# Abelian surfaces with good reduction away from 2

LMFDB, Computation, and Number Theory (LuCaNT) workshop

Robin Visser Mathematics Institute University of Warwick

11 July 2023



#### Problem

Classify all abelian surfaces  $A/\mathbb{Q}$  with good reduction away from 2.

### Problem

Classify all abelian surfaces  $A/\mathbb{Q}$  with good reduction away from 2.

• This seems quite hard (at least for me)!

#### Problem

Classify all abelian surfaces  $A/\mathbb{Q}$  with good reduction away from 2.

• This seems quite hard (at least for me)!

#### (Hopefully easier) subproblem

Classify all isogeny classes of abelian surfaces  $A/\mathbb{Q}$  with good reduction away from 2 and with full rational 2-torsion (i.e.  $\mathbb{Q}(A[2]) = \mathbb{Q}$ ).

### Faltings–Serre–Livné method

Let A/K be an abelian variety. Its *L*-function factors as an Euler product,

$$L(A/K, s) = \prod_{p \text{ prime}} L_p(A/K, s).$$

### Faltings–Serre–Livné method

Let A/K be an abelian variety. Its L-function factors as an Euler product,

$$L(A/K, s) = \prod_{p \text{ prime}} L_p(A/K, s).$$

#### Theorem (Faltings–Serre–Livné)

Let A/K and B/K be two abelian varieties. If  $L_p(A/K, s) = L_p(B/K, s)$  for some effectively computable finite set of primes p, then L(A/K, s) = L(B/K, s).

### Faltings–Serre–Livné method

Let A/K be an abelian variety. Its L-function factors as an Euler product,

$$L(A/K, s) = \prod_{p \text{ prime}} L_p(A/K, s).$$

#### Theorem (Faltings–Serre–Livné)

Let A/K and B/K be two abelian varieties. If  $L_p(A/K, s) = L_p(B/K, s)$  for some effectively computable finite set of primes p, then L(A/K, s) = L(B/K, s).

#### Theorem (Faltings–Serre–Livné (effective))

Let  $A/\mathbb{Q}$  and  $B/\mathbb{Q}$  be two abelian varieties with good reduction away from 2 and with full rational 2-torsion. Then if  $L_p(A/\mathbb{Q}, s) = L_p(B/\mathbb{Q}, s)$  for each  $p \in \{3, 5, 7\}$ , then A and B are isogenous over  $\mathbb{Q}$ .

We brute force the possible Euler factors  $L_p(A/\mathbb{Q}, s)$  for p = 3, 5, 7 !

• Use that  $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$  embeds in  $GL_4(\mathbb{Z}/2^n\mathbb{Z})$ , for each  $n \ge 1$ .

- Use that  $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$  embeds in  $GL_4(\mathbb{Z}/2^n\mathbb{Z})$ , for each  $n \ge 1$ .
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for L<sub>p</sub>(A/Q, s) mod 2<sup>n</sup>.

- Use that  $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$  embeds in  $GL_4(\mathbb{Z}/2^n\mathbb{Z})$ , for each  $n \ge 1$ .
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for L<sub>p</sub>(A/Q, s) mod 2<sup>n</sup>.

| n | $\mathbb{Q}(A[2^n])$ | $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$ | $\#L_3(A/\mathbb{Q},s)$ | $\#L_5(A/\mathbb{Q},s)$ | $\#L_7(A/\mathbb{Q},s)$ |
|---|----------------------|--------------------------------------|-------------------------|-------------------------|-------------------------|
| 0 | Q                    | <i>C</i> <sub>1</sub>                | 63                      | 129                     | 207                     |

- Use that  $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$  embeds in  $GL_4(\mathbb{Z}/2^n\mathbb{Z})$ , for each  $n \ge 1$ .
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for L<sub>p</sub>(A/Q, s) mod 2<sup>n</sup>.

| n | $\mathbb{Q}(A[2^n])$ | $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$ | $\#L_3(A/\mathbb{Q},s)$ | $\#L_5(A/\mathbb{Q},s)$ | $\#L_7(A/\mathbb{Q},s)$ |
|---|----------------------|--------------------------------------|-------------------------|-------------------------|-------------------------|
| 0 | $\mathbb{Q}$         | <i>C</i> <sub>1</sub>                | 63                      | 129                     | 207                     |
| 1 | $\mathbb{Q}$         | $C_1$                                | 17                      | 35                      | 53                      |

- Use that  $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$  embeds in  $GL_4(\mathbb{Z}/2^n\mathbb{Z})$ , for each  $n \ge 1$ .
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for L<sub>p</sub>(A/Q, s) mod 2<sup>n</sup>.

| n | $\mathbb{Q}(A[2^n])$  | $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$ | $\#L_3(A/\mathbb{Q},s)$ | $\#L_5(A/\mathbb{Q},s)$ | $\#L_7(A/\mathbb{Q},s)$ |
|---|-----------------------|--------------------------------------|-------------------------|-------------------------|-------------------------|
| 0 | $\mathbb{Q}$          | $C_1$                                | 63                      | 129                     | 207                     |
| 1 | $\mathbb{Q}$          | $C_1$                                | 17                      | 35                      | 53                      |
| 2 | $\mathbb{Q}(\zeta_8)$ | $C_2 	imes C_2$                      | 6                       | 12                      | 16                      |

