# A survey of applications to Matomäki-Radziwitt's theorem 

Multiplicative functions study group, Week 10

Robin Visser<br>Mathematics Institute<br>University of Warwick

17 March 2023

## Main theorem of Matomäki-RadziwiH

## Theorem (Matomäki-Radziwiłt, 2015)

Let $f: \mathbb{N} \rightarrow[-1,1]$ be a multiplicative function andd let $2 \leq h \leq X$. Then for $(1+o(1)) X$ values of $X \leq x \leq 2 X$ we have

$$
\left|\frac{1}{h} \sum_{x \leq n \leq x+h} f(n)-\frac{1}{X} \sum_{X \leq n \leq 2 X} f(n)\right| \leq o(1) \quad \text { as } h, X \rightarrow \infty
$$

## Main theorem of Matomäki-RadziwiH

## Theorem (Matomäki-Radziwitt, 2015)

Let $f: \mathbb{N} \rightarrow[-1,1]$ be a multiplicative function andd let $2 \leq h \leq X$. Then for $(1+o(1)) X$ values of $X \leq x \leq 2 X$ we have

$$
\left|\frac{1}{h} \sum_{x \leq n \leq x+h} f(n)-\frac{1}{X} \sum_{X \leq n \leq 2 X} f(n)\right| \leq o(1) \quad \text { as } h, X \rightarrow \infty
$$

E.g. Applying the above to the Liouville function $\lambda(n)=(-1)^{\Omega(n)}$ with $h=X^{\delta}$, we get

## Theorem (Matomäki-Radziwitt, 2015)

Let $\delta>0$. For $(1+o(1)) X$ values of $X \leq x \leq 2 X$, we have

$$
\sum_{x \leq n \leq x+X^{\delta}} \lambda(n)=o\left(X^{\delta}\right) \quad \text { as } X \rightarrow \infty
$$

## Main theorem of Matomäki-RadziwiH

## Theorem (Matomäki-Radziwitt, 2015)

Let $f:[-1,1]$ be a multiplicative function and let $10 \leq h \leq x$. Then we have

$$
\frac{1}{h \sqrt{x} \log 2} \sum_{\substack{x \leq n_{1} n_{2} \leq x+h \sqrt{x} \\ \sqrt{x} \leq n_{1} \leq 2 \sqrt{x}}} f\left(n_{1}\right) f\left(n_{2}\right)=\left(\frac{1}{\sqrt{x}} \sum_{\sqrt{x} \leq n \leq 2 \sqrt{x}} f(n)\right)^{2}+o(1)
$$

as $h, X \rightarrow \infty$

## Chowla's conjecture

## Conjecture (Chowla, 1965)

Let $h_{1}, \ldots, h_{k}$ be distinct natural numbers. Then

$$
\sum_{1 \leq n \leq x} \lambda\left(n+h_{1}\right) \cdots \lambda\left(n+h_{k}\right)=o(X) \quad \text { as } X \rightarrow \infty
$$

## Chowla's conjecture

## Conjecture (Chowla, 1965)

Let $h_{1}, \ldots, h_{k}$ be distinct natural numbers. Then

$$
\sum_{1 \leq n \leq x} \lambda\left(n+h_{1}\right) \cdots \lambda\left(n+h_{k}\right)=o(X) \quad \text { as } X \rightarrow \infty .
$$

- The case $k=1$ follows by prime number theorem.


## Chowla's conjecture

## Conjecture (Chowla, 1965)

Let $h_{1}, \ldots, h_{k}$ be distinct natural numbers. Then

$$
\sum_{1 \leq n \leq x} \lambda\left(n+h_{1}\right) \cdots \lambda\left(n+h_{k}\right)=o(X) \quad \text { as } X \rightarrow \infty
$$

- The case $k=1$ follows by prime number theorem.
- But every other case remains open (even for $k=2$ and $h_{1}=0, h_{2}=1$ )!


## Chowla's conjecture

## Conjecture (Chowla, 1965)

Let $h_{1}, \ldots, h_{k}$ be distinct natural numbers. Then

$$
\sum_{1 \leq n \leq x} \lambda\left(n+h_{1}\right) \cdots \lambda\left(n+h_{k}\right)=o(X) \quad \text { as } X \rightarrow \infty
$$

- The case $k=1$ follows by prime number theorem.
- But every other case remains open (even for $k=2$ and $h_{1}=0, h_{2}=1$ )!
- Compare with twin prime conjecture: $\sum_{n \leq x} \theta(n) \theta(n+2) \rightarrow \infty$ (where $\theta(p):=\log p$ if $p$ prime, and 0 otherwise)


## Chowla's conjecture

## Conjecture (Chowla, 1965)

Let $h_{1}, \ldots, h_{k}$ be distinct natural numbers. Then

$$
\sum_{1 \leq n \leq x} \lambda\left(n+h_{1}\right) \cdots \lambda\left(n+h_{k}\right)=o(X) \quad \text { as } X \rightarrow \infty
$$

- The case $k=1$ follows by prime number theorem.
- But every other case remains open (even for $k=2$ and $h_{1}=0, h_{2}=1$ )!
- Compare with twin prime conjecture: $\sum_{n \leq x} \theta(n) \theta(n+2) \rightarrow \infty$ (where $\theta(p):=\log p$ if $p$ prime, and 0 otherwise)
- Could generalise conjecture to

$$
\sum_{1 \leq n \leq x} \lambda\left(a_{1} n+h_{1}\right) \cdots \lambda\left(a_{k} n+h_{k}\right)=o(X)
$$

such that $a_{i} h_{j}-a_{j} h_{i} \neq 0$ for all $i<j$.

