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Main theorem

Theorem (Bary-Soroker, Kozma (2017))
Let L be a positive integer divisible by at least 4 distinct primes (e.g. L = 210). Let

fi=X"4+a,1 X" 1+ +a X +ag

be a random polynomial over Z, where ag, . ..,a,_1 are independent random variables
taking values uniformly in {1,...,L}. Then

P(f is irreducible) — 1 as n— co
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Sketch

® Let f, denote the reduction of f mod p, for any prime p dividing L.
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Sketch

® Let f, denote the reduction of f mod p, for any prime p dividing L.

® Then f, is a random uniform polynomial over [F,,, with f, being independent for
different primes p|L (by Chinese Remainder Theorem).

® Note that, for any prime p, f, irreducible = f irreducible.

® More specifically, if f, has irreducible factors of degrees di, ..., d,, then the Galois
group of f (over Q) has an element with cycle lengths dy, ..., d,.

® We show that the probability that f, is reducible is small.

® Therefore, we hope to show that the probabilities that f, ,f,,,f,,,f,, are all
(compatibly w.r.t. cycle lengths) reducible, for four distinct primes pi1,..., pa
dividing L, is very small.

® We prove this by considering the small and large divisors separately.
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Proof for 12 primes
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Proof for 12 primes

® Let L be divisible by 12 distinct primes (e.g. L =7420738134810), and let f be a
random polynomial with i.i.d. uniform random coefficients in {1,...,L}.

® For 12 distinct primes py,. .., p12 dividing L, let f,, :=f mod p;.

® Let k < n. By Meisner [3], the probability that f,, has a divisor of degree k is

k—0+0(1) where § — 1 — % =0.086....

® By independence, the probability that f has a divisor of degree k is

12
IP(f has factor of degree k) < H IP(fp, has factor of degree k)
i=1
_ j—126+0(1) _ 4 —1.03..+0(1)
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Proof for 12 primes

* By summing over sufficiently large k (say k > n'/10), we obtain the bound

P(f has factor of degree > n*/%) « Z k—1:03+0(1)  =0.003...40(1)
k>nl/10
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Proof for 12 primes

* By summing over sufficiently large k (say k > n'/10), we obtain the bound

P(f has factor of degree > n*/%) « Z k—1:03+0(1)  =0.003...40(1)
k>nl/10

® Finally, by showing that the small divisors contribute negligibly, this proves that
P(f reducible) — 0 as n — oc.
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Small divisors (Lemma 7)

Lemma (“small divisors are negligible”)

Let L >2 and f = X"+ a,_1 X" 1 + ... 4+ a1 X + ag where as before a; are i.i.d uniform
random variables. Then there exists a w : N — N with lim,_,o, w(n) = oo such that

P(f has a divisor of degree < w(n)) -0 asn— oo

Several proofs of this lemma exist:
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Lemma (“small divisors are negligible”)

Let L >2 and f = X"+ a,_1 X" 1 + ... 4+ a1 X + ag where as before a; are i.i.d uniform
random variables. Then there exists a w : N — N with lim,_,o, w(n) = oo such that

P(f has a divisor of degree < w(n)) -0 asn— oo

Several proofs of this lemma exist:
® w(n) = n/logn, Konyagin 1999.
e w(n) = /log n, O'Rourke, Wood 2016.
® w exists, Kozma, Zeitouni, 2013.

® w(n) = On, Bary-Soroker, Koukoulopoulos, Kozma, 2020.
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Proof of Lemma 7

Observation 1
Let L > 1. Then for every d, there are only finitely many irreducible polynomials of
degree d which can divide a monic polynomial (of arbitrary degree) with coefficients in

1,...,L.
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Observation 1
Let L > 1. Then for every d, there are only finitely many irreducible polynomials of
degree d which can divide a monic polynomial (of arbitrary degree) with coefficients in

{1,...,L}.
® Let p(x) := X9+ by_1 X9+ -+ by X + by € Z[x] be such a polynomial which

divides some f with coefficients in {1,...,L}, and let z € Z be a root of p.
® As z divides a polynomial with coefficients in {1,..., L}, then |z| < L + 1, otherwise
n—1 )
2" > L+ 1" > " |aiZ| > |f(2) — 2]
i=0

® We can similarly derive a contradiction if |z| < ﬁ
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Proof of Lemma 7

® Using the bound |zj| < L + 1 for all roots z; of p, we can apply standard relations
between the coefficients b; and the roots z;, we obtain the bound

> f[z,-j < <Z>(L+1)k

1<ip<-<ik<d j=1

|ba—k| =

foreach k=1,...,d — 1.
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Proof of Lemma 7

® Using the bound |zj| < L + 1 for all roots z; of p, we can apply standard relations
between the coefficients b; and the roots z;, we obtain the bound

k
d
D | B <k>(L+1)k
foreach k=1,...,d — 1.

