DRAFT 15/05/2022

Calculating *L*-values of elliptic curves twisted by Grössencharacters (draft)

Robin Visser

15 May 2022

Abstract

Given an imaginary quadratic field K, let E/K be an elliptic curve, and ψ a Grössencharacter over K of conductor \mathfrak{f}_{ψ} and of infinity type $(a, b) \neq (0, 0)$. Assuming s = 1 is a critical value for $L(E/K, \psi, s)$, we provide computational evidence to suggest that the transcendental part of $L(E/K, \psi, 1)$ only depends on K and (a, b). Specifically, we conjecture that $L(E/K, \psi, 1)$ is an $K(\psi).K(\mathfrak{f}_{\psi})$ -multiple of $\Omega_K^{2|a-b|}/\pi^{a+b-1}$, where $K(\mathfrak{f}_{\psi})$ denotes the ray class field of K for \mathfrak{f}_{ψ} , and where Ω_K denotes the Chowla–Selberg period of K. In the case where ψ^2 is unramified, we furthermore conjecture a refinement of the algebraic part of $L(E/K, \psi, 1)$.

1 Introduction

The study of elliptic curves and their L-functions have been at the forefront of modern number theory over the past few decades. For a given number field K and elliptic curve E/K, a formula for the leading Taylor coefficient of L(E/K, s) at s = 1 has famously been conjectured by Birch and Swinnerton-Dyer [BSD65]. Since then, various other more elaborate conjectures have been made over the last few decades regarding general motives [Bei85, BK90, Del79].

Given an elliptic curve E/\mathbb{Q} and Dirichlet character χ , one can consider the twisted *L*-function $L(E/\mathbb{Q}, \chi, s)$. Whilst these *L*-values at s = 1 have also been extensively studied, they have recently been investigated by Dokchitser, Evans, and Wiersema [DEW21]. More generally, over arbitrary number fields *K* one can consider the *L*-functions of elliptic curves $L(E/K, \psi, s)$ twisted by Grössencharacters ψ . These *L*-values shall be the focus of our computations.

Whilst a general motivic definition for $L(E/K, \psi, s)$ can be found in [Del79], we note that in the case where the conductor of ψ is coprime to the conductor of E, then the *L*-function $L(E/K, \psi, s)$ can be given by the following simple definition:

$$L(E/K,\psi,s):=\sum_{\mathfrak{n}\triangleleft\mathcal{O}_K}a_\mathfrak{n}(E/K)\psi(\mathfrak{n})N(\mathfrak{n})^{-s}$$

Keywords: Elliptic curves, L-functions, Grössencharacters.

²⁰²⁰ Mathematics Subject Classification. 11G05 (11G40).

The author is supported by an EPSRC studentship.

where $a_{\mathfrak{n}}(E/K)$ denotes the \mathfrak{n} -th Fourier coefficient in the *L*-function of the elliptic curve $L(E/K,s) := \sum_{\mathfrak{n} \lhd \mathcal{O}_K} a_{\mathfrak{n}}(E/K) N(\mathfrak{n})^{-s}.$

For our purposes, we shall restrict to the imaginary quadratic number fields K, and shall investigate the *L*-values of elliptic curves E/K twisted by Grössencharacters ψ in the outer critical region, as defined in Section 2. Based on extensive numerical computations, we first make the following conjecture:

Conjecture 1. Let K be an imaginary quadratic field. Then for any elliptic curve E/K, and for any Grössencharacter ψ of conductor \mathfrak{f}_{ψ} and of infinity type (a, b) in the outer critical region, we have

$$L(E/K,\psi,1) \in K(\psi).K(\mathfrak{f}_{\psi}) \cdot \frac{\Omega_K^{2|a-b|}}{\pi^{a+b-1}}$$

where $K(\psi)$ is the smallest field containing K and all values of ψ , and where $K(\mathfrak{f}_{\psi})$ denotes the ray class field of K for \mathfrak{f}_{ψ} . Here, Ω_K is defined as the Chowla–Selberg period of K, given by

$$\Omega_K := \left(\prod_{a=1}^{|d|-1} \Gamma\left(\frac{a}{|d|}\right)^{\left(\frac{d}{a}\right)}\right)^{w/4h}$$

where d, h and w are the discriminant, class number, and order of unit group of K respectively.

