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Overview

IMC analysis can (very roughly) be broken into the following (non-disjoint) topics:

1. Real Analysis
2. Integrals and Series
3. Functional equations/inequalities

4. Complex Analysis
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Real Analysis

® Most IMC problems require nothing more than 1st year definitions (and some
creativity)!
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Real Analysis

® Most IMC problems require nothing more than 1st year definitions (and some
creativity)!

Example

Let f : R — R be a real function. Prove or disprove each of the following statements
(a) If f is continuous and range(f) = R then f is monotonic.

(b) If f is monotonic and range(f) = R then f is continuous.

(c) If fis monotonic and f is continuous then range(f) = R.
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Let f : R — R be a real function. Prove or disprove each of the following statements

(a) If f is continuous and range(f) = R then f is monotonic.
(b) If f is monotonic and range(f) = R then f is continuous.

(c) If fis monotonic and f is continuous then range(f) = R.

Solution:
(a) False. E.g. f(x) =x3 —x.
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(a) If f is continuous and range(f) = R then f is monotonic.
(b) If f is monotonic and range(f) = R then f is continuous.
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Real Analysis

® Most IMC problems require nothing more than 1st year definitions (and some
creativity)!

Example

Let f : R — R be a real function. Prove or disprove each of the following statements
(a) If f is continuous and range(f) = R then f is monotonic.

(b) If f is monotonic and range(f) = R then f is continuous.

(c) If fis monotonic and f is continuous then range(f) = R.

Solution:

(a) False. E.g. f(x) =x3 —x.

(b) True. Assume f nondecreasing and let a € R. Consider the limits lim,_, ,+ f(x) and
lim,_, - f(x).

(c) False. E.g. f(x) = arctan x.
3/28



Real Analysis

® The holy trinity of real analysis:
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Theorem (Extreme Value Theorem)

Let f : [a, b] — R be continuous. Then f attains a maximum and minimum on [a, b].
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® The holy trinity of real analysis:

Theorem (Extreme Value Theorem)

Let f : [a, b] — R be continuous. Then f attains a maximum and minimum on [a, b].

Theorem (Intermediate Value Theorem)

Let f : [a, b] — R be continuous. Let m and M be the minimum and maximum of f on
[a, b] respectively. Then for any u € (m, M), there exists ¢ € (a, b) such that f(c) = u.

4/28



Real Analysis

® The holy trinity of real analysis:

Theorem (Extreme Value Theorem)

Let f : [a, b] — R be continuous. Then f attains a maximum and minimum on [a, b].

Theorem (Intermediate Value Theorem)

Let f : [a, b] — R be continuous. Let m and M be the minimum and maximum of f on
[a, b] respectively. Then for any u € (m, M), there exists ¢ € (a, b) such that f(c) = u.

Theorem (Mean Value Theorem (“turn Rolle’s on its side”))

Let f : [a, b] — R be a continuous function and differentiable on (a, b), for some a < b.
Then there exists ¢ € (a, b) such that
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Examples

Example
Let f : R — R be a continuous function. A point x is called a shadow point if there exists
a point y € R with y > x such that f(y) > f(x). Let a < b be real numbers and suppose

that
e all the points of the open interval | = (a, b) are shadow points;

® 3 and b are not shadow points.

Prove that
(a) f(x) < f(b) for all a < x < b;
(b) f(a) = f(b).

5/28



Examples

Example

Let f : R — R be a continuous function. A point x is called a shadow point if there exists
a point y € R with y > x such that f(y) > f(x). Let a < b be real numbers and suppose
that

e all the points of the open interval | = (a, b) are shadow points;
® a3 and b are not shadow points.
Prove that
(a) f(x) < f(b) for all a < x < b;
(b) f(a) = f(b).
Hint: Suppose for contradiction 3¢ € (a, b) such that f(c) > f(b). Apply EVT on
[c, b].
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Examples

Example

Let f : R — R be a twice differentiable function. Suppose f(0) = 0. Prove that there
exists £ € (—m/2,7/2) such that

f"(€) = F(€)(1 +2tan*¢)

6/28



Examples

Example

Let f : R — R be a twice differentiable function. Suppose f(0) = 0. Prove that there
exists £ € (—m/2,7/2) such that

f"(€) = F(€)(1 +2tan*¢)

Hint: Use Rolle’s theorem on g(x) = f(x) cos x, and then again to h(x) = g’(x)/ cos? x.
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Topology/Density

Example

Let S be an infinite set of real numbers such that |s; + sy + -+ - + si| < 1 for every finite
subset {s1,%,...,5¢} C S. Show that S is countable.