1<h<-<ix<d j=1
® Thus, there are only finitely many possibilities for each coefficients b;, and so finitely
many possible irreducible polynomials p(x).
(e.g. a rather crude bound is (2(L + 1))¢°)

|ba—k| =
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Proof of Lemma 7

Let p be some fixed irreducible polynomial, and f as defined in Theorem 1. Then

P(p divides f) = O(%)
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Proof of Lemma 7

Observation 2

Let p be some fixed irreducible polynomial, and f as defined in Theorem 1. Then

P(p divides f) = O(%)

This essentially follows from the classical Littlewood-Offord bound, a weak form of which
states the following:

Littlewood-Offord (1943) (simplified)

Let n> 1, and let xq, ..., x, be any non-zero complex numbers.
Let €1, ..., €, be i.i.d. uniform random variables in {—1,41}. Then the probability that
€1xX1+ -+ €x,=0is O(%)
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Observation 2

Let p be some fixed irreducible polynomial, and f as defined in Theorem 1. Then

P(p divides f) = O(%)

This essentially follows from the classical Littlewood-Offord bound, a weak form of which
states the following:

Littlewood-Offord (1943) (simplified)

Let n> 1, and let xq, ..., x, be any non-zero complex numbers.
Let €1, ..., €, be i.i.d. uniform random variables in {—1,41}. Then the probability that
€1xX1+ -+ €x,=0is O(%)

® More generally, Littlewood-Offord actually obtained a bound for the probability that

€1x1 + -+ €,x, € | for a given bounded set /. /20



Proof of (weak) Littlewood-Offord

® \We may assume wlog that x; are real and furthermore that x; > 0 for all i.
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Therefore, the probability that e1x; + - + €nxy = 0 is O(=).
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Proof of (weak) Littlewood-Offord

® \We may assume wlog that x; are real and furthermore that x; > 0 for all i.
Let A:={AC{1,...,n}| DoieAXi = 2 jgaXi =0}.

® \We note that A is an anti-chain, i.e. for all distinct A,B € A, AZ B.
® Thus, by Sperner's lemma, |A| < (Ln,/12J)' which by Stirling, has bound O(j%)
® Therefore, the probability that €1x1 + -+ + €,x, =0 is O(ﬁ)
Remark: This is sharp! (at least for arbitrary x; € C), as if x; = --- = x, = 1, then the

probability that €1x1 + - -+ 4+ €,x, = 0 is equivalent to the probability that a
one-dimensional random walk starting at 0, ends at 0 after n steps. This is

O((,52)/2") = O(L).
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Proof of Lemma 7

Back to the original proof:

® |et p be some fixed irreducible polynomial, and let z € C be a root of p.
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Proof of Lemma 7

Back to the original proof:
® |et p be some fixed irreducible polynomial, and let z € C be a root of p.

e Applying the (generalised) Littlewood-Offord bound with the random variables a;
and x; = z'. Then we have

1
Vi = n n—1 e = = —_—
P(p divides f) = P(z" + ap_12" " + -+ ag = 0) O(ﬁ)
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Proof of Lemma 7

Back to the original proof:
® |et p be some fixed irreducible polynomial, and let z € C be a root of p.

e Applying the (generalised) Littlewood-Offord bound with the random variables a;
and x; = z'. Then we have

1
P(p divides f) = P(z" + a,_1z" 1 +-- - +ag =0) = o(%)
® Thus, for any fixed degree d > 1, we have
2L 4 2)°
IP(f has a divisor of degree d) < (\—%)
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Proof of Lemma 7

® Therefore, for any fixed W > 0, we have

w
§:2L+2

d=

WL +2)W’

P(f has a divisor of degree < W)

[y

<

Ay

which tends to 0 as n — oo.
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Proof of Lemma 7

® Therefore, for any fixed W > 0, we have

w
§:2L+2

d=

WL +2)W’

P(f has a divisor of degree < W)

[y

<

Ay

which tends to 0 as n — oo.