- Use that  $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$  embeds in  $GL_4(\mathbb{Z}/2^n\mathbb{Z})$ , for each  $n \ge 1$ .
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for L<sub>p</sub>(A/Q, s) mod 2<sup>n</sup>.

| n | $\mathbb{Q}(A[2^n])$                 | $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$ | $\#L_3(A/\mathbb{Q},s)$ | $\#L_5(A/\mathbb{Q},s)$ | $\#L_7(A/\mathbb{Q},s)$ |
|---|--------------------------------------|--------------------------------------|-------------------------|-------------------------|-------------------------|
| 0 | $\mathbb{Q}$                         | <i>C</i> <sub>1</sub>                | 63                      | 129                     | 207                     |
| 1 | $\mathbb{Q}$                         | $C_1$                                | 17                      | 35                      | 53                      |
| 2 | $\mathbb{Q}(\zeta_8)$                | $C_2 \times C_2$                     | 6                       | 12                      | 16                      |
| 3 | $\mathbb{Q}(\zeta_{16},\sqrt[4]{2})$ | $C_2^2 \rtimes C_4$                  | 2                       | 5                       | 6                       |

- Use that  $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$  embeds in  $GL_4(\mathbb{Z}/2^n\mathbb{Z})$ , for each  $n \ge 1$ .
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for L<sub>p</sub>(A/Q, s) mod 2<sup>n</sup>.

| n | $\mathbb{Q}(A[2^n])$                 | $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$                    | $\#L_3(A/\mathbb{Q},s)$ | $\#L_5(A/\mathbb{Q},s)$ | $\#L_7(A/\mathbb{Q},s)$ |
|---|--------------------------------------|---------------------------------------------------------|-------------------------|-------------------------|-------------------------|
| 0 | Q                                    | <i>C</i> <sub>1</sub>                                   | 63                      | 129                     | 207                     |
| 1 | $\mathbb{Q}$                         | $C_1$                                                   | 17                      | 35                      | 53                      |
| 2 | $\mathbb{Q}(\zeta_8)$                | $C_2 \times C_2$                                        | 6                       | 12                      | 16                      |
| 3 | $\mathbb{Q}(\zeta_{16},\sqrt[4]{2})$ | $C_2^2 \rtimes C_4$                                     | 2                       | 5                       | 6                       |
| 4 | ?                                    | $C_2^2 \rtimes C_8, D_4 \rtimes C_8, C_2^2.C_4 \wr C_2$ | 1                       | 4                       | 2                       |

- Use that  $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$  embeds in  $GL_4(\mathbb{Z}/2^n\mathbb{Z})$ , for each  $n \ge 1$ .
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for L<sub>p</sub>(A/Q, s) mod 2<sup>n</sup>.

| n | $\mathbb{Q}(A[2^n])$                 | $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$                          | $\#L_3(A/\mathbb{Q},s)$ | $\#L_5(A/\mathbb{Q},s)$ | $\#L_7(A/\mathbb{Q},s)$ |
|---|--------------------------------------|---------------------------------------------------------------|-------------------------|-------------------------|-------------------------|
| 0 | Q                                    | <i>C</i> <sub>1</sub>                                         | 63                      | 129                     | 207                     |
| 1 | $\mathbb{Q}$                         | <i>C</i> <sub>1</sub>                                         | 17                      | 35                      | 53                      |
| 2 | $\mathbb{Q}(\zeta_8)$                | $C_2 \times C_2$                                              | 6                       | 12                      | 16                      |
| 3 | $\mathbb{Q}(\zeta_{16},\sqrt[4]{2})$ | $C_2^2 \rtimes C_4$                                           | 2                       | 5                       | 6                       |
| 4 | ?                                    | $C_2^2 \rtimes C_8, \ D_4 \rtimes C_8, \\ C_2^2. C_4 \wr C_2$ | 1                       | 4                       | 2                       |
| 5 | ?                                    | (many)                                                        | 1                       | 3                       | 1                       |

#### Theorem

There are exactly 3 isogeny classes of abelian surfaces  $A/\mathbb{Q}$  with good reduction away from 2 which contain surfaces with full rational 2-torsion. These are given by  $E_1 \times E_1$ ,  $E_1 \times E_2$  and  $E_2 \times E_2$ , where  $E_1$ ,  $E_2$  are the elliptic curves  $E_1 : y^2 = x^3 - x$  and  $E_2 : y^2 = x^3 - 4x$ .

#### Theorem

There are exactly 3 isogeny classes of abelian surfaces  $A/\mathbb{Q}$  with good reduction away from 2 which contain surfaces with full rational 2-torsion. These are given by  $E_1 \times E_1$ ,  $E_1 \times E_2$  and  $E_2 \times E_2$ , where  $E_1$ ,  $E_2$  are the elliptic curves  $E_1 : y^2 = x^3 - x$  and  $E_2 : y^2 = x^3 - 4x$ .

Doing a similar (albeit longer) computation also gives the following result:

#### Theorem

There are exactly 19 isogeny classes of abelian surfaces  $A/\mathbb{Q}$  with good reduction away from 2 which contain surfaces such that either  $A[2](\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^4$  or  $A[2](\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^3$ .