7/28



Topology/Density

Example

Let S be an infinite set of real numbers such that |s; + sy + -+ - + si| < 1 for every finite
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Hint: Consider SN (1, 00).
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Let S be an infinite set of real numbers such that |s; + sy + -+ - + si| < 1 for every finite
subset {s1,%,...,5¢} C S. Show that S is countable.

Hint: Consider SN (1, 00).

Density

A set A is dense in R if every non-empty open interval contains at least one element of A.

Let f be continuous and nowhere monotone on [0, 1]. Show that the set of points on
which f attains local minima is dense in [0, 1].
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Topology/Density

Example

Let S be an infinite set of real numbers such that |s; + sy + -+ - + si| < 1 for every finite
subset {s1,%,...,5¢} C S. Show that S is countable.

Hint: Consider SN (1, 00).

Density
A set A is dense in R if every non-empty open interval contains at least one element of A.

Example

Let f be continuous and nowhere monotone on [0, 1]. Show that the set of points on
which f attains local minima is dense in [0, 1].

Hint: Let /| = (x — a,x + «) C [0, 1] be some arbitrary interval. Apply EVT in some
subinterval of /.
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Density

Example

Let f,g : R — R such that f(r) < g(r) for all rational r. Does this imply that
f(x) < g(x) for every real x if

(a) f and g are strictly increasing?

(b) f and g are continuous?
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Example

Let f,g : R — R such that f(r) < g(r) for all rational r. Does this imply that
f(x) < g(x) for every real x if

(a) f and g are strictly increasing?

(b) f and g are continuous?

Two useful facts:
e |f f,g: R — R both continuous and coincide on a dense subset of R, then f = g !

® Qis dense in R (and R\Q dense in R).
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Density

Example

Let f,g : R — R such that f(r) < g(r) for all rational r. Does this imply that
f(x) < g(x) for every real x if

(a) f and g are strictly increasing?
(b) f and g are continuous?
Two useful facts:

e |f f,g: R — R both continuous and coincide on a dense subset of R, then f = g !
® Qis dense in R (and R\Q dense in R).

Example

Find all continuous functions f : R — R such that f(x) — f(y) is rational for all reals x
and y such that x — y is rational.
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Density

Example

Let f,g : R — R such that f(r) < g(r) for all rational r. Does this imply that
f(x) < g(x) for every real x if

(a) f and g are strictly increasing?
(b) f and g are continuous?
Two useful facts:

e |f f,g: R — R both continuous and coincide on a dense subset of R, then f = g !
® Qis dense in R (and R\Q dense in R).

Example
Find all continuous functions f : R — R such that f(x) — f(y) is rational for all reals x
and y such that x — y is rational.

Hint: Consider the function gq(x) := f(x + q) — f(x) for some rational q.
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Darboux’s theorem

® Note that a function f : [a, b] — R can be differentiable, but ' need not be
continuous. E.g

S e
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Darboux’s theorem

® Note that a function f : [a, b] — R can be differentiable, but ' need not be
continuous. E.g

S e

e However, f’ will have the Intermediate Value Property:

Theorem (Darboux’s theorem)

Let f : [a, b] — R be a differentiable function. Then for any u between f'(a) and f'(b),
there exists a ¢ € (a, b) such that f'(c) = u.
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Darboux’s theorem

® Note that a function f : [a, b] — R can be differentiable, but ' need not be
continuous. E.g

0 ifx=0

e However, f’ will have the Intermediate Value Property:

F(x) = {x sin(1/x) ifx#0

Theorem (Darboux’s theorem)

Let f : [a, b] — R be a differentiable function. Then for any u between f'(a) and f'(b),
there exists a ¢ € (a, b) such that f'(c) = u.

Example

Let f,g : R — R be continuous functions such that g is differentiable. Assume that
(£(0) — g’(0)) (g’(1) — £(1)) > 0. Show that there exists a point ¢ € (0,1) such that
f(c) = g'(c).
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Integrals

Let 0 < a < b. Prove that

2

b
/ (x* + 1)e‘X2dx > e _eb
a
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Integrals

Example
Let 0 < a < b. Prove that

Hint: x2+1> 2x...

b
/ (x* + 1)e‘X2dx > e _eb
a

2
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Integrals

Example
Let 0 < a < b. Prove that

2

b
/ (x* + l)e_dex > e _eb
a

Hint: x2+1> 2x...

