# Algebra II 

IMC 2023 Training

Robin Visser<br>Mathematics Institute<br>University of Warwick

13 June 2023

## Overview

1. Linear Algebra
2. Polynomials
3. Inequalities
4. Number Theory
5. Group Theory

## Overview

1. Linear Algebra
2. Polynomials
3. Inequalities
4. Number Theory
5. Group Theory
(see 25 January session and handout!)
(see Oleg's 22 February session and handout!)
(see Jun's 12 May session!)

## Number Theory

## Example

Let $x, y$ and $z$ be integers such that $S=x^{4}+y^{4}+z^{4}$ is divisible by 5 . Show that $S$ is divisible by $5^{4}$.

## Number Theory

## Example

Let $x, y$ and $z$ be integers such that $S=x^{4}+y^{4}+z^{4}$ is divisible by 5 . Show that $S$ is divisible by $5^{4}$.

## Example

For every positive integer $n$, let $p(n)$ denote the number of ways to express $n$ as a sum of positive integers (e.g. $p(4)=5$ ). Prove that $p(n)-p(n-1)$ is the number of ways to express $n$ as a sum of integers each of which is strictly greater than 1 .

## Number Theory

## Example

Let $x, y$ and $z$ be integers such that $S=x^{4}+y^{4}+z^{4}$ is divisible by 5 . Show that $S$ is divisible by $5^{4}$.

## Example

For every positive integer $n$, let $p(n)$ denote the number of ways to express $n$ as a sum of positive integers (e.g. $p(4)=5$ ). Prove that $p(n)-p(n-1)$ is the number of ways to express $n$ as a sum of integers each of which is strictly greater than 1 .

## Example

(a) Show that the unit square can be partitioned into $n$ smaller squares if $n$ is large enough.

## Number Theory

## Example

Let $x, y$ and $z$ be integers such that $S=x^{4}+y^{4}+z^{4}$ is divisible by 5 . Show that $S$ is divisible by $5^{4}$.

## Example

For every positive integer $n$, let $p(n)$ denote the number of ways to express $n$ as a sum of positive integers (e.g. $p(4)=5$ ). Prove that $p(n)-p(n-1)$ is the number of ways to express $n$ as a sum of integers each of which is strictly greater than 1 .

## Example

(a) Show that the unit square can be partitioned into $n$ smaller squares if $n$ is large enough.
(b) Let $d \geq 2$. Show that the $d$-dimensional unit cube can be partitioned into $n$ smaller cubes if $n$ is large enough.

## Number Theory

## Theorem (Fundamental Theorem of Arithmetic)

Every positive integer $n$ can be uniquely represented as a product of primes:

$$
n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}
$$

up to ordering.

## Number Theory

## Theorem (Fundamental Theorem of Arithmetic)

Every positive integer $n$ can be uniquely represented as a product of primes:

$$
n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}
$$

up to ordering.

- Unique factorisation (up to units) also holds in the rings $\mathbb{Z}[i], \mathbb{Z}[\sqrt{2}], \mathbb{Z}[\sqrt{-2}], \mathbb{Z}[\omega]$.


## Number Theory

## Theorem (Fundamental Theorem of Arithmetic)

Every positive integer $n$ can be uniquely represented as a product of primes:

$$
n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}
$$

up to ordering.

- Unique factorisation (up to units) also holds in the rings $\mathbb{Z}[i], \mathbb{Z}[\sqrt{2}], \mathbb{Z}[\sqrt{-2}], \mathbb{Z}[\omega]$.


## Theorem (Bezout's identity)

Let $a, b$ be two integers. Then there exist integers $x, y$ such that $a x+b y=\operatorname{gcd}(a, b)$.

## Number Theory

## Theorem (Fundamental Theorem of Arithmetic)

Every positive integer $n$ can be uniquely represented as a product of primes:

$$
n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}
$$

up to ordering.

