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Main theorem

Theorem (Bary-Soroker, Kozma (2017))

Let L be a positive integer divisible by at least 4 distinct primes (e.g. L = 210). Let

f := X n + an−1X
n−1 + · · ·+ a1X + a0

be a random polynomial over Z, where a0, . . . , an−1 are independent random variables
taking values uniformly in {1, . . . , L}. Then

P(f is irreducible) → 1 as n → ∞
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Sketch

• Let fp denote the reduction of f mod p, for any prime p dividing L.

• Then fp is a random uniform polynomial over Fp, with fp being independent for
different primes p|L (by Chinese Remainder Theorem).

• Note that, for any prime p, fp irreducible =⇒ f irreducible.

• More specifically, if fp has irreducible factors of degrees d1, . . . , dr , then the Galois
group of f (over Q) has an element with cycle lengths d1, . . . , dr .

• We show that the probability that fp is reducible is small.

• Therefore, we hope to show that the probabilities that fp1 , fp2 , fp3 , fp4 are all
(compatibly w.r.t. cycle lengths) reducible, for four distinct primes p1, . . . , p4
dividing L, is very small.

• We prove this by considering the small and large divisors separately.
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Proof for 12 primes

• Let L be divisible by 12 distinct primes (e.g. L = 7420 738 134 810), and let f be a
random polynomial with i.i.d. uniform random coefficients in {1, . . . , L}.

• For 12 distinct primes p1, . . . , p12 dividing L, let fpi := f mod pi .

• Let k < n. By Meisner [3], the probability that fpi has a divisor of degree k is

k−δ+o(1) where δ = 1− 1+log log 2
log 2 = 0.086 . . . .

• By independence, the probability that f has a divisor of degree k is

P(f has factor of degree k) ≤
12∏
i=1

P(fpi has factor of degree k)

= k−12δ+o(1) = k−1.03...+o(1)
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Proof for 12 primes

• By summing over sufficiently large k (say k ≥ n1/10), we obtain the bound

P(f has factor of degree ≥ n1/10) ≪
∑

k≥n1/10

k−1.03...+o(1) ≪ n−0.003...+o(1)

• Finally, by showing that the small divisors contribute negligibly, this proves that
P(f reducible) → 0 as n → ∞.
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Small divisors (Lemma 7)

Lemma (“small divisors are negligible”)

Let L ≥ 2 and f = X n + an−1X
n−1 + · · ·+ a1X + a0 where as before ai are i.i.d uniform

random variables. Then there exists a ω : N → N with limn→∞ ω(n) = ∞ such that

P(f has a divisor of degree ≤ ω(n)) → 0 as n → ∞

Several proofs of this lemma exist:

• ω(n) = n/ log n, Konyagin 1999.

• ω(n) =
√
log n, O’Rourke, Wood 2016.

• ω exists, Kozma, Zeitouni, 2013.

• ω(n) = θn, Bary-Soroker, Koukoulopoulos, Kozma, 2020.
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Proof of Lemma 7

Observation 1

Let L ≥ 1. Then for every d , there are only finitely many irreducible polynomials of
degree d which can divide a monic polynomial (of arbitrary degree) with coefficients in
{1, . . . , L}.

• Let p(x) := X d + bd−1X
d−1 + · · ·+ b1X + b0 ∈ Z[x ] be such a polynomial which

divides some f with coefficients in {1, . . . , L}, and let z ∈ Z be a root of p.

• As z divides a polynomial with coefficients in {1, . . . , L}, then |z | ≤ L+ 1, otherwise

|z |n > |L+ 1|n >

n−1∑
i=0

|aiz i | ≥ |f (z)− zn|

• We can similarly derive a contradiction if |z | < 1
L+1 .
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Proof of Lemma 7

• Using the bound |zj | ≤ L+ 1 for all roots zj of p, we can apply standard relations
between the coefficients bi and the roots zi , we obtain the bound

|bd−k | =
∣∣∣∣ ∑
1≤i1<···<ik≤d

k∏
j=1

zij

∣∣∣∣ ≤ (
d

k

)
(L+ 1)k

for each k = 1, . . . , d − 1.

• Thus, there are only finitely many possibilities for each coefficients bi , and so finitely
many possible irreducible polynomials p(x).

(e.g. a rather crude bound is (2(L+ 1))d
2
)
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Proof of Lemma 7

Observation 2

Let p be some fixed irreducible polynomial, and f as defined in Theorem 1. Then

P(p divides f) = O
( 1√

n

)

This essentially follows from the classical Littlewood-Offord bound, a weak form of which
states the following:

Littlewood-Offord (1943) (simplified)

Let n ≥ 1, and let x1, . . . , xn be any non-zero complex numbers.
Let ϵ1, . . . , ϵn be i.i.d. uniform random variables in {−1,+1}. Then the probability that
ϵ1x1 + · · ·+ ϵnxn = 0 is O( 1√

n
)

• More generally, Littlewood-Offord actually obtained a bound for the probability that
ϵ1x1 + · · ·+ ϵnxn ∈ I for a given bounded set I .
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Proof of (weak) Littlewood-Offord

• We may assume wlog that xi are real and furthermore that xi > 0 for all i .

