Computing genus 2 curves over \mathbb{Q} whose Jacobian has good reduction away from 2

British Mathematical Colloquium, University of Manchester

Robin Visser
Mathematics Institute
University of Warwick

19 June 2024

Motivation

Conjecture (Mordell 1922)
Any smooth curve C over a number field K of genus at least 2 has only finitely many K-rational points.

Motivation

Conjecture (Mordell 1922)

Any smooth curve C over a number field K of genus at least 2 has only finitely many K-rational points.

Conjecture (Shafarevich 1962)

Let K be a number field, $d \geq 1$ a positive integer, and S a finite set of primes of K. Then there are only finitely many K-isomorphism classes of abelian varieties A / K of dimension d with good reduction outside S.

Motivation

Conjecture (Mordell 1922)

Any smooth curve C over a number field K of genus at least 2 has only finitely many K-rational points.

Conjecture (Shafarevich 1962)

Let K be a number field, $d \geq 1$ a positive integer, and S a finite set of primes of K. Then there are only finitely many K-isomorphism classes of abelian varieties A / K of dimension d with good reduction outside S.

Theorem (Parshin 1968)

The Shafarevich conjecture implies the Mordell conjecture.

Motivation

Theorem (Faltings 1983; conjectured by Mordell 1922)

Any smooth curve C over a number field K of genus at least 2 has only finitely many K-rational points.

Theorem (Faltings 1983; conjectured by Shafarevich 1962)

Let K be a number field, $d \geq 1$ a positive integer, and S a finite set of primes of K. Then there are only finitely many K-isomorphism classes of abelian varieties A / K of dimension d with good reduction outside S.

Theorem (Parshin 1968)

The Shafarevich conjecture implies the Mordell conjecture.

Motivation

Theorem (Faltings 1983; conjectured by Mordell 1922)

Any smooth curve C over a number field K of genus at least 2 has only finitely many K-rational points.

Theorem (Faltings 1983; conjectured by Shafarevich 1962)

Let K be a number field, $d \geq 1$ a positive integer, and S a finite set of primes of K. Then there are only finitely many K-isomorphism classes of abelian varieties A / K of dimension d with good reduction outside S.

Theorem (Parshin 1968)

The Shafarevich conjecture implies the Mordell conjecture.

- Unfortunately Faltings' proof doesn't give a fully effective algorithm to find all such abelian varieties () .

Effective Shafarevich

Conjecture (Effective Mordell)

There exists an algorithm which can explicitly compute $C(K)$ given any smooth curve C over a number field K of genus at least 2 .

Effective Shafarevich

Conjecture (Effective Mordell)

There exists an algorithm which can explicitly compute $C(K)$ given any smooth curve C over a number field K of genus at least 2 .

Conjecture (Effective Shafarevich)

There exists an algorithm which can explicitly compute all dimension d abelian varieties A / K with good reduction outside S, for any number field K, positive integer d, and finite set of primes S of K.

Effective Shafarevich

Conjecture (Effective Mordell)

There exists an algorithm which can explicitly compute $C(K)$ given any smooth curve C over a number field K of genus at least 2 .

Conjecture (Effective Shafarevich)

There exists an algorithm which can explicitly compute all dimension d abelian varieties A / K with good reduction outside S, for any number field K, positive integer d, and finite set of primes S of K.

Theorem (Rémond 1999)

The effective Shafarevich conjecture implies the effective Mordell conjecture.

Effective Shafarevich

Conjecture (Effective Mordell)

There exists an algorithm which can explicitly compute $C(K)$ given any smooth curve C over a number field K of genus at least 2 .

Conjecture (Effective Shafarevich)

There exists an algorithm which can explicitly compute all dimension d abelian varieties A / K with good reduction outside S, for any number field K, positive integer d, and finite set of primes S of K.

Theorem (Rémond 1999)

The effective Shafarevich conjecture implies the effective Mordell conjecture.

- Many techniques available to solve effective Mordell in many cases (e.g. local methods, quotients, descent, Chabauty-Coleman, Mordell-Weil sieve).

Effective Shafarevich

Some cases for which effective Shafarevich is known:

Effective Shafarevich

Some cases for which effective Shafarevich is known:

- elliptic curves (Coates 1970, Masser-Wüstholz 1988, Brumer-Silverman 1996, Poulakis 1999, Kida 2001, Cremona-Lingham 2007, Fuchs-von Känel-Wüstholz 2011, Koutsianas 2015, ...).

