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Overview

IMC analysis can (very roughly) be broken into the following (non-disjoint) topics:

1. Real Analysis

2. Integrals and Series

3. Functional equations/inequalities

4. Complex Analysis
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Real Analysis

• Most IMC problems require nothing more than 1st year definitions (and some
creativity)!

Example

Let f : R → R be a real function. Prove or disprove each of the following statements

(a) If f is continuous and range(f ) = R then f is monotonic.

(b) If f is monotonic and range(f ) = R then f is continuous.

(c) If f is monotonic and f is continuous then range(f ) = R.

Solution:

(a) False. E.g. f (x) = x3 − x .

(b) True. Assume f nondecreasing and let a ∈ R. Consider the limits limx→a+ f (x) and
limx→a− f (x).

(c) False. E.g. f (x) = arctan x .

3 / 28



Real Analysis

• Most IMC problems require nothing more than 1st year definitions (and some
creativity)!

Example

Let f : R → R be a real function. Prove or disprove each of the following statements

(a) If f is continuous and range(f ) = R then f is monotonic.

(b) If f is monotonic and range(f ) = R then f is continuous.

(c) If f is monotonic and f is continuous then range(f ) = R.

Solution:

(a) False. E.g. f (x) = x3 − x .

(b) True. Assume f nondecreasing and let a ∈ R. Consider the limits limx→a+ f (x) and
limx→a− f (x).

(c) False. E.g. f (x) = arctan x .

3 / 28



Real Analysis

• Most IMC problems require nothing more than 1st year definitions (and some
creativity)!

Example

Let f : R → R be a real function. Prove or disprove each of the following statements

(a) If f is continuous and range(f ) = R then f is monotonic.

(b) If f is monotonic and range(f ) = R then f is continuous.

(c) If f is monotonic and f is continuous then range(f ) = R.

Solution:

(a) False. E.g. f (x) = x3 − x .

(b) True. Assume f nondecreasing and let a ∈ R. Consider the limits limx→a+ f (x) and
limx→a− f (x).

(c) False. E.g. f (x) = arctan x .

3 / 28



Real Analysis

• Most IMC problems require nothing more than 1st year definitions (and some
creativity)!

Example

Let f : R → R be a real function. Prove or disprove each of the following statements

(a) If f is continuous and range(f ) = R then f is monotonic.

(b) If f is monotonic and range(f ) = R then f is continuous.

(c) If f is monotonic and f is continuous then range(f ) = R.

Solution:

(a) False. E.g. f (x) = x3 − x .

(b) True. Assume f nondecreasing and let a ∈ R. Consider the limits limx→a+ f (x) and
limx→a− f (x).

(c) False. E.g. f (x) = arctan x .

3 / 28



Real Analysis

• Most IMC problems require nothing more than 1st year definitions (and some
creativity)!

Example

Let f : R → R be a real function. Prove or disprove each of the following statements

(a) If f is continuous and range(f ) = R then f is monotonic.

(b) If f is monotonic and range(f ) = R then f is continuous.

(c) If f is monotonic and f is continuous then range(f ) = R.

Solution:

(a) False. E.g. f (x) = x3 − x .

(b) True. Assume f nondecreasing and let a ∈ R. Consider the limits limx→a+ f (x) and
limx→a− f (x).

(c) False. E.g. f (x) = arctan x .
3 / 28



Real Analysis
• The holy trinity of real analysis:

Theorem (Extreme Value Theorem)

Let f : [a, b] → R be continuous. Then f attains a maximum and minimum on [a, b].

Theorem (Intermediate Value Theorem)

Let f : [a, b] → R be continuous. Let m and M be the minimum and maximum of f on
[a, b] respectively. Then for any u ∈ (m,M), there exists c ∈ (a, b) such that f (c) = u.

Theorem (Mean Value Theorem (“turn Rolle’s on its side”))

Let f : [a, b] → R be a continuous function and differentiable on (a, b), for some a < b.
Then there exists c ∈ (a, b) such that

f ′(c) =
f (b)− f (a)

b − a
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Examples

Example

Let f : R → R be a continuous function. A point x is called a shadow point if there exists
a point y ∈ R with y > x such that f (y) > f (x). Let a < b be real numbers and suppose
that

• all the points of the open interval I = (a, b) are shadow points;

• a and b are not shadow points.

Prove that

(a) f (x) ≤ f (b) for all a < x < b;

(b) f (a) = f (b).