Remark: One can show that Conjecture 1 is consistent with Deligne's period conjecture [Del79], as proven by [GH16, HL16]. Indeed, if $L(\psi, 1) \neq 0$, then we note that Conjecture 1 is equivalent to the statement that

$$L(E/K, \psi, 1) \in K(\psi) \cdot \pi L(\psi, 1)^2.$$

In particular, we observe that $L(\psi, 1) \neq 0$ if $a + b \neq 1$. We also remark that this result has already been proven in the case where E/K is base-change from \mathbb{Q} using Rankin-Selberg convolutions [Shi76].

The *L*-values $L(\psi, 1)$ have been well-studied by many authors over the past several decades. Indeed, it is well-known that $L(\psi, 1)/(\Omega_K^{|a-b|}\pi^{1-(a+b)/2})$ is algebraic [Dam70], and has been observed that this lies in the compositum of $K(\psi)$ and the ray class field of *K* for \mathfrak{f}_{ψ} [Kat76]. It it also worth mentioning the work of Asai [Asa07] where he explicitly describes these *L*-values in terms of elliptic Gauss sums.

We note that, in comparison, the L-values $L(E/K, \psi, 1)$ for Grössencharacters ψ in the inner critical region have their transcendental part dependent on the elliptic curve E/K. Indeed, we have that $L(E/K, \psi, 1)$ is a $K(\psi)$ -multiple of L(E/K, 1), if the infinity type of ψ is trivial.

Whilst we do not have a precise BSD-type conjecture for the exact value of $L(E/K, \psi, 1)$ in the outer critical region, we can provide a partial integrality result for quadratic Grössencharacters ψ over imaginary quadratic fields of class number 1. We define a Grössencharacter of infinity type (a, b) as quadratic if $\psi((\lambda)) = \pm \lambda^a \overline{\lambda}^b$ for all $\lambda \in \mathcal{O}_K$ (or equivalently, if ψ^2 is unramified). **Conjecture 2.** Let K be an imaginary quadratic field of class number 1 with discriminant -D. Let E/K be an elliptic curve with conductor \mathfrak{f}_E generated by λ_E , and ψ a quadratic Grössencharacter of infinity type (a, b) in the outer critical region, of conductor \mathfrak{f}_{ψ} generated by λ_{ψ} . Define $\mathcal{L}(E/K, \psi)$ as

$$\mathcal{L}(E/K,\psi) := L(E/K,\psi,1) \frac{i\pi^{a+b-1}}{\Omega_K^{2|a-b|}} (iD)^{|a-b|} \overline{(\lambda_E \lambda_\psi^2)}^c \cdot c!(c-1)! \, 2^{a+b+1}$$
(1)

where $c := |\min(a, b)|$. Then $\mathcal{L}(E/K, \psi) \in \mathcal{O}_K$.

We remark that our construction of $\mathcal{L}(E/K, \psi)$ is only defined for class number 1 fields, and furthermore is only defined up to a unit in \mathcal{O}_K . However we can still pose the following additional conjecture which relates the value of $\mathcal{L}(E/K, \psi)$ for a Grössencharacter of infinity type (a, b) with the shifted character of infinity type (-b, -a):

Conjecture 3. Let K be an imaginary quadratic field of class number 1. Let E/K be an elliptic curve and ψ a Grössencharacter of infinity type (a, b) in the outer critical region, with $\mathcal{L}(E/K, \psi)$ as defined above. Let χ_{Nm} denote the norm Grössencharacter of infinity type (1, 1). Then

$$\mathcal{L}(E/K,\psi) = \pm \overline{\mathcal{L}}(E/K,\psi\chi_{\mathrm{Nm}}^{-a-b}).$$

We note that when a = -b, then a corollary of the above two conjectures implies that $\mathcal{L}(E/K, \psi)$ is an element of either \mathbb{Z} or $\sqrt{-D}\mathbb{Z}$.

2 Grössencharacters

Let K be an imaginary quadratic field with some fixed embedding $K \hookrightarrow \mathbb{C}$. For a given ideal $\mathfrak{m} \triangleleft \mathcal{O}_K$, define $I(\mathfrak{m})$ as the group of fractional ideals in K coprime to \mathfrak{m} . For simplicity and ease of computation, we shall consider a Grössencharacter of infinity type (a, b) modulo \mathfrak{m} as a group homomorphism $\psi : I(\mathfrak{m}) \to \mathbb{C}^{\times}$ such that, for any principal ideal $\mathfrak{n} = (\lambda)$ where $\lambda \equiv 1 \mod \mathfrak{m}$, we have $\psi(\mathfrak{n}) = \lambda^a \overline{\lambda}^b$.

