Abelian surfaces with good reduction away from 2

LMFDB, Computation, and Number Theory (LuCaNT) workshop

Robin Visser
Mathematics Institute University of Warwick

11 July 2023

Problem

Problem

Classify all abelian surfaces A / \mathbb{Q} with good reduction away from 2 .

Problem

Problem

Classify all abelian surfaces A / \mathbb{Q} with good reduction away from 2 .

- This seems quite hard (at least for me)!

Problem

Problem

Classify all abelian surfaces A / \mathbb{Q} with good reduction away from 2.

- This seems quite hard (at least for me)!

(Hopefully easier) subproblem

Classify all isogeny classes of abelian surfaces A / \mathbb{Q} with good reduction away from 2 and with full rational 2-torsion (i.e. $\mathbb{Q}(A[2])=\mathbb{Q}$).

Faltings-Serre-Livné method

Let A / K be an abelian variety. Its L-function factors as an Euler product,

$$
L(A / K, s)=\prod_{p \text { prime }} L_{p}(A / K, s) .
$$

Faltings-Serre-Livné method

Let A / K be an abelian variety. Its L-function factors as an Euler product,

$$
L(A / K, s)=\prod_{p \text { prime }} L_{p}(A / K, s) .
$$

Theorem (Faltings-Serre-Livné)

Let A / K and B / K be two abelian varieties. If $L_{p}(A / K, s)=L_{p}(B / K, s)$ for some effectively computable finite set of primes p, then $L(A / K, s)=L(B / K, s)$.

Faltings-Serre-Livné method

Let A / K be an abelian variety. Its L-function factors as an Euler product,

$$
L(A / K, s)=\prod_{p \text { prime }} L_{p}(A / K, s) .
$$

Theorem (Faltings-Serre-Livné)

Let A / K and B / K be two abelian varieties. If $L_{p}(A / K, s)=L_{p}(B / K, s)$ for some effectively computable finite set of primes p, then $L(A / K, s)=L(B / K, s)$.

Theorem (Faltings-Serre-Livné (effective))

Let A / \mathbb{Q} and B / \mathbb{Q} be two abelian varieties with good reduction away from 2 and with full rational 2-torsion. Then if $L_{p}(A / \mathbb{Q}, s)=L_{p}(B / \mathbb{Q}, s)$ for each $p \in\{3,5,7\}$, then A and B are isogenous over \mathbb{Q}.

Computations

We brute force the possible Euler factors $L_{p}(A / \mathbb{Q}, s)$ for $p=3,5,7$!

Computations

We brute force the possible Euler factors $L_{p}(A / \mathbb{Q}, s)$ for $p=3,5,7$!

- Use that $\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ embeds in $\mathrm{GL}_{4}\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$, for each $n \geq 1$.

Computations

We brute force the possible Euler factors $L_{p}(A / \mathbb{Q}, s)$ for $p=3,5,7$!

- Use that $\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ embeds in $\mathrm{GL}_{4}\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$, for each $n \geq 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for $L_{p}(A / \mathbb{Q}, s) \bmod 2^{n}$.

Computations

We brute force the possible Euler factors $L_{p}(A / \mathbb{Q}, s)$ for $p=3,5,7$!

- Use that $\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ embeds in $\mathrm{GL}_{4}\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$, for each $n \geq 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for $L_{p}(A / \mathbb{Q}, s) \bmod 2^{n}$.

n	$\mathbb{Q}\left(A\left[2^{n}\right]\right)$	$\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$	$\# L_{3}(A / \mathbb{Q}, s)$	$\# L_{5}(A / \mathbb{Q}, s)$	$\# L_{7}(A / \mathbb{Q}, s)$
0	\mathbb{Q}	C_{1}	63	129	207

Computations

We brute force the possible Euler factors $L_{p}(A / \mathbb{Q}, s)$ for $p=3,5,7$!

- Use that $\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ embeds in $\mathrm{GL}_{4}\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$, for each $n \geq 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for $L_{p}(A / \mathbb{Q}, s) \bmod 2^{n}$.

n	$\mathbb{Q}\left(A\left[2^{n}\right]\right)$	$\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$	$\# L_{3}(A / \mathbb{Q}, s)$	$\# L_{5}(A / \mathbb{Q}, s)$	$\# L_{7}(A / \mathbb{Q}, s)$
0	\mathbb{Q}	C_{1}	63	129	207
1	\mathbb{Q}	C_{1}	17	35	53

Computations

We brute force the possible Euler factors $L_{p}(A / \mathbb{Q}, s)$ for $p=3,5,7$!

- Use that $\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ embeds in $\mathrm{GL}_{4}\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$, for each $n \geq 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for $L_{p}(A / \mathbb{Q}, s) \bmod 2^{n}$.

n	$\mathbb{Q}\left(A\left[2^{n}\right]\right)$	$\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$	$\# L_{3}(A / \mathbb{Q}, s)$	$\# L_{5}(A / \mathbb{Q}, s)$	$\# L_{7}(A / \mathbb{Q}, s)$
0	\mathbb{Q}	C_{1}	63	129	207
1	\mathbb{Q}	C_{1}	17	35	53
2	$\mathbb{Q}\left(\zeta_{8}\right)$	$C_{2} \times C_{2}$	6	12	16

Computations

We brute force the possible Euler factors $L_{p}(A / \mathbb{Q}, s)$ for $p=3,5,7$!

