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Main theorem of Matomäki-Radziwi l l

Theorem (Matomäki-Radziwi l l, 2015)

Let f : N → [−1, 1] be a multiplicative function andd let 2 ≤ h ≤ X . Then for
(1 + o(1))X values of X ≤ x ≤ 2X we have∣∣∣∣1

h

∑
x≤n≤x+h

f (n) − 1

X

∑
X≤n≤2X

f (n)

∣∣∣∣ ≤ o(1) as h,X → ∞.

E.g. Applying the above to the Liouville function λ(n) = (−1)Ω(n) with h = X δ, we get

Theorem (Matomäki-Radziwi l l, 2015)

Let δ > 0. For (1 + o(1))X values of X ≤ x ≤ 2X , we have∑
x≤n≤x+X δ

λ(n) = o(X δ) as X → ∞.
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Theorem (Matomäki-Radziwi l l, 2015)

Let f : N → [−1, 1] be a multiplicative function andd let 2 ≤ h ≤ X . Then for
(1 + o(1))X values of X ≤ x ≤ 2X we have∣∣∣∣1

h

∑
x≤n≤x+h

f (n) − 1

X

∑
X≤n≤2X

f (n)

∣∣∣∣ ≤ o(1) as h,X → ∞.

E.g. Applying the above to the Liouville function λ(n) = (−1)Ω(n) with h = X δ, we get
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Main theorem of Matomäki-Radziwi l l

Theorem (Matomäki-Radziwi l l, 2015)

Let f : [−1, 1] be a multiplicative function and let 10 ≤ h ≤ x . Then we have

1

h
√

x log 2

∑
x≤n1n2≤x+h

√
x√

x≤n1≤2
√
x

f (n1)f (n2) =

(
1√
x

∑
√
x≤n≤2

√
x

f (n)

)2

+ o(1)

as h,X → ∞
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Chowla’s conjecture

Conjecture (Chowla, 1965)

Let h1, . . . , hk be distinct natural numbers. Then∑
1≤n≤x

λ(n + h1) · · ·λ(n + hk) = o(X ) as X → ∞.

• The case k = 1 follows by prime number theorem.
• But every other case remains open (even for k = 2 and h1 = 0, h2 = 1)!
• Compare with twin prime conjecture:

∑
n≤x θ(n)θ(n + 2) → ∞ (where θ(p) := log p

if p prime, and 0 otherwise)
• Could generalise conjecture to∑

1≤n≤x

λ(a1n + h1) · · ·λ(akn + hk) = o(X )

such that aihj − ajhi ̸= 0 for all i < j .
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Averaged form of Chowla’s conjecture

Theorem (Matomäki-Radziwi l l–Tao (2015))

For any natural number k, and any 10 ≤ H ≤ X , we have

∑
1≤h1,...,hk≤H

∣∣∣∣∣∣
∑

1≤n≤X

λ(n + h1) · · ·λ(n + hk)

∣∣∣∣∣∣ = o(HkX )

provided that H → ∞ arbitrarily slowly with X → ∞.

• Also have slightly stronger bound:

∑
1≤h2,...,hk≤H

∣∣∣∣∣∣
∑

1≤n≤X

λ(n)λ(n + h2) · · ·λ(n + hk)

∣∣∣∣∣∣ = o(Hk−1X )
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Sketch proof

Can use the Fourier-analytic identity:

∫
T

(∫
R

∣∣∣ ∑
x≤n≤x+H

f (n)e(αn)
∣∣∣2dx

)2

dα =
∑
|h|≤N

(H − |h|)2
∣∣∣∣∣∑

n

f (n)f̄ (n + h)

∣∣∣∣∣
2

to reduce the proof for k = 2 to showing an estimate of the form:∫ X

0

∣∣∣∣ ∑
x≤n≤x+H

λ(n)e(αn)

∣∣∣∣dx = o(HX )

uniformly for all α ∈ T. Using the circle method:

• Majors arcs: Use the result from Matomäki-Radziwi l l.