Hint: Suppose for contradiction ∃c ∈ (a, b) such that f (c) > f (b). Apply EVT on
[c , b].
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Examples

Example

Let f : R → R be a twice differentiable function. Suppose f (0) = 0. Prove that there
exists ξ ∈ (−π/2, π/2) such that

f ′′(ξ) = f (ξ)(1 + 2 tan2 ξ)

Hint: Use Rolle’s theorem on g(x) = f (x) cos x , and then again to h(x) = g ′(x)/ cos2 x .
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Topology/Density

Example

Let S be an infinite set of real numbers such that |s1 + s2 + · · ·+ sk | < 1 for every finite
subset {s1, s2, . . . , sk} ⊂ S . Show that S is countable.

Hint: Consider S ∩ ( 1n ,∞).

Density

A set A is dense in R if every non-empty open interval contains at least one element of A.

Example

Let f be continuous and nowhere monotone on [0, 1]. Show that the set of points on
which f attains local minima is dense in [0, 1].

Hint: Let I = (x − α, x + α) ⊂ [0, 1] be some arbitrary interval. Apply EVT in some
subinterval of I .
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Density

Example

Let f , g : R → R such that f (r) ≤ g(r) for all rational r . Does this imply that
f (x) ≤ g(x) for every real x if

(a) f and g are strictly increasing?

(b) f and g are continuous?

Two useful facts:
• If f , g : R → R both continuous and coincide on a dense subset of R, then f = g !
• Q is dense in R (and R\Q dense in R).

Example

Find all continuous functions f : R → R such that f (x)− f (y) is rational for all reals x
and y such that x − y is rational.

Hint: Consider the function gq(x) := f (x + q)− f (x) for some rational q.
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Darboux’s theorem
• Note that a function f : [a, b] → R can be differentiable, but f ′ need not be

continuous. E.g

f (x) =

{
x2 sin(1/x) if x ̸= 0

0 if x = 0

• However, f ′ will have the Intermediate Value Property:

Theorem (Darboux’s theorem)

Let f : [a, b] → R be a differentiable function. Then for any u between f ′(a) and f ′(b),
there exists a c ∈ (a, b) such that f ′(c) = u.

Example

Let f , g : R → R be continuous functions such that g is differentiable. Assume that(
f (0)− g ′(0)

)(
g ′(1)− f (1)

)
> 0. Show that there exists a point c ∈ (0, 1) such that

f (c) = g ′(c).
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Integrals

Example

Let 0 < a < b. Prove that ∫ b

a
(x2 + 1)e−x2dx ≥ e−a2 − e−b2

Hint: x2 + 1 ≥ 2x ...

Example

Today, Ivan the Confessor prefers continuous functions f : [0, 1] → R satisfying

f (x) + f (y) ≥ |x − y | for all pairs x , y ∈ [0, 1]. Find the minimum of
∫ 1
0 f over all

preferred functions.

Hint: Apply the condition for special (or for all) pairs (x , y) and integrate it.
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Integrals

Example

Let f : R → [0,∞) be a continuously differentiable function. Prove that∣∣∣∣ ∫ 1

0
f 3(x)dx − f 2(0)

∫ 1

0
f (x)dx

∣∣∣∣ ≤ max
0≤x≤1

|f ′(x)|
(∫ 1

0
f (x)dx

)2

Hint: Let M = max0≤t≤1 |f ′(t)|. Integrate the inequality −Mf (t) ≤ f (t)f ′(t) ≤ Mf (t)
first over [0, x ], and then over [0, 1].

Example

Compute

lim
A→+∞

1

A

∫ A

1
A1/xdx

Hint: Show a lower bound of 1. For the upper bound, split the interval into three parts.
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Series/Convergence

Example

(a) Let a1, a2, . . . be a sequence of real numbers such that a1 = 1 and an+1 >
3
2an for all

n. Prove that the sequence
an

(32)
n−1

has a finite limit or tends to infinity.

(b) Prove that for all α > 1 there exists a sequence a1, a2, . . . with the same properties
such that

lim
n→∞

an

(32)
n−1

= α.
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Convergence

Theorem (Bolzano-Weierstrass)

Let (an) be a bounded sequence of real numbers. Then (an) has a convergent
subsequence.

Theorem (Monotone convergence theorem)

Let (an) be a bounded monotone sequence of real numbers (i.e. either nondecreasing or
nonincreasing). Then lim an exists.
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L’Hôpital’s rule

A very useful theorem for evaluating limits!

Theorem (L’Hôpital’s rule)

Let f , g : I → R be differentiable functions. Let c ∈ I (could have c = ±∞ if I
open-ended) and g ′(x) = 0 for x ∈ I\{c}.
Then if either lim

x→c
f (x) = lim

x→c
g(x) = 0 or lim

x→c
|g(x)| = ∞, then

lim
x→c

f (x)

g(x)
= lim

x→c

f ′(x)

g ′(x)

if the right hand side exists.

• Several IMC problems require applying L’Hôpital (possibly several times)

14 / 28



Examples

Example

Let f : [0;+∞) → R be a continuous function such that lim
x→+∞

f (x) = L exists (it may be

finite or infinite). Prove that

lim
n→∞

∫ 1

0
f (nx)dx = L.

