A proof of Bary-Soroker \& Kozma's irreducibility theorem

Irreducibility of random polynomials study group, Week 5

Robin Visser
Mathematics Institute University of Warwick

11 February 2022

Main theorem

Theorem (Bary-Soroker, Kozma (2017))

Let L be a positive integer divisible by at least 4 distinct primes (e.g. $L=210$). Let

$$
\mathbf{f}:=X^{n}+\mathbf{a}_{n-1} X^{n-1}+\cdots+\mathbf{a}_{1} X+\mathbf{a}_{0}
$$

be a random polynomial over \mathbb{Z}, where $\mathbf{a}_{0}, \ldots, \mathbf{a}_{n-1}$ are independent random variables taking values uniformly in $\{1, \ldots, L\}$. Then

$$
\mathbb{P}(\mathbf{f} \text { is irreducible }) \rightarrow 1 \text { as } n \rightarrow \infty
$$

Sketch

- Let \mathbf{f}_{p} denote the reduction of $\mathbf{f} \bmod p$, for any prime p dividing L.

Sketch

- Let \mathbf{f}_{p} denote the reduction of $\mathbf{f} \bmod p$, for any prime p dividing L.
- Then \mathbf{f}_{p} is a random uniform polynomial over \mathbb{F}_{p}, with \mathbf{f}_{p} being independent for different primes $p \mid L$ (by Chinese Remainder Theorem).

Sketch

- Let \mathbf{f}_{p} denote the reduction of $\mathbf{f} \bmod p$, for any prime p dividing L.
- Then \mathbf{f}_{p} is a random uniform polynomial over \mathbb{F}_{p}, with \mathbf{f}_{p} being independent for different primes $p \mid L$ (by Chinese Remainder Theorem).
- Note that, for any prime p, \mathbf{f}_{p} irreducible $\Longrightarrow \mathbf{f}$ irreducible.

Sketch

- Let \mathbf{f}_{p} denote the reduction of $\mathbf{f} \bmod p$, for any prime p dividing L.
- Then \mathbf{f}_{p} is a random uniform polynomial over \mathbb{F}_{p}, with \mathbf{f}_{p} being independent for different primes $p \mid L$ (by Chinese Remainder Theorem).
- Note that, for any prime p, \mathbf{f}_{p} irreducible $\Longrightarrow \mathbf{f}$ irreducible.
- More specifically, if \mathbf{f}_{p} has irreducible factors of degrees d_{1}, \ldots, d_{r}, then the Galois group of $\mathbf{f}($ over $\mathbb{Q})$ has an element with cycle lengths d_{1}, \ldots, d_{r}.

Sketch

- Let \mathbf{f}_{p} denote the reduction of $\mathbf{f} \bmod p$, for any prime p dividing L.
- Then \mathbf{f}_{p} is a random uniform polynomial over \mathbb{F}_{p}, with \mathbf{f}_{p} being independent for different primes $p \mid L$ (by Chinese Remainder Theorem).
- Note that, for any prime p, \mathbf{f}_{p} irreducible $\Longrightarrow \mathbf{f}$ irreducible.
- More specifically, if \mathbf{f}_{p} has irreducible factors of degrees d_{1}, \ldots, d_{r}, then the Galois group of $\mathbf{f}($ over $\mathbb{Q})$ has an element with cycle lengths d_{1}, \ldots, d_{r}.
- We show that the probability that \mathbf{f}_{p} is reducible is small.

Sketch

- Let \mathbf{f}_{p} denote the reduction of $\mathbf{f} \bmod p$, for any prime p dividing L.
- Then \mathbf{f}_{p} is a random uniform polynomial over \mathbb{F}_{p}, with \mathbf{f}_{p} being independent for different primes $p \mid L$ (by Chinese Remainder Theorem).
- Note that, for any prime p, \mathbf{f}_{p} irreducible $\Longrightarrow \mathbf{f}$ irreducible.
- More specifically, if \mathbf{f}_{p} has irreducible factors of degrees d_{1}, \ldots, d_{r}, then the Galois group of $\mathbf{f}($ over $\mathbb{Q})$ has an element with cycle lengths d_{1}, \ldots, d_{r}.
- We show that the probability that \mathbf{f}_{p} is reducible is small.
- Therefore, we hope to show that the probabilities that $\mathbf{f}_{p_{1}}, \mathbf{f}_{p_{2}}, \mathbf{f}_{p_{3}}, \mathbf{f}_{p_{4}}$ are all (compatibly w.r.t. cycle lengths) reducible, for four distinct primes p_{1}, \ldots, p_{4} dividing L, is very small.

Sketch

- Let \mathbf{f}_{p} denote the reduction of $\mathbf{f} \bmod p$, for any prime p dividing L.
- Then \mathbf{f}_{p} is a random uniform polynomial over \mathbb{F}_{p}, with \mathbf{f}_{p} being independent for different primes $p \mid L$ (by Chinese Remainder Theorem).
- Note that, for any prime p, \mathbf{f}_{p} irreducible $\Longrightarrow \mathbf{f}$ irreducible.
- More specifically, if \mathbf{f}_{p} has irreducible factors of degrees d_{1}, \ldots, d_{r}, then the Galois group of $\mathbf{f}($ over $\mathbb{Q})$ has an element with cycle lengths d_{1}, \ldots, d_{r}.
- We show that the probability that \mathbf{f}_{p} is reducible is small.
- Therefore, we hope to show that the probabilities that $\mathbf{f}_{p_{1}}, \mathbf{f}_{p_{2}}, \mathbf{f}_{p_{3}}, \mathbf{f}_{p_{4}}$ are all (compatibly w.r.t. cycle lengths) reducible, for four distinct primes p_{1}, \ldots, p_{4} dividing L, is very small.
- We prove this by considering the small and large divisors separately.

Proof for 12 primes

Proof for 12 primes

- Let L be divisible by 12 distinct primes (e.g. $L=7420738134810$), and let \mathbf{f} be a random polynomial with i.i.d. uniform random coefficients in $\{1, \ldots, L\}$.

Proof for 12 primes

- Let L be divisible by 12 distinct primes (e.g. $L=7420738134810$), and let \mathbf{f} be a random polynomial with i.i.d. uniform random coefficients in $\{1, \ldots, L\}$.
- For 12 distinct primes p_{1}, \ldots, p_{12} dividing L, let $\mathbf{f}_{p_{i}}:=\mathbf{f} \bmod p_{i}$.

Proof for 12 primes

- Let L be divisible by 12 distinct primes (e.g. $L=7420738134810$), and let \mathbf{f} be a random polynomial with i.i.d. uniform random coefficients in $\{1, \ldots, L\}$.
- For 12 distinct primes p_{1}, \ldots, p_{12} dividing L, let $\mathbf{f}_{p_{i}}:=\mathbf{f} \bmod p_{i}$.
- Let $k<n$. By Meisner [3], the probability that $\mathbf{f}_{p_{i}}$ has a divisor of degree k is $k^{-\delta+o(1)}$ where $\delta=1-\frac{1+\log \log 2}{\log 2}=0.086 \ldots$.