• Minor arcs: Use an argument of Katai and Bourgain–Sarnak–Ziegler.
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Elliott’s conjecture
• Can we replace λ with arbitrary 1-bounded multiplicative functions gi : N → C?

• Must be careful to avoid Dirichlet characters, e.g. g1 = χ and g2 = χ, then
g1(n)g2(n + h) will be positive biased.

Conjecture (Elliott, 1992)

Let g1, . . . , gk : N → C be 1-bounded multiplicative functions, and let a1, . . . , ak ,
b1, . . . , bk be positive integers such that aibj − ajbi ̸= 0. Suppose there is an index ℓ such
that gℓ satisfies ∑

p

1 − Re(gℓ(p)χ(p)p−it)

p
= ∞

for all Dirichlet characters χ and t ∈ R. (i.e. gℓ does not behave “like a Dirichlet
character”). Then∑

1≤n≤X

g1(a1n + b1) · · · gk(akn + bk) = o(X ) as X → ∞.
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Elliott’s conjecture
• This is not true in general (if gj complex-valued).

• Matomäki-Radziwi l l–Tao construct a counterexample, where gℓ can be arbitrarily
close to a sequence of functions of the form n 7→ nitm without globally pretending to
be nit for any fixed t.

Elliott’s conjecture (corrected)

Let g1, . . . , gk : N → C be 1-bounded multiplicative functions, and let a1, . . . ak ,
b1, . . . , bk be positive integers such that aibj − ajbi ̸= 0. Suppose there is an index ℓ such
that gℓ satisfies

lim inf
X→∞

inf
|t|≤X

∑
p≤X

1 − Re(gℓ(p)χ(p)p−it)

p
= ∞

for all Dirichlet characters χ. (i.e. gℓ does not behave “like a Dirichlet character”). Then∑
1≤n≤X

g1(a1n + b1) · · · gk(akn + bk) = o(X ) as X → ∞.
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Averaged form of Elliott’s conjecture

Theorem (Matomäki-Radziwi l l–Tao (2015))

Let 10 ≤ H ≤ X and A ≥ 1. Let g1, . . . , gk : N → C be 1-bounded functions with at least
one gℓ being multiplicative and “non-pretentious”. Then

∑
1≤h1,...,hk≤H

∣∣∣∣∣∣
∑

1≤n≤X

g1(a1n + b1 + h1) . . . gk(akn + bk + hk)

∣∣∣∣∣∣ = o(HkX )

as H,X → ∞.

• Also have slightly stronger bound:

∑
1≤h2,...,hk≤H

∣∣∣∣∣∣
∑

1≤n≤X

g1(a1n + b1)g2(a2n + b2) . . . gk(akn + bk + hk)

∣∣∣∣∣∣ = o(Hk−1X )

as H,X → ∞.
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Sign patterns of the Liouville function

Conjecture (Chowla, 1965)

For any positive integer k , and choice of signs ϵ1, . . . , ϵk ∈ {−1, 1}, the set of positive
integers n such that

λ(n + 1) = ϵ1, λ(n + 2) = ϵ2, . . . , λ(n + k) = ϵk

has density 1/2k .

• For k = 1, this follows by the prime number theorem:
∑

n≤X λ(n) = o(X ).

Theorem (Hildebrand, 1986)

Let ϵ1, ϵ2, ϵ3 ∈ {−1,+1}. Then there exist infinitely many n such that

λ(n + 1) = ϵ1, λ(n + 2) = ϵ2, λ(n + 3) = ϵ3.

Proof uses ad hoc elementary arguments, using the multiplicative property of λ with the
primes 2, 3, 5.
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Sign patterns of the Liouville function

Theorem (Matomäki-Radziwi l l–Tao, 2015)

Let ϵ1, ϵ2, ϵ3 ∈ {−1,+1}. Then there are a positive (lower) density of integers n such that

λ(n + 1) = ϵ1, λ(n + 2) = ϵ2, λ(n + 3) = ϵ3.