- Unique factorisation (up to units) also holds in the rings $\mathbb{Z}[i], \mathbb{Z}[\sqrt{2}], \mathbb{Z}[\sqrt{-2}], \mathbb{Z}[\omega]$.


## Theorem (Bezout's identity)

Let $a, b$ be two integers. Then there exist integers $x, y$ such that $a x+b y=\operatorname{gcd}(a, b)$.

## Theorem

Let $a>1$ be a positive integer, and let $m, n$ be a positive integer. Then

$$
\operatorname{gcd}\left(a^{m}-1, a^{n}-1\right)=a^{g c d(m, n)}-1
$$

## Examples

## Example

Prove there are only finitely many positive integers $n$ such that $n!+1$ divides (2012n)!.

## Examples

## Example

Prove there are only finitely many positive integers $n$ such that $n!+1$ divides (2012n)!.

## Example

Let $n>6$ be a perfect number, and let $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ be its prime factorisation with $1<p_{1}<\cdots<p_{k}$. Prove that $e_{1}$ is an even number.

## Examples

## Example

Prove there are only finitely many positive integers $n$ such that $n!+1$ divides (2012n)!.

## Example

Let $n>6$ be a perfect number, and let $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ be its prime factorisation with $1<p_{1}<\cdots<p_{k}$. Prove that $e_{1}$ is an even number.

## Example

Show there does not exist 15 integers $m_{1}, \ldots, m_{15}$ such that

$$
\sum_{k=1}^{15} m_{k} \cdot \arctan (k)=\arctan (16)
$$

## Examples

## Example

Prove there are only finitely many positive integers $n$ such that $n!+1$ divides (2012n)!.

## Example

Let $n>6$ be a perfect number, and let $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ be its prime factorisation with $1<p_{1}<\cdots<p_{k}$. Prove that $e_{1}$ is an even number.

## Example

Show there does not exist 15 integers $m_{1}, \ldots, m_{15}$ such that

$$
\sum_{k=1}^{15} m_{k} \cdot \arctan (k)=\arctan (16)
$$

Hint: Use complex numbers and rewrite the condition as $\arg \left(z_{1}\right)=\arg \left(z_{2}\right)$ for some suitable $z_{1}, z_{2} \in \mathbb{C}$.

## Chinese Remainder Theorem

## Theorem (Chinese Remainder Theorem)

Let $m_{1}, \ldots, m_{k}$ be pairwise coprime positive integers. Let $c_{1}, \ldots, c_{k}$ be integers. Then the system of congruences

$$
\begin{aligned}
x & \equiv c_{1}\left(\bmod m_{1}\right) \\
x & \equiv c_{2}\left(\bmod m_{2}\right) \\
& \vdots \\
x & \equiv c_{k}\left(\bmod m_{k}\right)
\end{aligned}
$$

has a unique solution $\bmod m_{1} m_{2} \cdots m_{k}$.

## Chinese Remainder Theorem

## Theorem (Chinese Remainder Theorem)

Let $m_{1}, \ldots, m_{k}$ be pairwise coprime positive integers. Let $c_{1}, \ldots, c_{k}$ be integers. Then the system of congruences

$$
\begin{aligned}
x & \equiv c_{1}\left(\bmod m_{1}\right) \\
x & \equiv c_{2}\left(\bmod m_{2}\right) \\
& \vdots \\
x & \equiv c_{k}\left(\bmod m_{k}\right)
\end{aligned}
$$

has a unique solution $\bmod m_{1} m_{2} \cdots m_{k}$.

- Equivalently, let $M=m_{1} m_{2} \cdots m_{k}$. Then there's a ring isomorphism given by:

$$
\begin{aligned}
\mathbb{Z} / M \mathbb{Z} & \longrightarrow \mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z} \\
x \bmod M & \longmapsto\left(x \bmod m_{1}, \ldots, x \bmod m_{k}\right)
\end{aligned}
$$

## Chinese Remainder Theorem

## Example

Find the number of positive integers $x$ satisfying the following two conditions:

1. $x<10^{2006}$.
2. $x^{2}-x$ is divisible by $10^{2006}$.

