Maps between isolated points on modular curves

Kenji Terao

December 6, 2023

Let C be a curve over a number field K.

Question

When does C have infinitely many points of degree d?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Let C be a curve over a number field K.

Question

When does C have infinitely many points of degree d?

Theorem (Frey, 1994)

C has infinitely many points of degree at most *d* if and only if there is an infinite family of such points parametrized by \mathbb{P}^1 or a positive rank abelian variety.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let C be a curve over a number field K.

Question

When does C have infinitely many points of degree d?

Theorem (Frey, 1994)

C has infinitely many points of degree at most d if and only if

- 1. there exists a map $C \to \mathbb{P}^1$ of degree at most d, or
- 2. the image of the map $C^{(d)} \rightarrow \text{Jac}(C)$ contains a translate of a positive rank abelian variety.

Definition

Let $x \in C$ be a degree d closed point, and $\varphi : C^{(d)} \to \operatorname{Jac}(C)$ denote the map $y \mapsto [y - x]$. We say that

- 1. x is \mathbb{P}^1 -isolated if there does not exist a point $y \neq x \in C^{(d)}$ such that $\varphi(y) = \varphi(x)$.
- 2. x is AV-isolated if there does not exist a positive rank abelian subvariety A of Jac(C) such that $\varphi(x) + A \subseteq \varphi(C^{(d)})$.

3. x is isolated if it is both \mathbb{P}^1 -isolated and AV-isolated.

Definition

Let $x \in C$ be a degree d closed point, and $\varphi : C^{(d)} \to \operatorname{Jac}(C)$ denote the map $y \mapsto [y - x]$. We say that

- 1. x is \mathbb{P}^1 -isolated if there does not exist a point $y \neq x \in C^{(d)}$ such that $\varphi(y) = \varphi(x)$.
- 2. x is AV-isolated if there does not exist a positive rank abelian subvariety A of Jac(C) such that $\varphi(x) + A \subseteq \varphi(C^{(d)})$.
- 3. x is isolated if it is both \mathbb{P}^1 -isolated and AV-isolated.

Theorem (Bourdon, Ejder, Liu, Odumodu, Viray, 2019) *C* has infinitely many points of degree *d* if and only if there is a non-isolated degree *d* point on *C*.

Theorem (Bourdon, Gill, Rouse, Watson, 2020)

Let x be a non-CM, non-cuspidal isolated point of odd degree with rational j-invariant on the modular curve $X_1(N)$, for some $N \ge 1$. Then $j(x) \in \left\{-\frac{140625}{8}, \frac{351}{4}\right\}$.

Theorem (Bourdon, Gill, Rouse, Watson, 2020)

Let x be a non-CM, non-cuspidal isolated point of odd degree with rational j-invariant on the modular curve $X_1(N)$, for some $N \ge 1$. Then $j(x) \in \left\{-\frac{140625}{8}, \frac{351}{4}\right\}$.

Theorem (Ejder, 2022)

Let p > 7 be prime and n be a positive integer. Let x be a non-CM, non-cuspidal isolated point with rational j-invariant on the modular curve $X_1(p^n)$. Then p = 37 and $j(x) \in \{9317, -7 \cdot 137^3 \cdot 2083^3\}$.

Theorem (Bourdon, Ejder, Liu, Odumodu, Viray, 2019)

Let $f : C \to D$ be a non-constant morphism of curves over K. Let $x \in C$ be a closed point and let $y = f(x) \in D$. Suppose that x is isolated and $\deg(x) = \deg(f) \cdot \deg(y)$. Then y is also isolated.

Theorem (Bourdon, Ejder, Liu, Odumodu, Viray, 2019)

Let $f : C \to D$ be a non-constant morphism of curves over K. Let $x \in C$ be a closed point and let $y = f(x) \in D$. Suppose that x is isolated and $\deg(x) = \deg(f) \cdot \deg(y)$. Then y is also isolated.

1. Are there other situations in which this theorem holds?

Theorem (Bourdon, Ejder, Liu, Odumodu, Viray, 2019)

Let $f : C \to D$ be a non-constant morphism of curves over K. Let $x \in C$ be a closed point and let $y = f(x) \in D$. Suppose that x is isolated and $\deg(x) = \deg(f) \cdot \deg(y)$. Then y is also isolated.

1. Are there other situations in which this theorem holds?

2. Can we extend this result to non-geometrically integral curves?

Isolated divisors

Let *C* be a smooth, projective, one-dimensional scheme over a number field *K*. Let $\operatorname{Pic}_{C/K}$ denote the Picard scheme of *C*, and $\operatorname{Pic}_{C/K}^{0}$ be the connected component of the identity. Let $\varphi: C^{(d)} \to \operatorname{Pic}_{C/K}$ be the canonical map given by $\alpha \mapsto [\alpha]$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Isolated divisors

Let *C* be a smooth, projective, one-dimensional scheme over a number field *K*. Let $\operatorname{Pic}_{C/K}$ denote the Picard scheme of *C*, and $\operatorname{Pic}_{C/K}^{0}$ be the connected component of the identity. Let $\varphi: C^{(d)} \to \operatorname{Pic}_{C/K}$ be the canonical map given by $\alpha \mapsto [\alpha]$.

Definition

Let $\alpha \in C^{(d)}$ be an effective degree d divisor on C. We say that

- 1. α is \mathbb{P}^1 -isolated if there does not exist a point $\beta \neq \alpha \in C^{(d)}$ such that $\varphi(\beta) = \varphi(\alpha)$.
- α is AV-isolated if there does not exist a positive rank abelian subvariety A of Pic⁰_{C/K} such that φ(α) + A ⊆ φ(C^(d)).
- 3. α is isolated if it is both \mathbb{P}^1 -isolated and AV-isolated.

