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Main idea

Let ∂βt,∞ be the Marchaud derivative (extension of Caputo
derivative, β ∈ (0, 1)).
Consider the extension of Caputo evolution equations with
time-nonlocal initial condition{

∂βt,∞u(t, x) = ∆u(t, x), in (0,T ]× Rd ,

u(t, x) = φ(t, x), in (−∞, 0]× Rd .
(1)

The stochastic representation is

u(t, x) = E
[
φ
(
−W (t),Bx

E(t)

)]
.

Here W (t) is the waiting time of Bx
E(t) (the fractional kinetic

process).
Question: Are time-nonlocal initial conditions meaningful for
applications?
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Caputo evolution equation (EE)

Consider the Caputo evolution equation{
∂βt,0u(t, x) = ∆u(t, x), in (0,T ]× Rd ,

u(0, x) = φ(0, x), in {0} × Rd .
(2)

where the Caputo derivative ∂βt,0, β ∈ (0, 1), is defined as

∂βt,0u(t) : =

∫ t

0
u′(r)

(t − r)−β dr

Γ(1− β)
. (3)

It is well known that the stochastic solution reads
u(t, x) = E[φ(0,Bx

E(t))], where B is a Brownian motion and E (t)

is an independent inverse β-stable subordinator [Saichev, Zaslavsky
’97], [Beaumer, Meerschaert ’01], [Meerschaert, Scheffler ’04].
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Notable properties of the fractional kinetic Yt = Bx
E (t):

1 Universality: Yt is the quenched scaling limit of random
conductance models [Barlow, C̆erný ’11]. Note that Yt is
non-Markovian process (with memory), but it is the limit of
Markovian processes (without memory).

2 Subdiffusion: Mean squared displacement
E[Y 2

t ] = tβ < t = E[B2
t ].

3 A model for trappings: the continuous non-Markovian time
change E(t) is i.o. constant on time intervals.

4 Universality for β = 1/2 : Yt is the intermediate time
behaviour of perturbed cellular flows [Hairer et al. ’18].

5 Connection to 4th order PDEs: Yt , β = 1/2 is the
fundamental solution to ∂tu = ∆2u + ∆φ(0)/

√
πt

[Meerschaert, Nane ’09] (hence the solution is positivity
preserving).
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Marchaud to Caputo derivative

Consider the Marchaud derivative

∂βt,∞u(t) : =

∫ t

−∞
u′(r)

(t − r)−β dr

Γ(1− β)
. (4)

If u(t) = u(0) for all t < 0 the Marchaud derivative equals the
Caputo derivative, as

∂βt,∞u(t) =

∫ t

0
u′(r)

(t − r)−β dr

Γ(1− β)
= ∂βt,0u(t).

Probabilistically −∂βt,∞ is the generator of the inverted

β-stable-subordinator −X β
s , easily observed from the representation

−∂βt,∞u(t) =

∫ ∞
0

(u(t − r)− u(t))
r−1−β dr

−Γ(−β)
. (5)
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Marchaud to Caputo evolution equation

Consider the Marchaud evolution equation{
∂βt,∞u(t, x) = ∆u(t, x), in (0,T ]× Rd ,

u(t, x) = φ(t, x), in (−∞, 0]× Rd .
(6)

Then, if φ(t) = φ(0) for all t < 0, then ∂βt,∞ = ∂βt,0 the EE (6)
becomes the standard Caputo EE.

The Marchaud EE (6) is the natural fractional counterpart the
time-nonlocal evolution equations proposed in [Chen, Du, Li,
Zhou ’17] and [Du, Yang, Zhou ’17]. In [Allen ’17]
uniqueness of weak solutions is considered.

With a little extra work, existence/regularity results follow
from results about inhomogeneous Caputo EEs, such as
[Allen, Caffarelli, Vasseur ’16], [Baeumer, Kurita, Meerschaert
’05].
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The Theorem

Here is a rough statement of the main result.