Proof for 12 primes

- Let L be divisible by 12 distinct primes (e.g. $L=7420738134810$), and let \mathbf{f} be a random polynomial with i.i.d. uniform random coefficients in $\{1, \ldots, L\}$.
- For 12 distinct primes p_{1}, \ldots, p_{12} dividing L, let $\mathbf{f}_{p_{i}}:=\mathbf{f} \bmod p_{i}$.
- Let $k<n$. By Meisner [3], the probability that $\mathbf{f}_{p_{i}}$ has a divisor of degree k is $k^{-\delta+o(1)}$ where $\delta=1-\frac{1+\log \log 2}{\log 2}=0.086 \ldots$.
- By independence, the probability that \mathbf{f} has a divisor of degree k is

$$
\begin{aligned}
\mathbb{P}(\mathbf{f} \text { has factor of degree } k) & \leq \prod_{i=1}^{12} \mathbb{P}\left(\mathbf{f}_{p_{i}} \text { has factor of degree } k\right) \\
& =k^{-12 \delta+o(1)}=k^{-1.03 \ldots+o(1)}
\end{aligned}
$$

Proof for 12 primes

- By summing over sufficiently large k (say $k \geq n^{1 / 10}$), we obtain the bound

$$
\mathbb{P}\left(\mathbf{f} \text { has factor of degree } \geq n^{1 / 10}\right) \ll \sum_{k \geq n^{1 / 10}} k^{-1.03 \ldots+o(1)} \ll n^{-0.003 \ldots+o(1)}
$$

Proof for 12 primes

- By summing over sufficiently large k (say $k \geq n^{1 / 10}$), we obtain the bound

$$
\mathbb{P}\left(\mathbf{f} \text { has factor of degree } \geq n^{1 / 10}\right) \ll \sum_{k \geq n^{1 / 10}} k^{-1.03 \ldots+o(1)} \ll n^{-0.003 \ldots+o(1)}
$$

- Finally, by showing that the small divisors contribute negligibly, this proves that $\mathbb{P}(\mathbf{f}$ reducible $) \rightarrow 0$ as $n \rightarrow \infty$.

Small divisors (Lemma 7)

Lemma ("small divisors are negligible")

Let $L \geq 2$ and $\mathbf{f}=X^{n}+\mathbf{a}_{n-1} X^{n-1}+\cdots+\mathbf{a}_{1} X+\mathbf{a}_{0}$ where as before \mathbf{a}_{i} are i.i.d uniform random variables. Then there exists a $\omega: \mathbb{N} \rightarrow \mathbb{N}$ with $\lim _{n \rightarrow \infty} \omega(n)=\infty$ such that

$$
\mathbb{P}(\mathbf{f} \text { has a divisor of degree } \leq \omega(n)) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Several proofs of this lemma exist:

Small divisors (Lemma 7)

Lemma ("small divisors are negligible")

Let $L \geq 2$ and $\mathbf{f}=X^{n}+\mathbf{a}_{n-1} X^{n-1}+\cdots+\mathbf{a}_{1} X+\mathbf{a}_{0}$ where as before \mathbf{a}_{i} are i.i.d uniform random variables. Then there exists a $\omega: \mathbb{N} \rightarrow \mathbb{N}$ with $\lim _{n \rightarrow \infty} \omega(n)=\infty$ such that

$$
\mathbb{P}(\mathbf{f} \text { has a divisor of degree } \leq \omega(n)) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Several proofs of this lemma exist:

- $\omega(n)=n / \log n$, Konyagin 1999 .
- $\omega(n)=\sqrt{\log n}$, O'Rourke, Wood $2016 .^{2}$
- ω exists, Kozma, Zeitouni, 2013.
- $\omega(n)=\theta n$, Bary-Soroker, Koukoulopoulos, Kozma, 2020.

Proof of Lemma 7

Observation 1

Let $L \geq 1$. Then for every d, there are only finitely many irreducible polynomials of degree d which can divide a monic polynomial (of arbitrary degree) with coefficients in $\{1, \ldots, L\}$.

Proof of Lemma 7

Observation 1

Let $L \geq 1$. Then for every d, there are only finitely many irreducible polynomials of degree d which can divide a monic polynomial (of arbitrary degree) with coefficients in $\{1, \ldots, L\}$.

- Let $p(x):=X^{d}+b_{d-1} X^{d-1}+\cdots+b_{1} X+b_{0} \in \mathbb{Z}[x]$ be such a polynomial which divides some f with coefficients in $\{1, \ldots, L\}$, and let $z \in \mathbb{Z}$ be a root of p.

Proof of Lemma 7

Observation 1

Let $L \geq 1$. Then for every d, there are only finitely many irreducible polynomials of degree d which can divide a monic polynomial (of arbitrary degree) with coefficients in $\{1, \ldots, L\}$.

- Let $p(x):=X^{d}+b_{d-1} X^{d-1}+\cdots+b_{1} X+b_{0} \in \mathbb{Z}[x]$ be such a polynomial which divides some f with coefficients in $\{1, \ldots, L\}$, and let $z \in \overline{\mathbb{Z}}$ be a root of p.
- As z divides a polynomial with coefficients in $\{1, \ldots, L\}$, then $|z| \leq L+1$, otherwise

$$
|z|^{n}>|L+1|^{n}>\sum_{i=0}^{n-1}\left|a_{i} z^{i}\right| \geq\left|f(z)-z^{n}\right|
$$

Proof of Lemma 7

Observation 1

Let $L \geq 1$. Then for every d, there are only finitely many irreducible polynomials of degree d which can divide a monic polynomial (of arbitrary degree) with coefficients in $\{1, \ldots, L\}$.

- Let $p(x):=X^{d}+b_{d-1} X^{d-1}+\cdots+b_{1} X+b_{0} \in \mathbb{Z}[x]$ be such a polynomial which divides some f with coefficients in $\{1, \ldots, L\}$, and let $z \in \mathbb{Z}$ be a root of p.
- As z divides a polynomial with coefficients in $\{1, \ldots, L\}$, then $|z| \leq L+1$, otherwise

$$
|z|^{n}>|L+1|^{n}>\sum_{i=0}^{n-1}\left|a_{i} z^{i}\right| \geq\left|f(z)-z^{n}\right|
$$

- We can similarly derive a contradiction if $|z|<\frac{1}{L+1}$.

Proof of Lemma 7

- Using the bound $\left|z_{j}\right| \leq L+1$ for all roots z_{j} of p, we can apply standard relations between the coefficients b_{i} and the roots z_{i}, we obtain the bound

$$
\left|b_{d-k}\right|=\left|\sum_{1 \leq i_{1}<\cdots<i_{k} \leq d} \prod_{j=1}^{k} z_{i_{j}}\right| \leq\binom{ d}{k}(L+1)^{k}
$$

for each $k=1, \ldots, d-1$.