## Chinese Remainder Theorem

## Example

Find the number of positive integers $x$ satisfying the following two conditions:

1. $x<10^{2006}$.
2. $x^{2}-x$ is divisible by $10^{2006}$.

## Example

Let $p$ and $q$ be relatively prime positive integers. Prove that

$$
\sum_{k=0}^{p q-1}(-1)^{\left\lfloor\frac{k}{p}\right\rfloor+\left\lfloor\frac{k}{q}\right\rfloor}= \begin{cases}0 & \text { if } p q \text { is even } \\ 1 & \text { if } p q \text { is odd }\end{cases}
$$

## Chinese Remainder Theorem

## Example

Find the number of positive integers $x$ satisfying the following two conditions:

1. $x<10^{2006}$.
2. $x^{2}-x$ is divisible by $10^{2006}$.

## Example

Let $p$ and $q$ be relatively prime positive integers. Prove that

$$
\sum_{k=0}^{p q-1}(-1)^{\left\lfloor\frac{k}{p}\right\rfloor+\left\lfloor\frac{k}{q}\right\rfloor}= \begin{cases}0 & \text { if } p q \text { is even } \\ 1 & \text { if } p q \text { is odd }\end{cases}
$$

Hint: The map $k \mapsto(k \bmod p, k \bmod q)$ is a bijection between $\mathbb{Z} / p q \mathbb{Z}$ and $\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / q \mathbb{Z}$.

## Number Theory

## Theorem (Wilson's Theorem)

If $p$ is prime, then $(p-1)!\equiv-1(\bmod p)$.

## Number Theory

## Theorem (Wilson's Theorem)

If $p$ is prime, then $(p-1)!\equiv-1(\bmod p)$.

## Theorem (Fermat's Little Theorem)

Let $p$ be a prime, and a an integer not divisible by $p$. Then $a^{p-1} \equiv 1(\bmod p)$.

## Number Theory

## Theorem (Wilson's Theorem)

If $p$ is prime, then $(p-1)!\equiv-1(\bmod p)$.

## Theorem (Fermat's Little Theorem)

Let $p$ be a prime, and a an integer not divisible by $p$. Then $a^{p-1} \equiv 1(\bmod p)$.

## Example

Let $p$ be a prime number. Prove that

$$
x^{p^{p}-1}-1=\left(x^{p}-x+1\right) f(x)+p g(x)
$$

for some polynomials $f$ and $g$ with integer coefficients.

## Number Theory

## Theorem (Wilson's Theorem)

If $p$ is prime, then $(p-1)!\equiv-1(\bmod p)$.

## Theorem (Fermat's Little Theorem)

Let $p$ be a prime, and a an integer not divisible by $p$. Then $a^{p-1} \equiv 1(\bmod p)$.

## Example

Let $p$ be a prime number. Prove that

$$
x^{p^{p}-1}-1=\left(x^{p}-x+1\right) f(x)+p g(x)
$$

for some polynomials $f$ and $g$ with integer coefficients.
Hint: Prove that $x^{p^{p}-1}-1$ is divisible by $x^{p}-x+1$ over $\mathbb{F}_{p}[x]$.

## Number Theory

## Euler's function

Let $n$ be a positive integer. The Euler function $\varphi(n)$ is the number of positive integers less than $n$ coprime to $n$. It holds that

$$
\varphi(n)=n\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)
$$

where $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ is the factorization of $n$ into primes.

## Number Theory

## Euler's function

Let $n$ be a positive integer. The Euler function $\varphi(n)$ is the number of positive integers less than $n$ coprime to $n$. It holds that

$$
\varphi(n)=n\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)
$$

where $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ is the factorization of $n$ into primes.

