The Effective Shafarevich Conjecture

London Junior Number Theory Seminar

Robin Visser Mathematics Institute University of Warwick

13 February 2024

• Let K be a number field and S a finite set of places of K.

• Let K be a number field and S a finite set of places of K.

Conjecture (Mordell 1922)

Any smooth curve C/K of genus at least 2 has only finitely many K-rational points.

• Let K be a number field and S a finite set of places of K.

Conjecture (Mordell 1922)

Any smooth curve C/K of genus at least 2 has only finitely many K-rational points.

Conjecture (Shafarevich 1962)

Let $g \ge 2$ be a positive integer. Then there are only finitely many K-isomorphism classes of smooth curves C/K of genus g with good reduction outside S.

• Let K be a number field and S a finite set of places of K.

Conjecture (Mordell 1922)

Any smooth curve C/K of genus at least 2 has only finitely many K-rational points.

Conjecture (Shafarevich 1962)

Let $g \ge 2$ be a positive integer. Then there are only finitely many K-isomorphism classes of smooth curves C/K of genus g with good reduction outside S.

Conjecture (Shafarevich 1962)

Let $d \ge 1$ be a positive integer. Then there are only finitely many K-isomorphism classes of (p.p.) abelian varieties A/K of dimension d with good reduction outside S.

• Let K be a number field and S a finite set of places of K.

Conjecture (Mordell 1922)

Any smooth curve C/K of genus at least 2 has only finitely many K-rational points.

Conjecture (Shafarevich 1962)

Let $g \ge 2$ be a positive integer. Then there are only finitely many K-isomorphism classes of smooth curves C/K of genus g with good reduction outside S.

Conjecture (Shafarevich 1962)

Let $d \ge 1$ be a positive integer. Then there are only finitely many K-isomorphism classes of (p.p.) abelian varieties A/K of dimension d with good reduction outside S.

Shafarevich (abelian varieties) \implies Shafarevich (curves) \implies Mordell

• Let K be a number field and S a finite set of places of K.

Theorem (Faltings 1983)

Any smooth curve C/K of genus at least 2 has only finitely many K-rational points.

Theorem (Faltings 1983)

Let $g \ge 2$ be a positive integer. Then there are only finitely many K-isomorphism classes of smooth curves C/K of genus g with good reduction outside S.

Theorem (Faltings 1983)

Let $d \ge 1$ be a positive integer. Then there are only finitely many K-isomorphism classes of (p.p.) abelian varieties A/K of dimension d with good reduction outside S.

Shafarevich (abelian varieties) \implies Shafarevich (curves) \implies Mordell

From Shafarevich to Mordell

Theorem (Parshin 1968)

The Shafarevich conjecture (for curves) implies the Mordell conjecture.

The Shafarevich conjecture (for curves) implies the Mordell conjecture.

Sketch proof:

• Let C/K be a curve with genus g > 1 and with good reduction outside S.

The Shafarevich conjecture (for curves) implies the Mordell conjecture.

- Let C/K be a curve with genus g > 1 and with good reduction outside S.
- For each point $P \in C(K)$, Kodaira–Parshin constructed a curve C_P/K' with genus g' and good reduction outside S' with a map $C_P \to C$ which is ramified only at P.

The Shafarevich conjecture (for curves) implies the Mordell conjecture.

- Let C/K be a curve with genus g > 1 and with good reduction outside S.
- For each point P ∈ C(K), Kodaira–Parshin constructed a curve C_P/K' with genus g' and good reduction outside S' with a map C_P → C which is ramified only at P.
- Crucially, K', g', and S' depend only on K, g and S (not on P).

The Shafarevich conjecture (for curves) implies the Mordell conjecture.

- Let C/K be a curve with genus g > 1 and with good reduction outside S.
- For each point P ∈ C(K), Kodaira–Parshin constructed a curve C_P/K' with genus g' and good reduction outside S' with a map C_P → C which is ramified only at P.
- Crucially, K', g', and S' depend only on K, g and S (not on P).
- Shafarevich implies there can only be finitely many such curves C_P/K' .

The Shafarevich conjecture (for curves) implies the Mordell conjecture.

- Let C/K be a curve with genus g > 1 and with good reduction outside S.
- For each point P ∈ C(K), Kodaira–Parshin constructed a curve C_P/K' with genus g' and good reduction outside S' with a map C_P → C which is ramified only at P.
- Crucially, K', g', and S' depend only on K, g and S (not on P).
- Shafarevich implies there can only be finitely many such curves C_P/K' .
- A classical theorem of De Franchis states that the set of (non-constant) morphisms from some curve Y to X of genus > 1 is finite.

Theorem (Torelli 1914-15)

Shafarevich conjecture for abelian varieties implies Shafarevich conjecture for curves.

Proof: Follows by a theorem of Torelli, which states that a curve C/K is determined by its Jacobian Jac(C), together with its principal polarisation.

Theorem (Torelli 1914-15)

Shafarevich conjecture for abelian varieties implies Shafarevich conjecture for curves.

Proof: Follows by a theorem of Torelli, which states that a curve C/K is determined by its Jacobian Jac(C), together with its principal polarisation.

Theorem (Faltings 1983)

Any smooth curve C/K of genus at least 2 has only finitely many K-rational points.

Theorem (Torelli 1914-15)

Shafarevich conjecture for abelian varieties implies Shafarevich conjecture for curves.

Proof: Follows by a theorem of Torelli, which states that a curve C/K is determined by its Jacobian Jac(C), together with its principal polarisation.

Theorem (Faltings 1983)

Any smooth curve C/K of genus at least 2 has only finitely many K-rational points.

Some other proofs of the Mordell conjecture:

- Vojta-Bombieri (1990) gave proof using diophantine approximation. (simplified by Faltings)
- Lawrence–Venkatesh (2018) gave proof using *p*-adic Hodge theory.

Effective Mordell

None of these proofs are completely effective (but can give a weak bound on the number of points in Mordell conjecture and number of isogeny classes in Shafarevich conjecture)!

Effective Mordell

None of these proofs are completely effective (but can give a weak bound on the number of points in Mordell conjecture and number of isogeny classes in Shafarevich conjecture)!

Problem (Effective Mordell)

Given a smooth curve C/K of genus at least 2, compute C(K).

Effective Mordell

None of these proofs are completely effective (but can give a weak bound on the number of points in Mordell conjecture and number of isogeny classes in Shafarevich conjecture)!

Problem (Effective Mordell)

Given a smooth curve C/K of genus at least 2, compute C(K).

Many approaches one could try:

- Local methods
- Quotients
- Descent
- Mordell-Weil sieve
- Chabauty-Coleman (also quadratic Chabauty, Kim's non-abelian Chabauty)

• Let K be a number field and S a finite set of places of K.

• Let K be a number field and S a finite set of places of K.

Conjecture (Effective Mordell)

Given any smooth curve C/K of genus at least 2, there exists an effectively computable constant c such that $h(P) \leq c$ for all $P \in C(K)$.

• Let K be a number field and S a finite set of places of K.

Conjecture (Effective Mordell)

Given any smooth curve C/K of genus at least 2, there exists an effectively computable constant c such that $h(P) \leq c$ for all $P \in C(K)$.

Conjecture (Effective Shafarevich for curves)

Let $g \ge 2$. There exists an effectively computable constant $c_{K,g,S}$ such that, for any smooth genus g curve C/K with good reduction outside S, we have $h_F(C) \le c_{K,g,S}$.

• Let K be a number field and S a finite set of places of K.

Conjecture (Effective Mordell)

Given any smooth curve C/K of genus at least 2, there exists an effectively computable constant c such that $h(P) \le c$ for all $P \in C(K)$.

Conjecture (Effective Shafarevich for curves)

Let $g \ge 2$. There exists an effectively computable constant $c_{K,g,S}$ such that, for any smooth genus g curve C/K with good reduction outside S, we have $h_F(C) \le c_{K,g,S}$.

Conjecture (Effective Shafarevich for abelian varieties)

Let $d \ge 1$. There exists an effectively computable constant $c_{K,d,S}$ such that, for any dimension d abelian variety A/K with good reduction outside S, we have $h_F(A) \le c_{K,d,S}$.

• Let K be a number field and S a finite set of places of K.

Conjecture (Effective Mordell)

Given any smooth curve C/K of genus at least 2, there exists an effectively computable constant c such that $h(P) \le c$ for all $P \in C(K)$.