Effective Shafarevich

Some cases for which effective Shafarevich is known:

- elliptic curves (Coates 1970, Masser-Wüstholz 1988, Brumer-Silverman 1996, Poulakis 1999, Kida 2001, Cremona-Lingham 2007, Fuchs-von Känel-Wüstholz 2011, Koutsianas 2015, ...).
- $S=\varnothing$ for $K=\mathbb{Q}$ (Abrashkin 1976-77, Fontaine 1985), for small quadratic and cyclotomic fields K (Fontaine 1985, Abrashkin 1987, Schoof 2001-2019, Dembéle 2019).

Effective Shafarevich

Some cases for which effective Shafarevich is known:

- elliptic curves (Coates 1970, Masser-Wüstholz 1988, Brumer-Silverman 1996, Poulakis 1999, Kida 2001, Cremona-Lingham 2007, Fuchs-von Känel-Wüstholz 2011, Koutsianas 2015, ...).
- $S=\varnothing$ for $K=\mathbb{Q}$ (Abrashkin 1976-77, Fontaine 1985), for small quadratic and cyclotomic fields K (Fontaine 1985, Abrashkin 1987, Schoof 2001-2019, Dembéle 2019).
- semistable abelian varieties over \mathbb{Q}, where $S=\{2\},\{3\},\{5\},\{3,5\},\{7\},\{11\}$, $\{13\},\{23\}$ (Brumer-Kramer 2001, Calegari 2004, Schoof 2005-12).

Effective Shafarevich

Some cases for which effective Shafarevich is known:

- elliptic curves (Coates 1970, Masser-Wüstholz 1988, Brumer-Silverman 1996, Poulakis 1999, Kida 2001, Cremona-Lingham 2007, Fuchs-von Känel-Wüstholz 2011, Koutsianas 2015, ...).
- $S=\varnothing$ for $K=\mathbb{Q}$ (Abrashkin 1976-77, Fontaine 1985), for small quadratic and cyclotomic fields K (Fontaine 1985, Abrashkin 1987, Schoof 2001-2019, Dembéle 2019).
- semistable abelian varieties over \mathbb{Q}, where $S=\{2\},\{3\},\{5\},\{3,5\},\{7\},\{11\}$, $\{13\},\{23\}$ (Brumer-Kramer 2001, Calegari 2004, Schoof 2005-12).
- abelian varieties of GL_{2}-type (von Känel 2020).

Effective Shafarevich

Some cases for which effective Shafarevich is known:

- elliptic curves (Coates 1970, Masser-Wüstholz 1988, Brumer-Silverman 1996, Poulakis 1999, Kida 2001, Cremona-Lingham 2007, Fuchs-von Känel-Wüstholz 2011, Koutsianas 2015, ...).
- $S=\varnothing$ for $K=\mathbb{Q}$ (Abrashkin 1976-77, Fontaine 1985), for small quadratic and cyclotomic fields K (Fontaine 1985, Abrashkin 1987, Schoof 2001-2019, Dembéle 2019).
- semistable abelian varieties over \mathbb{Q}, where $S=\{2\},\{3\},\{5\},\{3,5\},\{7\},\{11\}$, $\{13\},\{23\}$ (Brumer-Kramer 2001, Calegari 2004, Schoof 2005-12).
- abelian varieties of GL_{2}-type (von Känel 2020).

Even the case $d=2, K=\mathbb{Q}, S=\{2\}$ is still an open problem!

Genus 2 curves

Problem (Poonen 1996)

List all genus 2 curves C / \mathbb{Q} whose Jacobians have good reduction away from 2.

Genus 2 curves

Problem (Poonen 1996)

List all genus 2 curves C / \mathbb{Q} whose Jacobians have good reduction away from 2 .
Smart (1997) computed all 366 genus 2 curves with good reduction outside 2. But there are more!

Genus 2 curves

Problem (Poonen 1996)

List all genus 2 curves C / \mathbb{Q} whose Jacobians have good reduction away from 2 .
Smart (1997) computed all 366 genus 2 curves with good reduction outside 2. But there are more! Examples of other curves C / \mathbb{Q} where $\operatorname{Jac}(C)$ good outside 2:

Genus 2 curves

Problem (Poonen 1996)

List all genus 2 curves C / \mathbb{Q} whose Jacobians have good reduction away from 2 .
Smart (1997) computed all 366 genus 2 curves with good reduction outside 2. But there are more! Examples of other curves C / \mathbb{Q} where $\operatorname{Jac}(C)$ good outside 2:

- $C: y^{2}=x^{5}-14 x^{3}+81 x$ has bad reduction at $\{2,3\}$.