## Theorem (Euler's theorem)

Let $n$ be a positive integer, and a an integer coprime to $n$. Then $a^{\varphi(n)} \equiv 1(\bmod n)$.

## Quadratic residues

Legendre symbol

$$
\left(\frac{a}{p}\right):= \begin{cases}1 & \text { if } a \text { is a quadratic residue } \bmod p \text { and } p \nmid a \\ 0 & \text { if } p \mid a \\ -1 & \text { otherwise. }\end{cases}
$$

## Quadratic residues

## Legendre symbol

$$
\left(\frac{a}{p}\right):= \begin{cases}1 & \text { if } a \text { is a quadratic residue } \bmod p \text { and } p \nmid a, \\ 0 & \text { if } p \mid a, \\ -1 & \text { otherwise } .\end{cases}
$$

- Properties: $\left(\frac{a}{p}\right)=\left(\frac{a+p}{p}\right)$ and $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$.


## Quadratic residues

## Legendre symbol

$$
\left(\frac{a}{p}\right):= \begin{cases}1 & \text { if } a \text { is a quadratic residue } \bmod p \text { and } p \nmid a, \\ 0 & \text { if } p \mid a, \\ -1 & \text { otherwise }\end{cases}
$$

- Properties: $\left(\frac{a}{p}\right)=\left(\frac{a+p}{p}\right)$ and $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$.


## Theorem (Euler's criterion)

For any odd prime $p$, and integer $a$,

$$
\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \quad(\bmod p)
$$

## Theorem (Gauss reciprocity)

For any two distinct odd primes $p$ and $q$,

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}
$$

## Pell's equation

Theorem (Pell's equation)
Let $D \in \mathbb{N}$ be a positive nonsquare integer. Then the equation

$$
x^{2}-D y^{2}=1
$$

has infinitely many integer solutions.

## Pell's equation

## Theorem (Pell's equation)

Let $D \in \mathbb{N}$ be a positive nonsquare integer. Then the equation

$$
x^{2}-D y^{2}=1
$$

has infinitely many integer solutions.

## Example

Prove that is $p$ and $q$ are rational numbers and $r=p+q \sqrt{7}$, then there exists a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \neq \pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ with integer entries and with $a d-b c=1$ such that $\frac{a r+b}{c r+d}=r$.

## Pell's equation

## Theorem (Pell's equation)

Let $D \in \mathbb{N}$ be a positive nonsquare integer. Then the equation

$$
x^{2}-D y^{2}=1
$$

has infinitely many integer solutions.

## Example

Prove that is $p$ and $q$ are rational numbers and $r=p+q \sqrt{7}$, then there exists a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \neq \pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ with integer entries and with $a d-b c=1$ such that $\frac{a r+b}{c r+d}=r$.

Hint: Consider the minimal polynomial of $r$ in $\mathbb{Z}[x]$. Reduce the problem to solving a Pell-like equation.

## More problems!

## Example

Let $a, b$ be two integers and suppose that $n$ is a positive integer for which the set

$$
\mathbb{Z} \backslash\left\{a x^{n}+b y^{n} \mid x, y \in \mathbb{Z}\right\}
$$

is finite. Prove that $n=1$.

## More problems!

## Example

Let $a, b$ be two integers and suppose that $n$ is a positive integer for which the set

$$
\mathbb{Z} \backslash\left\{a x^{n}+b y^{n} \mid x, y \in \mathbb{Z}\right\}
$$

is finite. Prove that $n=1$.

## Example

Prove that there exists an infinite number of relatively prime pairs ( $m, n$ ) of positive integers such that the equation $(x+m)^{3}=n x$ has three distinct integer roots.

## More problems!

## Example

Let $a, b$ be two integers and suppose that $n$ is a positive integer for which the set

$$
\mathbb{Z} \backslash\left\{a x^{n}+b y^{n} \mid x, y \in \mathbb{Z}\right\}
$$

is finite. Prove that $n=1$.