- Use that $\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ embeds in $\mathrm{GL}_{4}\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$, for each $n \geq 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for $L_{p}(A / \mathbb{Q}, s) \bmod 2^{n}$.

n	$\mathbb{Q}\left(A\left[2^{n}\right]\right)$	$\mathrm{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$	$\# L_{3}(A / \mathbb{Q}, s)$	$\# L_{5}(A / \mathbb{Q}, s)$	$\# L_{7}(A / \mathbb{Q}, s)$
0	\mathbb{Q}	C_{1}	63	129	207
1	\mathbb{Q}	C_{1}	17	35	53
2	$\mathbb{Q}\left(\zeta_{8}\right)$	$C_{2} \times C_{2}$	6	12	16
3	$\mathbb{Q}\left(\zeta_{16}, \sqrt[4]{2}\right)$	$C_{2}^{2} \rtimes C_{4}$	2	5	6

Computations

We brute force the possible Euler factors $L_{p}(A / \mathbb{Q}, s)$ for $p=3,5,7$!

- Use that $\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ embeds in $\mathrm{GL}_{4}\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$, for each $n \geq 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for $L_{p}(A / \mathbb{Q}, s) \bmod 2^{n}$.

n	$\mathbb{Q}\left(A\left[2^{n}\right]\right)$	$\mathrm{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$	$\# L_{3}(A / \mathbb{Q}, s)$	$\# L_{5}(A / \mathbb{Q}, s)$	$\# L_{7}(A / \mathbb{Q}, s)$
0	\mathbb{Q}	C_{1}	63	129	207
1	\mathbb{Q}	C_{1}	17	35	53
2	$\mathbb{Q}\left(\zeta_{8}\right)$	$C_{2} \times C_{2}$	6	12	16
3	$\mathbb{Q}\left(\zeta_{16}, \sqrt[4]{2}\right)$	$C_{2}^{2} \rtimes C_{4}$	2	5	6
4	$?$	$C_{2}^{2} \rtimes C_{8}, D_{4} \rtimes C_{8}$,	1	4	2
		$C_{2}^{2} . C_{4} \backslash C_{2}$			2

Computations

We brute force the possible Euler factors $L_{p}(A / \mathbb{Q}, s)$ for $p=3,5,7$!

- Use that $\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ embeds in $\mathrm{GL}_{4}\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$, for each $n \geq 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for $L_{p}(A / \mathbb{Q}, s) \bmod 2^{n}$.

n	$\mathbb{Q}\left(A\left[2^{n}\right]\right)$	$\mathrm{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$	$\# L_{3}(A / \mathbb{Q}, s)$	$\# L_{5}(A / \mathbb{Q}, s)$	$\# L_{7}(A / \mathbb{Q}, s)$
0	\mathbb{Q}	C_{1}	63	129	207
1	\mathbb{Q}	C_{1}	17	35	53
2	$\mathbb{Q}\left(\zeta_{8}\right)$	$C_{2} \times C_{2}$	6	12	16
3	$\mathbb{Q}\left(\zeta_{16}, \sqrt[4]{2}\right)$	$C_{2}^{2} \rtimes C_{4}$	2	5	6
4	$?$	$C_{2}^{2} \rtimes C_{8}, D_{4} \rtimes C_{8}$,	1	4	2
5	$?$	$C_{2}^{2} \cdot C_{4} \backslash C_{2}$	$($ many $)$	1	3

Results

Theorem

There are exactly 3 isogeny classes of abelian surfaces A / \mathbb{Q} with good reduction away from 2 which contain surfaces with full rational 2-torsion. These are given by $E_{1} \times E_{1}$, $E_{1} \times E_{2}$ and $E_{2} \times E_{2}$, where E_{1}, E_{2} are the elliptic curves $E_{1}: y^{2}=x^{3}-x$ and $E_{2}: y^{2}=x^{3}-4 x$.

Results

Theorem

There are exactly 3 isogeny classes of abelian surfaces A / \mathbb{Q} with good reduction away from 2 which contain surfaces with full rational 2-torsion. These are given by $E_{1} \times E_{1}$, $E_{1} \times E_{2}$ and $E_{2} \times E_{2}$, where E_{1}, E_{2} are the elliptic curves $E_{1}: y^{2}=x^{3}-x$ and $E_{2}: y^{2}=x^{3}-4 x$.

Doing a similar (albeit longer) computation also gives the following result:

Theorem

There are exactly 19 isogeny classes of abelian surfaces A / \mathbb{Q} with good reduction away from 2 which contain surfaces such that either $A[2](\mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{4}$ or $A[2](\mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{3}$.