Conjecture (Effective Shafarevich for curves)

Let $g \ge 2$. There exists an effectively computable constant $c_{K,g,S}$ such that, for any smooth genus g curve C/K with good reduction outside S, we have $h_F(C) \le c_{K,g,S}$.

Conjecture (Effective Shafarevich for abelian varieties)

Let $d \ge 1$. There exists an effectively computable constant $c_{K,d,S}$ such that, for any dimension d abelian variety A/K with good reduction outside S, we have $h_F(A) \le c_{K,d,S}$.

Effective Shafarevich (a.v.) \implies Effective Shafarevich (curves) \implies Effective Mordell

There exists an effectively computable constant $c_{K,d,S}$ such that, for any dimension d abelian variety A/K with good reduction outside S, we have $h_F(A) \leq c_{K,d,S}$.

There exists an effectively computable constant $c_{K,d,S}$ such that, for any dimension d abelian variety A/K with good reduction outside S, we have $h_F(A) \leq c_{K,d,S}$.

Some cases for which we have effective algorithms:

• elliptic curves (*d* = 1)

There exists an effectively computable constant $c_{K,d,S}$ such that, for any dimension d abelian variety A/K with good reduction outside S, we have $h_F(A) \leq c_{K,d,S}$.

Some cases for which we have effective algorithms:

- elliptic curves (*d* = 1)
- semistable abelian varieties over \mathbb{Q} , where $S = \{2\}$, $\{3\}$, $\{5\}$, $\{3,5\}$, $\{7\}$, $\{11\}$, $\{13\}$, $\{23\}$ (Schoof 2005-12).

There exists an effectively computable constant $c_{K,d,S}$ such that, for any dimension d abelian variety A/K with good reduction outside S, we have $h_F(A) \leq c_{K,d,S}$.

Some cases for which we have effective algorithms:

- elliptic curves (*d* = 1)
- semistable abelian varieties over \mathbb{Q} , where $S = \{2\}$, $\{3\}$, $\{5\}$, $\{3,5\}$, $\{7\}$, $\{11\}$, $\{13\}$, $\{23\}$ (Schoof 2005-12).
- abelian varieties of GL₂-type (i.e. End(A) ⊗_ℤ Q contains a degree d number field) (von Känel 2020).

There exists an effectively computable constant $c_{K,d,S}$ such that, for any dimension d abelian variety A/K with good reduction outside S, we have $h_F(A) \leq c_{K,d,S}$.

Some cases for which we have effective algorithms:

- elliptic curves (*d* = 1)
- semistable abelian varieties over \mathbb{Q} , where $S = \{2\}$, $\{3\}$, $\{5\}$, $\{3,5\}$, $\{7\}$, $\{11\}$, $\{13\}$, $\{23\}$ (Schoof 2005-12).
- abelian varieties of GL₂-type (i.e. End(A) ⊗_ℤ Q contains a degree d number field) (von Känel 2020).

Even the case d = 2, $K = \mathbb{Q}$, $S = \{2\}$ is still an open problem!

Theorem (Tate 1960)

There are no elliptic curves over \mathbb{Q} with good reduction everywhere.

Theorem (Tate 1960)

There are no elliptic curves over \mathbb{Q} with good reduction everywhere.

Proof: Let E/\mathbb{Q} have global minimal model

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

with $a_i \in \mathbb{Z}$. Define the quantities:

$$\begin{array}{ll} b_2 = a_1^2 - 4a_2, & c_4 = b_2^2 - 24b_4 \\ b_4 = 2a_4 - a_1a_3, & c_6 = b_2^3 - 36b_2b_4 + 216b_6 \\ b_6 = a_3^2 - 4a_6, & \Delta = b_2^2b_8 - 8b_3^4 - 27b_6^2 + 9b_2b_4b_6 \\ b_8 = a_4^2 - a_1a_3a_4 + a_1^2a_6 + a_2a_3^2 - 4a_2a_6 \end{array}$$

where the discriminant Δ satisfies $1728\Delta=c_4^3-c_6^2.$

Theorem (Tate 1960)

There are no elliptic curves over \mathbb{Q} with good reduction everywhere.

Proof: Let E/\mathbb{Q} have global minimal model

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

with $a_i \in \mathbb{Z}$. Define the quantities:

$$\begin{array}{ll} b_2 = a_1^2 - 4a_2, & c_4 = b_2^2 - 24b_4 \\ b_4 = 2a_4 - a_1a_3, & c_6 = b_2^3 - 36b_2b_4 + 216b_6 \\ b_6 = a_3^2 - 4a_6, & \Delta = b_2^2b_8 - 8b_3^4 - 27b_6^2 + 9b_2b_4b_6 \\ b_8 = a_4^2 - a_1a_3a_4 + a_1^2a_6 + a_2a_3^2 - 4a_2a_6 \end{array}$$

where the discriminant Δ satisfies $1728\Delta = c_4^3 - c_6^2$. If E/\mathbb{Q} has good reduction everywhere, then $\Delta = \pm 1$.

Can show this has no solutions by purely elementary methods:

Can show this has no solutions by purely elementary methods:

- Case *a*₁ even:
 - Then $\pm 1 = \Delta \equiv 5 b_6^2$ (mod 8). As squares $\equiv 0, 1, 4$ (mod 8), this is impossible!
Can show this has no solutions by purely elementary methods:

- Case *a*₁ even:
 - Then $\pm 1 = \Delta \equiv 5b_6^2 \pmod{8}$. As squares $\equiv 0, 1, 4 \pmod{8}$, this is impossible!
- Case a₁ odd:
 - Let $x := c_4 \mp 12$. Then $x \equiv 5 \pmod{8}$ and can show that $x(x^2 \pm 36x + 432) = c_6^2$.
 - $\pm x$ not square (mod 8) \implies gcd(x, x² \pm 36x + 432) > 1 \implies 3 divides x.
 - Let x = 3y, $c_6 = 9z$. Then $y(y^2 \pm 12y + 48) = 3z^2$ for some z. Note that $y \equiv 7 \pmod{8}$ and y > 0 as $y((y \pm 6)^2 + 12) > 0$.
 - If p > 3 divides y, it does so to an even power. Similarly, 3 divides y, thus 3 divides z², and so 3 divides y to an even power. So y is a square, contradiction

Can show this has no solutions by purely elementary methods:

- Case *a*₁ even:
 - Then $\pm 1 = \Delta \equiv 5b_6^2 \pmod{8}$. As squares $\equiv 0, 1, 4 \pmod{8}$, this is impossible!
- Case a₁ odd:
 - Let $x := c_4 \mp 12$. Then $x \equiv 5 \pmod{8}$ and can show that $x(x^2 \pm 36x + 432) = c_6^2$.
 - $\pm x$ not square (mod 8) \implies gcd(x, x² \pm 36x + 432) > 1 \implies 3 divides x.
 - Let x = 3y, $c_6 = 9z$. Then $y(y^2 \pm 12y + 48) = 3z^2$ for some z. Note that $y \equiv 7 \pmod{8}$ and y > 0 as $y((y \pm 6)^2 + 12) > 0$.
 - If p > 3 divides y, it does so to an even power. Similarly, 3 divides y, thus 3 divides z², and so 3 divides y to an even power. So y is a square, contradiction

Ogg used similar methods to classify all elliptic curves E/\mathbb{Q} with good reduction outside 2

Theorem (Ogg 1965)

There are exactly 24 elliptic curves E/\mathbb{Q} with good reduction outside 2.

Theorem (Ogg 1965)

There are exactly 24 elliptic curves E/\mathbb{Q} with good reduction outside 2.