• Let A :=
{
A ⊆ {1, . . . , n} |

∑
i∈A xi −

∑
j ̸∈A xj = 0

}
.

• We note that A is an anti-chain, i.e. for all distinct A,B ∈ A, A ̸⊆ B.

• Thus, by Sperner’s lemma, |A| ≤
( n
⌊n/2⌋

)
, which by Stirling, has bound O( 2n√

n
).

• Therefore, the probability that ϵ1x1 + · · ·+ ϵnxn = 0 is O( 1√
n
).

Remark: This is sharp! (at least for arbitrary xi ∈ C), as if x1 = · · · = xn = 1, then the
probability that ϵ1x1 + · · ·+ ϵnxn = 0 is equivalent to the probability that a
one-dimensional random walk starting at 0, ends at 0 after n steps. This is
Θ(

( n
n/2

)
/2n) = Θ( 1√

n
).
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Proof of Lemma 7

Back to the original proof:

• Let p be some fixed irreducible polynomial, and let z ∈ C be a root of p.

• Applying the (generalised) Littlewood-Offord bound with the random variables ai
and xi = z i . Then we have

P(p divides f) = P(zn + an−1z
n−1 + · · ·+ a0 = 0) = O

( 1√
n

)
• Thus, for any fixed degree d ≥ 1, we have

P(f has a divisor of degree d) ≪ (2L+ 2)d
2

√
n

11 / 29



Proof of Lemma 7

Back to the original proof:

• Let p be some fixed irreducible polynomial, and let z ∈ C be a root of p.

• Applying the (generalised) Littlewood-Offord bound with the random variables ai
and xi = z i . Then we have

P(p divides f) = P(zn + an−1z
n−1 + · · ·+ a0 = 0) = O

( 1√
n

)

• Thus, for any fixed degree d ≥ 1, we have

P(f has a divisor of degree d) ≪ (2L+ 2)d
2

√
n

11 / 29



Proof of Lemma 7

Back to the original proof:

• Let p be some fixed irreducible polynomial, and let z ∈ C be a root of p.

• Applying the (generalised) Littlewood-Offord bound with the random variables ai
and xi = z i . Then we have

P(p divides f) = P(zn + an−1z
n−1 + · · ·+ a0 = 0) = O

( 1√
n

)
• Thus, for any fixed degree d ≥ 1, we have

P(f has a divisor of degree d) ≪ (2L+ 2)d
2

√
n

11 / 29



Proof of Lemma 7

• Therefore, for any fixed W > 0, we have

P(f has a divisor of degree ≤ W ) ≪ 1√
n

W∑
d=1

(2L+ 2)d
2

≤ 1√
n
W (2L+ 2)W

2

which tends to 0 as n → ∞.

• The result also holds if W grows sufficiently slowly (e.g. ω(n) = (log n)1/3

works).
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Large divisors (Lemma 8)

Lemma (Bary-Soroker, Kozma (2017))

Let σ1,σ2,σ3,σ4 be 4 independent uniform permutations in Sn. For i ∈ {1, . . . , 4} and
ℓ ≤ n we define Ei ,ℓ as the event that ℓ can be written as a sum of lengths of cycles of
σi . Then for all k < n,

P
( 2k⋃
ℓ=k

4⋂
i=1

Ei ,ℓ

)
≤ Ck−c

for some effective constant c,C independent of n and k .
Furthermore, for an additional parameter λ,

P
( 2k⋃
ℓ=k

λ⋃
λ1=0

· · ·
λ⋃

λ4=0

4⋂
i=1

Ei ,ℓ−λi

)
≤ C (λ+ 1)4k−c

13 / 29



Proof of Lemma 8

• Wlog let k be sufficiently large, and let λ < k
2 . Let 0 < ϵ < 1

2 .

• Define Bi ,k,ϵ as the event that σi has at least (1 + ϵ) log k cycles whose sizes are less
than k .

• We shall use the following two facts (maybe proven later?):

(P1) P(Bi,k,ϵ) ≪ k−ϵ2/3.
(P2) P(Ei,k\Bi,k,ϵ) ≪ k log 2−1+2ϵ.