Theorem

Assuming certain regularity on φ, there exists a unique classical
solution to the Marchaud EE{

∂βt,∞u(t, x) = ∆u(t, x), in (0,T ]× Rd ,

u(t, x) = φ(t, x), in (−∞, 0]× Rd .
(7)

Moreover, the solution allows the stochastic representation

u(t, x) = E
[
φ
(
−W (t),Bx

E(t)

)]
, (8)

where W (t) is the waiting/trapping time of the fractional kinetic
process Bx

E(t).
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Stochastic representation: Intuition

Denote by Y x
t = Bx

E(t) the fractional kinetic process.
The solution

E
[
φ
(
−W (t),Y x

t

)]
weights the initial condition with respect to the duration of the
holding time W (t) of the process Yt .

Example

The initial condition φ(t, x) = 1(−∞,−1](t)φ̃(x), results in

E
[
φ̃
(
Y x
t

)
|Y x

t is trapped for more than 1 time-unit
]
,

We will now plot t 7→ (−W (t),Yt) ∈ (−∞, 0]× R2, where the
values of −W (t) are thought of as the depth underneath a surface
{0} × R2 (and not the past).
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Brownian motion on the sea surface: (0,Bt) ∈ {0} × R2
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Fractional kinetic on the sea surface: (0,Yt) ∈ {0} × R2
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Fractional kinetic in the sea: (−W (t),Yt) ∈ (−∞, 0]×R2
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Key remark

Probabilistically −∂βt,∞ is the generator of the inverted

β-stable-subordinator −X β
s , easily observed from the representation

−∂βt,∞u(t) =

∫ ∞
0

(u(t − r)− u(t))
r−1−β dr

−Γ(−β)
. (9)
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Stochastic representation: Motivation

{
Gu = 0, in Ω, G Markovian generator of Gs

u = φ, in ∂Ω,

should be solved by u(ω) = E
[
φ
(
Gω
τ∂Ω(ω)

)]
, where

τ∂Ω(ω) := inf{s : Gω
s /∈ Ω}.

Now set G ≡ (−∂βt,∞ + ∆), Ω ≡ (0,T ]× Rd , and

∂Ω ≡ (−∞, 0]× Rd . Then

Gω
s = (t − X β

s ,B
x
s ), t − X β ⊥ Bx , ω = (t, x)

τ∂Ω(ω) = τ0(t) := inf{s : t − X β
s ≤ 0} = inf{s : t < X β

s } =: E (t)

u(t, x) = E
[
φ
(
t − X β

τ0(t),B
x
τ0(t)

)]
= E

[
φ
(
−W (t),Bx

E(t)

)]
,

where W (t) is the waiting time of Bx
τ0(t).
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Stochastic representation: Motivation X β
τ0(t) − t = W (t)

(a) Xβ and t 7→ τ0(t) = E(t)

(b) t 7→ W (t)
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Definition of classical solution for Marchaud EE

Definition

1 u ∈ Cb,∂Ω((−∞,T ]× Ω) ∩ C 1,2((0,T )× Ω),

2 ∂tu ∈ L1((0,T ]× Ω)

3 u(t, x)→ φ(0, x), as t ↓ 0, for each x ∈ Ω, and

4 u satisfies
∂βt,∞u(t, x) = −(−∆

α
2 )u(t, x), in (0,T ]× Ω,

u(t, x) = φ(t, x), in (−∞, 0)× Ω,

u(t, x) = 0, in (0,T ]× Ωc ,

(10)

for a given time-nonlocal initial condition φ, where −(−∆
α
2 ),

α ∈ (0, 2) is the fractional Laplacian.
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Theorem’s statement

Let Bx be the rotationally symmetric α-stable Lévy process killed
on exiting Ω, α ∈ (0, 2).