They are:

$$y^{2} = x^{3} - x, \quad y^{2} = x^{3} - 8x, \qquad y^{2} = x^{3} + x^{2} + x + 1, \qquad y^{2} = x^{3} + x^{2} + 3x - 5$$

$$y^{2} = x^{3} + x, \quad y^{2} = x^{3} + 8x, \qquad , y^{2} = x^{3} - x^{2} + x - 1, \qquad y^{2} = x^{3} - x^{2} + 3x + 5$$

$$y^{2} = x^{3} - 2x, \quad y^{2} = x^{3} - 11x - 14, \qquad y^{2} = x^{3} + x^{2} - 3x + 1, \qquad y^{2} = x^{3} + x^{2} - 9x + 7$$

$$y^{2} = x^{3} + 2x, \quad y^{2} = x^{3} - 11x + 14, \qquad y^{2} = x^{3} - x^{2} - 3x - 1 \qquad y^{2} = x^{3} - x^{2} - 9x - 7$$

$$y^{2} = x^{3} - 4x, \quad y^{2} = x^{3} - 44x - 112, \qquad y^{2} = x^{3} - x^{2} - 2x - 2, \qquad y^{2} = x^{3} - x^{2} - 13x - 21$$

$$y^{2} = x^{3} + 4x, \qquad y^{2} = x^{3} - 44x + 112, \qquad y^{2} = x^{3} - x^{2} - 2x + 2, \qquad y^{2} = x^{3} - x^{2} - 13x + 21$$

(divided into 10 \mathbb{Q} -isogeny classes and 5 $\overline{\mathbb{Q}}$ -isomorphism classes).

Elliptic Curves Summary

Let E(S) be the set of elliptic curves E/\mathbb{Q} with good reduction outside S.

Set S	E(S)	Authors	Year
Ø	0	Tate (proof published by Ogg)	1965
{2}	24	Ogg	1965
$\{2, 3\}$	752	Coghlan, Stephens	1967, 1965
$\{11\}$	12	Agrawal–Coates–Hunt–Van der Poorten	1980
$\{2, p\}, \ p \in \{5, \dots, 23\}$	$280,288,\ldots$	Cremona–Lingham	2007
$\{2, 3, 23\}$	5520	Koutsianas	2015
$\{2,3,5,7,11\}$	592 192	von Känel–Matschke	2016
$\{2,3,5,7,11,13\}$	4 576 128	Best-Matschke	2020
$\{2,3,5,7,\ldots,23\}$	1 390 818 304*	Matschke	2021

Let E/K be an elliptic curve with good reduction outside S.

Let E/K be an elliptic curve with good reduction outside S.

• Write
$$E/K : y^2 = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)$$
 where $\alpha_i \in K(E[2])$.

Let E/K be an elliptic curve with good reduction outside S.

- Write E/K: $y^2 = (x \alpha_1)(x \alpha_2)(x \alpha_3)$ where $\alpha_i \in K(E[2])$.
- Let $\lambda := \frac{\alpha_3 \alpha_1}{\alpha_2 \alpha_1}$. Note that both λ and 1λ are $S \cup \{2\}$ -units in K(E[2]).

Let E/K be an elliptic curve with good reduction outside S.

- Write E/K: $y^2 = (x \alpha_1)(x \alpha_2)(x \alpha_3)$ where $\alpha_i \in K(E[2])$.
- Let $\lambda := \frac{\alpha_3 \alpha_1}{\alpha_2 \alpha_1}$. Note that both λ and 1λ are $S \cup \{2\}$ -units in K(E[2]).

Let E/K be an elliptic curve with good reduction outside S.

- Write E/K: $y^2 = (x \alpha_1)(x \alpha_2)(x \alpha_3)$ where $\alpha_i \in K(E[2])$.
- Let $\lambda := \frac{\alpha_3 \alpha_1}{\alpha_2 \alpha_1}$. Note that both λ and 1λ are $S \cup \{2\}$ -units in K(E[2]).

Algorithm to compute all elliptic curves E/K with good reduction outside S:

1. Compute all possible fields L/K of degree at most 6 and unramified outside S.

Let E/K be an elliptic curve with good reduction outside S.

- Write E/K: $y^2 = (x \alpha_1)(x \alpha_2)(x \alpha_3)$ where $\alpha_i \in K(E[2])$.
- Let $\lambda := \frac{\alpha_3 \alpha_1}{\alpha_2 \alpha_1}$. Note that both λ and 1λ are $S \cup \{2\}$ -units in K(E[2]).

- 1. Compute all possible fields L/K of degree at most 6 and unramified outside S.
- 2. For each L, compute all solutions λ to the S-unit equation x + y = 1 in L.

Let E/K be an elliptic curve with good reduction outside S.

- Write E/K: $y^2 = (x \alpha_1)(x \alpha_2)(x \alpha_3)$ where $\alpha_i \in K(E[2])$.
- Let $\lambda := \frac{\alpha_3 \alpha_1}{\alpha_2 \alpha_1}$. Note that both λ and 1λ are $S \cup \{2\}$ -units in K(E[2]).

- 1. Compute all possible fields L/K of degree at most 6 and unramified outside S.
- 2. For each L, compute all solutions λ to the S-unit equation x + y = 1 in L.
- 3. For each λ , compute the *j*-invariant: $j = 2^8 \frac{(\lambda^2 \lambda + 1)^2}{\lambda^2 (1 \lambda)^2}$. Check if this lies in K.

Let E/K be an elliptic curve with good reduction outside S.

- Write E/K: $y^2 = (x \alpha_1)(x \alpha_2)(x \alpha_3)$ where $\alpha_i \in K(E[2])$.
- Let $\lambda := \frac{\alpha_3 \alpha_1}{\alpha_2 \alpha_1}$. Note that both λ and 1λ are $S \cup \{2\}$ -units in $\mathcal{K}(E[2])$.

- 1. Compute all possible fields L/K of degree at most 6 and unramified outside S.
- 2. For each L, compute all solutions λ to the S-unit equation x + y = 1 in L.
- 3. For each λ , compute the *j*-invariant: $j = 2^8 \frac{(\lambda^2 \lambda + 1)^2}{\lambda^2 (1 \lambda)^2}$. Check if this lies in *K*.
- For each valid j ∈ K, construct an elliptic curve E/K with j-invariant j, and compute all quadratic twists E^(u) for u ∈ K(S,2) (for j ≠ 0, 1728).

More algorithms to compute all elliptic curves E/K with good reduction outside S:

Mordell curves: Given an elliptic curve E/K, we have c₆² = c₄³ - 1728∆. Suffices to compute all S-integral points on Y² = X³ + n for finitely many n. Sage implements this over O as:

 ${\tt EllipticCurves_with_good_reduction_outside_S}$

- Mordell curves: Given an elliptic curve E/K, we have c₆² = c₄³ 1728Δ. Suffices to compute all S-integral points on Y² = X³ + n for finitely many n. Sage implements this over Q as: EllipticCurves_with_good_reduction_outside_S
- Thue-Mahler equations: Can construct a binary cubic form
 F(u, v) = ω₀u³ + ω₁u²v + ω₂uv² + ω₃v³ such that F(u, v) is a S ∪ {2,3}-smooth
 integer for some u, v ∈ Z.

- Mordell curves: Given an elliptic curve E/K, we have c₆² = c₄³ 1728Δ. Suffices to compute all S-integral points on Y² = X³ + n for finitely many n. Sage implements this over Q as: EllipticCurves_with_good_reduction_outside_S
- Thue-Mahler equations: Can construct a binary cubic form
 F(u, v) = ω₀u³ + ω₁u²v + ω₂uv² + ω₃v³ such that F(u, v) is a S ∪ {2,3}-smooth
 integer for some u, v ∈ Z.
- Modular symbols: If K = Q or a totally real quadratic or cubic field, then can compute the space of Γ₀(N) modular symbols for finitely many N.

Let C/K be a genus g hyperelliptic curve with good reduction outside S.

Let C/K be a genus g hyperelliptic curve with good reduction outside S.

• Write
$$C/K : y^2 = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_{2g+2})$$
 where $\alpha_i \in K(J[2])$.

Let C/K be a genus g hyperelliptic curve with good reduction outside S.

• Write
$$C/K : y^2 = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_{2g+2})$$
 where $\alpha_i \in K(J[2])$.

• Let
$$\lambda_i := \frac{\alpha_i - \alpha_1}{\alpha_2 - \alpha_1}$$
. For all *i*, both λ_i and $1 - \lambda_i$ are $S \cup \{2\}$ -units in $K(J[2])$.

Let C/K be a genus g hyperelliptic curve with good reduction outside S.

• Write
$$C/K : y^2 = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_{2g+2})$$
 where $\alpha_i \in K(J[2])$.

• Let $\lambda_i := \frac{\alpha_i - \alpha_1}{\alpha_2 - \alpha_1}$. For all *i*, both λ_i and $1 - \lambda_i$ are $S \cup \{2\}$ -units in $\mathcal{K}(J[2])$.

Let C/K be a genus g hyperelliptic curve with good reduction outside S.