Proof of Lemma 7

- Using the bound $\left|z_{j}\right| \leq L+1$ for all roots z_{j} of p, we can apply standard relations between the coefficients b_{i} and the roots z_{i}, we obtain the bound

$$
\left|b_{d-k}\right|=\left|\sum_{1 \leq i_{1}<\cdots<i_{k} \leq d} \prod_{j=1}^{k} z_{i_{j}}\right| \leq\binom{ d}{k}(L+1)^{k}
$$

for each $k=1, \ldots, d-1$.

- Thus, there are only finitely many possibilities for each coefficients b_{i}, and so finitely many possible irreducible polynomials $p(x)$.
(e.g. a rather crude bound is $(2(L+1))^{d^{2}}$)

Proof of Lemma 7

Observation 2

Let p be some fixed irreducible polynomial, and \mathbf{f} as defined in Theorem 1. Then

$$
\mathbb{P}(p \text { divides } \mathbf{f})=O\left(\frac{1}{\sqrt{n}}\right)
$$

Proof of Lemma 7

Observation 2

Let p be some fixed irreducible polynomial, and \mathbf{f} as defined in Theorem 1. Then

$$
\mathbb{P}(p \text { divides } \mathbf{f})=O\left(\frac{1}{\sqrt{n}}\right)
$$

This essentially follows from the classical Littlewood-Offord bound, a weak form of which states the following:

Littlewood-Offord (1943) (simplified)

Let $n \geq 1$, and let x_{1}, \ldots, x_{n} be any non-zero complex numbers.
Let $\epsilon_{1}, \ldots, \epsilon_{n}$ be i.i.d. uniform random variables in $\{-1,+1\}$. Then the probability that $\epsilon_{1} x_{1}+\cdots+\epsilon_{n} x_{n}=0$ is $O\left(\frac{1}{\sqrt{n}}\right)$

Proof of Lemma 7

Observation 2

Let p be some fixed irreducible polynomial, and \mathbf{f} as defined in Theorem 1. Then

$$
\mathbb{P}(p \text { divides } \mathbf{f})=O\left(\frac{1}{\sqrt{n}}\right)
$$

This essentially follows from the classical Littlewood-Offord bound, a weak form of which states the following:

Littlewood-Offord (1943) (simplified)

Let $n \geq 1$, and let x_{1}, \ldots, x_{n} be any non-zero complex numbers.
Let $\epsilon_{1}, \ldots, \epsilon_{n}$ be i.i.d. uniform random variables in $\{-1,+1\}$. Then the probability that $\epsilon_{1} x_{1}+\cdots+\epsilon_{n} x_{n}=0$ is $O\left(\frac{1}{\sqrt{n}}\right)$

- More generally, Littlewood-Offord actually obtained a bound for the probability that $\epsilon_{1} x_{1}+\cdots+\epsilon_{n} x_{n} \in I$ for a given bounded set I.

Proof of (weak) Littlewood-Offord

- We may assume wlog that x_{i} are real and furthermore that $x_{i}>0$ for all i.

Proof of (weak) Littlewood-Offord

- We may assume wlog that x_{i} are real and furthermore that $x_{i}>0$ for all i.
- Let $\mathcal{A}:=\left\{A \subseteq\{1, \ldots, n\} \mid \sum_{i \in A} x_{i}-\sum_{j \notin A} x_{j}=0\right\}$.

Proof of (weak) Littlewood-Offord

- We may assume wlog that x_{i} are real and furthermore that $x_{i}>0$ for all i.
- Let $\mathcal{A}:=\left\{A \subseteq\{1, \ldots, n\} \mid \sum_{i \in A} x_{i}-\sum_{j \notin A} x_{j}=0\right\}$.
- We note that \mathcal{A} is an anti-chain, i.e. for all distinct $A, B \in \mathcal{A}, A \nsubseteq B$.

Proof of (weak) Littlewood-Offord

- We may assume wlog that x_{i} are real and furthermore that $x_{i}>0$ for all i.
- Let $\mathcal{A}:=\left\{A \subseteq\{1, \ldots, n\} \mid \sum_{i \in A} x_{i}-\sum_{j \notin A} x_{j}=0\right\}$.
- We note that \mathcal{A} is an anti-chain, i.e. for all distinct $A, B \in \mathcal{A}, A \nsubseteq B$.
- Thus, by Sperner's lemma, $|\mathcal{A}| \leq\binom{ n}{\lfloor n / 2\rfloor}$, which by Stirling, has bound $O\left(\frac{2^{n}}{\sqrt{n}}\right)$.

Proof of (weak) Littlewood-Offord

- We may assume wlog that x_{i} are real and furthermore that $x_{i}>0$ for all i.
- Let $\mathcal{A}:=\left\{A \subseteq\{1, \ldots, n\} \mid \sum_{i \in A} x_{i}-\sum_{j \neq A} x_{j}=0\right\}$.
- We note that \mathcal{A} is an anti-chain, i.e. for all distinct $A, B \in \mathcal{A}, A \nsubseteq B$.
- Thus, by Sperner's lemma, $|\mathcal{A}| \leq\binom{ n}{\lfloor n / 2\rfloor}$, which by Stirling, has bound $O\left(\frac{2^{n}}{\sqrt{n}}\right)$.
- Therefore, the probability that $\epsilon_{1} x_{1}+\cdots+\epsilon_{n} x_{n}=0$ is $O\left(\frac{1}{\sqrt{n}}\right)$.

Proof of (weak) Littlewood-Offord

- We may assume wlog that x_{i} are real and furthermore that $x_{i}>0$ for all i.
- Let $\mathcal{A}:=\left\{A \subseteq\{1, \ldots, n\} \mid \sum_{i \in A} x_{i}-\sum_{j \notin A} x_{j}=0\right\}$.
- We note that \mathcal{A} is an anti-chain, i.e. for all distinct $A, B \in \mathcal{A}, A \nsubseteq B$.
- Thus, by Sperner's lemma, $|\mathcal{A}| \leq\binom{ n}{\lfloor n / 2\rfloor}$, which by Stirling, has bound $O\left(\frac{2^{n}}{\sqrt{n}}\right)$.
- Therefore, the probability that $\epsilon_{1} x_{1}+\cdots+\epsilon_{n} x_{n}=0$ is $O\left(\frac{1}{\sqrt{n}}\right)$.

Remark: This is sharp! (at least for arbitrary $x_{i} \in \mathbb{C}$), as if $x_{1}=\cdots=x_{n}=1$, then the probability that $\epsilon_{1} x_{1}+\cdots+\epsilon_{n} x_{n}=0$ is equivalent to the probability that a one-dimensional random walk starting at 0 , ends at 0 after n steps. This is $\Theta\left(\binom{n}{n / 2} / 2^{n}\right)=\Theta\left(\frac{1}{\sqrt{n}}\right)$.

Proof of Lemma 7

Back to the original proof:

- Let p be some fixed irreducible polynomial, and let $z \in \mathbb{C}$ be a root of p.