• Matomäki-Radziwi l l showed k = 2 case in their original paper.

• In 2017, Klurman–Manerla proved the upper logarithmic density is at least 1/28.

• In 2017, Tao–Teräväinen proven the logarithmic density for k = 3 is exactly 1
8 , and

for k = 4 is at least 1
32 .
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• Matomäki-Radziwi l l showed k = 2 case in their original paper.

• In 2017, Klurman–Manerla proved the upper logarithmic density is at least 1/28.
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Sign patterns of the Liouville function

• By Matomäki-Radziwi l l, we have

lim sup
X→∞

1

X

∑
X≤x≤2X

∣∣∣1

h

∑
x≤n≤x+h

λ(n)
∣∣∣ = o(1) as h → ∞.

• By summation by parts we get

lim sup
x→∞

1

log x

∑
n≤x

1

n

∣∣∣1

h

h∑
j=0

λ(n + j)
∣∣∣ = o(1) as h → ∞.

• Thus, for any ϵ > 0 and any h sufficiently large, we have∣∣∣∣ h∑
j=0

λ(n + j)

∣∣∣∣ ≤ ϵh

with asymptotic probability at least 1 − ϵ. Similarly with λ replaced by µ.
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Sign patterns of the Liouville function

Sketch proof for k = 2:

• Case (+,−): Assume for contradiction (+,−) occurs with density zero. Then (−,+)
also occurs with density zero.

• Thus (+,+) and (−,−) occur with combined density 1, thus λ(n) = λ(n + 1) a.a.s.

• By finite additivity, one obtained for any fixed h: λ(n) = λ(n + 1) = · · · = λ(n + h)
a.a.s, which contradicts our previous estimate. Similarly for (−,+).

• Case (+,+). Using the k = 1 case and inclusion-exclusion, we have that (−,−)
occurs with the same density.

• From the pigeonhole principle, at least one of λ(2n + 1) = λ(2n),
λ(2n + 2) = λ(2n + 1), and λ(2n) = λ(2n + 2) must hold for any n, hence their
probabilities must sum to at least 1.

• But P[λ(n + 1) = λ(n)] is average of P[λ(2n + 1) = λ(2n)] and
P[λ(2n + 2) = λ(2n + 1)], and so the density of (+,+) is at least 1/6.
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Sign patterns of the Liouville function

Case k = 3:

• Assume for contradiction (+,+,−) occurs with density zero. This means that if
λ(n) = λ(n + 1) = +1, then λ(n + 2) = +1 a.a.s.

• Iterating this, for any fixed h ≥ 1, we have that λ(n) = λ(n + 1) = +1 implies
λ(n) = λ(n + 1) = · · · = λ(n + h) = +1 a.a.s.

• As (+,+) occurs with density 1/6, thus λ(n) = λ(n + 1) = · · · = λ(n + h) = +1
occurs with probability at least c > 0 independent of h. But this contradicts
Matomäki-Radziwi l l.

• Same argument works for (−,+,+), (+,−,−), (−,−,+).
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Matomäki-Radziwi l l.

• Same argument works for (−,+,+), (+,−,−), (−,−,+).

14 / 31



Sign patterns of the Liouville function

Remaining cases: (+,+,+), (−,−,−), (+,−,+), (−,+,−)

• Case (+,+,+): Assume for contradiction (+,+,+) occurs with density zero.

• Use the multiplicative nature of λ (using the primes 2, 3, 5), one can show
λ(3n + 1) = −λ(3n + 2) a.a.s, and λ(3n − 1) = −λ(3n + 1) a.a.s.

• Use this to show that λ “behaves like” the Dirichlet character χ3, i.e. λχ3 is almost
always constant away from multiples of 3.

• Use Matomäki-Radziwi l l on λχ3, i.e. for any ϵ > 0 and sufficiently large h∣∣∣∣∣∣
h∑

j=0

λ(n + j)χ3(n + j)

∣∣∣∣∣∣ ≤ ϵh

with asymptotic probability at least 1 − ϵ.