• Write
$$C/K : y^2 = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_{2g+2})$$
 where $\alpha_i \in K(J[2])$.

• Let $\lambda_i := \frac{\alpha_i - \alpha_1}{\alpha_2 - \alpha_1}$. For all *i*, both λ_i and $1 - \lambda_i$ are $S \cup \{2\}$ -units in $\mathcal{K}(J[2])$.

Algorithm to classify genus g hyperelliptic curves C/K with good reduction outside S:

1. Compute all fields L/K of degree at most (2g + 2)! and unramified outside S.

Let C/K be a genus g hyperelliptic curve with good reduction outside S.

• Write
$$C/K : y^2 = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_{2g+2})$$
 where $\alpha_i \in K(J[2])$.

• Let $\lambda_i := \frac{\alpha_i - \alpha_1}{\alpha_2 - \alpha_1}$. For all *i*, both λ_i and $1 - \lambda_i$ are $S \cup \{2\}$ -units in $\mathcal{K}(J[2])$.

- 1. Compute all fields L/K of degree at most (2g + 2)! and unramified outside S.
- 2. For each L, compute all solutions λ to the S-unit equation x + y = 1 in L.

Let C/K be a genus g hyperelliptic curve with good reduction outside S.

• Write
$$C/K : y^2 = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_{2g+2})$$
 where $\alpha_i \in K(J[2])$.

• Let $\lambda_i := \frac{\alpha_i - \alpha_1}{\alpha_2 - \alpha_1}$. For all *i*, both λ_i and $1 - \lambda_i$ are $S \cup \{2\}$ -units in $\mathcal{K}(J[2])$.

- 1. Compute all fields L/K of degree at most (2g + 2)! and unramified outside S.
- 2. For each L, compute all solutions λ to the S-unit equation x + y = 1 in L.
- 3. Compute all possible discriminants Δ .

Let C/K be a genus g hyperelliptic curve with good reduction outside S.

• Write
$$C/K : y^2 = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_{2g+2})$$
 where $\alpha_i \in K(J[2])$.

• Let $\lambda_i := \frac{\alpha_i - \alpha_1}{\alpha_2 - \alpha_1}$. For all *i*, both λ_i and $1 - \lambda_i$ are $S \cup \{2\}$ -units in $\mathcal{K}(J[2])$.

- 1. Compute all fields L/K of degree at most (2g + 2)! and unramified outside S.
- 2. For each L, compute all solutions λ to the S-unit equation x + y = 1 in L.
- 3. Compute all possible discriminants Δ .
- 4. For each combination of Δ and $\lambda_1, \lambda_2, \ldots, \lambda_{2g+2}$, compute $\alpha_i \alpha_j$ using

$$(\alpha_i - \alpha_j)^{2(g+1)(2g+1)} = \Delta \bigg(\prod_{1 \le k < \ell \le n} \frac{\lambda_i - \lambda_j}{\lambda_k - \lambda_\ell}\bigg)^2.$$

Whilst this is technically effective, its almost never practical!

Whilst this is technically effective, its almost never practical!

Theorem (von Känel 2014)

Let C/K be a genus g hyperelliptic curve with good reduction outside S. Then C/K is K-isomorphic to a Weierstrass model $y^2 = f(x)$ with absolute log height ht(f) satisfying

$$ht(f) \leq \begin{cases} (\nu\sigma)^{5\nu\sigma} N_{S}^{\nu/2} D_{K}^{\nu(\lambda_{S}+1)/4} & \text{if } C \text{ has a } K\text{-rational } WP, \\ (\nu\sigma)^{c(2\nu)^{3}\sigma^{4}} p^{(3\nu)^{3}\sigma^{4}} D_{K}^{(3\nu)^{3}\sigma^{4}} & \text{if } C \text{ has no } K\text{-rational } WP, \end{cases}$$

where $d = deg(K/\mathbb{Q})$, D_K is the absolute discriminant of K over \mathbb{Q} , $\nu = 6(2g + 1)(2g)(2g - 1)d^2$, $\lambda_S = \log_2 h_S$, $\sigma = s + \lambda_S + 1$, h_S the class number of \mathcal{O}_S , s the number of finite places in S, p the maximum of the residue characteristics of the finite places in S, N(v) the number of elements in the residue field of v, and $N_S = \prod_{v \text{ finite }} N(v)$.

Abelian surfaces

Problem

Classify all abelian surfaces A/\mathbb{Q} with good reduction away from 2.

Classify all abelian surfaces A/\mathbb{Q} with good reduction away from 2.

If A/\mathbb{Q} is a principally polarised abelian surface, then A is isomorphic to one of the following three cases:

Classify all abelian surfaces A/\mathbb{Q} with good reduction away from 2.

If A/\mathbb{Q} is a principally polarised abelian surface, then A is isomorphic to one of the following three cases:

1. $A \cong \operatorname{Jac}(C)$ where C/\mathbb{Q} is smooth genus 2 curve.

Classify all abelian surfaces A/\mathbb{Q} with good reduction away from 2.

If A/\mathbb{Q} is a principally polarised abelian surface, then A is isomorphic to one of the following three cases:

- 1. $A \cong \operatorname{Jac}(C)$ where C/\mathbb{Q} is smooth genus 2 curve.
- 2. $A \cong E_1 \times E_2$ where E_1, E_2 are elliptic curves over \mathbb{Q} .

Classify all abelian surfaces A/\mathbb{Q} with good reduction away from 2.

If A/\mathbb{Q} is a principally polarised abelian surface, then A is isomorphic to one of the following three cases:

- 1. $A \cong \operatorname{Jac}(C)$ where C/\mathbb{Q} is smooth genus 2 curve.
- 2. $A \cong E_1 \times E_2$ where E_1, E_2 are elliptic curves over \mathbb{Q} .
- 3. $A \cong \operatorname{Res}_{K/\mathbb{Q}}E$; the Weil restriction of an elliptic curve E/K where K is a quadratic number field.

Classify all abelian surfaces A/\mathbb{Q} with good reduction away from 2.

If A/\mathbb{Q} is a principally polarised abelian surface, then A is isomorphic to one of the following three cases:

- 1. $A \cong \operatorname{Jac}(C)$ where C/\mathbb{Q} is smooth genus 2 curve.
- 2. $A \cong E_1 \times E_2$ where E_1, E_2 are elliptic curves over \mathbb{Q} .
- 3. $A \cong \operatorname{Res}_{K/\mathbb{Q}}E$; the Weil restriction of an elliptic curve E/K where K is a quadratic number field.

Cases 2 and 3 can easily be dealt with. Case 1 seems to be hard (at least for me)!

Genus 2 curves

Theorem (Smart 1997)

There are exactly 366 genus 2 curves C/\mathbb{Q} with good reduction away from 2, divided amongst 165 isogeny classes.

Genus 2 curves

Theorem (Smart 1997)

There are exactly 366 genus 2 curves C/\mathbb{Q} with good reduction away from 2, divided amongst 165 isogeny classes.

By taking Jac(C), we have examples of abelian surfaces with good reduction outside 2. But there are more!

Genus 2 curves

Theorem (Smart 1997)

There are exactly 366 genus 2 curves C/\mathbb{Q} with good reduction away from 2, divided amongst 165 isogeny classes.

By taking Jac(C), we have examples of abelian surfaces with good reduction outside 2. But there are more! Examples of other curves C/\mathbb{Q} where Jac(C) good outside 2:
Theorem (Smart 1997)

There are exactly 366 genus 2 curves C/\mathbb{Q} with good reduction away from 2, divided amongst 165 isogeny classes.

By taking Jac(C), we have examples of abelian surfaces with good reduction outside 2. But there are more! Examples of other curves C/\mathbb{Q} where Jac(C) good outside 2:

•
$$C/\mathbb{Q}: y^2 = x^5 - 14x^3 + 81x$$
 has bad reduction at $\{2,3\}$.

Theorem (Smart 1997)

There are exactly 366 genus 2 curves C/\mathbb{Q} with good reduction away from 2, divided amongst 165 isogeny classes.

By taking Jac(C), we have examples of abelian surfaces with good reduction outside 2. But there are more! Examples of other curves C/\mathbb{Q} where Jac(C) good outside 2:

•
$$C/\mathbb{Q}: y^2 = x^5 - 14x^3 + 81x$$
 has bad reduction at $\{2, 3\}$.

