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Isolated points

By Faltings’ theorem, there are infinitely many degree d points on
a curve C over a number field K if and only if there exists an
infinite family parametrized by P1 or by some abelian variety.

An isolated point is one which does not belong to such an infinite
family.
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Isolated points

Let f : C → D be a non-constant map of curves, let x ∈ C be a
closed point, and let y = f (x) ∈ D.

Theorem (Bourdon, Ejder, Liu, Odumodu, Viray)

Suppose that deg(x) = deg(y) · deg(f ). If x is isolated, then so is
y .

Theorem
Suppose that deg(x) = deg(y). If y is isolated, then so is x.
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Isolated points on modular curves

Let H ≤ H ′ ≤ GL2(Z/NZ), with −I ∈ H, and let f : XH → XH′ be
the natural map of modular curves.

Let x = [(E , α)]H ∈ XH be a closed point, where E/Q(j(E )) and
j(E ) /∈ {0, 1728}. Let y = f (x) = [(E , α)]H′ ∈ XH′ .

Write G = ±ρ̄E ,N(GQ(j(E))).

Theorem

1. Suppose that H ′ = (G ∩ H ′)H. If x is isolated, then so is y .

2. Suppose that G ∩ H ′ = G ∩ H. If y is isolated, then so is x.
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Applications

Theorem
Let H ≤ GL2(Z/NZ), with −I ∈ H, and let K be a number field.

Let x = [(E , α)]H ∈ XH be a non-CM isolated point with E/K and
Q(j(E )) = K. Let G = ±ρ̄E ,N(GK ).

Then the point y = [(E , α)]G ∈ XG is an isolated K-rational point.

Theorem
Let x ∈ X1(2p) be a non-CM isolated point with j(x) ∈ Q. Then
p = 37 and j(x) ∈ {−9317,−162677523113838677}.
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