Curves with few bad primes over cyclotomic $\mathbb{Z}_\ell\text{-extensions}$

Samir Siksek, Robin Visser

Mathematics Institute, University of Warwick, Coventry, UK s.siksek@warwick.ac.uk, robin.visser@warwick.ac.uk

WARWICK THE UNIVERSITY OF WARWICK

1) Introduction

Let ℓ be a rational prime and r a positive integer. We write $\mathbb{Q}_{r,\ell}$ for the unique degree ℓ^r totally real subfield of $\bigcup_{n=1}^{\infty} \mathbb{Q}(\mu_n)$, where μ_n denotes the set of ℓ^n -th roots of 1. We let $\mathbb{Q}_{\infty,\ell} = \bigcup_r \mathbb{Q}_{r,\ell}$; this is the \mathbb{Z}_{ℓ} -cyclotomic extension of \mathbb{Q} . Furthermore, for any number field K, we write $K_{\infty,\ell} = K \cdot \mathbb{Q}_{\infty,\ell}$ (also denoted K_{∞} for brevity).

4) From S-unit equations to elliptic curves

Using the family of S-unit equations obtained from Theorem 2, we can prove that the Shafarevich conjecture for elliptic curves is false over $\mathbb{Q}_{\infty,\ell}$ for $\ell = 2, 3, 5, 7$.

Theorem 3 Let $\ell = 2, 3, 5, \text{ or } 7$. Let $S = \{v_2, v_\ell\}$ where v_2 and v_ℓ are the unique primes of $\mathbb{Q}_{\infty,\ell}$ above 2 and ℓ respectively. Then, there are infinitely many $\overline{\mathbb{Q}}$ -isomorphism classes of elliptic curves defined over $\mathbb{Q}_{\infty,\ell}$ with good reduction away from S and with full 2-torsion in $\mathbb{Q}_{\infty,\ell}$.

The motivation for the present paper is a series of conjectures and theorems by Mazur, Parshin and Zarhin that suggest that the arithmetic of curves (respectively abelian varieties) over K_{∞} is similar to the arithmetic of curves (respectively abelian varieties) over K.

- Conjecture (Mazur [1]). Let A/K_{∞} be an abelian variety. Then $A(K_{\infty})$ is finitely generated.
- Conjecture (Parshin and Zarhin [2, page 91]) Let X/K_{∞} be a curve of genus ≥ 2 . Then $X(K_{\infty})$ is finite.
- **Theorem** (Zarhin [3, Corollary 4.2]) Let A, B be abelian varieties defined over $K_{\infty,\ell}$, and denote their respective ℓ -adic Tate modules by $T_{\ell}(A), T_{\ell}(B)$. Then the natural embedding

 $\operatorname{Hom}_{K_{\infty}}(A,B) \otimes \mathbb{Z}_{\ell} \hookrightarrow \operatorname{Hom}_{\operatorname{Gal}(\overline{K_{\infty}}/K_{\infty})}(T_{\ell}(A),T_{\ell}(B))$ is a bijection.

The purpose of this paper is to give counterexamples to potential generalizations of certain theorems of Siegel and Shafarevich to K_{∞} . A theorem of Siegel (e.g. [4, Theorem 0.2.8]) asserts that $(\mathbb{P}^1 - \{0, 1, \infty\})(\mathcal{O}_{K,S})$ is finite for any number field K and any finite set of primes S. We show that the corresponding statement over $\mathbb{Q}_{\infty,\ell}$ is false, at least for $\ell = 2, 3, 5, 7$. Construction. By Theorem 2, for each $n \ge 1$, we have constructed $\varepsilon_n, \delta_n \in \mathcal{O}(\mathbb{Q}_{\infty,\ell}, S)^{\times}$ such that $\varepsilon_n + \delta_n = 1$. We define the elliptic curve

 $E_n: Y^2 = X(X-1)(X-\varepsilon_n).$

This model for E_n has discriminant $\Delta = 16\varepsilon_n^2(1 - \varepsilon_n)^2 = 16\varepsilon_n^2\delta_n^2$. Thus E_n is defined over $\mathbb{Q}_{\infty,\ell}$ and has good reduction away from $\{v_2, v_\ell\}$. As $\varepsilon_n \neq \varepsilon_m$ for m < n, this yields infinitely many $\overline{\mathbb{Q}}$ -isomorphism classes of elliptic curves over $\mathbb{Q}_{\infty,\ell}$.

5) Hyperelliptic curves over $\mathbb{Q}_{\infty,\ell}$

Theorem 4 Let $g \ge 2$ and let $\ell = 3, 5, 7, 11$ or 13. There are infinitely many $\overline{\mathbb{Q}}$ -isomorphism classes of genus g hyperelliptic curves over $\mathbb{Q}_{\infty,\ell}$ with good reduction away from $S = \{v_2, v_\ell\}$.

Construction. For sufficiently large n, we define $G_n = \text{Gal}(\mathbb{Q}(\zeta_{\ell^n})^+/\mathbb{Q}_{n-1,\ell})$; this is a cyclic subgroup of order $(\ell - 1)/2$. We define a set of real cyclotomic units $\eta_i \in \mathbb{Q}(\zeta_{\ell^n})^+$ given by