Example

Today, Ivan the Confessor prefers continuous functions f : [0, 1] — R satisfying
f(x) + f(y) > |x — y| for all pairs x,y € [0, 1]. Find the minimum of fol f over all
preferred functions.
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Integrals

Example
Let 0 < a < b. Prove that

b
/ (x* + l)e_dex >e? — e

a

Hint: x2+1> 2x...

Example

Today, Ivan the Confessor prefers continuous functions f : [0, 1] — R satisfying
f(x) + f(y) > |x — y| for all pairs x,y € [0, 1]. Find the minimum of fol f over all
preferred functions.

Hint: Apply the condition for special (or for all) pairs (x,y) and integrate it.
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Integrals

(Eemple

Let f : R — [0,00) be a continuously differentiable function. Prove that

< max, /() ( / 1 f(x)dx) 2

’ /0 " B0dx— £(0) /0 ()
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Integrals

Example
Let f : R — [0,00) be a continuously differentiable function. Prove that

‘ /01 3(x)dx — £2(0) /01 f(x)dx| < max 00| (/01 f(x)dx>2

Hint: Let M = maxo<:<1 |f'(t)|. Integrate the inequality —Mf(t) < f(t)f'(t) < Mf(t)
first over [0, x], and then over [0, 1].
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Integrals

Example
Let f : R — [0,00) be a continuously differentiable function. Prove that

’ /01 3(x)dx — £2(0) /01 f(x)dx| < max 00| (/01 f(x)dx>2

Hint: Let M = maxo<:<1 |f'(t)|. Integrate the inequality —Mf(t) < f(t)f'(t) < Mf(t)
first over [0, x], and then over [0, 1].

Example
Compute

1 A
lim = / AL/ dx
A——+o0 1
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Integrals

Example

Let f : R — [0,00) be a continuously differentiable function. Prove that

‘ /01 3(x)dx — £2(0) /01 f(x)dx| < max 00| (/01 f(x)dx>2

Hint: Let M = maxo<:<1 |f'(t)|. Integrate the inequality —Mf(t) < f(t)f'(t) < Mf(t)
first over [0, x], and then over [0, 1].

Example
Compute

1 A
lim = / AL/ dx
A—+-00 1

Hint: Show a lower bound of 1. For the upper bound, split the interval into three parts.
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Series/Convergence

12/28



Series/Convergence

(a) Let a1, ap,... be a sequence of real numbers such that a3 =1 and a1 > %a,, for all
n. Prove that the sequence
dn
3\n—
(5)" 1
has a finite limit or tends to infinity.
(b) Prove that for all & > 1 there exists a sequence aj, az, ... with the same properties
such that
lim R «
n— o0 (%)"—1 )
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Convergence

Theorem (Bolzano-Weierstrass)

Let (a,) be a bounded sequence of real numbers. Then (a,) has a convergent
subsequence.
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Convergence

Theorem (Bolzano-Weierstrass)

Let (a,) be a bounded sequence of real numbers. Then (a,) has a convergent
subsequence.

Theorem (Monotone convergence theorem)

Let (an) be a bounded monotone sequence of real numbers (i.e. either nondecreasing or
nonincreasing). Then lim a, exists.
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L’Hopital’s rule

A very useful theorem for evaluating limits!

Theorem (L'Hopital’s rule)

Let f,g : | — R be differentiable functions. Let ¢ € | (could have ¢ = +o0o if |
open-ended) and g'(x) = 0 for x € I\{c}.
Then if either lim f(x) = lim g(x) =0 or lim |g(x)| = oo, then
X—C X—C X—C
/
lim @ = lim f/(X)
Teg() T e g(x)

if the right hand side exists.

e Several IMC problems require applying L'"Hopital (possibly several times)
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Examples

Example

Let f : [0; +00) — R be a continuous function such that

finite or infinite). Prove that

lim
n—oo

/01 f(nx)dx = L.

