Curves with few bad primes over cyclotomic \mathbb{Z}_{ℓ}-extensions

Samir Siksek, Robin Visser
Mathematics Institute, University of Warwick, Coventry, UK s.siksek@warwick.ac.uk, robin.visser@warwick.ac.uk

1) Introduction

Let ℓ be a rational prime and r a positive integer. We write $\mathbb{Q}_{r, \ell}$ for the unique degree ℓ^{r} totally real subfield of $\cup_{n=1}^{\infty} \mathbb{Q}\left(\mu_{n}\right)$, where μ_{n} denotes the set of ℓ^{n}-th roots of 1 . We let $\mathbb{Q}_{\infty, \ell}=\cup_{r} \mathbb{Q}_{r, \ell} ;$ this is the \mathbb{Z}_{ℓ}-cyclotomic extension of \mathbb{Q}. Furthermore, for any number field K, we write $K_{\infty, \ell}=K \cdot \mathbb{Q}_{\infty, \ell}$ (also denoted K_{∞} for brevity).
The motivation for the present paper is a series of conjectures and theorems by Mazur, Parshin and Zarhin that suggest that the arithmetic of curves (respectively abelian varieties) over K_{∞} is similar to the arithmetic of curves (respectively abelian varieties) over K.

- Conjecture (Mazur [1]). Let A / K_{∞} be an abelian variety. Then $A\left(K_{\infty}\right)$ is finitely generated.
- Conjecture (Parshin and Zarhin [2, page 91]) Let X / K_{∞} be a curve of genus ≥ 2. Then $X\left(K_{\infty}\right)$ is finite
- Theorem (Zarhin [3, Corollary 4.2]) Let A, B be abelian varieties defined over $K_{\infty, \ell}$, and denote their respective ℓ-adic Tate modules by $T_{\ell}(A), T_{\ell}(B)$. Then the natural embedding
$\operatorname{Hom}_{K_{\infty}}(A, B) \otimes \mathbb{Z}_{\ell} \hookrightarrow \operatorname{Hom}_{\operatorname{Gal}\left(\overline{K_{\infty}} / K_{\infty}\right)}\left(T_{\ell}(A), T_{\ell}(B)\right)$
is a bijection.
The purpose of this paper is to give counterexamples to potential generalizations of certain theorems of Siegel and Shafarevich to K_{∞}. A theorem of Siegel (e.g. [4, Theorem 0.2.8]) asserts that $\left(\mathbb{P}^{1}-\{0,1, \infty\}\right)\left(\mathcal{O}_{K, S}\right)$ is finite for any number field K and any finite set of primes S. We show that the corresponding statement over $\mathbb{Q}_{\infty, \ell}$ is false, at least for $\ell=2,3,5,7$.

2) Units and S-units of $\mathbb{Q}(\zeta)$

For a rational prime ℓ, we denote by v_{2} the inert prime of $\mathbb{Q}_{\infty, \ell}$ above 2 , and v_{ℓ} the totally ramified prime of $\mathbb{Q}_{\infty, \ell}$ above ℓ. Most of our constructions for counterexamples to Siegel and Shafarevich use properties of $\Phi_{m}(X)$; the m-th cyclotomic polynomial given by

$$
\Phi_{m}(X)=\prod_{1 \leq i \leq m}\left(X-\zeta_{m}^{i}\right)
$$

At the heart of our constructions is the following lemma asserting that $\Phi_{m}(X)$ evaluated at $\zeta_{\ell^{n}}$ is either a unit or $\left\{v_{\ell}\right\}$-unit of $\mathbb{Q}\left(\zeta_{\ell^{n}}\right)$.
Lemma 1 Let ℓ be a prime and $n \geq 1$. Let $m \geq 1$, and suppose $\ell^{n} \nmid m$.
(a) $\Phi_{m}\left(\zeta_{\ell^{n}}\right) \in \mathcal{O}\left(\mathbb{Q}\left(\zeta_{\ell^{n}}\right), S\right)^{\times}$, where $S=\left\{v_{\ell}\right\}$.
(b) If $m \neq \ell^{u}$ for all $u \geq 0$, then $\Phi_{m}\left(\zeta_{\ell^{n}}\right) \in \mathcal{O}\left(\mathbb{Q}\left(\zeta_{\ell^{n}}\right)\right)^{x}$