Genus 2 curves

Problem (Poonen 1996)

List all genus 2 curves C / \mathbb{Q} whose Jacobians have good reduction away from 2 .
Smart (1997) computed all 366 genus 2 curves with good reduction outside 2. But there are more! Examples of other curves C / \mathbb{Q} where $\operatorname{Jac}(C)$ good outside 2:

- $C: y^{2}=x^{5}-14 x^{3}+81 x$ has bad reduction at $\{2,3\}$.
- $C: y^{2}=2 x^{5}-9 x^{4}-24 x^{3}+22 x^{2}+78 x-41$ has bad reduction at $\{2,5\}$.

Genus 2 curves

Problem (Poonen 1996)

List all genus 2 curves C / \mathbb{Q} whose Jacobians have good reduction away from 2 .
Smart (1997) computed all 366 genus 2 curves with good reduction outside 2. But there are more! Examples of other curves C / \mathbb{Q} where $\operatorname{Jac}(C)$ good outside 2:

- $C: y^{2}=x^{5}-14 x^{3}+81 x$ has bad reduction at $\{2,3\}$.
- $C: y^{2}=2 x^{5}-9 x^{4}-24 x^{3}+22 x^{2}+78 x-41$ has bad reduction at $\{2,5\}$.
- $C: y^{2}=2 x^{5}+x^{4}-16 x^{3}-72 x^{2}+240 x+136$ has bad reduction at $\{2,7\}$.

Genus 2 curves

Problem (Poonen 1996)

List all genus 2 curves C / \mathbb{Q} whose Jacobians have good reduction away from 2 .
Smart (1997) computed all 366 genus 2 curves with good reduction outside 2. But there are more! Examples of other curves C / \mathbb{Q} where $\operatorname{Jac}(C)$ good outside 2:

- $C: y^{2}=x^{5}-14 x^{3}+81 x$ has bad reduction at $\{2,3\}$.
- $C: y^{2}=2 x^{5}-9 x^{4}-24 x^{3}+22 x^{2}+78 x-41$ has bad reduction at $\{2,5\}$.
- $C: y^{2}=2 x^{5}+x^{4}-16 x^{3}-72 x^{2}+240 x+136$ has bad reduction at $\{2,7\}$.
- $C: y^{2}=x^{5}+478 x^{3}+57122 x$ has bad reduction at $\{2,13\}$.

Genus 2 curves

Problem (Poonen 1996)

List all genus 2 curves C / \mathbb{Q} whose Jacobians have good reduction away from 2 .
Smart (1997) computed all 366 genus 2 curves with good reduction outside 2. But there are more! Examples of other curves C / \mathbb{Q} where $\operatorname{Jac}(C)$ good outside 2:

- $C: y^{2}=x^{5}-14 x^{3}+81 x$ has bad reduction at $\{2,3\}$.
- $C: y^{2}=2 x^{5}-9 x^{4}-24 x^{3}+22 x^{2}+78 x-41$ has bad reduction at $\{2,5\}$.
- $C: y^{2}=2 x^{5}+x^{4}-16 x^{3}-72 x^{2}+240 x+136$ has bad reduction at $\{2,7\}$.
- $C: y^{2}=x^{5}+478 x^{3}+57122 x$ has bad reduction at $\{2,13\}$.
- $C: y^{2}=x^{5}+28 x^{4}-868 x^{3}-6160 x^{2}+43076 x-149072$ has bad reduction at $\{2,3,11\}$.

Genus 2 curves

Problem (Poonen 1996)

List all genus 2 curves C / \mathbb{Q} whose Jacobians have good reduction away from 2 .
Smart (1997) computed all 366 genus 2 curves with good reduction outside 2. But there are more! Examples of other curves C / \mathbb{Q} where $\operatorname{Jac}(C)$ good outside 2:

- $C: y^{2}=x^{5}-14 x^{3}+81 x$ has bad reduction at $\{2,3\}$.
- $C: y^{2}=2 x^{5}-9 x^{4}-24 x^{3}+22 x^{2}+78 x-41$ has bad reduction at $\{2,5\}$.
- $C: y^{2}=2 x^{5}+x^{4}-16 x^{3}-72 x^{2}+240 x+136$ has bad reduction at $\{2,7\}$.
- $C: y^{2}=x^{5}+478 x^{3}+57122 x$ has bad reduction at $\{2,13\}$.
- $C: y^{2}=x^{5}+28 x^{4}-868 x^{3}-6160 x^{2}+43076 x-149072$ has bad reduction at $\{2,3,11\}$.