Proof of Lemma 7

Back to the original proof:

- Let p be some fixed irreducible polynomial, and let $z \in \mathbb{C}$ be a root of p.
- Applying the (generalised) Littlewood-Offord bound with the random variables \mathbf{a}_{i} and $x_{i}=z^{i}$. Then we have

$$
\mathbb{P}(p \text { divides } \mathbf{f})=\mathbb{P}\left(z^{n}+\mathbf{a}_{n-1} z^{n-1}+\cdots+\mathbf{a}_{0}=0\right)=O\left(\frac{1}{\sqrt{n}}\right)
$$

Proof of Lemma 7

Back to the original proof:

- Let p be some fixed irreducible polynomial, and let $z \in \mathbb{C}$ be a root of p.
- Applying the (generalised) Littlewood-Offord bound with the random variables \mathbf{a}_{i} and $x_{i}=z^{i}$. Then we have

$$
\mathbb{P}(p \text { divides } \mathbf{f})=\mathbb{P}\left(z^{n}+\mathbf{a}_{n-1} z^{n-1}+\cdots+\mathbf{a}_{0}=0\right)=O\left(\frac{1}{\sqrt{n}}\right)
$$

- Thus, for any fixed degree $d \geq 1$, we have

$$
\mathbb{P}(\mathbf{f} \text { has a divisor of degree } d) \ll \frac{(2 L+2)^{d^{2}}}{\sqrt{n}}
$$

Proof of Lemma 7

- Therefore, for any fixed $W>0$, we have

$$
\begin{aligned}
\mathbb{P}(\mathbf{f} \text { has a divisor of degree } \leq W) & \ll \frac{1}{\sqrt{n}} \sum_{d=1}^{W}(2 L+2)^{d^{2}} \\
& \leq \frac{1}{\sqrt{n}} W(2 L+2)^{W^{2}}
\end{aligned}
$$

which tends to 0 as $n \rightarrow \infty$.

Proof of Lemma 7

- Therefore, for any fixed $W>0$, we have

$$
\begin{aligned}
\mathbb{P}(\mathbf{f} \text { has a divisor of degree } \leq W) & \ll \frac{1}{\sqrt{n}} \sum_{d=1}^{W}(2 L+2)^{d^{2}} \\
& \leq \frac{1}{\sqrt{n}} W(2 L+2)^{W^{2}}
\end{aligned}
$$

which tends to 0 as $n \rightarrow \infty$.

- The result also holds if W grows sufficiently slowly (e.g. $\omega(n)=(\log n)^{1 / 3}$ works).

Large divisors (Lemma 8)

Lemma (Bary-Soroker, Kozma (2017))

Let $\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \boldsymbol{\sigma}_{3}, \boldsymbol{\sigma}_{4}$ be 4 independent uniform permutations in S_{n}. For $i \in\{1, \ldots, 4\}$ and $\ell \leq n$ we define $\mathbf{E}_{i, \ell}$ as the event that ℓ can be written as a sum of lengths of cycles of $\boldsymbol{\sigma}_{i}$. Then for all $k<n$,

$$
\mathbb{P}\left(\bigcup_{\ell=k}^{2 k} \bigcap_{i=1}^{4} \mathbf{E}_{i, \ell}\right) \leq C k^{-c}
$$

for some effective constant c, C independent of n and k.
Furthermore, for an additional parameter λ,

$$
\mathbb{P}\left(\bigcup_{\ell=k}^{2 k} \bigcup_{\lambda_{1}=0}^{\lambda} \cdots \bigcup_{\lambda_{4}=0}^{\lambda} \bigcap_{i=1}^{4} \mathbf{E}_{i, \ell-\lambda_{i}}\right) \leq C(\lambda+1)^{4} k^{-c}
$$

Proof of Lemma 8

- Wlog let k be sufficiently large, and let $\lambda<\frac{k}{2}$. Let $0<\epsilon<\frac{1}{2}$.

Proof of Lemma 8

- Wlog let k be sufficiently large, and let $\lambda<\frac{k}{2}$. Let $0<\epsilon<\frac{1}{2}$.
- Define $\mathbf{B}_{i, k, \epsilon}$ as the event that $\boldsymbol{\sigma}_{i}$ has at least $(1+\epsilon) \log k$ cycles whose sizes are less than k.

Proof of Lemma 8

- Wlog let k be sufficiently large, and let $\lambda<\frac{k}{2}$. Let $0<\epsilon<\frac{1}{2}$.
- Define $\mathbf{B}_{i, k, \epsilon}$ as the event that $\boldsymbol{\sigma}_{i}$ has at least $(1+\epsilon) \log k$ cycles whose sizes are less than k.
- We shall use the following two facts (maybe proven later?):
(P1) $\mathbb{P}\left(\mathbf{B}_{i, k, \epsilon}\right) \ll k^{-\epsilon^{2} / 3}$.
(P2) $\mathbb{P}\left(\mathbf{E}_{i, k} \backslash \mathbf{B}_{i, k, \epsilon}\right) \ll k^{\log 2-1+2 \epsilon}$.

Proof of Lemma 8

- Wlog let k be sufficiently large, and let $\lambda<\frac{k}{2}$. Let $0<\epsilon<\frac{1}{2}$.
- Define $\mathbf{B}_{i, k, \epsilon}$ as the event that $\boldsymbol{\sigma}_{i}$ has at least $(1+\epsilon) \log k$ cycles whose sizes are less than k.
- We shall use the following two facts (maybe proven later?):
(P1) $\mathbb{P}\left(\mathbf{B}_{i, k, \epsilon}\right) \ll k^{-\epsilon^{2} / 3}$.
(P2) $\mathbb{P}\left(\mathbf{E}_{i, k} \backslash \mathbf{B}_{i, k, \epsilon}\right) \ll k^{\log 2-1+2 \epsilon}$.
- By noting that $\mathbf{B}_{i, \ell, \epsilon}$ implies $\mathbf{B}_{i, 2 k, \epsilon / 2}$ for sufficiently large k and $\ell \in[k / 2,2 k]$, we therefore obtain the bound

$$
\mathbb{P}\left(\bigcup_{\ell=k}^{2 k} \bigcap_{i=1}^{4} \mathbf{E}_{i, \ell}\right) \leq \sum_{i=1}^{4} \mathbb{P}\left(\mathbf{B}_{i, 2 k, \epsilon / 2}\right)+\sum_{\ell=k}^{2 k} \prod_{i=1}^{4} \mathbb{P}\left(\mathbf{E}_{i, \ell} \backslash \mathbf{B}_{i, \ell, \epsilon}\right)
$$

Proof of Lemma 8

- Applying the bounds (P1) and (P2), this gives us

$$
\mathbb{P}\left(\bigcup_{\ell=k}^{2 k} \bigcap_{i=1}^{4} \mathbf{E}_{i, \ell}\right) \ll 4 k^{-\epsilon^{2} / 12}+k^{1+4(\log 2-1+2 \epsilon)}
$$