We say that a Grössencharacter ψ of infinity type (a, b) is in the *inner critical region* if a = b = 0, or we say that ψ is in the *outer critical region* if either $a \ge 1$ and $b \le -1$, or $a \le -1$ and $b \ge 1$.

Note that, for any imaginary quadratic field K, we can denote $\chi_{\text{Nm}} : \mathcal{O}_K^{\times} \to \mathbb{C}^{\times}$ as the norm Grössencharacter of infinity type (1, 1). To construct examples of Grössencharacters in the outer critical region, let K be an imaginary quadratic field of class number 1. Then for any infinity type (a, b) satisfying $a \equiv b \pmod{w}$, where w is the order of the unit group of K, we can define the canonical Grössencharacter $\psi_{a,b}$ of infinity type (a, b) as

$$\psi_{a,b}((\lambda)) := \lambda^a \overline{\lambda}^b.$$

To obtain examples of quadratic unitary Grössencharacters of imaginary quadratic fields of class number 1, let $\mathfrak{m} \triangleleft \mathcal{O}_K$ be such that $\left(\frac{-1}{\mathfrak{m}}\right) = 1$. Here, $\left(\frac{\cdot}{\mathfrak{m}}\right)$ denotes the quadratic residue symbol in \mathcal{O}_K . We then define the Grössencharacter $\chi_{\mathfrak{m}} : I(\mathfrak{m}) \rightarrow \mathbb{C}^{\times}$ as $\chi_{\mathfrak{m}}(\lambda) := \left(\frac{\lambda}{\mathfrak{m}}\right)$ for all $\lambda \in \mathcal{O}_K$. By therefore considering characters of the form $\chi_{\mathfrak{m}}\psi_{a,b}$, this yields infinitely many examples of quadratic Grössencharacters of infinity type (a, b).

3 Computations

All our computations of $L(E/K, \psi, 1)$ were done using the Sage implementation of Dokchitser's *L*-function calculator [Dok04]. This requires utilising the functional equation of the completed *L*-function $\Lambda(E/K, \psi, s)$. Recall that given some elliptic curve E/K of conductor $\mathfrak{f}_{E/K}$ and primitive Grössencharacter ψ of infinity type (a, b) of conductor \mathfrak{f}_{ψ} coprime to $\mathfrak{f}_{E/K}$, we have:

$$\Lambda(E/K,\psi,s) := \operatorname{Nm}(\mathfrak{f}_{E/K}\mathfrak{f}_{\psi}^2)^{s/2} \Gamma_{\mathbb{C}}(s-c)\Gamma_{\mathbb{C}}(s-c-1) L(E/K,\psi,s)$$

where $\Gamma_{\mathbb{C}}(s) := 2(2\pi)^{-s}\Gamma(s)$ and $c := \min(a, b)$. Recall that if E/K is modular, then the *L*-function $L(E/K, \psi, s)$ satisfies the functional equation

$$\Lambda(E/K,\psi,s) = \omega_{E/K,\psi} \Lambda(E/K,\overline{\psi},2+a+b-s)$$

where $\omega_{E/K,\psi}$ is given by

$$\omega_{E/K,\psi} := \omega_{E/K} \psi(\mathfrak{f}_{E/K}) \tau(\psi)^2 D^{-a-b} \operatorname{Nm}(\mathfrak{f}_{\psi})^{-a-b-1} \operatorname{Nm}(\mathfrak{f}_{E/K})^{-(a+b)/2}$$

where $\omega_{E/K}$ is the global root number for E/K and where $\tau(\psi)$ is the Gauss sum of ψ .

To define the Gauss sum $\tau(\psi)$, let \mathfrak{D} be the different of K, and choose $\mathfrak{c} \triangleleft \mathcal{O}_K$ coprime to \mathfrak{f}_{ψ} such that $\mathfrak{D}\mathfrak{f}_{\psi}\mathfrak{c}$ is principal. Pick an element $t \in \mathcal{O}_K$ such that $\mathfrak{D}\mathfrak{f}_{\psi}\mathfrak{c} = (t)$. Then the Gauss sum $\tau(\psi)$ can be given by [Miy89, p. 92]:

$$\tau(\psi) := \frac{t^a \overline{t}^b}{\psi(\mathfrak{c})} \sum_r \frac{\psi((r))}{r^a \overline{r}^b} e^{2\pi i \operatorname{tr}(r/t)}$$

where r runs over a complete set of residues for $\mathfrak{c}/\mathfrak{f}_{\psi}\mathfrak{c}$. With the above convention, we note that $|\tau(\psi)|^2 = D^{a+b}N(\mathfrak{f}_{\psi})^{a+b+1}$.