• This yields a contradiction.
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Sign patterns of the Möbius function

Note that an analogous conjecture for µ is not true. E.g. the sign pattern (1, 1, 1, 1)
never occurs.

Theorem (Matomäki-Radziwi l l–Tao, 2015)

Let ϵ1, ϵ2 ∈ {−1, 0,+1}. Then there are a positive (lower) density of integers n such that

µ(n) = ϵ1 and µ(n + 1) = ϵ2.

• Case k = 1: By the prime number theorem
∑

n≤X
µ(n)
n = o(log X ), which shows

the cases ϵ = +1 and ϵ = −1 occur with equal density.

• µ2(n) = 1 occurs with density 1
ζ(2) = 6

π2 .

• Thus, the events µ(n) = 1, µ(n) = 0, µ(n) = −1 occur with asymptotic probability
1

2ζ(2) , 1 − 1
ζ(2) ,

1
2ζ(2) respectively.
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Sign patterns of the Möbius function

Sketch proof for k = 2:

• Can use standard sieve theory arguments to deduce that the probability that
µ2(n) = µ2(n + 1) = 1 is

c :=
∏
p

(
1 − 2

p2

)
= 0.3226 . . .

• The case k = 1 and the Chinese remainder theorem proves that density for (0,+1)
and (0,−1) are the same. Similarly, the density for (+1, 0) and (−1, 0) are the same.

• Thus, by inclusion-exclusion, the case (0, 0) has density 1 − 2
ζ(2) + c = 0.1067 . . . .

• Further inclusion-exclusion shows that each of the cases (+1, 0), (−1, 0), (0,+1),
(0,−1) have density 1

2( 1
ζ(2) − c) = 0.1426 . . .
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• The case k = 1 and the Chinese remainder theorem proves that density for (0,+1)
and (0,−1) are the same. Similarly, the density for (+1, 0) and (−1, 0) are the same.

• Thus, by inclusion-exclusion, the case (0, 0) has density 1 − 2
ζ(2) + c = 0.1067 . . . .

• Further inclusion-exclusion shows that each of the cases (+1, 0), (−1, 0), (0,+1),
(0,−1) have density 1

2( 1
ζ(2) − c) = 0.1426 . . .
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Sign patterns of the Möbius function
Remaining cases: (+1,+1), (+1,−1), (−1,+1), (−1,−1).

• Assume density of (1, ϵ) is zero, for some ϵ ∈ {−1,+1}. Then density of (−1,−ϵ) is
zero, which implies

µ2(n) = µ2(n + 1) = 1 =⇒ µ(n) = −ϵµ(n + 1) a.a.s.

• Define the completely multiplicative function χ(n) = (−ϵ)v2(n). Thus, we have

µ2(n) = µ2(n + 1) = 1 =⇒ µχ(n) = µχ(n + 1) a.a.s.

• More generally, if d divides n, then

µ2(n) = µ2(n + d) = 1 =⇒ µχ(n) = µχ(n + d) a.a.s.

• Can use this to create long “chains” n + a1, n + a2 on which µχ is constant. This is
incompatible with Matomäki-Radziwi l l!
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Remaining cases: (+1,+1), (+1,−1), (−1,+1), (−1,−1).

• Assume density of (1, ϵ) is zero, for some ϵ ∈ {−1,+1}. Then density of (−1,−ϵ) is
zero, which implies

µ2(n) = µ2(n + 1) = 1 =⇒ µ(n) = −ϵµ(n + 1) a.a.s.

• Define the completely multiplicative function χ(n) = (−ϵ)v2(n). Thus, we have

µ2(n) = µ2(n + 1) = 1 =⇒ µχ(n) = µχ(n + 1) a.a.s.

• More generally, if d divides n, then

µ2(n) = µ2(n + d) = 1 =⇒ µχ(n) = µχ(n + d) a.a.s.