Theorem (T. ’18)

Let Ω ⊂ Rd be a regular set. Assume that
φ ∈ C 1

b,∂Ω((−∞, 0];Dom((−∆
α
2 )k)), for some

k > −1 + (3d + 4)/(2α), and ∂tφ is Lipschitz at 0.
Then

u(t, x) = E
[
φ
(
−W (t),Bx

τ0(t)

)]
is the unique classical solution to the Marchaud EE (10).

The heat kernel is

Ht,x
β,α(r , y) =

∫ t

0

−Γ(−β)−1

(z − r)1+β

(∫ ∞
0

pΩ
s (x , y)pβs (t − z) ds

)
dz ,

where pΩ
s (x) is the law of Bx

s and pβs is the law of X β
s .
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Proof: Rewrite Marchaud EE as an inhomogeneous Caputo
EE

Observe that if u equals φ for t ≤ 0, then for t > 0

∂βt,∞u(t) =

∫ t

0
u′(r)

(t − r)−βdr

Γ(1− β)
−
∫ 0

−∞
φ′(r)

(t − r)−βdr

−Γ(1− β)

= ∂βt,0u(t)− fφ(t),

and so we solve the inhomogeneous Caputo EE{
∂βt,0u(t, x) = ∆u(t, x) + fφ(t, x), in (0,T ]× Rd ,

u(t, x) = φ(0, x), in {0} × Rd .

(In short: (Caputo, IC = φ(0), FT= fφ).)
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Proof: Obtain the stochastic representation (1)

The stochastic representation for the inhomogeneous EE (Caputo,
IC = φ(0), FT= fφ) is expected to be

u(t, x) = E
[
φ
(

0,Bx
τ0(t)

)]
+ E

[∫ τ0(t)

0
fφ

(
t − X β

s ,B
x
s

)
ds

]
.

Now note that for φ extended to φ(0) on (0,T ]

−fφ(t) =

∫ t

−∞
φ′(r)

(t − r)−βdr

Γ(1− β)
= −∂βt,∞φ(t),

and by Dynkin formula

E
[
φ
(

0,Bx
τ0(t)

)]
= φ(0, x) + E

[∫ τ0(t)

0
∆φ

(
t − X β

s ,B
x
s

)
ds

]
.
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Proof: Obtain the stochastic representation (2)

Recombining and by Dynkin formula the solution to (Caputo, IC
= φ(0), FT= fφ)

u(t, x) = E
[
φ
(

0,Bx
τ0(t)

)]
+ E

[∫ τ0(t)

0
fφ

(
t − X β

s ,B
x
s

)
ds

]

= φ(0, x) + E

[∫ τ0(t)

0
(−∂βt,∞ + ∆)φ

(
t − X β

s ,B
x
s

)
ds

]
= E

[
φ
(
t − X β

τ0(t),B
x
τ0(t)

)]
= u(t, x),

the solution to (Marchaud, IC = φ).
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Proof: Small summary

1 Solutions to (Marchaud, IC= φ) = solutions to (Caputo,
IC=φ(0), FT=fφ).

2 Feynman-Kac for (Marchaud, IC= φ) = Feynman-Kac for
(Caputo, IC=φ(0), FT=fφ).

Theorem (T. ’18)

And so, as the unique classical solution to (Caputo, IC=φ(0),
FT=f ) is

u(t, x) = E
[
φ
(

0,Bx
τ0(t)

)]
+ E

[∫ τ0(t)

0
f
(
t − X β

s ,B
x
s

)
ds

]
,

if φ(0) ∈ Dom((−∆
α
2 )k), f ∈ C 1([0,T ];Dom((−∆

α
2 )k)), for

some k > −1 + (3d + 4)/(2α),

simply select φ such that fφ ∈ C 1([0,T ]; Dom((−∆
α
2 )k)).
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Proof: Plan for (Caputo EE, IC=φ(0), FT=f )

1 Prove that the candidate stochastic representation is a
weak solution:
using BVP point of view in the motivation slide, not discussed.