## Averaged form of Chowla's conjecture

## Theorem (Matomäki-Radziwiłt-Tao (2015))

For any natural number $k$, and any $10 \leq H \leq X$, we have

$$
\sum_{1 \leq h_{1}, \ldots, h_{k} \leq H}\left|\sum_{1 \leq n \leq X} \lambda\left(n+h_{1}\right) \cdots \lambda\left(n+h_{k}\right)\right|=o\left(H^{k} X\right)
$$

provided that $H \rightarrow \infty$ arbitrarily slowly with $X \rightarrow \infty$.

## Averaged form of Chowla's conjecture

## Theorem (Matomäki-Radziwiłt-Tao (2015))

For any natural number $k$, and any $10 \leq H \leq X$, we have

$$
\sum_{1 \leq h_{1}, \ldots, h_{k} \leq H}\left|\sum_{1 \leq n \leq X} \lambda\left(n+h_{1}\right) \cdots \lambda\left(n+h_{k}\right)\right|=o\left(H^{k} X\right)
$$

provided that $H \rightarrow \infty$ arbitrarily slowly with $X \rightarrow \infty$.

- Also have slightly stronger bound:

$$
\sum_{1 \leq h_{2}, \ldots, h_{k} \leq H}\left|\sum_{1 \leq n \leq x} \lambda(n) \lambda\left(n+h_{2}\right) \cdots \lambda\left(n+h_{k}\right)\right|=o\left(H^{k-1} X\right)
$$

## Sketch proof

## Sketch proof

Can use the Fourier-analytic identity:

$$
\int_{\mathbb{T}}\left(\int_{\mathbb{R}}\left|\sum_{x \leq n \leq x+H} f(n) e(\alpha n)\right|^{2} d x\right)^{2} d \alpha=\sum_{|h| \leq N}(H-|h|)^{2}\left|\sum_{n} f(n) \bar{f}(n+h)\right|^{2}
$$

to reduce the proof for $k=2$ to showing an estimate of the form:

$$
\int_{0}^{X}\left|\sum_{x \leq n \leq x+H} \lambda(n) e(\alpha n)\right| d x=o(H X)
$$

uniformly for all $\alpha \in \mathbb{T}$.

## Sketch proof

Can use the Fourier-analytic identity:

$$
\int_{\mathbb{T}}\left(\int_{\mathbb{R}}\left|\sum_{x \leq n \leq x+H} f(n) e(\alpha n)\right|^{2} d x\right)^{2} d \alpha=\sum_{|h| \leq N}(H-|h|)^{2}\left|\sum_{n} f(n) \bar{f}(n+h)\right|^{2}
$$

to reduce the proof for $k=2$ to showing an estimate of the form:

$$
\int_{0}^{X}\left|\sum_{x \leq n \leq x+H} \lambda(n) e(\alpha n)\right| d x=o(H X)
$$

uniformly for all $\alpha \in \mathbb{T}$. Using the circle method:

- Majors arcs: Use the result from Matomäki-Radziwitł.
- Minor arcs: Use an argument of Katai and Bourgain-Sarnak-Ziegler.


## Elliott's conjecture

- Can we replace $\lambda$ with arbitrary 1-bounded multiplicative functions $g_{i}: \mathbb{N} \rightarrow \mathbb{C}$ ?


## Elliott's conjecture

- Can we replace $\lambda$ with arbitrary 1-bounded multiplicative functions $g_{i}: \mathbb{N} \rightarrow \mathbb{C}$ ?
- Must be careful to avoid Dirichlet characters, e.g. $g_{1}=\chi$ and $g_{2}=\bar{\chi}$, then $g_{1}(n) g_{2}(n+h)$ will be positive biased.


## Elliott's conjecture

- Can we replace $\lambda$ with arbitrary 1-bounded multiplicative functions $g_{i}: \mathbb{N} \rightarrow \mathbb{C}$ ?
- Must be careful to avoid Dirichlet characters, e.g. $g_{1}=\chi$ and $g_{2}=\bar{\chi}$, then $g_{1}(n) g_{2}(n+h)$ will be positive biased.