Hint: Let F (x) =
∫ x
0 f . Apply L’Hôpital to F (t)

t .

Example

Let f : (0,∞) → R be a twice continuously differentiable function such that

|f ′′(x) + 2xf ′(x) + (x2 + 1)f (x)| ≤ 1

for all x . Prove that lim
x→∞

f (x) = 0.

Hint: Apply L’Hôpital twice to f (x)ex
2/2/ex

2/2 .
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f (x) = 0.

Hint: Apply L’Hôpital twice to f (x)ex
2/2/ex

2/2 .
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0 f . Apply L’Hôpital to F (t)

t .

Example

Let f : (0,∞) → R be a twice continuously differentiable function such that

|f ′′(x) + 2xf ′(x) + (x2 + 1)f (x)| ≤ 1

for all x . Prove that lim
x→∞

f (x) = 0.
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Limits

Tips to evaluate limits:

• Guess an explicit formula and prove it (maybe using induction?)

• Use the sandwich/squeeze theorem

Theorem (Sandwich theorem)

Let f , g , h : I → R be functions such that g(x) ≤ f (x) ≤ h(x) for all x ∈ I and
limx→a g(x) = limx→a h(x) = L. Then limx→a f (x) = L.

• Use L’Hôspital!

• Use monotone convergence theorem

• Use Riemann sums (not really done in recent IMCs?)

Most likely, you’ll have to try some combination of the above along with some creative
constructions.

16 / 28



Convergence/Divergence
To show convergence/divergence of a series

∑
an:

• Ratio test
• Comparison with geometric series
• Integral test
• Alternating series test
• Root test

Example

Let C = {4, 6, 8, 9, 10, . . . } be the set of composite positive integers. For each n ∈ C let
an be the smallest positive integer k such that k! is divisible by n. Determine whether the
following series converges: ∑

n∈C

(an
n

)n

Hint: Show that an
n ≤ 2

3 for n > 4.
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Convergence/Divergence

Example

(a) A sequence x1, x2, . . . of real numbers satisfies xn+1 = xn cos xn for all n ≥ 1. Does it
follow that this sequence converges for all initial values x1?

(b) A sequence y1, y2, . . . of real numbers satisfies yn+1 = yn sin yn for all n ≥ 1. Does it
follow that this sequence converges for all initial values y1?

Example

Define the sequence a0, a1, . . . inductively by a0 = 1, a1 =
1
2 and

an+1 =
na2n

1 + (n + 1)an
for n ≥ 1.

Show that the series
∞∑
k=0

ak+1

ak
converges and determine its value.
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Convergence/Divergence

Example

Let (an)
∞
n=0 be a sequence with 1

2 < an < 1 for all n ≥ 0. Define the sequence (xn)
∞
n=0 by

x0 = a0, xn+1 =
an+1 + xn
1 + an+1xn

(n ≥ 0)

What are the possible values of lim
n→∞

xn? Can such a sequence diverge?

Example

Let (an)
∞
n=0 be a sequence of real numbers such that a0 = 0 and a3n+1 = a2n − 8 for

n = 0, 1, 2, . . . . Prove that the following series is convergent:

∞∑
n=0

|an+1 − an|.

19 / 28



Convergence/Divergence

Example

Let (an)
∞
n=0 be a sequence with 1

2 < an < 1 for all n ≥ 0. Define the sequence (xn)
∞
n=0 by

x0 = a0, xn+1 =
an+1 + xn
1 + an+1xn

(n ≥ 0)

What are the possible values of lim
n→∞

xn? Can such a sequence diverge?

Example

Let (an)
∞
n=0 be a sequence of real numbers such that a0 = 0 and a3n+1 = a2n − 8 for

n = 0, 1, 2, . . . . Prove that the following series is convergent:

∞∑
n=0

|an+1 − an|.

19 / 28



Generating functions

Generating functions

Let (an)
∞
n=1 be a sequence. The ordinary generating function for (an) is

∞∑
n=1

anx
n

Example

Let (an)n∈N be the sequence defined by

a0 = 1, an+1 =
1

n + 1

n∑
k=0

ak
n − k + 2

Find the limit lim
n→∞

n∑
k=0

ak
2k

.

Hint: Differentiate the generating function for (an).
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Functional equations/inequalities

Example

Suppose f : R → R is a two times differentiable function satisfying f (0) = 1, f (0) = 0,
and for all x ∈ [0,∞),

f ′′(x)− 5f ′(x) + 6f (x) ≥ 0

Prove that for all x ∈ [0,∞), f (x) ≥ 3e2x − 2e3x .

