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1) Introduction
Let ℓ be a rational prime and r a positive integer. We write Qr,ℓ

for the unique degree ℓr totally real subfield of ∪∞
n=1Q(µn), where µn

denotes the set of ℓn-th roots of 1. We let Q∞,ℓ = ∪rQr,ℓ; this is the
Zℓ-cyclotomic extension of Q. Furthermore, for any number field K,
we write K∞,ℓ = K · Q∞,ℓ (also denoted K∞ for brevity).
The motivation for the present paper is a series of conjectures and theorems
by Mazur, Parshin and Zarhin that suggest that the arithmetic of curves
(respectively abelian varieties) over K∞ is similar to the arithmetic of
curves (respectively abelian varieties) over K.

• Conjecture (Mazur [1]). Let A/K∞ be an abelian variety. Then
A(K∞) is finitely generated.

• Conjecture (Parshin and Zarhin [2, page 91]) Let X/K∞ be a curve
of genus ≥ 2. Then X(K∞) is finite.

• Theorem (Zarhin [3, Corollary 4.2]) Let A, B be abelian varieties
defined over K∞,ℓ, and denote their respective ℓ-adic Tate modules by
Tℓ(A), Tℓ(B). Then the natural embedding

HomK∞(A, B) ⊗ Zℓ ↪→ HomGal(K∞/K∞)(Tℓ(A), Tℓ(B))
is a bijection.

The purpose of this paper is to give counterexamples to potential general-
izations of certain theorems of Siegel and Shafarevich to K∞. A theorem
of Siegel (e.g. [4, Theorem 0.2.8]) asserts that (P1 − {0, 1, ∞})(OK,S) is
finite for any number field K and any finite set of primes S. We show that
the corresponding statement over Q∞,ℓ is false, at least for ℓ = 2, 3, 5, 7.

2) Units and S-units of Q(ζ)
For a rational prime ℓ, we denote by υ2 the inert prime of Q∞,ℓ above 2, and
υℓ the totally ramified prime of Q∞,ℓ above ℓ. Most of our constructions
for counterexamples to Siegel and Shafarevich use properties of Φm(X);
the m-th cyclotomic polynomial given by

Φm(X) =
∏

1≤i≤m
(i,m)=1

(X − ζi
m).

At the heart of our constructions is the following lemma asserting that
Φm(X) evaluated at ζℓn is either a unit or {υℓ}-unit of Q(ζℓn).
Lemma 1 Let ℓ be a prime and n ≥ 1. Let m ≥ 1, and suppose ℓn ∤ m.

(a) Φm(ζℓn) ∈ O(Q(ζℓn), S)×, where S = {υℓ}.
(b) If m ̸= ℓu for all u ≥ 0, then Φm(ζℓn) ∈ O(Q(ζℓn))×.

3) The S-unit equation over Q(ζℓn)+

Theorem 2 Let ℓ = 2, 3, 5 or 7. Let S = {υℓ} and write OS for the
S-integers of Q∞,ℓ. Let k ∈ {1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 24} if ℓ = 2, 3, or
k ∈ {1, 2, 4} if ℓ = 5, or k = 1 if ℓ = 7. Then (P1 − {0, k, ∞})(OS) is
infinite.
Construction for ℓ = 2, 3. For each k given above, we found a ternary
relation of the form f1 · · · fα − g1 · · · gβ = kXh1 · · · hγ where each fi, gi, hi

is a cyclotomic polynomial. The theorem follows by applying Lemma 1
to these relations. E.g. for k = 10, a short computer search found the
following ternary relation:

Φ2(X)4Φ5(X) − Φ1(X)4Φ10(X) = 10XΦ4(X)3.

Therefore, for each n ≥ 1, by letting

εn = Φ2(ζℓn)4Φ5(ζℓn)
ζℓnΦ4(ζℓn)3 , δn = −Φ1(ζℓn)4Φ10(ζℓn)

ζℓnΦ4(ζℓn)3 .

we have the S-unit equation εn + δn = 10, noting that εn, δn ∈ OS by
Lemma 1. It can also be shown using properties of cyclotomic units in
Q(ζℓn)+ [5, Chapter 8] that εn ̸= εm for any m < n.

4) From S-unit equations to elliptic curves
Using the family of S-unit equations obtained from Theorem 2, we can
prove that the Shafarevich conjecture for elliptic curves is false over Q∞,ℓ

for ℓ = 2, 3, 5, 7.

Theorem 3 Let ℓ = 2, 3, 5, or 7. Let S = {υ2, υℓ} where υ2 and υℓ

are the unique primes of Q∞,ℓ above 2 and ℓ respectively. Then, there are
infinitely many Q-isomorphism classes of elliptic curves defined over Q∞,ℓ

with good reduction away from S and with full 2-torsion in Q∞,ℓ.

Construction. By Theorem 2, for each n ≥ 1, we have constructed
εn, δn ∈ O(Q∞,ℓ, S)× such that εn + δn = 1. We define the elliptic curve

En : Y 2 = X(X − 1)(X − εn).

This model for En has discriminant ∆ = 16ε2
n(1 − εn)2 = 16ε2

nδ2
n. Thus

En is defined over Q∞,ℓ and has good reduction away from {υ2, υℓ}. As
εn ̸= εm for m < n, this yields infinitely many Q-isomorphism classes of
elliptic curves over Q∞,ℓ.

5) Hyperelliptic curves over Q∞,ℓ

Theorem 4 Let g ≥ 2 and let ℓ = 3, 5, 7, 11 or 13. There are infinitely
many Q-isomorphism classes of genus g hyperelliptic curves over Q∞,ℓ

with good reduction away from S = {υ2, υℓ}.

Construction. For sufficiently large n, we define Gn =
Gal(Q(ζℓn)+/Qn−1,ℓ); this is a cyclic subgroup of order (ℓ − 1)/2. We
define a set of real cyclotomic units ηi ∈ Q(ζℓn)+ given by

ηi = ζ1+ℓn−1(i−1) + ζ−1−ℓn−1(i−1), 1 ≤ i ≤ ℓ,

and therefore define the hyperelliptic curve Dn as

Dn : Y 2 = h(X) ·
k∏

j=1

∏
σ∈Gn

(X − ησ
j ), (1)

where k ≥ 1 and h, a monic divisor of X(X − 1)(X + 1), are chosen
such that deg(h) + k(ℓ − 1)/2 ∈ {2g + 1, 2g + 2}. The above model for
Dn has discriminant

∏
i<j(ui − uj)2 where u1, . . . , ud are the roots of the

hyperelliptic polynomial in (1) Thus, to verify that Dn has good reduction
away from {υ2, υℓ}, we check that the difference of any two distinct roots
u, v of the hyperelliptic polynomial belongs to O(Q(ζℓn), S)×. This follows
by noting the following identities,

α + α−1 − β − β−1 = α−1Φ1(α/β)Φ1(αβ), α + α−1 = α−1Φ4(α),
α + α−1 + 1 = α−1Φ3(α), α + α−1 − 1 = α−1Φ6(α),

and therefore, by Lemma 1, the discriminant of Dn is an element of
O(Q(ζℓn), S)×. A similar argument to the elliptic case proves that Dn

is not Q-isomorphic to Dm for any m < n.
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