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Overview

1. Linear Algebra (see 25 January session and handout!)

2. Polynomials (see Oleg’s 22 February session and handout!)

3. Inequalities (see Jun’s 12 May session!)

4. Number Theory
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Number Theory

Example

Let x , y and z be integers such that S = x4 + y4 + z4 is divisible by 5. Show that S is
divisible by 54.

Example

For every positive integer n, let p(n) denote the number of ways to express n as a sum of
positive integers (e.g. p(4) = 5). Prove that p(n)− p(n − 1) is the number of ways to
express n as a sum of integers each of which is strictly greater than 1.

Example

(a) Show that the unit square can be partitioned into n smaller squares if n is large
enough.

(b) Let d ≥ 2. Show that the d-dimensional unit cube can be partitioned into n smaller
cubes if n is large enough.
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Number Theory

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer n can be uniquely represented as a product of primes:

n = pα1
1 pα2

2 · · · pαk
k

up to ordering.

• Unique factorisation (up to units) also holds in the rings Z[i ], Z[
√
2], Z[

√
−2], Z[ω].

Theorem (Bezout’s identity)

Let a, b be two integers. Then there exist integers x , y such that ax + by = gcd(a, b).

Theorem

Let a > 1 be a positive integer, and let m, n be a positive integer. Then

gcd(am − 1, an − 1) = agcd(m,n) − 1.

4 / 19



Number Theory

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer n can be uniquely represented as a product of primes:

n = pα1
1 pα2

2 · · · pαk
k

up to ordering.

• Unique factorisation (up to units) also holds in the rings Z[i ], Z[
√
2], Z[

√
−2], Z[ω].

Theorem (Bezout’s identity)

Let a, b be two integers. Then there exist integers x , y such that ax + by = gcd(a, b).

Theorem

Let a > 1 be a positive integer, and let m, n be a positive integer. Then

gcd(am − 1, an − 1) = agcd(m,n) − 1.

4 / 19



Number Theory

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer n can be uniquely represented as a product of primes:

n = pα1
1 pα2

2 · · · pαk
k

up to ordering.

• Unique factorisation (up to units) also holds in the rings Z[i ], Z[
√
2], Z[

√
−2], Z[ω].

Theorem (Bezout’s identity)

Let a, b be two integers. Then there exist integers x , y such that ax + by = gcd(a, b).

Theorem

Let a > 1 be a positive integer, and let m, n be a positive integer. Then

gcd(am − 1, an − 1) = agcd(m,n) − 1.

4 / 19



Number Theory

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer n can be uniquely represented as a product of primes:

n = pα1
1 pα2

2 · · · pαk
k

up to ordering.

• Unique factorisation (up to units) also holds in the rings Z[i ], Z[
√
2], Z[

√
−2], Z[ω].

Theorem (Bezout’s identity)

Let a, b be two integers. Then there exist integers x , y such that ax + by = gcd(a, b).

Theorem

Let a > 1 be a positive integer, and let m, n be a positive integer. Then

gcd(am − 1, an − 1) = agcd(m,n) − 1.
4 / 19



Examples

Example

Prove there are only finitely many positive integers n such that n! + 1 divides (2012n)!.

Example

Let n > 6 be a perfect number, and let n = pe11 · · · pekk be its prime factorisation with
1 < p1 < · · · < pk . Prove that e1 is an even number.

Example

Show there does not exist 15 integers m1, . . . ,m15 such that

15∑
k=1

mk · arctan(k) = arctan(16).

Hint: Use complex numbers and rewrite the condition as arg(z1) = arg(z2) for some
suitable z1, z2 ∈ C.
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Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let m1, . . . ,mk be pairwise coprime positive integers. Let c1, . . . , ck be integers. Then
the system of congruences

x ≡ c1 (mod m1)

x ≡ c2 (mod m2)

...

x ≡ ck (mod mk)

has a unique solution mod m1m2 · · ·mk .