• $C/\mathbb{Q}: y^2 = 2x^5 - 9x^4 - 24x^3 + 22x^2 + 78x - 41$ has bad reduction at $\{2, 5\}$.

Theorem (Smart 1997)

There are exactly 366 genus 2 curves C/\mathbb{Q} with good reduction away from 2, divided amongst 165 isogeny classes.

By taking Jac(C), we have examples of abelian surfaces with good reduction outside 2. But there are more! Examples of other curves C/\mathbb{Q} where Jac(C) good outside 2:

•
$$C/\mathbb{Q}: y^2 = x^5 - 14x^3 + 81x$$
 has bad reduction at $\{2,3\}$.

• $C/\mathbb{Q}: y^2 = 2x^5 - 9x^4 - 24x^3 + 22x^2 + 78x - 41$ has bad reduction at $\{2, 5\}$.

• $C/\mathbb{Q}: y^2 = 2x^5 + x^4 - 16x^3 - 72x^2 + 240x + 136$ has bad reduction at $\{2, 7\}$.

Theorem (Smart 1997)

There are exactly 366 genus 2 curves C/\mathbb{Q} with good reduction away from 2, divided amongst 165 isogeny classes.

By taking Jac(C), we have examples of abelian surfaces with good reduction outside 2. But there are more! Examples of other curves C/\mathbb{Q} where Jac(C) good outside 2:

•
$$C/\mathbb{Q}: y^2 = x^5 - 14x^3 + 81x$$
 has bad reduction at $\{2,3\}$.

• $C/\mathbb{Q}: y^2 = 2x^5 - 9x^4 - 24x^3 + 22x^2 + 78x - 41$ has bad reduction at $\{2, 5\}$.

- $C/\mathbb{Q}: y^2 = 2x^5 + x^4 16x^3 72x^2 + 240x + 136$ has bad reduction at $\{2, 7\}$.
- $C/\mathbb{Q}: y^2 = x^5 + 478x^3 + 57122x$ has bad reduction at $\{2, 13\}$.

Theorem (Smart 1997)

There are exactly 366 genus 2 curves C/\mathbb{Q} with good reduction away from 2, divided amongst 165 isogeny classes.

By taking Jac(C), we have examples of abelian surfaces with good reduction outside 2. But there are more! Examples of other curves C/\mathbb{Q} where Jac(C) good outside 2:

•
$$C/\mathbb{Q}: y^2 = x^5 - 14x^3 + 81x$$
 has bad reduction at $\{2,3\}$.

• $C/\mathbb{Q}: y^2 = 2x^5 - 9x^4 - 24x^3 + 22x^2 + 78x - 41$ has bad reduction at $\{2, 5\}$.

•
$$C/\mathbb{Q}: y^2 = 2x^5 + x^4 - 16x^3 - 72x^2 + 240x + 136$$
 has bad reduction at $\{2, 7\}$.

•
$$C/\mathbb{Q}: y^2 = x^5 + 478x^3 + 57122x$$
 has bad reduction at $\{2, 13\}$.

So far, we've found 504 examples of genus 2 curves C/\mathbb{Q} such that Jac(C) is good outside 2.

Conjecture

If C/\mathbb{Q} is a smooth genus 2 curve such that Jac(C) has good reduction away from 2, then C has good reduction away from $\{2, p\}$ for some prime $p \in \{3, 5, 7, 13\}$.

Conjecture

If C/\mathbb{Q} is a smooth genus 2 curve such that Jac(C) has good reduction away from 2, then C has good reduction away from $\{2, p\}$ for some prime $p \in \{3, 5, 7, 13\}$.

From here on, we'll focus on attempting to solve the (hopefully simpler) subproblem:

Conjecture

If C/\mathbb{Q} is a smooth genus 2 curve such that Jac(C) has good reduction away from 2, then C has good reduction away from $\{2, p\}$ for some prime $p \in \{3, 5, 7, 13\}$.

From here on, we'll focus on attempting to solve the (hopefully simpler) subproblem:

(Hopefully easier) subproblem

Classify all isogeny classes of abelian surfaces A/\mathbb{Q} with good reduction away from 2 and with full rational 2-torsion (i.e. $\mathbb{Q}(A[2]) = \mathbb{Q}$).

Definition (ℓ -adic Tate module)

Let A/K be an abelian variety of dimension d. The ℓ -adic Tate module is

$$T_{\ell}(A) := \varprojlim_{m} A[\ell^{m}]$$

where $A[\ell^m]$ are the ℓ^m -torsion points on A (over \overline{K}).

Definition (ℓ -adic Tate module)

Let A/K be an abelian variety of dimension d. The ℓ -adic Tate module is

$$T_{\ell}(A) := \varprojlim_{m} A[\ell^{m}]$$

where $A[\ell^m]$ are the ℓ^m -torsion points on A (over \overline{K}).

Definition (*l*-adic Galois representation)

For $\sigma \in \text{Gal}(\overline{K}/K)$, let σ act on $T_{\ell}(A)$ in the natural way. Define the map

 $\rho_{\mathcal{A},\ell}: \operatorname{\mathsf{Gal}}(\overline{K}/K) \to \operatorname{\mathsf{Aut}}_{\mathbb{Z}_\ell}(T_\ell(\mathcal{A})) \cong \operatorname{\mathsf{GL}}_{2d}(\mathbb{Z}_\ell).$

Definition (ℓ -adic Tate module)

Let A/K be an abelian variety of dimension d. The ℓ -adic Tate module is

$$T_{\ell}(A) := \varprojlim_{m} A[\ell^{m}]$$

where $A[\ell^m]$ are the ℓ^m -torsion points on A (over \overline{K}).

Definition (ℓ -adic Galois representation)

For $\sigma \in \text{Gal}(\overline{K}/K)$, let σ act on $T_{\ell}(A)$ in the natural way. Define the map

$$\rho_{\mathcal{A},\ell}: \operatorname{Gal}(\overline{\mathcal{K}}/\mathcal{K}) \to \operatorname{Aut}_{\mathbb{Z}_{\ell}}(\mathcal{T}_{\ell}(\mathcal{A})) \cong \operatorname{GL}_{2d}(\mathbb{Z}_{\ell}).$$

For some specific $n \ge 1$, we can factor this map as:

 $\rho_{A,\ell}: \mathsf{Gal}(\overline{K}/K) \to \mathsf{Gal}(K(A[\ell^n])/K) \to \mathsf{Aut}A[\ell^n] \cong \mathsf{GL}_{2d}(\mathbb{Z}/\ell^n\mathbb{Z}).$

Theorem (Faltings-Serre)

Let K be a number field and S a finite set of places of K, Suppose $\rho_1, \rho_2 : Gal(\overline{K}/K) \to GL_n(\mathbb{Q}_2)$ are continuous representations unramified outside S. Then there exists a finite set of primes T disjoint from S, such that if

 $tr(\rho_1(Frob_{\mathfrak{p}})) = tr(\rho_2(Frob_{\mathfrak{p}}))$

for all $\mathfrak{p} \in T$, then ρ_1 is isomorphic to ρ_2 .

Theorem (Faltings-Serre)

Let K be a number field and S a finite set of places of K, Suppose $\rho_1, \rho_2 : Gal(\overline{K}/K) \to GL_n(\mathbb{Q}_2)$ are continuous representations unramified outside S. Then there exists a finite set of primes T disjoint from S, such that if

 $tr(\rho_1(Frob_{\mathfrak{p}})) = tr(\rho_2(Frob_{\mathfrak{p}}))$

for all $\mathfrak{p} \in T$, then ρ_1 is isomorphic to ρ_2 .

Sketch proof:

Theorem (Faltings-Serre)

Let K be a number field and S a finite set of places of K, Suppose $\rho_1, \rho_2 : Gal(\overline{K}/K) \to GL_n(\mathbb{Q}_2)$ are continuous representations unramified outside S. Then there exists a finite set of primes T disjoint from S, such that if

 $tr(\rho_1(Frob_p)) = tr(\rho_2(Frob_p))$

for all $\mathfrak{p} \in T$, then ρ_1 is isomorphic to ρ_2 .

Sketch proof:

• Use Hermite-Minkowski bounds to obtain finitely many number fields L/K with degree bounded by ℓ^{2d^2} and unramified away from *S*.