• By noting that Bi ,ℓ,ϵ implies Bi ,2k,ϵ/2 for sufficiently large k and ℓ ∈ [k/2, 2k], we
therefore obtain the bound

P
( 2k⋃
ℓ=k

4⋂
i=1

Ei ,ℓ

)
≤

4∑
i=1

P(Bi ,2k,ϵ/2) +
2k∑
ℓ=k

4∏
i=1

P(Ei ,ℓ\Bi ,ℓ,ϵ)
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Proof of Lemma 8

• Applying the bounds (P1) and (P2), this gives us

P
( 2k⋃
ℓ=k

4⋂
i=1

Ei ,ℓ

)
≪ 4k−ϵ2/12 + k1+4(log 2−1+2ϵ)

• By letting ϵ be small enough (e.g. ϵ = 0.02), we have that 1 + 4(log 2− 1 + 2ϵ) < 0,
and thus the first result holds for

c = min(ϵ2/12,−1− 4(log 2− 1 + 2ϵ))
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Proof of Lemma 8

The second estimate can be obtained by essentially the same argument:

P :=P
( 2k⋃
ℓ=k

λ⋃
λ1=0

· · ·
λ⋃

λ4=0

4⋂
i=1

Ei ,ℓ−λi

)
≤

≤
4∑

i=1

P(Bi ,2k,ϵ/2) +
2k∑
ℓ=k

λ∑
λ1=0

· · ·
λ∑

λ4=0

4∏
i=1

P(Ei ,ℓ−λi
\Bi ,ℓ−λi ,ϵ)

≪ 4k−ϵ2/12 + (λ+ 1)4
2k∑

ℓ=k/2

k4(log 2−1+2ϵ)

≪ (λ+ 1)4k−c

where as before c = min(ϵ2/12,−1− 4(log 2− 1 + 2ϵ)).
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Proof of main theorem

Theorem (Bary-Soroker, Kozma (2017))

Let L be a positive integer divisible by at least 4 distinct primes. Let
f = X n + an−1X

n−1 + · · ·+ a1X + a0 where a0, . . . , an−1 are i.i.d random variables taking
values uniformly in {1, . . . , L}. Then P(f is irreducible) → 1,as n → ∞.

• Fix some k sufficiently large. We shall consider divisors of degree k < ℓ < 2k .

• Let p1, . . . , p4 be 4 distinct primes dividing L, and define fpi as the reduction of f
mod pi .

• For r = 1, . . . , 4, define Xr as the random tuple which takes the value
(m1,r ,m2,r , . . . ) where mi ,r is the number of irreducible factors of fpr of degree i .

• Analogously, let σ be a random permutation in Sn, and define Y as the random
tuple (n1,n2, . . . ) where ni is the number of cycles of σ of length i .
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Proof of main theorem

• Now first, we let Bk be the event that for some r = 1, . . . , 4 and some i < log2 k we
have mi ,r < log2 k

• We have the bound P(Bk) ≪ 4 log2 k e−c log2 k (next week), thus Bk occurs
negligibly.

• Let Rk be the event that for some k ≤ ℓ < 2k and some λr < log6 k we can write

ℓ− λr =
∑

i>log2 k

iℓi ,r , ℓi ,r ≤ mi ,r

for all r = 1, . . . , 4.

• Similarly, let Sk be the event that for some k ≤ ℓ < 2k and some λ < log6 k we can
write

ℓ− λ =
∑

i>log2 k

iℓi , ℓi ≤ ni .
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Proof of main theorem

• We now use that Xr and Y have sufficiently similar distributions (next week) which
implies |P(Rk)− P(Sk)| ≪ 1/ log2 k .

• By Lemma 8, we have P(Sk) ≪ k−c log24 k.

• This implies P(Rk) ≪ 1/ log2 k.

• Now, let Qk be the event that for some k ≤ ℓ < 2k we can write ℓ =
∑

iℓi ,r for
some ℓi ,r ≤ mi ,r , for all r = 1, . . . , 4.

• As Qk\Bk is contained in the event Rk , this implies P(Qk\Bk) ≪ 1/ log2 k .

• Finally, as Bk is negligible, we have P(Qk) ≪ 1/ log2 k.

Therefore, P(f has divisor of degree ∈ [k, 2k)) ≪ 1
log2 k
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Proof of main theorem
Finally, summing over all possible divisors, this proves

P(f reducible) ≤ P(f has divisors of degree ≤ ω(n))

+
∑

k=ω(n)·2i
i=0,...,log2 n

P(f has divisors of degree ∈ [k , 2k))

≪ (something small) +
∑

k=ω(n)·2i
i=0,...,log2 n

1

log2 k

≪ 1

logω(n)
− 1

logω(n) + log n

→ 0 as n → ∞.

E.g. Using Konyagin’s bound for ω(n), we have P(f reducible) ≪ 1
log n .
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Recent developments

Theorem (Bary-Soroker, Koukoulopoulos, Kozma (2020))

Let L ≥ 35, and let f = X n + an−1X
n−1 + · · ·+ a1X + a0 where a0, . . . , an−1 are i.i.d

random variables taking values uniformly in {1, . . . , L}. Then P(f is irreducible) → 1, as
n → ∞.