X—

lim f(x) = L exists (it may be
+o00o
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Examples

Example
Let f : [0; +00) — R be a continuous function such that

finite or infinite). Prove that

1
lim / f(nx)dx = L.
0

n—o0

Hint: Let F(x) = J;*f. Apply L'Hépital to £,

X—

lim f(x) = L exists (it may be

“+o0o

15/28



Examples

Example

Let f : [0; +00) — R be a continuous function such that ll)lll f(x) = L exists (it may be
X o0

finite or infinite). Prove that

1
lim / f(nx)dx = L.
0

n—o0

Hint: Let F(x) = J;*f. Apply L'Hépital to £,

t

Example
Let f: (0,00) — R be a twice continuously differentiable function such that

[F"(x) + 2xf'(x) + (x® + 1)f(x)| < 1

for all x. Prove that lim f(x) =0.
X—00
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Examples

Example
Let f : [0; +00) — R be a continuous function such that lim f(x) = L exists (it may be

X——+00
finite or infinite). Prove that

1
lim / f(nx)dx = L.
0

n—o0

Hint: Let F(x) = J;*f. Apply L'Hépital to £,

t

Example
Let f: (0,00) — R be a twice continuously differentiable function such that

[F"(x) + 2xf'(x) + (x® + 1)f(x)| < 1
for all x. Prove that lim f(x) =0.
X—00

Hint: Apply L'Hépital twice to f(x)e**/2/ex*/2 .
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Limits

Tips to evaluate limits:
® Guess an explicit formula and prove it (maybe using induction?)

® Use the sandwich/squeeze theorem

Theorem (Sandwich theorem)
Let f,g,h: 1 — R be functions such that g(x) < f(x) < h(x) for all x € | and
limy—2g(x) = limy_, h(x) = L. Then limy_,f(x) = L.

® Use L'Hospital!

® Use monotone convergence theorem

¢ Use Riemann sums (not really done in recent IMCs?)

Most likely, you'll have to try some combination of the above along with some creative
constructions.
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Convergence/Divergence

To show convergence/divergence of a series ) ap:
Ratio test
Comparison with geometric series

Integral test

Alternating series test
Root test
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Convergence/Divergence

To show convergence/divergence of a series ) ap:
Ratio test
Comparison with geometric series

Alternating series test

[ ]

[ ]

® Integral test
[ ]

® Root test

Example

Let C ={4,6,8,9,10,...} be the set of composite positive integers. For each n € C let
an be the smallest positive integer k such that k! is divisible by n. Determine whether the
following series converges:
an\"
> (3)

neC
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Convergence/Divergence

To show convergence/divergence of a series ) ap:
Ratio test
Comparison with geometric series

Alternating series test

[ ]

[ ]

® Integral test
[ ]

® Root test

Example

Let C ={4,6,8,9,10,...} be the set of composite positive integers. For each n € C let
an be the smallest positive integer k such that k! is divisible by n. Determine whether the

n

neC

Hint: Show that %= < % for n > 4.
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Convergence/Divergence

Example

(a) A sequence xi, X2, ... of real numbers satisfies x,11 = x, cos x, for all n > 1. Does it
follow that this sequence converges for all initial values x;7

(b) A sequence y1, ¥, ... of real numbers satisfies y,11 = y,siny, for all n > 1. Does it
follow that this sequence converges for all initial values y;7
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Convergence/Divergence

Example

(a) A sequence xi, X2, ... of real numbers satisfies x,11 = x, cos x, for all n > 1. Does it
follow that this sequence converges for all initial values x;7

(b) A sequence y1, ¥, ... of real numbers satisfies y,11 = y,siny, for all n > 1. Does it
follow that this sequence converges for all initial values y;7

Example
Define the sequence ag, a1, . .. inductively by ag = 1,a; = % and
naz

=R s
T et Da,

o
. a .
Show that the series E SLAES converges and determine its value.
a
k=0
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Convergence/Divergence

Example
Let (2n)52, be a sequence with 3 < a, < 1 for all n > 0. Define the sequence (x,)3, by

ant+1 + Xn

n>0
1+ dn+1Xn )

X0 =40, Xnt+1 =

What are the possible values of lim x,? Can such a sequence diverge?
n—o0
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Convergence/Divergence

Example

Let (2n)52, be a sequence with 3 < a, < 1 for all n > 0. Define the sequence (x,)3, by

ant1 + Xn

Xo = 4o, Xn+1:1+a 1X
n+12An

n>0)

What are the possible values of lim x,? Can such a sequence diverge?
n—o0

Example

Let (a5)32, be a sequence of real numbers such that ag = 0 and a3, = a2 — 8 for
n=20,1,2,.... Prove that the following series is convergent:

oo
Z ’an+1 - 3n|-
n=0
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Generating functions