Theorem (Faltings-Serre)

Let K be a number field and S a finite set of places of K, Suppose $\rho_1, \rho_2 : Gal(\overline{K}/K) \to GL_n(\mathbb{Q}_2)$ are continuous representations unramified outside S. Then there exists a finite set of primes T disjoint from S, such that if

 $tr(\rho_1(Frob_p)) = tr(\rho_2(Frob_p))$

for all $\mathfrak{p} \in T$, then ρ_1 is isomorphic to ρ_2 .

Sketch proof:

- Use Hermite-Minkowski bounds to obtain finitely many number fields L/K with degree bounded by ℓ^{2d^2} and unramified away from *S*.
- Use the Chebatorev density theorem to obtain a finite set of primes T disjoint from S, such that {Frob_p}_{p∈T} cover Gal(L/K), for all L as above.

Let A/K be an abelian variety. Its L-function factors as an Euler product,

$$L(A/K, s) = \prod_{\mathfrak{p} \text{ prime}} L_{\mathfrak{p}}(A/K, N\mathfrak{p}^{-s}).$$

where, for primes \mathfrak{p} of good reduction, $L_{\mathfrak{p}}(A/K, T)$ is given by the characteristic polynomial of $\rho_{A,\ell}(\operatorname{Frob}_{\mathfrak{p}})$ where $\rho_{A,\ell}: \operatorname{Gal}(\overline{K}/K) \to \operatorname{Aut}_{\mathbb{Z}_{\ell}}(T_{\ell}(A)) \cong \operatorname{GL}_{2d}(\mathbb{Z}_{\ell})$.

Let A/K be an abelian variety. Its L-function factors as an Euler product,

$$L(A/K, s) = \prod_{\mathfrak{p} \text{ prime}} L_{\mathfrak{p}}(A/K, N\mathfrak{p}^{-s}).$$

where, for primes \mathfrak{p} of good reduction, $L_{\mathfrak{p}}(A/K, T)$ is given by the characteristic polynomial of $\rho_{A,\ell}(\operatorname{Frob}_{\mathfrak{p}})$ where $\rho_{A,\ell}: \operatorname{Gal}(\overline{K}/K) \to \operatorname{Aut}_{\mathbb{Z}_{\ell}}(T_{\ell}(A)) \cong \operatorname{GL}_{2d}(\mathbb{Z}_{\ell})$.

Theorem (Faltings–Serre)

Let A/K and B/K be two abelian varieties. If $L_{\mathfrak{p}}(A/K, s) = L_{\mathfrak{p}}(B/K, s)$ for some effectively computable finite set of primes \mathfrak{p} , then L(A/K, s) = L(B/K, s).

Let A/K be an abelian variety. Its L-function factors as an Euler product,

$$L(A/K, s) = \prod_{\mathfrak{p} \text{ prime}} L_{\mathfrak{p}}(A/K, N\mathfrak{p}^{-s}).$$

where, for primes \mathfrak{p} of good reduction, $L_{\mathfrak{p}}(A/K, T)$ is given by the characteristic polynomial of $\rho_{A,\ell}(\operatorname{Frob}_{\mathfrak{p}})$ where $\rho_{A,\ell}: \operatorname{Gal}(\overline{K}/K) \to \operatorname{Aut}_{\mathbb{Z}_{\ell}}(T_{\ell}(A)) \cong \operatorname{GL}_{2d}(\mathbb{Z}_{\ell})$.

Theorem (Faltings–Serre)

Let A/K and B/K be two abelian varieties. If $L_{\mathfrak{p}}(A/K, s) = L_{\mathfrak{p}}(B/K, s)$ for some effectively computable finite set of primes \mathfrak{p} , then L(A/K, s) = L(B/K, s).

Theorem (Faltings–Serre–Livné)

Let A/\mathbb{Q} and B/\mathbb{Q} be two abelian varieties with good reduction away from 2 and with full rational 2-torsion. Then if $L_p(A/\mathbb{Q}, s) = L_p(B/\mathbb{Q}, s)$ for each $p \in \{3, 5, 7\}$, then A and B are isogenous over \mathbb{Q} .

To illustrate, let's use the Faltings-Serre method to classify elliptic curves with good reduction away from 2 and with full rational 2-torsion!

To illustrate, let's use the Faltings-Serre method to classify elliptic curves with good reduction away from 2 and with full rational 2-torsion!

Theorem

Let E/\mathbb{Q} be an elliptic curve with good reduction away from 2, and with full rational 2-torsion. Then E is isomorphic to either $E_1: y^2 = x^3 - x$ or $E_2: y^2 = x^3 - 4x$.

To illustrate, let's use the Faltings-Serre method to classify elliptic curves with good reduction away from 2 and with full rational 2-torsion!

Theorem

Let E/\mathbb{Q} be an elliptic curve with good reduction away from 2, and with full rational 2-torsion. Then E is isomorphic to either $E_1: y^2 = x^3 - x$ or $E_2: y^2 = x^3 - 4x$.

Quick proof: Let E/\mathbb{Q} be given by $y^2 = x(x-a)(x-b)$ for some distinct nonzero $a, b \in \mathbb{Z}$. Then a, b and a-b are all powers of 2. Can easily observe that $b \in \{-a, a/2, 2a\}$ and in every case, E is isomorphic to either E_1 or E_2 .

To illustrate, let's use the Faltings-Serre method to classify elliptic curves with good reduction away from 2 and with full rational 2-torsion!

Theorem

Let E/\mathbb{Q} be an elliptic curve with good reduction away from 2, and with full rational 2-torsion. Then E is isomorphic to either $E_1: y^2 = x^3 - x$ or $E_2: y^2 = x^3 - 4x$.

Quick proof: Let E/\mathbb{Q} be given by $y^2 = x(x-a)(x-b)$ for some distinct nonzero $a, b \in \mathbb{Z}$. Then a, b and a-b are all powers of 2. Can easily observe that $b \in \{-a, a/2, 2a\}$ and in every case, E is isomorphic to either E_1 or E_2 .

Longer proof: Classify the possible Euler factors $L_3(E/\mathbb{Q}, T)$, $L_5(E/\mathbb{Q}, T)$, and $L_7(E/\mathbb{Q}, T)$ and apply the Faltings–Serre–Livné criterion!

Theorem

Let E/\mathbb{Q} be an elliptic curve with good reduction away from 2 and with full 2-torsion. Then $\mathbb{Q}(E[4]) = \mathbb{Q}(\zeta_8)$ and $\mathbb{Q}(E[8]) = \mathbb{Q}(\zeta_{16}, \sqrt[4]{2})$

Theorem

Let E/\mathbb{Q} be an elliptic curve with good reduction away from 2 and with full 2-torsion. Then $\mathbb{Q}(E[4]) = \mathbb{Q}(\zeta_8)$ and $\mathbb{Q}(E[8]) = \mathbb{Q}(\zeta_{16}, \sqrt[4]{2})$

Theorem

Let E/\mathbb{Q} be an elliptic curve with good reduction away from 2 and with full 2-torsion. Then $\mathbb{Q}(E[4]) = \mathbb{Q}(\zeta_8)$ and $\mathbb{Q}(E[8]) = \mathbb{Q}(\zeta_{16}, \sqrt[4]{2})$

Proof: For any $n \ge 1$, we note the following properties for $\mathbb{Q}(E[2^n])$:

• Q(E[2ⁿ]) is Galois and contains ζ_{2ⁿ}.

Theorem

Let E/\mathbb{Q} be an elliptic curve with good reduction away from 2 and with full 2-torsion. Then $\mathbb{Q}(E[4]) = \mathbb{Q}(\zeta_8)$ and $\mathbb{Q}(E[8]) = \mathbb{Q}(\zeta_{16}, \sqrt[4]{2})$

- $\mathbb{Q}(E[2^n])$ is Galois and contains ζ_{2^n} .
- $\mathbb{Q}(E[2^n])$ is unramified outside 2.

Theorem

Let E/\mathbb{Q} be an elliptic curve with good reduction away from 2 and with full 2-torsion. Then $\mathbb{Q}(E[4]) = \mathbb{Q}(\zeta_8)$ and $\mathbb{Q}(E[8]) = \mathbb{Q}(\zeta_{16}, \sqrt[4]{2})$

- $\mathbb{Q}(E[2^n])$ is Galois and contains ζ_{2^n} .
- $\mathbb{Q}(E[2^n])$ is unramified outside 2.
- $\mathbb{Q}(E[2^n])$ is a compositum of quadratic extensions of $\mathbb{Q}(E[2^{n-1}])$.