Proof of Lemma 8

- Applying the bounds (P1) and (P2), this gives us

$$
\mathbb{P}\left(\bigcup_{\ell=k}^{2 k} \bigcap_{i=1}^{4} \mathbf{E}_{i, \ell}\right) \ll 4 k^{-\epsilon^{2} / 12}+k^{1+4(\log 2-1+2 \epsilon)}
$$

- By letting ϵ be small enough (e.g. $\epsilon=0.02$), we have that $1+4(\log 2-1+2 \epsilon)<0$, and thus the first result holds for

$$
c=\min \left(\epsilon^{2} / 12,-1-4(\log 2-1+2 \epsilon)\right)
$$

Proof of Lemma 8

The second estimate can be obtained by essentially the same argument:

$$
\begin{aligned}
P:= & \mathbb{P}\left(\bigcup_{\ell=k}^{2 k} \bigcup_{\lambda_{1}=0}^{\lambda} \cdots \bigcup_{\lambda_{4}=0}^{\lambda} \bigcap_{i=1}^{4} \mathbf{E}_{i, \ell-\lambda_{i}}\right) \leq \\
& \leq \sum_{i=1}^{4} \mathbb{P}\left(\mathbf{B}_{i, 2 k, \epsilon / 2}\right)+\sum_{\ell=k}^{2 k} \sum_{\lambda_{1}=0}^{\lambda} \cdots \sum_{\lambda_{4}=0}^{\lambda} \prod_{i=1}^{4} \mathbb{P}\left(\mathbf{E}_{i, \ell-\lambda_{i}} \backslash \mathbf{B}_{i, \ell-\lambda_{i}, \epsilon}\right) \\
& \ll 4 k^{-\epsilon^{2} / 12}+(\lambda+1)^{4} \sum_{\ell=k / 2}^{2 k} k^{4(\log 2-1+2 \epsilon)} \\
& \ll(\lambda+1)^{4} k^{-c}
\end{aligned}
$$

where as before $c=\min \left(\epsilon^{2} / 12,-1-4(\log 2-1+2 \epsilon)\right)$.

Proof of main theorem

Theorem (Bary-Soroker, Kozma (2017))

Let L be a positive integer divisible by at least 4 distinct primes. Let $\mathbf{f}=X^{n}+\mathbf{a}_{n-1} X^{n-1}+\cdots+\mathbf{a}_{1} X+\mathbf{a}_{0}$ where $\mathbf{a}_{0}, \ldots, \mathbf{a}_{n-1}$ are i.i.d random variables taking values uniformly in $\{1, \ldots, L\}$. Then $\mathbb{P}(\mathbf{f}$ is irreducible $) \rightarrow 1$, as $n \rightarrow \infty$.

Proof of main theorem

Theorem (Bary-Soroker, Kozma (2017))

Let L be a positive integer divisible by at least 4 distinct primes. Let $\mathbf{f}=X^{n}+\mathbf{a}_{n-1} X^{n-1}+\cdots+\mathbf{a}_{1} X+\mathbf{a}_{0}$ where $\mathbf{a}_{0}, \ldots, \mathbf{a}_{n-1}$ are i.i.d random variables taking values uniformly in $\{1, \ldots, L\}$. Then $\mathbb{P}(\mathbf{f}$ is irreducible $) \rightarrow 1$, as $n \rightarrow \infty$.

- Fix some k sufficiently large. We shall consider divisors of degree $k<\ell<2 k$.

Proof of main theorem

Theorem (Bary-Soroker, Kozma (2017))

Let L be a positive integer divisible by at least 4 distinct primes. Let $\mathbf{f}=X^{n}+\mathbf{a}_{n-1} X^{n-1}+\cdots+\mathbf{a}_{1} X+\mathbf{a}_{0}$ where $\mathbf{a}_{0}, \ldots, \mathbf{a}_{n-1}$ are i.i.d random variables taking values uniformly in $\{1, \ldots, L\}$. Then $\mathbb{P}(\mathbf{f}$ is irreducible $) \rightarrow 1$, as $n \rightarrow \infty$.

- Fix some k sufficiently large. We shall consider divisors of degree $k<\ell<2 k$.
- Let p_{1}, \ldots, p_{4} be 4 distinct primes dividing L, and define $\mathbf{f}_{p_{i}}$ as the reduction of \mathbf{f} $\bmod p_{i}$.

Proof of main theorem

Theorem (Bary-Soroker, Kozma (2017))

Let L be a positive integer divisible by at least 4 distinct primes. Let $\mathbf{f}=X^{n}+\mathbf{a}_{n-1} X^{n-1}+\cdots+\mathbf{a}_{1} X+\mathbf{a}_{0}$ where $\mathbf{a}_{0}, \ldots, \mathbf{a}_{n-1}$ are i.i.d random variables taking values uniformly in $\{1, \ldots, L\}$. Then $\mathbb{P}(\mathbf{f}$ is irreducible $) \rightarrow 1$, as $n \rightarrow \infty$.

- Fix some k sufficiently large. We shall consider divisors of degree $k<\ell<2 k$.
- Let p_{1}, \ldots, p_{4} be 4 distinct primes dividing L, and define $\mathbf{f}_{p_{i}}$ as the reduction of \mathbf{f} $\bmod p_{i}$.
- For $r=1, \ldots, 4$, define \mathbf{X}_{r} as the random tuple which takes the value ($\mathbf{m}_{1, r}, \mathbf{m}_{2, r}, \ldots$) where $\mathbf{m}_{i, r}$ is the number of irreducible factors of $\mathbf{f}_{p_{r}}$ of degree i.

Proof of main theorem

Theorem (Bary-Soroker, Kozma (2017))

Let L be a positive integer divisible by at least 4 distinct primes. Let $\mathbf{f}=X^{n}+\mathbf{a}_{n-1} X^{n-1}+\cdots+\mathbf{a}_{1} X+\mathbf{a}_{0}$ where $\mathbf{a}_{0}, \ldots, \mathbf{a}_{n-1}$ are i.i.d random variables taking values uniformly in $\{1, \ldots, L\}$. Then $\mathbb{P}(\mathbf{f}$ is irreducible $) \rightarrow 1$, as $n \rightarrow \infty$.

- Fix some k sufficiently large. We shall consider divisors of degree $k<\ell<2 k$.
- Let p_{1}, \ldots, p_{4} be 4 distinct primes dividing L, and define $\mathbf{f}_{p_{i}}$ as the reduction of \mathbf{f} $\bmod p_{i}$.
- For $r=1, \ldots, 4$, define \mathbf{X}_{r} as the random tuple which takes the value ($\mathbf{m}_{1, r}, \mathbf{m}_{2, r}, \ldots$) where $\mathbf{m}_{i, r}$ is the number of irreducible factors of $\mathbf{f}_{p_{r}}$ of degree i.
- Analogously, let $\boldsymbol{\sigma}$ be a random permutation in S_{n}, and define \mathbf{Y} as the random tuple ($\mathbf{n}_{1}, \mathbf{n}_{2}, \ldots$) where \mathbf{n}_{i} is the number of cycles of $\boldsymbol{\sigma}$ of length i.