Whilst modularity has not been proven for all elliptic curves E/K, we make note of the work by Allen–Khare–Thorne [AKT19] proving that a positive proportion of elliptic curves over K are modular, with notable recent work by Feng [Fen22] proving that at least 40% of elliptic curves over imaginary quadratic fields K are modular.

Using the above functional equation with Dokchitser's *L*-function calculator, we computed *L*-values $L(E/K, \psi, 1)$ for various elliptic curves E/K and Grössencharacters ψ over the fields $K = \mathbb{Q}(\sqrt{-7}), \mathbb{Q}(\sqrt{-11})$ and $\mathbb{Q}(\sqrt{-19}).$

We have tabulated some of the values obtained below for $K = \mathbb{Q}(\sqrt{-7})$, where we have denoted $\alpha := \frac{1+\sqrt{-7}}{2}$ for brevity. All isogeny classes of elliptic curves are given by their LMFDB label [LMF21]. All *L*-value computations were done to (at least) 500 bits of precision.

Elliptic curves		Grössencharacters			
Isogeny Class	$\psi_{1,-1}$	$\chi_{(3)} \psi_{1,-1}$	$\chi_{(5)} \psi_{1,-1}$	$\chi_{(4\alpha-1)}\psi_{1,-1}$	$\chi_{(4\alpha-3)}\psi_{1,-1}$
16.1-CMa	± 1	$\pm 2^3$	$\pm 2^3 * 3$	$\pm 2^6$	$\pm 2^7$
16.5-CMa	± 1	$\pm 2^3$	$\pm 2^3 * 3$	$\pm 2^7$	$\pm 2^6$
28.2-а	± 2	$\pm 2^3$	0	$\pm 2^3 * 3^2$	$\pm 2^3 * 3^2$
44.3-a	± 2	$\pm \sqrt{-7} \cdot 2^4$	$\pm 2^4$	$\pm 2^5$	$\pm \sqrt{-7} \cdot 2^6$
44.4-a	± 2	$\pm \sqrt{-7} \cdot 2^4$	$\pm 2^4$	$\pm \sqrt{-7} \cdot 2^6$	$\pm 2^5$
46.2-a	± 2	$\pm 2^3$	$\pm 2^{3} * 3$	$\pm \sqrt{-7} \cdot 2^4$	$\pm 2^7$

Table 1: List of values $\mathcal{L}(E/K, \psi)$ for various elliptic curves E over $K = \mathbb{Q}(\sqrt{-7})$ twisted by Grössencharacters ψ of infinity type (1, -1).

Table 2: List of values $\mathcal{L}(E/K, \psi)$ for various elliptic curves E over $K = \mathbb{Q}(\sqrt{-7})$ twisted by Grössencharacters ψ of infinity type (2, -2).

$\psi_{1,-1} \chi_{(4\alpha-3)} \psi_{1,-1}$
$*11^2$ $\pm 2^9 * 41$
± 41 $\pm 2^7 * 11^2$
$\pm 3 * 7^2 \qquad \pm 2^5 * 3 * 7^2$
$\pm \sqrt{-7} \cdot 2^6 * 3^3$
$\cdot 2^6 * 3^3 \pm 2^8 * 73$
$\cdot 2^7 * 17 \qquad \pm 2^6 * 53$

Elliptic curves		Grössencharacters				
Isogeny Class	$\psi_{1,-3}$	$\chi_{(3)}\psi_{1,-3}$	$\chi_{(5)}\psi_{1,-3}$			
16.1-CMa	$\pm \alpha^2$	$\pm(12\alpha-11)(-\alpha+1)^3\alpha^4*3^2$	$\pm (-12\alpha - 47)(-8\alpha + 3)(-\alpha + 1)^3\alpha^4 * 5$			
16.5-CMa	$\pm (-\alpha+1)^2$	$\pm(-12\alpha+1)(-\alpha+1)^4\alpha^3*3^2$	$\pm (12\alpha - 59)(-\alpha + 1)^4 \alpha^3 (-8\alpha + 5)5$			
28.2-a	$\pm 2^2$	$\pm 2^{7} * 3^{3}$	$\pm 2^9 * 3^3 * 5$			
44.3-a	$\pm (-\alpha+1)^4 \alpha^2$	$\pm(-\alpha+1)^5\alpha^9*3^2*5$	$\pm (-48\alpha + 13)(-\alpha + 1)^5 \alpha^6 (-2\alpha + 3)3 * 5$			
44.4-a	$\pm(-\alpha+1)^2\alpha^4$	$\pm(-\alpha+1)^9\alpha^5*3^2*5$	$\pm (48\alpha - 35)(-\alpha + 1)^6 \alpha^5 (2\alpha + 1)3 * 5$			