Generating functions

Let (an)5°, be a sequence. The ordinary generating function for (a,) is

E anx"
n=1
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Generating functions

Generating functions

Let (an)5°, be a sequence. The ordinary generating function for (a,) is

(oo}
E anx"
n=1

Example
Let (an)nen be the sequence defined by

1 “ =%
:1 =
U n+1;n—k+2

n
. e . ak
Find the limit lim —.
ind the limit lim ) 5
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Generating functions

Generating functions

Let (an)5°, be a sequence. The ordinary generating function for (a,) is

(oo}
E anx"
n=1

Example
Let (an)nen be the sequence defined by

1 “ =%
:1 =
U n+1;n—k+2

n
. e . ak
Find the limit lim —.
ind the limit lim ) 5

Hint: Differentiate the generating function for (a,).
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Functional equations/inequalities

Example
Suppose f : R — R is a two times differentiable function satisfying f(0) = 1, f(0) =0,

and for all x € [0, 00),
f"'(x) — 5f'(x) + 6f(x) >0

Prove that for all x € [0,00), f(x) > 3> — 2&3*.
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Example

Suppose f : R — R is a two times differentiable function satisfying f(0) = 1, f(0) =0,
and for all x € [0, 00),
f"'(x) — 5f'(x) + 6f(x) >0

Prove that for all x € [0,00), f(x) > 3> — 2&3*.

Hint: Rewrite condition in terms of g(x) := f/(x) — 2f(x).
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Functional equations/inequalities

Example

Suppose f : R — R is a two times differentiable function satisfying f(0) = 1, f(0) =0,
and for all x € [0, 00),
f"'(x) — 5f'(x) + 6f(x) >0

Prove that for all x € [0,00), f(x) > 3> — 2&3*.
Hint: Rewrite condition in terms of g(x) := f/(x) — 2f(x).

Example

Find all twice continuously differentiable functions f : R — (0, +00) satisfying
f"(x)f(x) > 2(f'(x))? for all x € R.
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Functional equations/inequalities

Example

Suppose f : R — R is a two times differentiable function satisfying f(0) = 1, f(0) =0,
and for all x € [0, 00),
f"'(x) — 5f'(x) + 6f(x) >0

Prove that for all x € [0,00), f(x) > 3> — 2&3*.

Hint: Rewrite condition in terms of g(x) := f/(x) — 2f(x).

Example

Find all twice continuously differentiable functions f : R — (0, +00) satisfying
f"(x)f(x) > 2(f'(x))? for all x € R.

Hint: The expression f” - f —2(f')? is a part of the second derivative of some fraction.
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Functional equations/inequalities

Example
Does there exist a continuously differentiable function f : R — R such that for every
x € R we have f(x) > 0 and f'(x) = f(f(x))?

22/28



Functional equations/inequalities

Example

Does there exist a continuously differentiable function f : R — R such that for every
x € R we have f(x) > 0 and f'(x) = f(f(x))?

Hint: Show that f is strictly increasing, and f’(0) a lower bound for its derivative.
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Example

Does there exist a continuously differentiable function f : R — R such that for every
x € R we have f(x) > 0 and f'(x) = f(f(x))?

Hint: Show that f is strictly increasing, and f’(0) a lower bound for its derivative.

Example

Let f : R — R be a continuously differentiable function that satisfies f'(t) > f(f(t)) for
all t € R. Prove that f(f(f(t))) <0 forall t > 0.
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Functional equations/inequalities

Example

Does there exist a continuously differentiable function f : R — R such that for every
x € R we have f(x) > 0 and f'(x) = f(f(x))?

Hint: Show that f is strictly increasing, and f’(0) a lower bound for its derivative.

Example

Let f : R — R be a continuously differentiable function that satisfies f'(t) > f(f(t)) for
all t € R. Prove that f(f(f(t))) <0 forall t > 0.

Hint: Try to prove f(t) < t for all t > 0.
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Functional equations/inequalities

Example

Does there exist a continuously differentiable function f : R — R such that for every
x € R we have f(x) > 0 and f'(x) = f(f(x))?

Hint: Show that f is strictly increasing, and f’(0) a lower bound for its derivative.

Example

Let f : R — R be a continuously differentiable function that satisfies f'(t) > f(f(t)) for
all t € R. Prove that f(f(f(t))) <0 forall t > 0.

Hint: Try to prove f(t) < t for all t > 0.