## Example

Prove that there exists an infinite number of relatively prime pairs ( $m, n$ ) of positive integers such that the equation $(x+m)^{3}=n x$ has three distinct integer roots.

## Example

Let $A$ be an $n \times n$-matrix with integer entries and $b_{1}, \ldots, b_{k}$ be integers satisfying $\operatorname{det} A=b_{1} \cdots b_{k}$. Prove that there exist $n \times n$-matrices $B_{1}, \ldots, B_{k}$ with integer entries such that $A=B_{1} \cdots \cdot B_{k}$ and $\operatorname{det} B i=b i$ for all $i=1, \ldots, k$.

## Groups, Rings and Fields

## Group

A group is a set $G$ equipped with a binary operation $*$ such that the operation is associative, an identity element exists and every element has an inverse.

## Groups, Rings and Fields

## Group

A group is a set $G$ equipped with a binary operation $*$ such that the operation is associative, an identity element exists and every element has an inverse.

- $G$ is abelian if $*$ is commutative.


## Groups, Rings and Fields

## Group

A group is a set $G$ equipped with a binary operation $*$ such that the operation is associative, an identity element exists and every element has an inverse.

- $G$ is abelian if $*$ is commutative.


## Ring

A ring is a set $R$ equipped with two binary operations, + and $\times$, such that $(R,+)$ is an abelian group, $(R, \times)$ is a monoid (identity and associative), and $\times$ is distributive over + .

## Groups, Rings and Fields

## Group

A group is a set $G$ equipped with a binary operation $*$ such that the operation is associative, an identity element exists and every element has an inverse.

- $G$ is abelian if $*$ is commutative.


## Ring

A ring is a set $R$ equipped with two binary operations, + and $\times$, such that $(R,+)$ is an abelian group, $(R, \times)$ is a monoid (identity and associative), and $\times$ is distributive over + .

- $R$ is commutative if multiplication $\times$ is commutative.


## Groups, Rings and Fields

## Group

A group is a set $G$ equipped with a binary operation $*$ such that the operation is associative, an identity element exists and every element has an inverse.

- $G$ is abelian if $*$ is commutative.


## Ring

A ring is a set $R$ equipped with two binary operations, + and $\times$, such that $(R,+)$ is an abelian group, $(R, \times)$ is a monoid (identity and associative), and $\times$ is distributive over + .

- $R$ is commutative if multiplication $\times$ is commutative.


## Field

A field $F$ is a commutative ring such that every non-zero element has a multiplicative inverse.

## Groups, Rings and Fields

## Example

Does there exist a field such that its multiplicative group is isomorphic to its additive group?

## Groups, Rings and Fields

## Example

Does there exist a field such that its multiplicative group is isomorphic to its additive group?

## Example

Suppose that in a not necessarily commutative ring $R$ the square of any element is 0 . Prove that $a b c+a b c=0$ for any three elements $a, b, c$.

## Groups, Rings and Fields

## Example

Does there exist a field such that its multiplicative group is isomorphic to its additive group?

## Example

Suppose that in a not necessarily commutative ring $R$ the square of any element is 0 . Prove that $a b c+a b c=0$ for any three elements $a, b, c$.

## Example

Let $R$ be a commutative ring of characteristic zero. Let $e, f$, and $g$ be idempotent elements of $R$ satisfying $e+f+g=0$. Show that $e=f=g=0$.

## Group Theory

Theorem (Lagrange's Theorem)
Let $G$ be a finite group of order n. Then any subgroup H of $G$ has order dividing $n$.

## Group Theory

## Theorem (Lagrange's Theorem)

Let $G$ be a finite group of order $n$. Then any subgroup $H$ of $G$ has order dividing $n$.