• Can use this to create long “chains” n + a1, n + a2 on which µχ is constant. This is
incompatible with Matomäki-Radziwi l l!
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Log averaged Chowla and Elliott conjecture

Theorem (Tao, 2015)

Let a1, a2 be positive integers and b1, b2 be integers such that a1b2 − a2b1 ̸= 0. Let
1 ≤ ω(x) ≤ x be a function that goes to infinity as x → ∞. Then one has∑

x/ω(x)<n≤x

λ(a1n + b1)λ(a2n + b2)

n
= o(logω(x)) as x → ∞.

Theorem (Tao, 2015)

Let a1, a2 be natural, b1, b2 integers such that a1b2 − a2b1 ̸= 0. Let g1, g2 : N → C be
multiplicative 1-bounded functions, with g1 “non-pretentious”. Then∑

x/ω(x)<n≤x

g1(a1n + b1)g2(a2n + b2)

n
= o(logω(x)) as x → ∞.
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Log averaged Chowla
Case: ω(x) = x , a1 = a2 = 1, b1 = 0, b2 = 1

Theorem (Tao, 2015) ∑
1<n≤x

λ(n)λ(n + 1)

n
= o(log x)as x → ∞.

This implies the following corollary

Theorem (Tao, 2015)

Let ϵ1, ϵ2 ∈ {−1,+1}. Then the set of positive integers n such that λ(n) = ϵ1 and
λ(n + 1) = ϵ2 has logarithmic density 1/4, i.e.

1

log x

∑
n≤x

λ(n)=ϵ1,λ(n+1)=ϵ2

1

n
=

1

4
+ o(1)

Note, if natural density exists, then it is equal to the log density. But can have log density
existing, but natural density doesn’t exits.
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Log density of Möbius function

Log averaged Elliott conjectured, applied to µ and µ2 provides the following estimates∑
n≤x

µ(n)µ(n + 1)

n
,

∑
n≤x

µ2(n)µ(n + 1)

n
,

∑
n≤x

µ(n)µ2(n + 1)

n
= o(log x)

Theorem (Tao, 2015)

Let c :=
∏

p(1 − 2
p2

) = 0.3226 . . . . Let ϵ1, ϵ2 ∈ {−1, 0,+1}.

Then the set {n : µ(n) = ϵ1, µ(n + 1) = ϵ2} has logarithmic density:

• 1 − 2
ζ(2) + c = 0.1067 . . . , if (ϵ1, ϵ2) = (0, 0).

• 1
2

(
1

ζ(2) − c
)

= 0.1426 . . . , if (ϵ1, ϵ2) = (1, 0), (−1, 0), (0, 1), (0,−1).

• c
4 = 0.0806 . . . otherwise.
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Erdös discrepancy problem

Conjecture (Erdös, 1932)

Let f : N → {−1,+1}. Then

sup
n,d∈N

|f (d) + f (2d) + · · · + f (nd)| = ∞

(equivalently, for all C > 0, there exists n, d ≥ 1 such that |f (d) + · · · + f (nd)| ≥ C )

• Van der Waerden’s theorem (1927) implies that

sup
a,n,d≥1

|f (a) + f (a + d) + · · · + f (a + (n − 1)d)| = ∞

• Roth showed supn≤N,a,d is at least ≥ 1
20N1/4. This is best possible bound

(Matousek, Spencer, 1996)
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Erdös discrepancy problem

“A precipice lies two paces to your left and a pit of vipers two paces to your right. Can you devise a series
of steps that will avoid the hazards, even if you are forced to take every second, third or Nth step in your
series?” - Quanta Magazine, 2015
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Erdös discrepancy problem
Erdös: For all C > 0, there exists some n, d ≥ 1 such that |f (d) + · · · + f (nd)| ≥ C .

• Case C = 1: Clearly true for n = 1.

• Case C = 2: The finite sequence

+1, −1, −1, +1, −1, +1, +1, −1, −1, +1, −1

has discrepancy 1. A brute force search (or by an elementary deduction argument)
proves any sequence of length N ≥ 12 has discrepancy at least 2.