Table 3: List of values $\mathcal{L}(E/K, \psi)$ for various elliptic curves E over $K = \mathbb{Q}(\sqrt{-7})$ twisted by Grössencharacters ψ of infinity type (1, -3).

Whilst we believe conjecture 1 holds for all elliptic curves E/K and Grössencharacters ψ in the outer critical region for any imaginary quadratic field K, we have yet to formulate an analogous statement to Conjecture 2 for Grössencharacters of higher order, although it's very likely that a similar integrality statement for arbitrary ψ can be made. Extending and refining the statements of our conjectures will be the focus of future work.

I would finally like to give my sincere thanks to my supervisor, David Loeffler, for his wonderful support and many valuable comments.

References

- [AKT19] Allen, P., Khare, C., Thorne, J. (2019), Modularity of $GL_2(\mathbb{F}_p)$ -representations over CM fields, arXiv:1910.12986.
- [Asa07] Asai, T. (2007) Elliptic Gauss sums and Hecke L-values at s = 1. Proceedings of the Symposium on Algebraic Number Theory and Related Topics, pp.79–121, RIMS Kôkyûroku Bessatsu, B4, Res. Inst. Math. Sci. (RIMS), Kyoto.
- [Bei85] Beilinson, A. (1985) Higher regulators and values of L-functions. Jour. Soviet. Math. Vol. 30, pp.2036-2070.
- [BSD65] Birch, B., Swinnerton-Dyer, H. (1965) Notes on elliptic curves II, J. f
 ür die Reine und Angew. Math., Vol. 218, pp.79-108.
- [BK90] Bloch, S., Kato, K. (1990) L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift I, Progress in Mathematics, 86, Birkhäuser (1990) pp. 333–400.
- [Dam70] Damerell, R.M. (1970) L-functions of elliptic curves with complex multiplication. I. Acta Arith., Vol. 17, pp.287-301.
- [Del79] Deligne, P. (1979) Valeurs de fonctions L et périodes d'intégrales, Proceedings of Symposia in Pure Mathematics (AMS), Vol. 33, No. 2, pp. 313–346.

- [Dok04] Dokchitser, T. (2004) Computing Special Values of Motivic L-Functions, Experimental Mathematics, Experiment. Math. Vol. 13, No. 2, pp.137-150.
- [DEW21] Dokchitser, V., Evans, R. and Wiersema, H. (2021) On a BSD-type formula for L-values of Artin twists of elliptic curves, Journal für die reine und angewandte Mathematik (Crelles Journal), Vol. 2021, No. 773, pp. 199-230.
- [Fen22] Feng, Z. (2022) A lower bound on the proportion of modular elliptic curves over Galois CM fields, arXiv:2203.00731.
- [GH16] Grobner, H., Harris, M. (2016) Whittaker periods, motivic periods, and special values of tensor product L-functions, J. Inst. Math. Jussieu, Vol. 15, No. 4, pp.711-769.
- [HL16] Harris, M., Lin, J. (2016) *Period relations and special values of Rankin-Selberg L-functions*, Contemporary Mathematics (to appear).
- [Kat76] Katz, N.M. (1976) p-adic Interpolation of Real Analytic Eisenstein Series, Ann. Math., Vol. 104, No. 3, pp.459-571.
- [LMF21] The LMFDB Collaboration (2021) The L-functions and modular forms database, Available at: http://www.lmfdb.org.
- [Miy89] Miyake, T. (1989) Modular Forms, Springer-Verlag, Berlin, New York.
- [Sag21] The Sage Developers (2021) SageMath, the Sage Mathematics Software System (Version 9.3), Available at: https://www.sagemath.org.
- [Shi76] Shimura, G. (1976) The special values of the zeta functions associated with cusp forms., Comm. Pure Appl. Math. Vol. 29, No. 6, pp.783–804.

MATHEMATICS INSTITUTE, UNIVERSITY OF WARWICK, CV4 7AL, UNITED KINGDOM *E-mail address:* robin.visser@warwick.ac.uk