® The result also holds if W grows sufficiently slowly (e.g. w(n) = (log n)'/3
works). O

12/29



Large divisors (Lemma 8)

Lemma (Bary-Soroker, Kozma (2017))

Let 01,02,03,04 be 4 independent uniform permutations in S,. Fori € {1,...,4} and
£ < n we define E; ; as the event that { can be written as a sum of lengths of cycles of

o;. Then for all k < n,
2k 4

P(|J(Eie) < Ck €

t=k i=1
for some effective constant c, C independent of n and k.
Furthermore, for an additional parameter X,

UU UﬂE,e,\ < C(A+1)*

b=k \1= =0i=1
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Proof of Lemma 8

® Wiog let k be sufficiently large, and let A < g Let 0 <e< %
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® Define Bj i as the event that o; has at least (1 + ¢) log k cycles whose sizes are less
than k.
e We shall use the following two facts (maybe proven later?):

(P1) P(Bj ) < k=</3.
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Proof of Lemma 8

® Wiog let k be sufficiently large, and let A < g Let 0 < e < %

® Define Bj i as the event that o; has at least (1 + ¢) log k cycles whose sizes are less
than k.

e We shall use the following two facts (maybe proven later?):
(P1) P(Bi.) < k=73,
(P2) P(E; x\Bjx.) < klog2-1+2¢

® By noting that B, . implies B, /> for sufficiently large k and ¢ € [k/2,2k], we
therefore obtain the bound

2k 4 2k 4
P(|J(Eie) Z P(Bioke2) + Y [ [ P(Eis\Bive)
t=ki=1 (=k i=1

14/29



Proof of Lemma 8

e Applying the bounds (P1) and (P2), this gives us

2k 4
P( U m Eie) < 4k /12 4 kl+4(log2-1+2¢)
{=ki=1

15 /29



Proof of Lemma 8

e Applying the bounds (P1) and (P2), this gives us

2k 4
IP)( U m Eie) < 4k /12 4 kl+4(log2-1+2¢)
{=ki=1

® By letting ¢ be small enough (e.g. ¢ = 0.02), we have that 1+ 4(log2 — 1 + 2¢) < 0,
and thus the first result holds for

c = min(¢®/12, =1 — 4(log 2 — 1 + 2¢))
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Proof of Lemma 8

The second estimate can be obtained by essentially the same argument:

INA
M»
5
>

3

=
M»
M-
’:]»

P(Ei—x,\Bit—x.e)

<<4k762/12 )\+1 Z k4 log2— 1+26)
l=k/2

<A+ 1)*% e
where as before ¢ = min(€2/12, —1 — 4(log2 — 1 + 2¢)). O
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Proof of main theorem

Theorem (Bary-Soroker, Kozma (2017))

Let L be a positive integer divisible by at least 4 distinct primes. Let
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® Fix some k sufficiently large. We shall consider divisors of degree k < £ < 2k.

® Let p1,...,ps be 4 distinct primes dividing L, and define f,, as the reduction of f
mod p;.
® Forr=1,...,4, define X, as the random tuple which takes the value

(my,,my,,...) where m;, is the number of irreducible factors of f, of degree .

® Analogously, let o be a random permutation in S,,, and define Y as the random
tuple (n1,ny,...) where n; is the number of cycles of o of length i.

17/29



Proof of main theorem

e Now first, we let B, be the event that for some r = 1,...,4 and some i < log? k we
have m; , < log? k
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Proof of main theorem

e Now first, we let B, be the event that for some r = 1,...,4 and some i < log? k we
have m; , < Iog2 k

® We have the bound P(Bj) < 4log? k eclog’k (next week), thus By occurs
negligibly.

® et Ry be the event that for some k < £ < 2k and some A, < Iog6 k we can write

=X = Z iei,n Ei,r < m; .
i>log? k
forall r=1,...,4.

e Similarly, let S be the event that for some k < ¢ < 2k and some A < Iog6 k we can
write
C=X= > it li<n,
i>log? k

18/29



Proof of main theorem

® We now use that X, and Y have sufficiently similar distributions (next week) which
implies [P(Rx) — P(Sy)| < 1/ log? k.
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® This implies P(Ry) < 1/ log? k.

® Now, let Q be the event that for some k < ¢ < 2k we can write £ = il; , for
some £, <m;,, forallr=1,... 4.

® As Q,\By is contained in the event Ry, this implies P(Qx\Bx) < 1/ log? k.
® Finally, as By is negligible, we have P(Qx) < 1/ log? k.

Therefore, P(f has divisor of degree € [k, 2k)) < |og12 p
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Proof of main theorem

Finally, summing over all possible divisors, this proves

P(f reducible) < P(f has divisors of degree < w(n))
+ Z P(f has divisors of degree € [k, 2k))

k=w(n)-2!
i=0,...,logy n
1
& (something small) + —_
( £ ) Z . Iog2k
k=w(n)-2'
i=0,...,logy n
1 1

< logw(n)  logw(n) + logn

—0 asn— 0.
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Proof of main theorem

Finally, summing over all possible divisors, this proves

P(f reducible) < P(f has divisors of degree < w(n))
+ Z P(f has divisors of degree € [k, 2k))

k=w(n)-2!
i=0,...,logy n
1
& (something small) + —_
( £ ) Z . Iog2k
k=w(n)-2'
i=0,...,logy n
1 1

< logw(n)  logw(n) + logn

—0 asn— 0.