Example

Prove that there is no function  : R — R with 7(0) > 0, and such that

f(x+y) > f(x)+yf(f(x)) forall x,y € R.
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Complex analysis

® The complex numbers C := {x + iy | x,y € R} where i = —1.
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Complex analysis

® The complex numbers C := {x + iy | x,y € R} where i = —1.

Holomorphic functions

Let D C C be an open set. A function f : D — C is holomorphic on D if the derivative
f'(z) exists for all z € D. l.e. if

im f(z+h)—f(z2)
h—0 h

exists for all z € D.
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Complex analysis

® The complex numbers C := {x + iy | x,y € R} where i = —1.

Holomorphic functions
Let D C C be an open set. A function f : D — C is holomorphic on D if the derivative
f'(z) exists for all z € D. l.e. if

im f(z+h)—f(z2)

h—0 h

exists for all z € D.
® Holomorphicity is a strong condition!

Theorem

Let f : D — C be a holomorphic function. Then f is infinitely differentiable and analytic
(i.e. locally given by a convergent power series).
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Complex analysis

Some main results:

Theorem (Maximum modulus principle)

Let D be a closed and bounded nonempty subset of C. Let f : D — C be a holomorphic
function. Then |f(x)| attains its maximum on some point on the boundary of D.

Theorem (Cauchy’s integral theorem)

Let D be a simply connected subset, and let f : D — C be a holomorphic function. Let C
be a closed contour in D. Then

f(z)dz=0
@
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Example

Example

Let D C C be an open set containing the closed unit disk {z: |z] <1}. Let f: D - C
be a holomorphic function, and let p(z) be a monic polynomial. Prove that

F0)] < max [F(2)p(z)]
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Example

Example

Let D C C be an open set containing the closed unit disk {z: |z] <1}. Let f: D - C
be a holomorphic function, and let p(z) be a monic polynomial. Prove that

F0)] < max [F(2)p(z)]

Hint: Apply the maximum principle to z"p(1/z)f(z).
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Complex Analysis

Theorem (Cauchy's integral formula)

Let D be a simply connected subset, and let f : D — C be a holomorphic function. Let
z € D and L be a contour in a counterclokwise direction around z with interior contained

inside D. Then , f(2)
z
f(a)=— ¢ —=
() =5 f{ 72"
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Complex Analysis

Theorem (Cauchy's integral formula)

Let D be a simply connected subset, and let f : D — C be a holomorphic function. Let
z € D and L be a contour in a counterclokwise direction around z with interior contained

inside D. Then , f(2)
z
fla) = — ¢ —%
() =5 f{ 72"

Theorem (Cauchy’s differentiation formula)

Let D be a simply connected subset, and let f : D — C be a holomorphic function. Let

z € D and L be a contour in a counterclokwise direction around z with interior contained

inside D. Then | f(2)
gy M )
@) =55 a1
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Complex Analysis

Some further useful results:

Theorem (Fundamental theorem of algebra)

Every non-constant polynomial with complex coefficients has a complex root.
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Complex Analysis

Some further useful results:

Theorem (Fundamental theorem of algebra)

Every non-constant polynomial with complex coefficients has a complex root.

Theorem (Liouville's theorem)
Let f : C — C be a bounded holomorphic function. Then f is constant.

Theorem (Picard’s Little Theorem)

Let f : C — C be a non-constant holomorphic function. Then Im(f) is either the whole
of C or C minus a single point.
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Example

Example (Challenge)

Let p(z) = ap + a1z + a2z + - - + a,z" be a complex polynomial. Suppose that
l=c¢>c > > cp>0is asequence of real numbers which is convex (i.e.
2¢k < ck—1+ ck41 for every k =1,2,...,n—1), and consider the polynomial

q(2) = coap + c1a1z + waxz® + - - - + cpanz”

Prove that

a < ma .
mélq(Z)l < mélp(Z)l
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Example

Example (Challenge)

Let p(z) = ap + a1z + a»z? + - - + a,z" be a complex polynomial. Suppose that
l=c¢>c > > cp>0is asequence of real numbers which is convex (i.e.
2¢cx < ck—1+ cky1 forevery k =1,2,...,n— 1), and consider the polynomial

q(z) = cpao + cra1z + Capz® + -+ + cpanz”

Prove that

a < ma
|m|<>;|q( z)| m|<>;|p(2)|

Hint: Use the Maximum Principle, and apply Cauchy differentiation formulas to express
aj as an integral of p(z)/z/ over the unit circle.
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