \in D$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Isolated points

Let $f : C \to D$ be a non-constant map of curves, let $x \in C$ be a closed point, and let $y = f(x) \in D$.

Theorem (Bourdon, Ejder, Liu, Odumodu, Viray) Suppose that $deg(x) = deg(y) \cdot deg(f)$. If x is isolated, then so is y.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Isolated points

Let $f : C \to D$ be a non-constant map of curves, let $x \in C$ be a closed point, and let $y = f(x) \in D$.

Theorem (Bourdon, Ejder, Liu, Odumodu, Viray) Suppose that $deg(x) = deg(y) \cdot deg(f)$. If x is isolated, then so is y.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem

Suppose that deg(x) = deg(y). If y is isolated, then so is x.

Let $H \leq H' \leq GL_2(\mathbb{Z}/N\mathbb{Z})$, with $-I \in H$, and let $f : X_H \to X_{H'}$ be the natural map of modular curves.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $H \leq H' \leq GL_2(\mathbb{Z}/N\mathbb{Z})$, with $-I \in H$, and let $f : X_H \to X_{H'}$ be the natural map of modular curves.

Let $x = [(E, \alpha)]_H \in X_H$ be a closed point, where $E/\mathbb{Q}(j(E))$ and $j(E) \notin \{0, 1728\}$. Let $y = f(x) = [(E, \alpha)]_{H'} \in X_{H'}$.

Let $H \leq H' \leq GL_2(\mathbb{Z}/N\mathbb{Z})$, with $-I \in H$, and let $f : X_H \to X_{H'}$ be the natural map of modular curves.

Let $x = [(E, \alpha)]_H \in X_H$ be a closed point, where $E/\mathbb{Q}(j(E))$ and $j(E) \notin \{0, 1728\}$. Let $y = f(x) = [(E, \alpha)]_{H'} \in X_{H'}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Write $G = \pm \bar{\rho}_{E,N}(G_{\mathbb{Q}(j(E))})$.

Let $H \leq H' \leq GL_2(\mathbb{Z}/N\mathbb{Z})$, with $-I \in H$, and let $f : X_H \to X_{H'}$ be the natural map of modular curves.

Let $x = [(E, \alpha)]_H \in X_H$ be a closed point, where $E/\mathbb{Q}(j(E))$ and $j(E) \notin \{0, 1728\}$. Let $y = f(x) = [(E, \alpha)]_{H'} \in X_{H'}$.

Write $G = \pm \bar{\rho}_{E,N}(G_{\mathbb{Q}(j(E))}).$

Theorem

- 1. Suppose that $H' = (G \cap H')H$. If x is isolated, then so is y.
- 2. Suppose that $G \cap H' = G \cap H$. If y is isolated, then so is x.

Theorem Let $H \leq GL_2(\mathbb{Z}/N\mathbb{Z})$, with $-I \in H$, and let K be a number field.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem

Let $H \leq GL_2(\mathbb{Z}/N\mathbb{Z})$, with $-I \in H$, and let K be a number field. Let $x = [(E, \alpha)]_H \in X_H$ be a non-CM isolated point with E/K and $\mathbb{Q}(j(E)) = K$. Let $G = \pm \overline{\rho}_{E,N}(G_K)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

Let $H \leq GL_2(\mathbb{Z}/N\mathbb{Z})$, with $-I \in H$, and let K be a number field. Let $x = [(E, \alpha)]_H \in X_H$ be a non-CM isolated point with E/K and $\mathbb{Q}(j(E)) = K$. Let $G = \pm \overline{\rho}_{E,N}(G_K)$.

Then the point $y = [(E, \alpha)]_G \in X_G$ is an isolated K-rational point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem

Let $H \leq GL_2(\mathbb{Z}/N\mathbb{Z})$, with $-I \in H$, and let K be a number field. Let $x = [(E, \alpha)]_H \in X_H$ be a non-CM isolated point with E/K and $\mathbb{Q}(j(E)) = K$. Let $G = \pm \overline{\rho}_{E,N}(G_K)$.

Then the point $y = [(E, \alpha)]_G \in X_G$ is an isolated K-rational point.

Theorem

Let $x \in X_1(2p)$ be a non-CM isolated point with $j(x) \in \mathbb{Q}$. Then p = 37 and $j(x) \in \{-9317, -162677523113838677\}$.