• Case C = 3: Konev–Lisitsa (2014) obtained a sequence of length N = 1160 with
discrepancy 2

− + + − + −− + + − + + − + −− + −− + + − + −− + −−+

+ − + −− + + − + + − + − + + −− + + − + −−− + − + + − . . .

This was proven optimal using a SAT solver.
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Erdös discrepancy problem

• Case C = 4: Konev–Lisitsa obtained sequences of length > 130 000 and discrepancy
3 (unknown if best possible?). Le Bras–Gomes–Selman produced a completely
multiplicative sequence of length 127 645 of discrepancy 3.

• Can construct examples where supn≤N,d |f (1) + · · · + f (nd)| ≪ log N.

Discrepancy
bound

Completely
multiplicative

Multiplicative Unconstrained

C = 1 1 1 1
C = 2 10 12 12
C = 3 247 345 1161
C = 4 127 646 127 646 > 130 000

Table: Minimum length N required for any ±1 sequence to have discrepancy ≥ C .
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Examples

• Conjecture is false if any positive density of zeros are allowed: E.g Let χ : N → C be
non-principal Dirichlet character of period q. Then |χ(d) +χ(2d) + · · ·+χ(nd)| ≤ q.

• (Borwein-Choi-Coons): Let χ̃3 : N → C such that

χ̃3(n) :=

{
+1 if n = 3k(3m + 1)

−1 if n = 3k(3m + 2)

Then χ(1) + · · · + χ(n) is the number of 1s in the base 3 expansion of n, thus this
grows as O(log N).

• (Vector-valued BCC): Let H be real Hilbert space with orthonormal basis
e0, e1, e2, . . . . Let f : N → H be the function

f (n) :=

{
+ek if n = 3k(3m + 1)

−ek if n = 3k(3m + 2)

Using the Pythagorean theorem, we get ∥f (1) + · · · + f (n)∥H = O(
√

log n).
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Erdös discrepancy problem

Theorem (Tao, 2015)

Let f : N → H where H is some real or complex Hilbert space, such that ∥f (n)∥H = 1 for
all n. Then

sup
n,d∈N

∥f (d) + f (2d) + · · · + f (nd)∥H = ∞.

In the case of H = R, this proves the Erdös discrepancy problem!

• Can in principle give an effective (albeit weak) lower bound on
supn≤N,d ∥f (d) + · · · + f (nd)∥H .
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Sketch proof

• Can use a Fourier analytic argument to reduce the theorem to showing that

sup
n∈N

E |g(1) + g(2) + · · · + g(n)|2 = ∞

where g : N → S1 is a (stochastic) completely multiplicative function.

• Since |g(1) + · · · + g(n)|2 =
∑

|g(n)|2 +
∑

i ̸=j g(i)g(j), it suffices to study the
covariances

∑
n≤x g(n)g(n + h).

• Use the log averaged Elliott theorem to show that any counterexample to the above
must behave like a Dirichlet character n 7→ χ(n)nit .

• Do a similar (but more intricate) analysis of the Borwein-Choi-Coons example to
establish a lower bound for E|g(1) + . . . g(n)|2.

• Proof can give an effective lower bound on the growth rate, but will be weaker than√
log N.
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A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwi l l’s paper:

“In number theory’s land of yore,
Where mysteries and conjectures soar,
Matomäki and Radziwi l l’s paper stands,

A testament to their brilliant hands.

Short and long averages, they relate,
A powerful tool to analyze f ’s fate,

With cancellations for Möbius shown,
And Chowla’s conjecture slowly grown.

A masterpiece of theory and proof,
Innovative, insightful, and aloof,
This paper’s insights will inspire,

Awe and wonder, they shall acquire.”
- ChatGPT, 2023
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Matomäki and Radziwi l l’s paper stands,

A testament to their brilliant hands.

Short and long averages, they relate,
A powerful tool to analyze f ’s fate,

With cancellations for Möbius shown,
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