## Theorem (Orbit-stabiliser theorem)

Let $G$ be a finite group acting on a set $X$. The orbit of $x$ is $G \cdot x=\{g x \mid g \in G\}$. and the stabiliser subgroup of $g$ with respect to $x$ is $G_{x}=\{g \in G \mid g x=x\}$.
Then $|G \cdot x|\left|G_{x}\right|=|G|$.

## Group Theory

## Theorem (Lagrange's Theorem)

Let $G$ be a finite group of order $n$. Then any subgroup $H$ of $G$ has order dividing $n$.

## Theorem (Orbit-stabiliser theorem)

Let $G$ be a finite group acting on a set $X$. The orbit of $x$ is $G \cdot x=\{g x \mid g \in G\}$. and the stabiliser subgroup of $g$ with respect to $x$ is $G_{x}=\{g \in G \mid g x=x\}$.
Then $|G \cdot x|\left|G_{x}\right|=|G|$.

## Theorem ("Burnside's" lemma)

Let $G$ be a finite group acting on a set $X$. The number of orbits $|X / G|$ of $X$ is

$$
|X / G|=\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right|
$$

where $X^{g}:=\{x \in X \mid g x=x\}$ is the set of points fixed by $g$.

## Examples

## Example

Let $r, s, t$ be positive integers which are pairwise relatively prime. If $a$ and $b$ are elements of an abelian group with unity element $e$, and $a^{r}=b^{s}=(a b)^{t}=e$, prove that $a=b=e$. Does the same conclusion hold if $a$ and $b$ are elements of an arbitrary non-commutative group?

## Examples

## Example

Let $r, s, t$ be positive integers which are pairwise relatively prime. If $a$ and $b$ are elements of an abelian group with unity element $e$, and $a^{r}=b^{s}=(a b)^{t}=e$, prove that $a=b=e$. Does the same conclusion hold if $a$ and $b$ are elements of an arbitrary non-commutative group?

## Example

Denote by $S_{n}$ the group of permutations of the sequnece $(1,2, \ldots, n)$. Suppose that $G$ is a subgroup of $S_{n}$, such that for every $\pi \in G \backslash\{e\}$ there exists a unique $k \in\{1,2, \ldots, n\}$ for which $\pi(k)=k$. Show that this $k$ is the same for all $\pi \in G \backslash\{e\}$.

## Examples

## Example

Let $r, s, t$ be positive integers which are pairwise relatively prime. If $a$ and $b$ are elements of an abelian group with unity element $e$, and $a^{r}=b^{s}=(a b)^{t}=e$, prove that $a=b=e$. Does the same conclusion hold if $a$ and $b$ are elements of an arbitrary non-commutative group?

## Example

Denote by $S_{n}$ the group of permutations of the sequnece $(1,2, \ldots, n)$. Suppose that $G$ is a subgroup of $S_{n}$, such that for every $\pi \in G \backslash\{e\}$ there exists a unique $k \in\{1,2, \ldots, n\}$ for which $\pi(k)=k$. Show that this $k$ is the same for all $\pi \in G \backslash\{e\}$.

Hint: Consider $G$ acting on the set $X=\{1,2, \ldots, n\}$ and apply orbit-stabiliser theorem.

## Group theory

## Example

Let $G$ be a group of $n \geq 2$ be an integer. Let $H_{1}$ and $H_{2}$ be two subgroups of $G$ that satisfy

$$
\left[G: H_{1}\right]=\left[G: H_{2}\right]=n \quad \text { and } \quad\left[G:\left(H_{1} \cap H_{2}\right)\right]=n(n-1) .
$$

Prove that $H_{1}$ and $H_{2}$ are conjugate in $G$.