So far, we've found 512 examples of genus 2 curves C / \mathbb{Q} such that $\operatorname{Jac}(C)$ is good outside 2.

Genus 2 curves

Easier Problem

Fix a small set of primes S. Find all genus 2 curves C / \mathbb{Q} with good reduction outside S and whose Jacobian has good reduction away from 2.

Genus 2 curves

Easier Problem

Fix a small set of primes S. Find all genus 2 curves C / \mathbb{Q} with good reduction outside S and whose Jacobian has good reduction away from 2.

Strategy:

- Let $C / \mathbb{Q}: y^{2}=c\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)\left(x-\alpha_{4}\right)\left(x-\alpha_{5}\right)\left(x-\alpha_{6}\right)$ be such a curve, where $\alpha_{i} \in \mathbb{Q}(J[2])$.

Genus 2 curves

Easier Problem

Fix a small set of primes S. Find all genus 2 curves C / \mathbb{Q} with good reduction outside S and whose Jacobian has good reduction away from 2.

Strategy:

- Let $C / \mathbb{Q}: y^{2}=c\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)\left(x-\alpha_{4}\right)\left(x-\alpha_{5}\right)\left(x-\alpha_{6}\right)$ be such a curve, where $\alpha_{i} \in \mathbb{Q}(J[2])$.
- Use Siegel's identity: $\frac{\left(\alpha_{i}-\alpha_{j}\right)\left(\alpha_{k}-\alpha_{\ell}\right)}{\left(\alpha_{i}-\alpha_{k}\right)\left(\alpha_{j}-\alpha_{\ell}\right)}+\frac{\left(\alpha_{i}-\alpha_{\ell}\right)\left(\alpha_{j}-\alpha_{k}\right)}{\left(\alpha_{i}-\alpha_{k}\right)\left(\alpha_{j}-\alpha_{\ell}\right)}=1$

Genus 2 curves

Easier Problem

Fix a small set of primes S. Find all genus 2 curves C / \mathbb{Q} with good reduction outside S and whose Jacobian has good reduction away from 2.

Strategy:

- Let $C / \mathbb{Q}: y^{2}=c\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)\left(x-\alpha_{4}\right)\left(x-\alpha_{5}\right)\left(x-\alpha_{6}\right)$ be such a curve, where $\alpha_{i} \in \mathbb{Q}(J[2])$.
- Use Siegel's identity: $\frac{\left(\alpha_{i}-\alpha_{j}\right)\left(\alpha_{k}-\alpha_{\ell}\right)}{\left(\alpha_{i}-\alpha_{k}\right)\left(\alpha_{j}-\alpha_{\ell}\right)}+\frac{\left(\alpha_{i}-\alpha_{\ell}\right)\left(\alpha_{j}-\alpha_{k}\right)}{\left(\alpha_{i}-\alpha_{k}\right)\left(\alpha_{j}-\alpha_{\ell}\right)}=1$
- Compute all possible 2-torsion fields $\mathbb{Q}(J[2])$.

Genus 2 curves

Easier Problem

Fix a small set of primes S. Find all genus 2 curves C / \mathbb{Q} with good reduction outside S and whose Jacobian has good reduction away from 2.

Strategy:

- Let $C / \mathbb{Q}: y^{2}=c\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)\left(x-\alpha_{4}\right)\left(x-\alpha_{5}\right)\left(x-\alpha_{6}\right)$ be such a curve, where $\alpha_{i} \in \mathbb{Q}(J[2])$.
- Use Siegel's identity: $\frac{\left(\alpha_{i}-\alpha_{j}\right)\left(\alpha_{k}-\alpha_{\ell}\right)}{\left(\alpha_{i}-\alpha_{k}\right)\left(\alpha_{j}-\alpha_{\ell}\right)}+\frac{\left(\alpha_{i}-\alpha_{\ell}\right)\left(\alpha_{j}-\alpha_{k}\right)}{\left(\alpha_{i}-\alpha_{k}\right)\left(\alpha_{j}-\alpha_{\ell}\right)}=1$
- Compute all possible 2-torsion fields $\mathbb{Q}(J[2])$.
- Solve the T-unit equations $x+y=1$ for $x, y \in O_{T}^{\times}$over $\mathbb{Q}(J[2])$ where T is the primes in $\mathbb{Q}(J[2])$ lying above S.