Proof of main theorem

- Now first, we let \mathbf{B}_{k} be the event that for some $r=1, \ldots, 4$ and some $i<\log ^{2} k$ we have $\mathbf{m}_{i, r}<\log ^{2} k$

Proof of main theorem

- Now first, we let \mathbf{B}_{k} be the event that for some $r=1, \ldots, 4$ and some $i<\log ^{2} k$ we have $\mathbf{m}_{i, r}<\log ^{2} k$
- We have the bound $\mathbb{P}\left(\mathbf{B}_{k}\right) \ll 4 \log ^{2} k e^{-c \log ^{2} k}$ (next week), thus \mathbf{B}_{k} occurs negligibly.

Proof of main theorem

- Now first, we let \mathbf{B}_{k} be the event that for some $r=1, \ldots, 4$ and some $i<\log ^{2} k$ we have $\mathbf{m}_{i, r}<\log ^{2} k$
- We have the bound $\mathbb{P}\left(\mathbf{B}_{k}\right) \ll 4 \log ^{2} k e^{-c \log ^{2} k}$ (next week), thus \mathbf{B}_{k} occurs negligibly.
- Let \mathbf{R}_{k} be the event that for some $k \leq \ell<2 k$ and some $\lambda_{r}<\log ^{6} k$ we can write

$$
\ell-\lambda_{r}=\sum_{i>\log ^{2} k} i \ell_{i, r}, \quad \ell_{i, r} \leq \mathbf{m}_{i, r}
$$

for all $r=1, \ldots, 4$.

Proof of main theorem

- Now first, we let \mathbf{B}_{k} be the event that for some $r=1, \ldots, 4$ and some $i<\log ^{2} k$ we have $\mathbf{m}_{i, r}<\log ^{2} k$
- We have the bound $\mathbb{P}\left(\mathbf{B}_{k}\right) \ll 4 \log ^{2} k e^{-c \log ^{2} k}$ (next week), thus \mathbf{B}_{k} occurs negligibly.
- Let \mathbf{R}_{k} be the event that for some $k \leq \ell<2 k$ and some $\lambda_{r}<\log ^{6} k$ we can write

$$
\ell-\lambda_{r}=\sum_{i>\log ^{2} k} i \ell_{i, r}, \quad \ell_{i, r} \leq \mathbf{m}_{i, r}
$$

for all $r=1, \ldots, 4$.

- Similarly, let \mathbf{S}_{k} be the event that for some $k \leq \ell<2 k$ and some $\lambda<\log ^{6} k$ we can write

$$
\ell-\lambda=\sum_{i>\log ^{2} k} i \ell_{i}, \quad \ell_{i} \leq \mathbf{n}_{i}
$$

Proof of main theorem

- We now use that \mathbf{X}_{r} and \mathbf{Y} have sufficiently similar distributions (next week) which implies $\left|\mathbb{P}\left(\mathbf{R}_{k}\right)-\mathbb{P}\left(\mathbf{S}_{k}\right)\right| \ll 1 / \log ^{2} k$.

Proof of main theorem

- We now use that \mathbf{X}_{r} and \mathbf{Y} have sufficiently similar distributions (next week) which implies $\left|\mathbb{P}\left(\mathbf{R}_{k}\right)-\mathbb{P}\left(\mathbf{S}_{k}\right)\right| \ll 1 / \log ^{2} k$.
- By Lemma 8, we have $\mathbb{P}\left(\mathbf{S}_{k}\right) \ll k^{-c} \log ^{24} k$.

Proof of main theorem

- We now use that \mathbf{X}_{r} and \mathbf{Y} have sufficiently similar distributions (next week) which implies $\left|\mathbb{P}\left(\mathbf{R}_{k}\right)-\mathbb{P}\left(\mathbf{S}_{k}\right)\right| \ll 1 / \log ^{2} k$.
- By Lemma 8, we have $\mathbb{P}\left(\mathbf{S}_{k}\right) \ll k^{-c} \log ^{24} k$.
- This implies $\mathbb{P}\left(\mathbf{R}_{k}\right) \ll 1 / \log ^{2} k$.

Proof of main theorem

- We now use that \mathbf{X}_{r} and \mathbf{Y} have sufficiently similar distributions (next week) which implies $\left|\mathbb{P}\left(\mathbf{R}_{k}\right)-\mathbb{P}\left(\mathbf{S}_{k}\right)\right| \ll 1 / \log ^{2} k$.
- By Lemma 8, we have $\mathbb{P}\left(\mathbf{S}_{k}\right) \ll k^{-c} \log ^{24} k$.
- This implies $\mathbb{P}\left(\mathbf{R}_{k}\right) \ll 1 / \log ^{2} k$.
- Now, let \mathbf{Q}_{k} be the event that for some $k \leq \ell<2 k$ we can write $\ell=\sum i \ell_{i, r}$ for some $\ell_{i, r} \leq \mathbf{m}_{i, r}$, for all $r=1, \ldots, 4$.

Proof of main theorem

- We now use that \mathbf{X}_{r} and \mathbf{Y} have sufficiently similar distributions (next week) which implies $\left|\mathbb{P}\left(\mathbf{R}_{k}\right)-\mathbb{P}\left(\mathbf{S}_{k}\right)\right| \ll 1 / \log ^{2} k$.
- By Lemma 8, we have $\mathbb{P}\left(\mathbf{S}_{k}\right) \ll k^{-c} \log ^{24} k$.
- This implies $\mathbb{P}\left(\mathbf{R}_{k}\right) \ll 1 / \log ^{2} k$.
- Now, let \mathbf{Q}_{k} be the event that for some $k \leq \ell<2 k$ we can write $\ell=\sum i \ell_{i, r}$ for some $\ell_{i, r} \leq \mathbf{m}_{i, r}$, for all $r=1, \ldots, 4$.
- As $\mathbf{Q}_{k} \backslash \mathbf{B}_{k}$ is contained in the event \mathbf{R}_{k}, this implies $\mathbb{P}\left(\mathbf{Q}_{k} \backslash \mathbf{B}_{k}\right) \ll 1 / \log ^{2} k$.

Proof of main theorem

- We now use that \mathbf{X}_{r} and \mathbf{Y} have sufficiently similar distributions (next week) which implies $\left|\mathbb{P}\left(\mathbf{R}_{k}\right)-\mathbb{P}\left(\mathbf{S}_{k}\right)\right| \ll 1 / \log ^{2} k$.
- By Lemma 8, we have $\mathbb{P}\left(\mathbf{S}_{k}\right) \ll k^{-c} \log ^{24} k$.
- This implies $\mathbb{P}\left(\mathbf{R}_{k}\right) \ll 1 / \log ^{2} k$.
- Now, let \mathbf{Q}_{k} be the event that for some $k \leq \ell<2 k$ we can write $\ell=\sum i \ell_{i, r}$ for some $\ell_{i, r} \leq \mathbf{m}_{i, r}$, for all $r=1, \ldots, 4$.
- As $\mathbf{Q}_{k} \backslash \mathbf{B}_{k}$ is contained in the event \mathbf{R}_{k}, this implies $\mathbb{P}\left(\mathbf{Q}_{k} \backslash \mathbf{B}_{k}\right) \ll 1 / \log ^{2} k$.
- Finally, as \mathbf{B}_{k} is negligible, we have $\mathbb{P}\left(\mathbf{Q}_{k}\right) \ll 1 / \log ^{2} k$.