• This was proven using a combination of a standard argument for L ≥ 33 730 and a
computer-assisted proof for 35 ≤ L < 33 730.

• Here, fp does not have uniformly distributed coefficients mod p nor independence
necessarily, and so Bary-Soroker–Koukoulopoulos–Kozma use p-adic Fourier Analysis
and the large sieve to prove approximate equidistribution modulo 4 primes.

• Their proofs also work for general measures (under some assumptions), even for
non-identically distributed coefficients.
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Proof of P1
Let Sn(k , ℓ) be the set of π ∈ Sn containing exactly ℓ cycles of length at most k . We can
write

n|Sn(k, ℓ)| =
∑

π∈Sn(k,ℓ)

∑
σ|π

σ a cycle

|σ|

By substituting π = σπ′ and noting that π′ has either ℓ− 1 or ℓ cycles of length at most
k , we get

n|Sn(k, ℓ)| ≤
n∑

j=1

ℓ∑
m=ℓ−1

∑
π′∈Sn−j (k,m)

∑
σ∈Sn,|σ|=j
σ a cycle

j =
n∑

j=1

ℓ∑
m=ℓ−1

∑
π′∈Sn−j (k,m)

n!

(n − j)!

Now we rearrange this sum according to the cycle type (c1, . . . , cn) of the permutation π′

and apply the Cauchy formula:
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Proof of P1

n|Sn(k , ℓ)| ≤ n!
n∑

j=1

∑
c1,...,cn≥0

c1+2c2+···+ncn=n−j
c1+···+ck∈{ℓ−1,ℓ}

1∏
i ci !i

ci

≤ n!
∑

c1,...,cn≥0
c1+···+ck∈{ℓ−1,ℓ}

1∏
i ci !i

ci

= n!
( hℓ−1

k

(ℓ− 1)!
+

hℓk
ℓ!

) ∏
k<i≤n

e1/i

where the last inequality follows by the multinomial theorem, and where
hn = 1 + 1

2 + · · ·+ 1
n are the harmonic numbers.
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Proof of P1
By applying the bound hk ≤ 1 + log k , this proves that

|Sn(k, ℓ)
n!

≤ e

k

(1 + log k)ℓ

ℓ!

(
1 +

ℓ

1 + log k

)
which we note is O( (1+log k)ℓ−1

k(ℓ−1)! ) if ℓ ≫ log k .

Finally, by summing over all ℓ > (1 + ϵ) log k, we obtain

P(Bi ,k,ϵ) ≤
∑

ℓ>(1+ϵ) log k

|Sn(k, ℓ)|
n!

≪
∑

ℓ>(1+ϵ) log k

(1 + log k)ℓ−1

k(ℓ− 1)!
≪ (1 + log k)(1+ϵ) log k−1

k((1 + ϵ) log k − 1)!

≪ 1

k

( e

1 + e

)(1+ϵ) log k

Finally, by computing a Taylor expansion of −1 + (1 + ϵ) log (e/(1 + ϵ)), we obtain the
above is bounded by O(k−ϵ2/3) if ϵ ≤ 1/2, which completes the proof of P1.
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Proof of P2

Fix some ℓ ≤ (1 + ϵ) log k and consider π ∈ Sn(k, ℓ)
If π fixes some set X with |X | = k , then we denote π1 = π|x and π2 = π|[n]\X for the
induced permutations on X and its complement.
Then π has ℓ1 cycles of length ≤ k, and π2 has ℓ2 cycles of length ≤ k, where ℓ1+ ℓ2 = ℓ.
Thus, by P1, the number of such π ∈ Sn(k, ℓ) for a given choice of X and ℓ1, ℓ2 is

≪ (1 + log k)ℓ1

kℓ1!
k! · (1 + log k)ℓ2

kℓ2!
(n − k)!

Therefore, the probability that π ∈ Sn has exactly ℓ cycles of length at most k is

≪
∑

ℓ1+ℓ2=ℓ

1

k2
(1 + log k)ℓ

ℓ1!ℓ2!
=

2ℓ(1 + log k)ℓ

k2ℓ!
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Proof of P2

Therefore, by summing over all ℓ ≤ (1 + ϵ) log k, we obtain

P(Ei ,k\Bi ,k,ϵ) ≪
1

k2

∑
ℓ≤(1+ϵ) log k

2ℓ(1 + log k)ℓ

ℓ!

≪ 1

k2
2(1+ϵ) log k(1 + log k)(1+ϵ) log k

((1 + ϵ) log k)!

≪ 1

k1−log 2−2ϵ

which proves P2.
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