Further optimisations

Let $\psi_{1}, \psi_{2}, \ldots, \psi_{t}$ be a set of T-unit generators over $\mathbb{Q}(J[2])$. Let $a_{k, i, j} \in \mathbb{Z}$ be given by

$$
\alpha_{i}-\alpha_{j}=\psi_{1}^{a_{1, i, j}} \psi_{2}^{a_{2}, i, j} \ldots \psi_{t}^{a_{t, i, j}}
$$

Further optimisations

Let $\psi_{1}, \psi_{2}, \ldots, \psi_{t}$ be a set of T-unit generators over $\mathbb{Q}(J[2])$. Let $a_{k, i, j} \in \mathbb{Z}$ be given by

$$
\alpha_{i}-\alpha_{j}=\psi_{1}^{a_{1, i, j}} \psi_{2}^{a_{2}, i, j} \ldots \psi_{t}^{a_{t, i, j}}
$$

Constraints on $a_{k, i, j}$:

- Galois constraints: For all $\sigma \in \operatorname{Gal}(\mathbb{Q}(J[2]) / \mathbb{Q}), a_{f_{\sigma}(k), g_{\sigma}(i), g_{\sigma}(j)}=a_{k, i, j}$.
- Cluster pictures (using that J has good reduction at odd primes).
- Solving simple T-unit equations (i.e. $\tau+\sigma(\tau)=1$ for some $\sigma \in \operatorname{Gal}(\mathbb{Q}(J[2]) / \mathbb{Q}))$.

Further optimisations

Let $\psi_{1}, \psi_{2}, \ldots, \psi_{t}$ be a set of T-unit generators over $\mathbb{Q}(J[2])$. Let $a_{k, i, j} \in \mathbb{Z}$ be given by

$$
\alpha_{i}-\alpha_{j}=\psi_{1}^{a_{1, i, j}} \psi_{2}^{a_{2}, i, j} \ldots \psi_{t}^{a_{t, i, j}}
$$

Constraints on $a_{k, i, j}$:

- Galois constraints: For all $\sigma \in \operatorname{Gal}(\mathbb{Q}(J[2]) / \mathbb{Q}), a_{f_{\sigma}(k), g_{\sigma}(i), g_{\sigma}(j)}=a_{k, i, j}$.
- Cluster pictures (using that J has good reduction at odd primes).
- Solving simple T-unit equations (i.e. $\tau+\sigma(\tau)=1$ for some $\sigma \in \operatorname{Gal}(\mathbb{Q}(J[2]) / \mathbb{Q}))$.

Solving the linear system:

- Brute force
- Closest vector problem
- Integer programming

Summary

Theorem (V. WIP)

There are at least $512 \mathbb{Q}$-isomorphism classes of genus 2 curves C / \mathbb{Q} whose Jacobian has good reduction away from 2. These include all such curves where C / \mathbb{Q} has good reduction away from either $\{2,3\},\{2,5\}$, or $\{2,7\}$. In particular,

1. There are exactly 78 genus 2 curves C / \mathbb{Q} whose Jacobian has good reduction away from 2 and such that $\operatorname{rad}\left(\Delta_{\text {min }}\right)=6$.
2. There are exactly 28 genus 2 curves C / \mathbb{Q} whose Jacobian has good reduction away from 2 and such that $\operatorname{rad}\left(\Delta_{\min }\right)=10$.
3. There are exactly 24 genus 2 curves C / \mathbb{Q} whose Jacobian has good reduction away from 2 and such that $\operatorname{rad}\left(\Delta_{\min }\right)=14$.
All genus 2 curves C / \mathbb{Q} whose Jacobian is good outside 2 and such that $\left|\Delta_{\text {min }}\right| \leq 10^{14}$ is contained in our table.

Summary

- All curves (and more stats) given at: bit.ly/genus2

Summary

- All curves (and more stats) given at: bit.ly/genus2
- Are there any curves C / \mathbb{Q} with $\operatorname{Jac}(C)$ good outside 2 not in our list?

Summary

- All curves (and more stats) given at: bit.ly/genus2
- Are there any curves C / \mathbb{Q} with $\operatorname{Jac}(C)$ good outside 2 not in our list?
- If you can find any more curves, please let me know!

Summary

- All curves (and more stats) given at: bit.ly/genus2
- Are there any curves C / \mathbb{Q} with $\operatorname{Jac}(C)$ good outside 2 not in our list?
- If you can find any more curves, please let me know!

Thank you!