L O
n

E.g. Using Konyagin's bound for w(n), we have P(f reducible) <« log
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Recent developments

Theorem (Bary-Soroker, Koukoulopoulos, Kozma (2020))

Let L > 35, and let f = X" +a,_1 X" 1 +---+a1 X +ag where ag,...,a,_1 are i.i.d
random variables taking values uniformly in {1,...,L}. Then P(f is irreducible) — 1, as
n— oo.
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Recent developments

Theorem (Bary-Soroker, Koukoulopoulos, Kozma (2020))

Let L > 35, and let f = X" +a,_1 X" 1 +---+a1 X +ag where ag,...,a,_1 are i.i.d
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® This was proven using a combination of a standard argument for L > 33730 and a
computer-assisted proof for 35 < L < 33730.

® Here, f, does not have uniformly distributed coefficients mod p nor independence
necessarily, and so Bary-Soroker—Koukoulopoulos—Kozma use p-adic Fourier Analysis
and the large sieve to prove approximate equidistribution modulo 4 primes.

® Their proofs also work for general measures (under some assumptions), even for
non-identically distributed coefficients.
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Proof of P1

Let Sn(k, ) be the set of m € S, containing exactly ¢ cycles of length at most k. We can
write

nSa(k,Ol= > > o

w€Sn(k,l) ofm
o a cycle

By substituting m = o7’ and noting that 7’ has either £ — 1 or £ cycles of length at most
k, we get

SEXRTED 35 YD SID SINES D DRI DL

J=1 m=L-17'eS,_j(k,m) c€Sy,|o|=j J=1 m=L-17'eS,_j(k,m)
o a cycle

Now we rearrange this sum according to the cycle type (ci, ..., c,) of the permutation 7’

and apply the Cauchy formula:

22/29



Proof of P1

1

”'Z > I clie

C1,...,cn >0
C1+ZC2+ ~+ncp=n—j
c1+-Fee{l—1,0}

1
| [,
s m Z ] [,'Ci!’.c"

C1ye-,€n >0
C1+"'+Ck€{£71 Z}

hf 1
:"'((5—1 ) 1 ¢

k<i<n

n|Sn(k, £)|

IN

where the last inequality follows by the multinomial theorem, and where
h, =1+ % 4+ -+ % are the harmonic numbers.
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Proof of P1

By applying the bound hy <1+ log k, this proves that

l
|Sn(k, ) < e (1 +logk) (1 14 )
n! k £ 1+ logk

which we note is O(%) if £>> log k.

Finally, by summing over all £ > (1 + €) log k, we obtain

(1 + log k)(l—l—e) log k—1

Z |Sn(k, )] < Z (1+ log k)1 <

P(Bj k) <
b 9 ' — I — '
£>(1+¢€) log k n £>(1+€) log k k(ﬁ 1) k((]. + 6) log k 1)
1 € (1+e€) log k
< k(14—e)

Finally, by computing a Taylor expansion of —1 + (1 + ¢€) log (e/(1 + €)), we obtain the
above is bounded by O(k—*/3) if € < 1/2, which completes the proof of P1. O
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Proof of P2

Fix some ¢ < (1 + €)log k and consider m € S,(k, ¥)
If 7 fixes some set X with [X| = k, then we denote 71 = 7[x and ma = 7|[,\ x for the
induced permutations on X and its complement.
Then 7 has ¢1 cycles of length < k, and 7, has ¢» cycles of length < k, where {1 + {2 = £.
Thus, by P1, the number of such 7w € S,(k,¢) for a given choice of X and {1, /(5 is

< (1 + log k)" ol (1 + log k)"

kiq! k! (n—k)!

Therefore, the probability that m € S, has exactly ¢ cycles of length at most k is

1 (1+logk)® 241+ logk)*
<D @ Wl K2
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Proof of P2

Therefore, by summing over all £ < (1 + €) log k, we obtain
1 2(1 + log k)"
P(E; x\Bj k) < 2 Z —a
< (1+¢) log k
1 2(1+€) Iogk(l + log k)(1+e) log k
< (1 + o) log k!

1
k1—log2—2e

<

which proves P2. OJ
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