Proof of main theorem

- We now use that \mathbf{X}_{r} and \mathbf{Y} have sufficiently similar distributions (next week) which implies $\left|\mathbb{P}\left(\mathbf{R}_{k}\right)-\mathbb{P}\left(\mathbf{S}_{k}\right)\right| \ll 1 / \log ^{2} k$.
- By Lemma 8, we have $\mathbb{P}\left(\mathbf{S}_{k}\right) \ll k^{-c} \log ^{24} k$.
- This implies $\mathbb{P}\left(\mathbf{R}_{k}\right) \ll 1 / \log ^{2} k$.
- Now, let \mathbf{Q}_{k} be the event that for some $k \leq \ell<2 k$ we can write $\ell=\sum i \ell_{i, r}$ for some $\ell_{i, r} \leq \mathbf{m}_{i, r}$, for all $r=1, \ldots, 4$.
- As $\mathbf{Q}_{k} \backslash \mathbf{B}_{k}$ is contained in the event \mathbf{R}_{k}, this implies $\mathbb{P}\left(\mathbf{Q}_{k} \backslash \mathbf{B}_{k}\right) \ll 1 / \log ^{2} k$.
- Finally, as \mathbf{B}_{k} is negligible, we have $\mathbb{P}\left(\mathbf{Q}_{k}\right) \ll 1 / \log ^{2} k$.

Therefore, $\mathbb{P}(\mathbf{f}$ has divisor of degree $\in[k, 2 k)) \ll \frac{1}{\log ^{2} k}$

Proof of main theorem

Finally, summing over all possible divisors, this proves

$$
\begin{aligned}
\mathbb{P}(\mathbf{f} \text { reducible }) \leq & \mathbb{P}(\mathbf{f} \text { has divisors of degree } \leq \omega(n)) \\
& +\sum_{\substack{k=\omega(n) \cdot 2^{i} \\
i=0, \ldots, \log _{2} n}} \mathbb{P}(\mathbf{f} \text { has divisors of degree } \in[k, 2 k)) \\
& \ll(\text { something small })+\sum_{\substack{k=\omega(n) \cdot 2^{i} \\
i=0, \ldots, \log _{2} n}} \frac{1}{\log ^{2} k} \\
& \ll \frac{1}{\log \omega(n)}-\frac{1}{\log \omega(n)+\log n} \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Proof of main theorem

Finally, summing over all possible divisors, this proves

$$
\begin{aligned}
\mathbb{P}(\mathbf{f} \text { reducible }) \leq & \mathbb{P}(\mathbf{f} \text { has divisors of degree } \leq \omega(n)) \\
& +\sum_{\substack{k=\omega(n) \cdot 2^{i} \\
i=0, \ldots, \log _{2} n}} \mathbb{P}(\mathbf{f} \text { has divisors of degree } \in[k, 2 k)) \\
& \ll(\text { something small })+\sum_{\substack{k=\omega(n) \cdot 2^{i} \\
i=0, \ldots, \log _{2} n}} \frac{1}{\log ^{2} k} \\
& \ll \frac{1}{\log \omega(n)}-\frac{1}{\log \omega(n)+\log n} \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

E.g. Using Konyagin's bound for $\omega(n)$, we have $\mathbb{P}(\mathbf{f}$ reducible $) \ll \frac{1}{\log n}$.

Recent developments

Theorem (Bary-Soroker, Koukoulopoulos, Kozma (2020))
Let $L \geq 35$, and let $\mathbf{f}=X^{n}+\mathbf{a}_{n-1} X^{n-1}+\cdots+\mathbf{a}_{1} X+\mathbf{a}_{0}$ where $\mathbf{a}_{0}, \ldots, \mathbf{a}_{n-1}$ are i.i.d random variables taking values uniformly in $\{1, \ldots, L\}$. Then $\mathbb{P}(\mathbf{f}$ is irreducible $) \rightarrow 1$, as $n \rightarrow \infty$.

Recent developments

Theorem (Bary-Soroker, Koukoulopoulos, Kozma (2020))

Let $L \geq 35$, and let $\mathbf{f}=X^{n}+\mathbf{a}_{n-1} X^{n-1}+\cdots+\mathbf{a}_{1} X+\mathbf{a}_{0}$ where $\mathbf{a}_{0}, \ldots, \mathbf{a}_{n-1}$ are i.i.d random variables taking values uniformly in $\{1, \ldots, L\}$. Then $\mathbb{P}(\mathbf{f}$ is irreducible $) \rightarrow 1$, as $n \rightarrow \infty$.

- This was proven using a combination of a standard argument for $L \geq 33730$ and a computer-assisted proof for $35 \leq L<33730$.

Recent developments

Theorem (Bary-Soroker, Koukoulopoulos, Kozma (2020))

Let $L \geq 35$, and let $\mathbf{f}=X^{n}+\mathbf{a}_{n-1} X^{n-1}+\cdots+\mathbf{a}_{1} X+\mathbf{a}_{0}$ where $\mathbf{a}_{0}, \ldots, \mathbf{a}_{n-1}$ are i.i.d random variables taking values uniformly in $\{1, \ldots, L\}$. Then $\mathbb{P}(\mathbf{f}$ is irreducible $) \rightarrow 1$, as $n \rightarrow \infty$.

- This was proven using a combination of a standard argument for $L \geq 33730$ and a computer-assisted proof for $35 \leq L<33730$.
- Here, \mathbf{f}_{p} does not have uniformly distributed coefficients mod p nor independence necessarily, and so Bary-Soroker-Koukoulopoulos-Kozma use p-adic Fourier Analysis and the large sieve to prove approximate equidistribution modulo 4 primes.

Recent developments

Theorem (Bary-Soroker, Koukoulopoulos, Kozma (2020))

Let $L \geq 35$, and let $\mathbf{f}=X^{n}+\mathbf{a}_{n-1} X^{n-1}+\cdots+\mathbf{a}_{1} X+\mathbf{a}_{0}$ where $\mathbf{a}_{0}, \ldots, \mathbf{a}_{n-1}$ are i.i.d random variables taking values uniformly in $\{1, \ldots, L\}$. Then $\mathbb{P}(\mathbf{f}$ is irreducible $) \rightarrow 1$, as $n \rightarrow \infty$.

- This was proven using a combination of a standard argument for $L \geq 33730$ and a computer-assisted proof for $35 \leq L<33730$.
- Here, \mathbf{f}_{p} does not have uniformly distributed coefficients mod p nor independence necessarily, and so Bary-Soroker-Koukoulopoulos-Kozma use p-adic Fourier Analysis and the large sieve to prove approximate equidistribution modulo 4 primes.
- Their proofs also work for general measures (under some assumptions), even for non-identically distributed coefficients.