Maps between isolated divisors

Theorem

Let $f : C \to D$ be a dominant morphism of smooth, projective, one-dimensional schemes over a number field K. Let $\alpha \in C^{(d)}$ be an effective degree d divisor on C, and $\beta \in D^{(e)}$ be an effective degree e divisor on D.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Maps between isolated divisors

Theorem

Let $f : C \to D$ be a dominant morphism of smooth, projective, one-dimensional schemes over a number field K. Let $\alpha \in C^{(d)}$ be an effective degree d divisor on C, and $\beta \in D^{(e)}$ be an effective degree e divisor on D.

- 1. If $f_*(\alpha)$ is isolated, then α is isolated.
- 2. If $f^*(\beta)$ is isolated, then β is isolated.

Maps between isolated divisors

Theorem

Let $f : C \to D$ be a dominant morphism of smooth, projective, one-dimensional schemes over a number field K. Let $\alpha \in C^{(d)}$ be an effective degree d divisor on C, and $\beta \in D^{(e)}$ be an effective degree e divisor on D.

- 1. If $f_*(\alpha)$ is isolated, then α is isolated.
- 2. If $f^*(\beta)$ is isolated, then β is isolated.

Theorem

Let $f : C \to D$ be as above, $x \in C$ be a degree d closed point, and $y \in D$ be a degree e closed point, with f(x) = y.

- 1. $f_*(x)$ is a closed point (and equal to y) if and only if $\deg(x) = \deg(y)$.
- f*(y) is a closed point (and equal to x) if and only if deg(x) = deg(f) ⋅ deg(y).

Let $H \leq H' \leq GL_2(\mathbb{Z}/N\mathbb{Z})$, with $-I \in H$, and let $f : X_H \to X_{H'}$ be the natural map of modular curves.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Let $H \leq H' \leq GL_2(\mathbb{Z}/N\mathbb{Z})$, with $-I \in H$, and let $f : X_H \to X_{H'}$ be the natural map of modular curves.

Let $x = [(E, \alpha)]_H \in X_H$ be a closed point, where $E/\mathbb{Q}(j(E))$ and $j(E) \notin \{0, 1728\}$. Let $y = f(x) = [(E, \alpha)]_{H'} \in X_{H'}$.

Let $H \leq H' \leq GL_2(\mathbb{Z}/N\mathbb{Z})$, with $-I \in H$, and let $f : X_H \to X_{H'}$ be the natural map of modular curves.

Let $x = [(E, \alpha)]_H \in X_H$ be a closed point, where $E/\mathbb{Q}(j(E))$ and $j(E) \notin \{0, 1728\}$. Let $y = f(x) = [(E, \alpha)]_{H'} \in X_{H'}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Write $G = \pm \bar{\rho}_{E,N}(G_{\mathbb{Q}(j(E))})$.

Let $H \leq H' \leq GL_2(\mathbb{Z}/N\mathbb{Z})$, with $-I \in H$, and let $f : X_H \to X_{H'}$ be the natural map of modular curves.

Let $x = [(E, \alpha)]_H \in X_H$ be a closed point, where $E/\mathbb{Q}(j(E))$ and $j(E) \notin \{0, 1728\}$. Let $y = f(x) = [(E, \alpha)]_{H'} \in X_{H'}$.

Write $G = \pm \bar{\rho}_{E,N}(G_{\mathbb{Q}(j(E))}).$

Theorem

- 1. Suppose that $H' = (G \cap H')H$. If x is isolated, then so is y.
- 2. Suppose that $G \cap H' = G \cap H$. If y is isolated, then so is x.

Theorem Let $H \leq GL_2(\mathbb{Z}/N\mathbb{Z})$, with $-I \in H$, and let K be a number field.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem

Let $H \leq GL_2(\mathbb{Z}/N\mathbb{Z})$, with $-I \in H$, and let K be a number field. Let $x = [(E, \alpha)]_H \in X_H$ be a non-CM, non-cuspidal isolated point with E/K and $\mathbb{Q}(j(E)) = K$. Let $G = \pm \overline{\rho}_{E,N}(G_K)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem

Let $H \leq GL_2(\mathbb{Z}/N\mathbb{Z})$, with $-I \in H$, and let K be a number field. Let $x = [(E, \alpha)]_H \in X_H$ be a non-CM, non-cuspidal isolated point with E/K and $\mathbb{Q}(j(E)) = K$. Let $G = \pm \bar{\rho}_{E,N}(G_K)$.

Then the point $y = [(E, \alpha)]_G \in X_G$ is an isolated K-rational point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem

Let x be a non-CM, non-cuspidal isolated point with rational *j*-invariant on a modular curve X_H of level 7. Then $j(x) = \frac{2268945}{128}$, and one of the rows of the following table holds.

Generators	$\overline{X_H}$	g	deg x
$\begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$	6	3	18
$\begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix}, \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$	3	3	9
	2	3	6
$\begin{bmatrix} 3 & 0 \\ 0 & 6 \end{bmatrix}$	2	3	6
$\begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}$	6	1	6
$\begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$	1	3	3
$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}$	3	1	3
$\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}$	2	1	2
$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 0 \\ 0 & 6 \end{bmatrix}$	1	1	1

Theorem

Let $x \in X_1(2p)$ be a non-CM, non-cuspidal isolated point with rational j-invariant. Then p = 37 and $j(x) \in \{-9317, -7 \cdot 137^3 \cdot 2083^3\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00