Maps between isolated points on modular curves

Kenji Terao

September 19, 2023

Isolated points

By Faltings' theorem, there are infinitely many degree d points on a curve C over a number field K if and only if there exists an infinite family parametrized by \mathbb{P}^{1} or by some abelian variety.

Isolated points

By Faltings' theorem, there are infinitely many degree d points on a curve C over a number field K if and only if there exists an infinite family parametrized by \mathbb{P}^{1} or by some abelian variety.

An isolated point is one which does not belong to such an infinite family.

Isolated points

Let $f: C \rightarrow D$ be a non-constant map of curves, let $x \in C$ be a closed point, and let $y=f(x) \in D$.

Isolated points

Let $f: C \rightarrow D$ be a non-constant map of curves, let $x \in C$ be a closed point, and let $y=f(x) \in D$.

Theorem (Bourdon, Ejder, Liu, Odumodu, Viray)
Suppose that $\operatorname{deg}(x)=\operatorname{deg}(y) \cdot \operatorname{deg}(f)$. If x is isolated, then so is y.

Isolated points

Let $f: C \rightarrow D$ be a non-constant map of curves, let $x \in C$ be a closed point, and let $y=f(x) \in D$.

Theorem (Bourdon, Ejder, Liu, Odumodu, Viray)
Suppose that $\operatorname{deg}(x)=\operatorname{deg}(y) \cdot \operatorname{deg}(f)$. If x is isolated, then so is y.

Theorem
Suppose that $\operatorname{deg}(x)=\operatorname{deg}(y)$. If y is isolated, then so is x.

Isolated points on modular curves

Let $H \leq H^{\prime} \leq \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, with $-I \in H$, and let $f: X_{H} \rightarrow X_{H^{\prime}}$ be the natural map of modular curves.

Isolated points on modular curves

Let $H \leq H^{\prime} \leq \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, with $-I \in H$, and let $f: X_{H} \rightarrow X_{H^{\prime}}$ be the natural map of modular curves.

Let $x=[(E, \alpha)]_{H} \in X_{H}$ be a closed point, where $E / \mathbb{Q}(j(E))$ and $j(E) \notin\{0,1728\}$. Let $y=f(x)=[(E, \alpha)]_{H^{\prime}} \in X_{H^{\prime}}$.

Isolated points on modular curves

Let $H \leq H^{\prime} \leq \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, with $-I \in H$, and let $f: X_{H} \rightarrow X_{H^{\prime}}$ be the natural map of modular curves.

Let $x=[(E, \alpha)]_{H} \in X_{H}$ be a closed point, where $E / \mathbb{Q}(j(E))$ and $j(E) \notin\{0,1728\}$. Let $y=f(x)=[(E, \alpha)]_{H^{\prime}} \in X_{H^{\prime}}$.

Write $G= \pm \bar{\rho}_{E, N}\left(G_{\mathbb{Q}(j(E))}\right)$.

Isolated points on modular curves

Let $H \leq H^{\prime} \leq \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, with $-I \in H$, and let $f: X_{H} \rightarrow X_{H^{\prime}}$ be the natural map of modular curves.

Let $x=[(E, \alpha)]_{H} \in X_{H}$ be a closed point, where $E / \mathbb{Q}(j(E))$ and $j(E) \notin\{0,1728\}$. Let $y=f(x)=[(E, \alpha)]_{H^{\prime}} \in X_{H^{\prime}}$.

Write $G= \pm \bar{\rho}_{E, N}\left(G_{\mathbb{Q}(j(E))}\right)$.
Theorem

1. Suppose that $H^{\prime}=\left(G \cap H^{\prime}\right) H$. If x is isolated, then so is y.
2. Suppose that $G \cap H^{\prime}=G \cap H$. If y is isolated, then so is x.

Applications

Theorem
Let $H \leq \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, with $-I \in H$, and let K be a number field.

Applications

Theorem
Let $H \leq \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, with $-I \in H$, and let K be a number field. Let $x=[(E, \alpha)]_{H} \in X_{H}$ be a non-CM isolated point with E / K and $\mathbb{Q}(j(E))=K$. Let $G= \pm \bar{\rho}_{E, N}\left(G_{K}\right)$.

Applications

Theorem
Let $H \leq \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, with $-I \in H$, and let K be a number field. Let $x=[(E, \alpha)]_{H} \in X_{H}$ be a non-CM isolated point with E / K and $\mathbb{Q}(j(E))=K$. Let $G= \pm \bar{\rho}_{E, N}\left(G_{K}\right)$.
Then the point $y=[(E, \alpha)]_{G} \in X_{G}$ is an isolated K-rational point.

Applications

Theorem
Let $H \leq \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, with $-I \in H$, and let K be a number field. Let $x=[(E, \alpha)]_{H} \in X_{H}$ be a non-CM isolated point with E / K and $\mathbb{Q}(j(E))=K$. Let $G= \pm \bar{\rho}_{E, N}\left(G_{K}\right)$.
Then the point $y=[(E, \alpha)]_{G} \in X_{G}$ is an isolated K-rational point.
Theorem
Let $x \in X_{1}(2 p)$ be a non-CM isolated point with $j(x) \in \mathbb{Q}$. Then $p=37$ and $j(x) \in\{-9317,-162677523113838677\}$.