Proof of P1

Let $S_{n}(k, \ell)$ be the set of $\pi \in S_{n}$ containing exactly ℓ cycles of length at most k. We can write

$$
n\left|S_{n}(k, \ell)\right|=\sum_{\substack{\pi \in S_{n}(k, \ell)}} \sum_{\substack{\sigma \mid \pi \\ \sigma \text { a cycle }}}|\sigma|
$$

By substituting $\pi=\sigma \pi^{\prime}$ and noting that π^{\prime} has either $\ell-1$ or ℓ cycles of length at most k, we get

$$
n\left|S_{n}(k, \ell)\right| \leq \sum_{j=1}^{n} \sum_{m=\ell-1}^{\ell} \sum_{\pi^{\prime} \in S_{n-j}(k, m)} \sum_{\substack{\sigma \in S_{n},|\sigma|=j \\ \sigma \text { a cycle }}} j=\sum_{j=1}^{n} \sum_{m=\ell-1}^{\ell} \sum_{\pi^{\prime} \in S_{n-j}(k, m)} \frac{n!}{(n-j)!}
$$

Now we rearrange this sum according to the cycle type $\left(c_{1}, \ldots, c_{n}\right)$ of the permutation π^{\prime} and apply the Cauchy formula:

Proof of P1

$$
\begin{aligned}
& n\left|S_{n}(k, \ell)\right| \leq n!\sum_{j=1}^{n} \sum_{\substack{c_{1}, \ldots, c_{n} \geq 0 \\
c_{1}+2 c_{2}+\cdots+n c_{n}=n-j \\
c_{1}+\cdots+c_{k} \in\{\ell-1, \ell\}}} \frac{1}{\prod_{i} c_{i}!i c_{i}} \\
& \leq n!\sum_{\substack{c_{1}, \ldots, c_{n} \geq 0 \\
c_{1}+\cdots+c_{k} \in\{\ell-1, \ell\}}} \frac{1}{\prod_{i} c_{i}!c_{i}} \\
&=n!\left(\frac{h_{k}^{\ell-1}}{(\ell-1)!}+\frac{h_{k}^{\ell}}{\ell!}\right) \prod_{k<i \leq n} e^{1 / i}
\end{aligned}
$$

where the last inequality follows by the multinomial theorem, and where $h_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}$ are the harmonic numbers.

Proof of P1

By applying the bound $h_{k} \leq 1+\log k$, this proves that

$$
\frac{\mid S_{n}(k, \ell)}{n!} \leq \frac{e}{k} \frac{(1+\log k)^{\ell}}{\ell!}\left(1+\frac{\ell}{1+\log k}\right)
$$

which we note is $O\left(\frac{(1+\log k)^{\ell-1}}{k(\ell-1)!}\right)$ if $\ell \gg \log k$.
Finally, by summing over all $\ell>(1+\epsilon) \log k$, we obtain

$$
\begin{aligned}
\mathbb{P}\left(\mathbf{B}_{i, k, \epsilon}\right) \leq \sum_{\ell>(1+\epsilon) \log k} \frac{\left|S_{n}(k, \ell)\right|}{n!} \ll \sum_{\ell>(1+\epsilon) \log k} \frac{(1+\log k)^{\ell-1}}{k(\ell-1)!} & \ll
\end{aligned}
$$

Finally, by computing a Taylor expansion of $-1+(1+\epsilon) \log (e /(1+\epsilon))$, we obtain the above is bounded by $O\left(k^{-\epsilon^{2} / 3}\right)$ if $\epsilon \leq 1 / 2$, which completes the proof of P1.

Proof of P2

Fix some $\ell \leq(1+\epsilon) \log k$ and consider $\pi \in S_{n}(k, \ell)$
If π fixes some set X with $|X|=k$, then we denote $\pi_{1}=\left.\pi\right|_{X}$ and $\pi_{2}=\left.\pi\right|_{[n] \backslash X}$ for the induced permutations on X and its complement.
Then π has ℓ_{1} cycles of length $\leq k$, and π_{2} has ℓ_{2} cycles of length $\leq k$, where $\ell_{1}+\ell_{2}=\ell$. Thus, by P1, the number of such $\pi \in S_{n}(k, \ell)$ for a given choice of X and ℓ_{1}, ℓ_{2} is

$$
\ll \frac{(1+\log k)^{\ell_{1}}}{k \ell_{1}!} k!\cdot \frac{(1+\log k)^{\ell_{2}}}{k \ell_{2}!}(n-k)!
$$

Therefore, the probability that $\pi \in S_{n}$ has exactly ℓ cycles of length at most k is

$$
\ll \sum_{\ell_{1}+\ell_{2}=\ell} \frac{1}{k^{2}} \frac{(1+\log k)^{\ell}}{\ell_{1}!\ell_{2}!}=\frac{2^{\ell}(1+\log k)^{\ell}}{k^{2} \ell!}
$$

Proof of P2

Therefore, by summing over all $\ell \leq(1+\epsilon) \log k$, we obtain

$$
\begin{aligned}
\mathbb{P}\left(\mathbf{E}_{i, k} \backslash \mathbf{B}_{i, k, \epsilon}\right) & \ll \frac{1}{k^{2}} \sum_{\ell \leq(1+\epsilon) \log k} \frac{2^{\ell}(1+\log k)^{\ell}}{\ell!} \\
& \ll \frac{1}{k^{2}} \frac{2^{(1+\epsilon) \log k}(1+\log k)^{(1+\epsilon) \log k}}{((1+\epsilon) \log k)!} \\
& \ll \frac{1}{k^{1-\log 2-2 \epsilon}}
\end{aligned}
$$

which proves P2.

References

(Bary-Soroker, L., Koukoulopoulos, D., Kozma, G. (2020)
Irreducibility of random polynomials: general measures
Preprint, Available at: arXiv:2007.14567.
國 Bary-Soroker, L., Kozma, G. (2017)
Irreducible polynomials of bounded height
Duke Math. J. 169(4), 579-598.
Eberhard, S., Ford, K., Green, B. (2017)
Invariable generation of the symmetric group
Duke Math. J. 166(8): 1573-1590.
Ronyagin, S.V. (1999)
On the number of irreducible polynomials with 0,1 coefficients
Acta Arith. 88 (1999), 333-350.

References

Kozma, G., Zeitouni, O. (2013)
On Common Roots of Random Bernoulli Polynomials,
Int. Math. Res., 18, 4334-4347.
Littlewood, J.E., Offord, A.C. (1943)
On the number of real roots of a random algebraic equation (III) Rec. Math. [Mat. Sbornik] N.S., 12(54):3, 277-286.

囯 Meisner, P. (2018)
Erdös' Multiplication Table Problem for Function Fields and Symmetric Groups.
Preprint, Available at: arXiv:1804.08483.

Questions?