Theorem

Let E/\mathbb{Q} be an elliptic curve with good reduction away from 2 and with full 2-torsion. Then $\mathbb{Q}(E[4]) = \mathbb{Q}(\zeta_8)$ and $\mathbb{Q}(E[8]) = \mathbb{Q}(\zeta_{16}, \sqrt[4]{2})$

- Q(E[2ⁿ]) is Galois and contains ζ_{2ⁿ}.
- $\mathbb{Q}(E[2^n])$ is unramified outside 2.
- $\mathbb{Q}(E[2^n])$ is a compositum of quadratic extensions of $\mathbb{Q}(E[2^{n-1}])$.
- For each odd prime \mathfrak{p} in $\mathbb{Q}(E[2^n])$, the Weil inequality implies

$$2^{2n} \leq |E(\mathbb{F}_{\mathfrak{p}})| \leq N\mathfrak{p} + 1 + 2\sqrt{N\mathfrak{p}}.$$

Theorem

Let E/\mathbb{Q} be an elliptic curve with good reduction away from 2 and with full 2-torsion. Then $\mathbb{Q}(E[4]) = \mathbb{Q}(\zeta_8)$ and $\mathbb{Q}(E[8]) = \mathbb{Q}(\zeta_{16}, \sqrt[4]{2})$

Proof: For any $n \ge 1$, we note the following properties for $\mathbb{Q}(E[2^n])$:

- Q(E[2ⁿ]) is Galois and contains ζ_{2ⁿ}.
- $\mathbb{Q}(E[2^n])$ is unramified outside 2.
- $\mathbb{Q}(E[2^n])$ is a compositum of quadratic extensions of $\mathbb{Q}(E[2^{n-1}])$.
- For each odd prime \mathfrak{p} in $\mathbb{Q}(E[2^n])$, the Weil inequality implies

$$2^{2n} \leq |E(\mathbb{F}_{\mathfrak{p}})| \leq \mathsf{N}\mathfrak{p} + 1 + 2\sqrt{\mathsf{N}\mathfrak{p}}.$$

• $Gal(\mathbb{Q}(E[2^n])/\mathbb{Q})$ is a subgroup of $\{M \in GL_2(\mathbb{Z}/2^n\mathbb{Z}) : M \equiv I \pmod{2}\}.$

\mathbb{Q}

$\mathbb{Q}(\zeta_8)$

Classifying E/\mathbb{Q} good away from 2 with full rational 2-torsion:

Classifying E/\mathbb{Q} good away from 2 with full rational 2-torsion:

As Gal(Q(ζ₁₆, ⁴√2) ≅ C₂² ⋊ C₄, we compute all possible embeddings of C₂² ⋊ C₄ into {M ∈ GL₂(Z/8Z) : M ≡ I (mod 2)}.

Classifying E/\mathbb{Q} good away from 2 with full rational 2-torsion:

- As Gal(Q(ζ₁₆, ⁴√2) ≅ C₂² ⋊ C₄, we compute all possible embeddings of C₂² ⋊ C₄ into {M ∈ GL₂(Z/8Z) : M ≡ I (mod 2)}.
- Using that $det(Frob_p) = p$, a brute force computer search yields

 $\mathsf{tr}(\mathsf{Frob}_3)\equiv 0, \quad \mathsf{tr}(\mathsf{Frob}_5)\equiv 2 \text{ or } -2, \quad \text{ and } \quad \mathsf{tr}(\mathsf{Frob}_7)\equiv 0 \pmod{8}.$

Classifying E/\mathbb{Q} good away from 2 with full rational 2-torsion:

- As Gal(Q(ζ₁₆, ⁴√2) ≅ C₂² ⋊ C₄, we compute all possible embeddings of C₂² ⋊ C₄ into {M ∈ GL₂(Z/8Z) : M ≡ I (mod 2)}.
- Using that $det(Frob_p) = p$, a brute force computer search yields

 $\mathsf{tr}(\mathsf{Frob}_3)\equiv 0, \quad \mathsf{tr}(\mathsf{Frob}_5)\equiv 2 \text{ or } -2, \quad \text{ and } \quad \mathsf{tr}(\mathsf{Frob}_7)\equiv 0 \pmod{8}.$

• By the Hasse-Weil bound, this implies

 $\mathsf{tr}(\mathsf{Frob}_3)=0, \quad \mathsf{tr}(\mathsf{Frob}_5)=2 \text{ or } -2, \quad \text{ and } \quad \mathsf{tr}(\mathsf{Frob}_7)=0.$

Classifying E/\mathbb{Q} good away from 2 with full rational 2-torsion:

- As Gal(Q(ζ₁₆, ⁴√2) ≅ C₂² ⋊ C₄, we compute all possible embeddings of C₂² ⋊ C₄ into {M ∈ GL₂(Z/8Z) : M ≡ I (mod 2)}.
- Using that $det(Frob_p) = p$, a brute force computer search yields

 $\mathsf{tr}(\mathsf{Frob}_3)\equiv 0, \quad \mathsf{tr}(\mathsf{Frob}_5)\equiv 2 \text{ or } -2, \quad \text{ and } \quad \mathsf{tr}(\mathsf{Frob}_7)\equiv 0 \pmod{8}.$

• By the Hasse-Weil bound, this implies

 $\mathsf{tr}(\mathsf{Frob}_3)=0, \quad \mathsf{tr}(\mathsf{Frob}_5)=2 \text{ or } -2, \quad \text{ and } \quad \mathsf{tr}(\mathsf{Frob}_7)=0.$

• Using the Faltings–Serre–Livné criterion, this implies there are at most two isogeny classes of elliptic curves E/\mathbb{Q} good away from 2 with full rational 2-torsion.

Classifying E/\mathbb{Q} good away from 2 with full rational 2-torsion:

- As Gal(Q(ζ₁₆, ⁴√2) ≅ C₂² ⋊ C₄, we compute all possible embeddings of C₂² ⋊ C₄ into {M ∈ GL₂(Z/8Z) : M ≡ I (mod 2)}.
- Using that $det(Frob_p) = p$, a brute force computer search yields

 $\mathsf{tr}(\mathsf{Frob}_3) \equiv 0, \quad \mathsf{tr}(\mathsf{Frob}_5) \equiv 2 \text{ or } -2, \quad \text{ and } \quad \mathsf{tr}(\mathsf{Frob}_7) \equiv 0 \pmod{8}.$

• By the Hasse-Weil bound, this implies

 $\mathsf{tr}(\mathsf{Frob}_3)=0, \quad \mathsf{tr}(\mathsf{Frob}_5)=2 \text{ or } -2, \quad \text{ and } \quad \mathsf{tr}(\mathsf{Frob}_7)=0.$

- Using the Faltings–Serre–Livné criterion, this implies there are at most two isogeny classes of elliptic curves E/\mathbb{Q} good away from 2 with full rational 2-torsion.
- As E_1 , E_2 not isogenous, there are exactly two such isogeny classes! Computing the isogeny class over \mathbb{Q} for both E_1 and E_2 gives the result!

A "sometimes" effective algorithm to compute isogeny classes of dimension d abelian varieties A/K with good reduction outside S:

1. Use the Faltings–Serre–Livné criterion to compute a finite set of primes T for which $\{L_{\mathfrak{p}}(A/K, T)\}_{\mathfrak{p}\in T}$ uniquely determines L(A/K, s).

- 1. Use the Faltings–Serre–Livné criterion to compute a finite set of primes T for which $\{L_{\mathfrak{p}}(A/K, T)\}_{\mathfrak{p}\in T}$ uniquely determines L(A/K, s).
- 2. For each $\mathfrak{p} \in \mathcal{T}$, use the Weil inequalities to compute a finite set of possible *L*-factors $L_{\mathfrak{p}}(A/K, \mathcal{T})$.

- 1. Use the Faltings–Serre–Livné criterion to compute a finite set of primes T for which $\{L_{\mathfrak{p}}(A/K, T)\}_{\mathfrak{p}\in T}$ uniquely determines L(A/K, s).
- 2. For each $\mathfrak{p} \in \mathcal{T}$, use the Weil inequalities to compute a finite set of possible *L*-factors $L_{\mathfrak{p}}(A/K, \mathcal{T})$.
- 3. For a suitable prime ℓ and sufficiently large *n*, compute the possible ℓ^n -torsion fields $K(A[\ell^n])$ and thus the possible embeddings $Gal(K(A[\ell^n])/K) \to GL_{2d}(\mathbb{Z}/\ell^n\mathbb{Z})$.