• Equivalently, let M = m1m2 · · ·mk . Then there’s a ring isomorphism given by:

Z/MZ −→ Z/m1Z× · · · × Z/mkZ
x mod M 7−→ (x mod m1, . . . , x mod mk)
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Chinese Remainder Theorem

Example

Find the number of positive integers x satisfying the following two conditions:

1. x < 102006.

2. x2 − x is divisible by 102006.

Example

Let p and q be relatively prime positive integers. Prove that

pq−1∑
k=0

(−1)

⌊
k
p

⌋
+
⌊

k
q

⌋
=

{
0 if pq is even,

1 if pq is odd.

Hint: The map k 7→ (k mod p, k mod q) is a bijection between Z/pqZ and
Z/pZ× Z/qZ.
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Number Theory

Theorem (Wilson’s Theorem)

If p is prime, then (p − 1)! ≡ −1 (mod p).

Theorem (Fermat’s Little Theorem)

Let p be a prime, and a an integer not divisible by p. Then ap−1 ≡ 1 (mod p).

Example

Let p be a prime number. Prove that

xp
p−1 − 1 = (xp − x + 1)f (x) + pg(x)

for some polynomials f and g with integer coefficients.

Hint: Prove that xp
p−1 − 1 is divisible by xp − x + 1 over Fp[x ].
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Number Theory

Euler’s function

Let n be a positive integer. The Euler function φ(n) is the number of positive integers
less than n coprime to n. It holds that

φ(n) = n
(
1− 1

p1

)
· · ·

(
1− 1

pk

)
,

where n = pα1
1 · · · pαk

k is the factorization of n into primes.

Theorem (Euler’s theorem)

Let n be a positive integer, and a an integer coprime to n. Then aφ(n) ≡ 1 (mod n).
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Quadratic residues

Legendre symbol

(
a

p

)
:=


1 if a is a quadratic residue mod p and p ̸ | a,
0 if p | a,
−1 otherwise.

• Properties:
(

a
p

)
=

(
a+p
p

)
and

(
a
p

)(
b
p

)
=

(
ab
p

)
.

Theorem (Euler’s criterion)

For any odd prime p, and integer a,(
a

p

)
≡ a

p−1
2 (mod p).

Theorem (Gauss reciprocity)

For any two distinct odd primes p and q,(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .
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Pell’s equation

Theorem (Pell’s equation)

Let D ∈ N be a positive nonsquare integer. Then the equation

x2 − Dy2 = 1

has infinitely many integer solutions.

Example

Prove that is p and q are rational numbers and r = p + q
√
7, then there exists a matrix(

a b
c d

)
̸= ±

(
1 0
0 1

)
with integer entries and with ad − bc = 1 such that

ar + b

cr + d
= r .

Hint: Consider the minimal polynomial of r in Z[x ]. Reduce the problem to solving a
Pell-like equation.
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More problems!

Example

Let a, b be two integers and suppose that n is a positive integer for which the set

Z \ {axn + byn | x , y ∈ Z}
is finite. Prove that n = 1.

Example

Prove that there exists an infinite number of relatively prime pairs (m, n) of positive
integers such that the equation (x +m)3 = nx has three distinct integer roots.

Example

Let A be an n × n-matrix with integer entries and b1, . . . , bk be integers satisfying
detA = b1 · · · · · bk . Prove that there exist n × n-matrices B1, . . . ,Bk with integer entries
such that A = B1 · · · · · Bk and detBi = bi for all i = 1, . . . , k.
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Groups, Rings and Fields

Group

A group is a set G equipped with a binary operation ∗ such that the operation is
associative, an identity element exists and every element has an inverse.

• G is abelian if ∗ is commutative.

Ring

A ring is a set R equipped with two binary operations, + and ×, such that (R,+) is an
abelian group, (R,×) is a monoid (identity and associative), and × is distributive over +.

• R is commutative if multiplication × is commutative.

Field

A field F is a commutative ring such that every non-zero element has a multiplicative
inverse.
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Groups, Rings and Fields

Example

Does there exist a field such that its multiplicative group is isomorphic to its additive
group?