2 Prove smoothness of the candidate stochastic
representation:
extends [Chen, Meerschaert, Nane ’12] using separation of
variables.

3 Uniqueness of classical solution:
easy by separation of variables, not discussed.
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(2) Homogeneous term as in [Chen, Meerschaert, Nane
’12]

Denote by {λn, ϕn : n ≥ 1} the eigenvalue/eigenfunctions of the
restricted fractional Lapacian (−∆α/2)Ω. Then

E
[
φ
(

0,Bx
τ0(t)

)]
=

∫ ∞
0

E[φ(Bx
s )]dsP[τ0(t) ≤ s]

=
∑
n≥1

〈φ, ϕn〉ϕn(x)

∫ ∞
0

e−λnsdsP[τ0(t) ≤ s]

=
∑
n≥1

〈φ, ϕn〉ϕn(x)E[e−λnτ0(t)],

where E[e−λnτ0(t)] = Eβ(λnt
β) :=

∑
m≥0

(−λntβ)m

Γ(mβ+1) , the
Mittag-Leffler function that solves the homogeneous Caputo IVP

∂βt,0g(t) = −λng(t), g(0) = 1.
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(2) Inhomogeneous term

For the inhomogeneous term we compute

E

[∫ τ0(t)

0
f
(
t − X β

s ,B
x
s

)
ds

]

=
∑
n≥0

ϕn(x)E

[∫ τ0(t)

0
e−λns〈f

(
t − X β

s

)
, ϕn〉 ds

]
=
∑
n≥0

ϕn(x)Eβ,λn ? 〈f (·), ϕn〉(t),

where the Mittag-Leffler convolution

Eβ,λ ? 〈f , ϕn〉(t) ≡ −λ−1
n

∫ t

0
〈f (r) , ϕn〉∂tEβ(−λn(t − r)β)dr

is the solution to the inhomogeneous Caputo IVP

∂βt,0g(t) = −λng(t) + 〈f , ϕn〉, g(0) = 0.
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(2) Inhomogeneous term

Convergence of the first derivative in time of the series depends on
bounds on the function

∂tEβ,λ ? f (t) = ∂t

∫ t

0
f (r)(t − r)β−1βE ′β(−λ(t − r)β)dr .

If f is C 1([0,T ]) we can hit f with ∂t to access the bound

|∂tEβ,λ ? f (t)| ≤ c

λ

(
‖f ′‖∞ + f (0)

λtβ−1

1 + λtβ

)
.
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Generalised Marchaud evolution equations

Perform the natural probabilistic generalisation

∂βt,∞u(t) 7→ ∂
(ν)
t,∞u(t) :=

∫∞
0 (u(t)−u(t− r)) ν(t, dr), and consider{

∂
(ν)
t,∞u(t, x) = ∆u(t, x), in (0,T ]× Rd ,

u(t, x) = φ(t, x), in (−δ, 0]× Rd ,
(11)

where δ is the length of the support of the Lévy-type kernel ν.
A (simplified) theorem reads

Theorem (Du, T., Zhou ’18)

Suppose that ν(t, dr) ≡ ν(r)dr , with
∫∞

0 ν(r)dr =∞ and let

φ ∈ L∞(−∞, 0;H1(Rd)). Then u(t, x) = E
[
φ
(
−X t,(ν)

τ0(t) ,B
x
τ0(t)

)]
is a weak solution to (11).
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Summary

1 Marchaud-type fractional derivatives allow to
meaningfully define time-nonlocal initial conditions for
EEs (extending Caputo-type EEs).

2 The stochastic representation for the solution provides
intuition for the time-nonlocal initial condition, as the
trapping time of the anomalous diffusion weights the initial
condition.

3 Marchaud-type EEs can be solved in terms of
inhomogeneous Caputo-type EEs.
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Thank you!
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