3) The S-unit equation over $\mathbb{Q}\left(\zeta_{n}\right)^{+}$

Theorem 2 Let $\ell=2,3,5$ or 7 . Let $S=\left\{v_{\ell}\right\}$ and write \mathcal{O}_{S} for the S-integers of $\mathbb{Q}_{\infty, \ell .}$ Let $k \in\{1,2,3,4,5,6,7,8,10,12,24\}$ if $\ell=2,3$, or $k \in\{1,2,4\}$ if $\ell=5$, or $k=1$ if $\ell=7$. Then $\left(\mathbb{P}^{1}-\{0, k, \infty\}\right)\left(\mathcal{O}_{S}\right)$ is infinite.
Construction for $\ell=2,3$. For each k given above, we found a ternary relation of the form $f_{1} \cdots f_{\alpha}-g_{1} \cdots g_{\beta}=k X h_{1} \cdots h_{\gamma}$ where each f_{i}, g_{i}, h_{i} is a cyclotomic polynomial. The theorem follows by applying Lemma 1 to these relations. E.g. for $k=10$, a short computer search found the following ternary relation:

$$
\Phi_{2}(X)^{4} \Phi_{5}(X)-\Phi_{1}(X)^{4} \Phi_{10}(X)=10 X \Phi_{4}(X)^{3}
$$

Therefore, for each $n \geq 1$, by letting

$$
\varepsilon_{n}=\frac{\Phi_{2}\left(\zeta_{\ell^{n}}\right)^{4} \Phi_{5}\left(\zeta_{\ell^{n}}\right)}{\zeta_{\ell^{n}} \Phi_{4}\left(\zeta_{\ell^{n}}\right)^{3}}, \quad \delta_{n}=\frac{-\Phi_{1}\left(\zeta_{\ell^{n}}\right)^{4} \Phi_{10}\left(\zeta_{\ell^{n}}\right)}{\zeta_{\ell^{n}} \Phi_{4}\left(\zeta_{\ell^{n}}\right)^{3}}
$$

we have the S-unit equation $\varepsilon_{n}+\delta_{n}=10$, noting that $\varepsilon_{n}, \delta_{n} \in \mathcal{O}_{S}$ by Lemma 1. It can also be shown using properties of cyclotomic units in $\mathbb{Q}\left(\zeta_{\ell^{n}}\right)^{+}\left[5\right.$, Chapter 8] that $\varepsilon_{n} \neq \varepsilon_{m}$ for any $m<n$.

4) From S-unit equations to elliptic curves

Using the family of S-unit equations obtained from Theorem 2 , we can prove that the Shafarevich conjecture for elliptic curves is false over $\mathbb{Q}_{\infty, \ell}$ for $\ell=2,3,5,7$.

Theorem 3 Let $\ell=2,3,5$, or 7 . Let $S=\left\{v_{2}, v_{\ell}\right\}$ where v_{2} and v_{ℓ} are the unique primes of $\mathbb{Q}_{\infty, \ell}$ above 2 and ℓ respectively. Then, there are infinitely many $\overline{\mathbb{Q}}$-isomorphism classes of elliptic curves defined over $\mathbb{Q}_{\infty, \ell}$ with good reduction away from S and with full 2-torsion in $\mathbb{Q}_{\infty, \ell}$.

Construction. By Theorem 2, for each $n \geq 1$, we have constructed $\varepsilon_{n}, \delta_{n} \in \mathcal{O}\left(\mathbb{Q}_{\infty, \ell}, S\right)^{\times}$such that $\varepsilon_{n}+\delta_{n}=1$. We define the elliptic curve

$$
E_{n}: Y^{2}=X(X-1)\left(X-\varepsilon_{n}\right) .
$$

This model for E_{n} has discriminant $\Delta=16 \varepsilon_{n}^{2}\left(1-\varepsilon_{n}\right)^{2}=16 \varepsilon_{n}^{2} \delta_{n}^{2}$. Thus E_{n} is defined over $\mathbb{Q}_{\infty, \ell}$ and has good reduction away from $\left\{v_{2}, v_{\ell}\right\}$. As $\varepsilon_{n} \neq \varepsilon_{m}$ for $m<n$, this yields infinitely many $\overline{\mathbb{Q}}$-isomorphism classes of elliptic curves over $\mathbb{Q}_{\infty, \ell}$.