## Group theory

## Example

Let $G$ be a group of $n \geq 2$ be an integer. Let $H_{1}$ and $H_{2}$ be two subgroups of $G$ that satisfy

$$
\left[G: H_{1}\right]=\left[G: H_{2}\right]=n \quad \text { and } \quad\left[G:\left(H_{1} \cap H_{2}\right)\right]=n(n-1) .
$$

Prove that $H_{1}$ and $H_{2}$ are conjugate in $G$.
Hint: Express $H_{1}, H_{2}$ both as the disjoint union of left cosets with respect to $H_{2}$ and and as the disjoint union of right cosets with respect to $H_{1}$.

## Permutation groups

## Symmetric group <br> The symmetric group $S_{n}$ is the group of all $n!$ permutations on a set of $n$ elements.

## Permutation groups

## Symmetric group

The symmetric group $S_{n}$ is the group of all $n!$ permutations on a set of $n$ elements.

## Example

For a prime number $p$, let $\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$ be the group of invertible $2 \times 2$ matrices of residue modulo $p$. Show that there is no injective group homomorphism $\varphi: \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z}) \rightarrow S_{p}$.

## Permutation groups

## Symmetric group

The symmetric group $S_{n}$ is the group of all $n!$ permutations on a set of $n$ elements.

## Example

For a prime number $p$, let $\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$ be the group of invertible $2 \times 2$ matrices of residue modulo $p$. Show that there is no injective group homomorphism $\varphi: \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z}) \rightarrow S_{p}$.

## Example

Prove that the following proposition holds for $n=3$, but not for $n=4$.
For any permutation $\pi_{1}$ of $\{1,2, \ldots, n\}$ different from the identity there is a permutation $\pi_{2}$ such that any permutation $\pi$ can be obtained from $\pi_{1}$ and $\pi_{2}$ using only compositions (e.g. $\pi=\pi_{1} \circ \pi_{1} \circ \pi_{2} \circ \pi_{1}$ ).

## Permutation groups

## Symmetric group

The symmetric group $S_{n}$ is the group of all $n!$ permutations on a set of $n$ elements.

## Example

For a prime number $p$, let $\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$ be the group of invertible $2 \times 2$ matrices of residue modulo $p$. Show that there is no injective group homomorphism $\varphi: \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z}) \rightarrow S_{p}$.

## Example

Prove that the following proposition holds for $n=3$, but not for $n=4$.
For any permutation $\pi_{1}$ of $\{1,2, \ldots, n\}$ different from the identity there is a permutation $\pi_{2}$ such that any permutation $\pi$ can be obtained from $\pi_{1}$ and $\pi_{2}$ using only compositions (e.g. $\pi=\pi_{1} \circ \pi_{1} \circ \pi_{2} \circ \pi_{1}$ ).

Hint: For $n=4$, let $\pi_{1}=(12)(34)$ and consider $S_{4} /\{i d,(12)(34),(13)(24),(14)(23)\}$.

## More problems!

## Example

Let $n>1$ be an integer. Two players, A and B, play the following game. Taking turns, they select elements (one element at a time) from the group $S_{n}$. It is forbidden to select an element that has already been selected. The game ends when the selected elements generate the whole group $S_{n}$. The player who made the last move loses the game. The first move is made by $A$. Which player has a winning strategy?

## More problems!

## Example

Let $n>1$ be an integer. Two players, A and B, play the following game. Taking turns, they select elements (one element at a time) from the group $S_{n}$. It is forbidden to select an element that has already been selected. The game ends when the selected elements generate the whole group $S_{n}$. The player who made the last move loses the game. The first move is made by $A$. Which player has a winning strategy?

## Example

Find all positive integers $n$ for which there exists a family $\mathcal{F}$ of three-element subsets of $S=\{1,2, \ldots, n\}$ satisfying the following two conditions:
(i) for any two different elements $a, b \in S$, there exists exactly one $A \in \mathcal{F}$ containing both $a, b$;
(ii) if $a, b, c, x, y, z$ are elements of $S$ such that if $\{a, b, x\},\{a, c, y\},\{b, c, z\} \in \mathcal{F}$, then $\{x, y, z\} \in \mathcal{F}$.