2) Units and S-units of $\mathbb{Q}(\zeta)$

For a rational prime ℓ , we denote by v_2 the inert prime of $\mathbb{Q}_{\infty,\ell}$ above 2, and v_{ℓ} the totally ramified prime of $\mathbb{Q}_{\infty,\ell}$ above ℓ . Most of our constructions for counterexamples to Siegel and Shafarevich use properties of $\Phi_m(X)$; the *m*-th cyclotomic polynomial given by

$$\Phi_m(X) = \prod_{\substack{1 \le i \le m \\ (i,m) = 1}} (X - \zeta_m^i).$$

At the heart of our constructions is the following lemma asserting that $\Phi_m(X)$ evaluated at ζ_{ℓ^n} is either a unit or $\{\upsilon_\ell\}$ -unit of $\mathbb{Q}(\zeta_{\ell^n})$. **Lemma 1** Let ℓ be a prime and $n \ge 1$. Let $m \ge 1$, and suppose $\ell^n \nmid m$. (a) $\Phi_m(\zeta_{\ell^n}) \in \mathcal{O}(\mathbb{Q}(\zeta_{\ell^n}), S)^{\times}$, where $S = \{\upsilon_\ell\}$. (b) If $m \ne \ell^u$ for all $u \ge 0$, then $\Phi_m(\zeta_{\ell^n}) \in \mathcal{O}(\mathbb{Q}(\zeta_{\ell^n}))^{\times}$.

3) The S-unit equation over $\mathbb{Q}(\zeta_{\ell^n})^+$

Theorem 2 Let $\ell = 2, 3, 5$ or 7. Let $S = \{v_\ell\}$ and write \mathcal{O}_S for the *S*-integers of $\mathbb{Q}_{\infty,\ell}$. Let $k \in \{1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 24\}$ if $\ell = 2, 3$, or $k \in \{1, 2, 4\}$ if $\ell = 5$, or k = 1 if $\ell = 7$. Then $(\mathbb{P}^1 - \{0, k, \infty\})(\mathcal{O}_S)$ is infinite

$$\eta_i = \zeta^{1+\ell^{n-1}(i-1)} + \zeta^{-1-\ell^{n-1}(i-1)}, \qquad 1 \le i \le \ell,$$

and therefore define the hyperelliptic curve D_n as

$$D_n : Y^2 = h(X) \cdot \prod_{j=1}^k \prod_{\sigma \in G_n} (X - \eta_j^\sigma), \qquad (1)$$

where $k \geq 1$ and h, a monic divisor of X(X-1)(X+1), are chosen such that $\deg(h) + k(\ell-1)/2 \in \{2g+1, 2g+2\}$. The above model for D_n has discriminant $\prod_{i < j} (u_i - u_j)^2$ where u_1, \ldots, u_d are the roots of the hyperelliptic polynomial in (1) Thus, to verify that D_n has good reduction away from $\{v_2, v_\ell\}$, we check that the difference of any two distinct roots u, v of the hyperelliptic polynomial belongs to $\mathcal{O}(\mathbb{Q}(\zeta_{\ell^n}), S)^{\times}$. This follows by noting the following identities,

$$\begin{aligned} \alpha + \alpha^{-1} - \beta - \beta^{-1} &= \alpha^{-1} \Phi_1(\alpha/\beta) \Phi_1(\alpha\beta), & \alpha + \alpha^{-1} &= \alpha^{-1} \Phi_4(\alpha), \\ \alpha + \alpha^{-1} + 1 &= \alpha^{-1} \Phi_3(\alpha), & \alpha + \alpha^{-1} - 1 &= \alpha^{-1} \Phi_6(\alpha), \end{aligned}$$

and therefore, by Lemma 1, the discriminant of D_n is an element of $\mathcal{O}(\mathbb{Q}(\zeta_{\ell^n}), S)^{\times}$. A similar argument to the elliptic case proves that D_n is not $\overline{\mathbb{Q}}$ -isomorphic to D_m for any m < n.

infinite.

Construction for $\ell = 2, 3$. For each k given above, we found a ternary relation of the form $f_1 \cdots f_\alpha - g_1 \cdots g_\beta = kXh_1 \cdots h_\gamma$ where each f_i, g_i, h_i is a cyclotomic polynomial. The theorem follows by applying Lemma 1 to these relations. E.g. for k = 10, a short computer search found the following ternary relation:

 $\Phi_2(X)^4 \Phi_5(X) - \Phi_1(X)^4 \Phi_{10}(X) = 10X \Phi_4(X)^3.$

Therefore, for each $n \ge 1$, by letting

$$\varepsilon_n = \frac{\Phi_2(\zeta_{\ell^n})^4 \Phi_5(\zeta_{\ell^n})}{\zeta_{\ell^n} \Phi_4(\zeta_{\ell^n})^3}, \qquad \delta_n = \frac{-\Phi_1(\zeta_{\ell^n})^4 \Phi_{10}(\zeta_{\ell^n})}{\zeta_{\ell^n} \Phi_4(\zeta_{\ell^n})^3}.$$

we have the S-unit equation $\varepsilon_n + \delta_n = 10$, noting that $\varepsilon_n, \delta_n \in \mathcal{O}_S$ by Lemma 1. It can also be shown using properties of cyclotomic units in $\mathbb{Q}(\zeta_{\ell^n})^+$ [5, Chapter 8] that $\varepsilon_n \neq \varepsilon_m$ for any m < n.

References and Acknowledgements

- (1) B. Mazur, *Invent. Math.*, 1972, **18**, 183–266.
- Y. G. Zarhin and A. N. Parshin, *Finiteness Problems in Diophantine Geometry*, 2009.
- (3) Y. G. Zarkhin, Mat. Sb., 2010, **201**, 93–102.
- (4) D. Abramovich, in *Arithmetic geometry*, Amer. Math. Soc., Providence, RI, 2009, vol. 8, pp. 335–373.
- (5) L. C. Washington, *Introduction to cyclotomic fields*, Springer-Verlag, New York, Second, 1997, vol. 83, pp. xiv+487.

Siksek is supported by the EPSRC grant *Moduli of Elliptic curves and Classical Diophantine Problems* (EP/S031537/1). Visser is supported by an EPSRC studentship (EP/V520226/1)