Example

Suppose that in a not necessarily commutative ring R the square of any element is 0.
Prove that abc + abc = 0 for any three elements a, b, c .

Example

Let R be a commutative ring of characteristic zero. Let e, f , and g be idempotent
elements of R satisfying e + f + g = 0. Show that e = f = g = 0.
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Group Theory

Theorem (Lagrange’s Theorem)

Let G be a finite group of order n. Then any subgroup H of G has order dividing n.

Theorem (Orbit-stabiliser theorem)

Let G be a finite group acting on a set X . The orbit of x is G · x = {gx | g ∈ G}. and
the stabiliser subgroup of g with respect to x is Gx = {g ∈ G | gx = x}.
Then |G · x ||Gx | = |G |.

Theorem (“Burnside’s” lemma)

Let G be a finite group acting on a set X . The number of orbits |X/G | of X is

|X/G | = 1

|G |
∑
g∈G

|X g |

where X g := {x ∈ X | gx = x} is the set of points fixed by g .
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Examples

Example

Let r , s, t be positive integers which are pairwise relatively prime. If a and b are elements
of an abelian group with unity element e, and ar = bs = (ab)t = e, prove that a = b = e.
Does the same conclusion hold if a and b are elements of an arbitrary non-commutative
group?

Example

Denote by Sn the group of permutations of the sequnece (1, 2, . . . , n). Suppose that G is
a subgroup of Sn, such that for every π ∈ G\{e} there exists a unique k ∈ {1, 2, . . . , n}
for which π(k) = k. Show that this k is the same for all π ∈ G\{e}.

Hint: Consider G acting on the set X = {1, 2, . . . , n} and apply orbit-stabiliser theorem.
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Group theory

Example

Let G be a group of n ≥ 2 be an integer. Let H1 and H2 be two subgroups of G that
satisfy

[G : H1] = [G : H2] = n and [G : (H1 ∩ H2)] = n(n − 1).

Prove that H1 and H2 are conjugate in G .

Hint: Express H1,H2 both as the disjoint union of left cosets with respect to H2 and
and as the disjoint union of right cosets with respect to H1.

17 / 19



Group theory

Example

Let G be a group of n ≥ 2 be an integer. Let H1 and H2 be two subgroups of G that
satisfy

[G : H1] = [G : H2] = n and [G : (H1 ∩ H2)] = n(n − 1).

Prove that H1 and H2 are conjugate in G .

Hint: Express H1,H2 both as the disjoint union of left cosets with respect to H2 and
and as the disjoint union of right cosets with respect to H1.

17 / 19



Permutation groups

Symmetric group

The symmetric group Sn is the group of all n! permutations on a set of n elements.

Example

For a prime number p, let GL2(Z/pZ) be the group of invertible 2× 2 matrices of residue
modulo p. Show that there is no injective group homomorphism φ : GL2(Z/pZ) → Sp.

Example

Prove that the following proposition holds for n = 3 , but not for n = 4.
For any permutation π1 of {1, 2, . . . , n} different from the identity there is a permutation
π2 such that any permutation π can be obtained from π1 and π2 using only compositions
(e.g. π = π1 ◦ π1 ◦ π2 ◦ π1).

Hint: For n = 4, let π1 = (12)(34) and consider S4/{id, (12)(34), (13)(24), (14)(23)}.
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More problems!

Example

Let n > 1 be an integer. Two players, A and B, play the following game. Taking turns,
they select elements (one element at a time) from the group Sn. It is forbidden to select
an element that has already been selected. The game ends when the selected elements
generate the whole group Sn. The player who made the last move loses the game. The
first move is made by A. Which player has a winning strategy?

Example

Find all positive integers n for which there exists a family F of three-element subsets of
S = {1, 2, . . . , n} satisfying the following two conditions:

(i) for any two different elements a, b ∈ S , there exists exactly one A ∈ F containing
both a, b;

(ii) if a, b, c , x , y , z are elements of S such that if {a, b, x}, {a, c , y}, {b, c, z} ∈ F , then
{x , y , z} ∈ F .
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