- 1. Use the Faltings–Serre–Livné criterion to compute a finite set of primes T for which $\{L_{\mathfrak{p}}(A/K, T)\}_{\mathfrak{p}\in T}$ uniquely determines L(A/K, s).
- 2. For each $\mathfrak{p} \in \mathcal{T}$, use the Weil inequalities to compute a finite set of possible *L*-factors $L_{\mathfrak{p}}(A/K, \mathcal{T})$.
- 3. For a suitable prime ℓ and sufficiently large *n*, compute the possible ℓ^n -torsion fields $K(A[\ell^n])$ and thus the possible embeddings $Gal(K(A[\ell^n])/K) \to GL_{2d}(\mathbb{Z}/\ell^n\mathbb{Z})$.
- Compute the possible characteristic polynomials (mod ℓⁿ) to narrow down the possibilities for L_p(A/K, T). For each remaining valid L-function L(A/K, s), search for an abelian variety that has this L-function.

- 1. Use the Faltings–Serre–Livné criterion to compute a finite set of primes T for which $\{L_{\mathfrak{p}}(A/K, T)\}_{\mathfrak{p}\in T}$ uniquely determines L(A/K, s).
- 2. For each $\mathfrak{p} \in \mathcal{T}$, use the Weil inequalities to compute a finite set of possible *L*-factors $L_{\mathfrak{p}}(A/K, \mathcal{T})$.
- 3. For a suitable prime ℓ and sufficiently large *n*, compute the possible ℓ^n -torsion fields $K(A[\ell^n])$ and thus the possible embeddings $Gal(K(A[\ell^n])/K) \to GL_{2d}(\mathbb{Z}/\ell^n\mathbb{Z})$.
- Compute the possible characteristic polynomials (mod ℓⁿ) to narrow down the possibilities for L_p(A/K, T). For each remaining valid L-function L(A/K, s), search for an abelian variety that has this L-function.
- 5. Hope that, for large enough n, the only remaining possible *L*-functions L(A/K, s) correspond to explicit examples of abelian varieties already found!

n	$\mathbb{Q}(A[2^n])$	$Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$	$\#L_3(A/\mathbb{Q},s)$	$\#L_5(A/\mathbb{Q},s)$	$\#L_7(A/\mathbb{Q},s)$
---	----------------------	--------------------------------------	-------------------------	-------------------------	-------------------------

n	$\mathbb{Q}(A[2^n])$	$Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$	$\#L_3(A/\mathbb{Q},s)$	$\#L_5(A/\mathbb{Q},s)$	$\#L_7(A/\mathbb{Q},s)$
0	Q	<i>C</i> ₁	63	129	207

n	$\mathbb{Q}(A[2^n])$	$Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$	$\#L_3(A/\mathbb{Q},s)$	$\#L_5(A/\mathbb{Q},s)$	$\#L_7(A/\mathbb{Q},s)$
0	\mathbb{Q}	C_1	63	129	207
1	\mathbb{Q}	C_1	17	35	53

n	$\mathbb{Q}(A[2^n])$	$Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$	$\#L_3(A/\mathbb{Q},s)$	$\#L_5(A/\mathbb{Q},s)$	$\#L_7(A/\mathbb{Q},s)$
0	Q	<i>C</i> ₁	63	129	207
1	\mathbb{Q}	C_1	17	35	53
2	$\mathbb{Q}(\zeta_8)$	$C_2 imes C_2$	6	12	16

n	$\mathbb{Q}(A[2^n])$	$Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$	$\#L_3(A/\mathbb{Q},s)$	$\#L_5(A/\mathbb{Q},s)$	$\#L_7(A/\mathbb{Q},s)$
0	Q	C_1	63	129	207
1	\mathbb{Q}	<i>C</i> ₁	17	35	53
2	$\mathbb{Q}(\zeta_8)$	$C_2 \times C_2$	6	12	16
3	$\mathbb{Q}(\zeta_{16},\sqrt[4]{2})$	$C_2^2 \rtimes C_4$	2	5	6

n	$\mathbb{Q}(A[2^n])$	$Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$	$\#L_3(A/\mathbb{Q},s)$	$\#L_5(A/\mathbb{Q},s)$	$\#L_7(A/\mathbb{Q},s)$
0	Q	<i>C</i> ₁	63	129	207
1	Q	C_1	17	35	53
2	$\mathbb{Q}(\zeta_8)$	$C_2 \times C_2$	6	12	16
3	$\mathbb{Q}(\zeta_{16},\sqrt[4]{2})$	$C_2^2 \rtimes C_4$	2	5	6
4	$(many)^{\dagger}$	$C_2^2 \rtimes C_8, \ D_4 \rtimes C_8, \\ C_2^2.C_4 \wr C_2$	1	4	2

n	$\mathbb{Q}(A[2^n])$	$Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$	$\#L_3(A/\mathbb{Q},s)$	$\#L_5(A/\mathbb{Q},s)$	$\#L_7(A/\mathbb{Q},s)$
0	Q	<i>C</i> ₁	63	129	207
1	Q	C_1	17	35	53
2	$\mathbb{Q}(\zeta_8)$	$C_2 \times C_2$	6	12	16
3	$\mathbb{Q}(\zeta_{16},\sqrt[4]{2})$	$C_2^2 \rtimes C_4$	2	5	6
4	$(many)^{\dagger}$	$C_2^2 \rtimes C_8, \ D_4 \rtimes C_8, \\ C_2^2.C_4 \wr C_2$	1	4	2
5	(many)	(many)	1	3	1

Let's apply this to abelian surfaces:

n	$\mathbb{Q}(A[2^n])$	$Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$	$\#L_3(A/\mathbb{Q},s)$	$\#L_5(A/\mathbb{Q},s)$	$\#L_7(A/\mathbb{Q},s)$
0	Q	C_1	63	129	207
1	Q	C_1	17	35	53
2	$\mathbb{Q}(\zeta_8)$	$C_2 \times C_2$	6	12	16
3	$\mathbb{Q}(\zeta_{16},\sqrt[4]{2})$	$C_2^2 \rtimes C_4$	2	5	6
4	$(many)^{\dagger}$	$C_2^2 \rtimes C_8, D_4 \rtimes C_8, C_2^2.C_4 \wr C_2$	1	4	2
5	(many)	(many)	1	3	1

[†]One possibility is $\mathbb{Q}(\alpha)$ with minimal polynomial $x^{32} - 16x^{31} + 120x^{30} - 528x^{29} + 1356x^{28} - 1232x^{27} - 4768x^{26} + 22128x^{25} - 41324x^{24} + 22672x^{23} + 73368x^{22} - 202720x^{21} + 227588x^{20} - 97728x^{19} - 7248x^{18} - 67344x^{17} + 130936x^{16} + 60384x^{15} - 322288x^{14} + 308080x^{13} - 66076x^{12} - 103424x^{11} + 108920x^{10} - 58864x^9 + 24084x^8 - 6448x^7 + 48x^6 + 27/29x^{12} + 27/29x^{16} + 27/29x^{16}$

Results

Theorem (V. WIP (2024))

There are exactly 3 isogeny classes of abelian surfaces A/\mathbb{Q} with good reduction away from 2 which contain surfaces with full rational 2-torsion. These are given by $E_1 \times E_1$, $E_1 \times E_2$ and $E_2 \times E_2$, where E_1 , E_2 are the elliptic curves $E_1 : y^2 = x^3 - x$ and $E_2 : y^2 = x^3 - 4x$.

Theorem (V. WIP (2024))

There are exactly 3 isogeny classes of abelian surfaces A/\mathbb{Q} with good reduction away from 2 which contain surfaces with full rational 2-torsion. These are given by $E_1 \times E_1$, $E_1 \times E_2$ and $E_2 \times E_2$, where E_1 , E_2 are the elliptic curves $E_1 : y^2 = x^3 - x$ and $E_2 : y^2 = x^3 - 4x$.

Doing a similar (albeit more tedious) computation also gives the following result:

Theorem (V. WIP (2024))

There are exactly 23 isogeny classes of abelian surfaces A/\mathbb{Q} with good reduction away from 2 which contain surfaces such that either $A[2](\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^4$ or $A[2](\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^3$.

Thank you!