Hint: Rewrite condition in terms of g(x) := f ′(x)− 2f (x).

Example

Find all twice continuously differentiable functions f : R → (0,+∞) satisfying
f ′′(x)f (x) ≥ 2(f ′(x))2 for all x ∈ R.

Hint: The expression f ′′ · f − 2(f ′)2 is a part of the second derivative of some fraction.
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Functional equations/inequalities

Example

Does there exist a continuously differentiable function f : R → R such that for every
x ∈ R we have f (x) > 0 and f ′(x) = f (f (x))?

Hint: Show that f is strictly increasing, and f ′(0) a lower bound for its derivative.

Example

Let f : R → R be a continuously differentiable function that satisfies f ′(t) > f (f (t)) for
all t ∈ R. Prove that f (f (f (t))) ≤ 0 for all t ≥ 0.

Hint: Try to prove f (t) < t for all t > 0.

Example

Prove that there is no function f : R → R with f (0) > 0, and such that

f (x + y) ≥ f (x) + yf (f (x)) for all x , y ∈ R.
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Complex analysis

• The complex numbers C := {x + iy | x , y ∈ R} where i2 = −1.

Holomorphic functions

Let D ⊂ C be an open set. A function f : D → C is holomorphic on D if the derivative
f ′(z) exists for all z ∈ D. I.e. if

lim
h→0

f (z + h)− f (z)

h

exists for all z ∈ D.

• Holomorphicity is a strong condition!

Theorem

Let f : D → C be a holomorphic function. Then f is infinitely differentiable and analytic
(i.e. locally given by a convergent power series).
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Complex analysis

Some main results:

Theorem (Maximum modulus principle)

Let D be a closed and bounded nonempty subset of C. Let f : D → C be a holomorphic
function. Then |f (x)| attains its maximum on some point on the boundary of D.

Theorem (Cauchy’s integral theorem)

Let D be a simply connected subset, and let f : D → C be a holomorphic function. Let C
be a closed contour in D. Then ∫

C
f (z) dz = 0
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Example

Example

Let D ⊂ C be an open set containing the closed unit disk {z : |z | ≤ 1}. Let f : D → C
be a holomorphic function, and let p(z) be a monic polynomial. Prove that

|f (0)| ≤ max
|z|=1

|f (z)p(z)|.

Hint: Apply the maximum principle to znp(1/z)f (z).
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Complex Analysis

Theorem (Cauchy’s integral formula)

Let D be a simply connected subset, and let f : D → C be a holomorphic function. Let
z ∈ D and L be a contour in a counterclokwise direction around z with interior contained
inside D. Then

f (a) =
1

2πi

∮
L

f (z)

z − a
dz

Theorem (Cauchy’s differentiation formula)

Let D be a simply connected subset, and let f : D → C be a holomorphic function. Let
z ∈ D and L be a contour in a counterclokwise direction around z with interior contained
inside D. Then

f (n)(a) =
n!

2πi

∮
L

f (z)

(z − a)n−1
dz

26 / 28



Complex Analysis

Theorem (Cauchy’s integral formula)

Let D be a simply connected subset, and let f : D → C be a holomorphic function. Let
z ∈ D and L be a contour in a counterclokwise direction around z with interior contained
inside D. Then

f (a) =
1

2πi

∮
L

f (z)

z − a
dz

Theorem (Cauchy’s differentiation formula)

Let D be a simply connected subset, and let f : D → C be a holomorphic function. Let
z ∈ D and L be a contour in a counterclokwise direction around z with interior contained
inside D. Then

f (n)(a) =
n!

2πi

∮
L

f (z)

(z − a)n−1
dz

26 / 28



Complex Analysis

Some further useful results:

Theorem (Fundamental theorem of algebra)

Every non-constant polynomial with complex coefficients has a complex root.

Theorem (Liouville’s theorem)

Let f : C → C be a bounded holomorphic function. Then f is constant.

Theorem (Picard’s Little Theorem)

Let f : C → C be a non-constant holomorphic function. Then Im(f ) is either the whole
of C or C minus a single point.
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Example

Example (Challenge)

Let p(z) = a0 + a1z + a2z
2 + · · ·+ anz

n be a complex polynomial. Suppose that
1 = c0 ≥ c1 ≥ · · · ≥ cn ≥ 0 is a sequence of real numbers which is convex (i.e.
2ck ≤ ck−1 + ck+1 for every k = 1, 2, . . . , n − 1), and consider the polynomial

q(z) = c0a0 + c1a1z + c2a2z
2 + · · ·+ cnanz

n

Prove that
max
|z|≤1

|q(z)| ≤ max
|z|≤1

|p(z)|.

Hint: Use the Maximum Principle, and apply Cauchy differentiation formulas to express
aj as an integral of p(z)/z j over the unit circle.
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