5) Hyperelliptic curves over $\mathbb{Q} \infty, \ell$

Theorem 4 Let $g \geq 2$ and let $\ell=3,5,7,11$ or 13 . There are infinitely many $\overline{\mathbb{Q}}$-isomorphism classes of genus g hyperelliptic curves over $\mathbb{Q}_{\infty, \ell}$ with good reduction away from $S=\left\{v_{2}, v_{\ell}\right\}$

Construction. For sufficiently large n, we define $G_{n}=$ $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{\ell^{n}}\right)^{+} / \mathbb{Q}_{n-1, \ell}\right)$; this is a cyclic subgroup of order $(\ell-1) / 2$. We define a set of real cyclotomic units $\eta_{i} \in \mathbb{Q}\left(\zeta_{\ell^{n}}\right)^{+}$given by

$$
\eta_{i}=\zeta^{1+\ell^{n-1}(i-1)}+\zeta^{-1-\ell^{n-1}(i-1)}, \quad 1 \leq i \leq \ell
$$

and therefore define the hyperelliptic curve D_{n} as

$$
\begin{equation*}
D_{n}: Y^{2}=h(X) \cdot \prod_{j=1}^{k} \prod_{\sigma \in G_{n}}\left(X-\eta_{j}^{\sigma}\right) \tag{1}
\end{equation*}
$$

where $k \geq 1$ and h, a monic divisor of $X(X-1)(X+1)$, are chosen such that $\operatorname{deg}(h)+k(\ell-1) / 2 \in\{2 g+1,2 g+2\}$. The above model for D_{n} has discriminant $\prod_{i<j}\left(u_{i}-u_{j}\right)^{2}$ where u_{1}, \ldots, u_{d} are the roots of the hyperelliptic polynomial in (1) Thus, to verify that D_{n} has good reduction away from $\left\{v_{2}, v_{\ell}\right\}$, we check that the difference of any two distinct roots u, v of the hyperelliptic polynomial belongs to $\mathcal{O}\left(\mathbb{Q}\left(\zeta_{\ell^{n}}\right), S\right)^{\times}$. This follows by noting the following identities,

$$
\begin{aligned}
\alpha+\alpha^{-1}-\beta-\beta^{-1} & =\alpha^{-1} \Phi_{1}(\alpha / \beta) \Phi_{1}(\alpha \beta), & \alpha+\alpha^{-1} & =\alpha^{-1} \Phi_{4}(\alpha), \\
\alpha+\alpha^{-1}+1 & =\alpha^{-1} \Phi_{3}(\alpha), & \alpha+\alpha^{-1}-1 & =\alpha^{-1} \Phi_{6}(\alpha),
\end{aligned}
$$

and therefore, by Lemma 1, the discriminant of D_{n} is an element of $\mathcal{O}\left(\mathbb{Q}\left(\zeta_{\ell^{n}}\right), S\right)^{\times}$. A similar argument to the elliptic case proves that D_{n} is not $\overline{\mathbb{Q}}$-isomorphic to D_{m} for any $m<n$.

References and Acknowledgements

(1) B. Mazur, Invent. Math., 1972, 18, 183-266.
(2) Y. G. Zarhin and A. N. Parshin, Finiteness Problems in Diophantine Geometry, 2009.
(3) Y. G. Zarkhin, Mat. Sb., 2010, 201, 93-102.
(4) D. Abramovich, in Arithmetic geometry, Amer. Math. Soc., Providence, RI, 2009, vol. 8, pp. 335-373.
(5) L. C. Washington, Introduction to cyclotomic fields, Springer-Verlag, New York, Second, 1997, vol. 83, pp. xiv +487.
Siksek is supported by the EPSRC grant Moduli of Elliptic curves and Classical Diophantine Problems (EP/S031537/1). Visser is supported by an EPSRC studentship (EP/V520226/1)