## Conjecture (Elliott, 1992)

Let $g_{1}, \ldots, g_{k}: \mathbb{N} \rightarrow \mathbb{C}$ be 1-bounded multiplicative functions, and let $a_{1}, \ldots, a_{k}$, $b_{1}, \ldots, b_{k}$ be positive integers such that $a_{i} b_{j}-a_{j} b_{i} \neq 0$. Suppose there is an index $\ell$ such that $g_{\ell}$ satisfies

$$
\sum_{p} \frac{1-\operatorname{Re}\left(g_{\ell}(p) \overline{\chi(p) p^{-i t}}\right)}{p}=\infty
$$

for all Dirichlet characters $\chi$ and $t \in \mathbb{R}$. (i.e. $g_{\ell}$ does not behave "like a Dirichlet character"). Then

$$
\sum_{1 \leq n \leq x} g_{1}\left(a_{1} n+b_{1}\right) \cdots g_{k}\left(a_{k} n+b_{k}\right)=o(X) \quad \text { as } X \rightarrow \infty
$$

## Elliott's conjecture

- This is not true in general (if $g_{j}$ complex-valued).


## Elliott's conjecture

- This is not true in general (if $g_{j}$ complex-valued).
- Matomäki-Radziwitł-Tao construct a counterexample, where $g_{\ell}$ can be arbitrarily close to a sequence of functions of the form $n \mapsto n^{i t_{m}}$ without globally pretending to be $n^{i t}$ for any fixed $t$.


## Elliott's conjecture

- This is not true in general (if $g_{j}$ complex-valued).
- Matomäki-Radziwiłł-Tao construct a counterexample, where $g_{\ell}$ can be arbitrarily close to a sequence of functions of the form $n \mapsto n^{i t_{m}}$ without globally pretending to be $n^{i t}$ for any fixed $t$.


## Elliott's conjecture (corrected)

Let $g_{1}, \ldots, g_{k}: \mathbb{N} \rightarrow \mathbb{C}$ be 1-bounded multiplicative functions, and let $a_{1}, \ldots a_{k}$, $b_{1}, \ldots, b_{k}$ be positive integers such that $a_{i} b_{j}-a_{j} b_{i} \neq 0$. Suppose there is an index $\ell$ such that $g_{\ell}$ satisfies

$$
\liminf _{x \rightarrow \infty} \inf _{|t| \leq x} \sum_{p \leq x} \frac{1-\operatorname{Re}\left(g_{\ell}(p) \overline{\chi(p) p^{-i t}}\right)}{p}=\infty
$$

for all Dirichlet characters $\chi$. (i.e. $g_{\ell}$ does not behave "like a Dirichlet character"). Then

$$
\sum_{1 \leq n \leq X} g_{1}\left(a_{1} n+b_{1}\right) \cdots g_{k}\left(a_{k} n+b_{k}\right)=o(X) \quad \text { as } X \rightarrow \infty
$$

## Averaged form of Elliott's conjecture

## Theorem (Matomäki-Radziwiłt-Tao (2015))

Let $10 \leq H \leq X$ and $A \geq 1$. Let $g_{1}, \ldots, g_{k}: \mathbb{N} \rightarrow \mathbb{C}$ be 1-bounded functions with at least one $g_{\ell}$ being multiplicative and "non-pretentious". Then

$$
\sum_{1 \leq h_{1}, \ldots, h_{k} \leq H}\left|\sum_{1 \leq n \leq X} g_{1}\left(a_{1} n+b_{1}+h_{1}\right) \ldots g_{k}\left(a_{k} n+b_{k}+h_{k}\right)\right|=o\left(H^{k} X\right)
$$

as $H, X \rightarrow \infty$.

## Averaged form of Elliott's conjecture

## Theorem (Matomäki-Radziwiłt-Tao (2015))

Let $10 \leq H \leq X$ and $A \geq 1$. Let $g_{1}, \ldots, g_{k}: \mathbb{N} \rightarrow \mathbb{C}$ be 1-bounded functions with at least one $g_{\ell}$ being multiplicative and "non-pretentious". Then

$$
\sum_{1 \leq h_{1}, \ldots, h_{k} \leq H}\left|\sum_{1 \leq n \leq X} g_{1}\left(a_{1} n+b_{1}+h_{1}\right) \ldots g_{k}\left(a_{k} n+b_{k}+h_{k}\right)\right|=o\left(H^{k} X\right)
$$

as $H, X \rightarrow \infty$.

- Also have slightly stronger bound:

$$
\sum_{1 \leq h_{2}, \ldots, h_{k} \leq H}\left|\sum_{1 \leq n \leq X} g_{1}\left(a_{1} n+b_{1}\right) g_{2}\left(a_{2} n+b_{2}\right) \ldots g_{k}\left(a_{k} n+b_{k}+h_{k}\right)\right|=o\left(H^{k-1} X\right)
$$

as $H, X \rightarrow \infty$.

## Sign patterns of the Liouville function

## Sign patterns of the Liouville function

## Conjecture (Chowla, 1965)

For any positive integer $k$, and choice of signs $\epsilon_{1}, \ldots, \epsilon_{k} \in\{-1,1\}$, the set of positive integers $n$ such that

$$
\lambda(n+1)=\epsilon_{1}, \quad \lambda(n+2)=\epsilon_{2}, \quad \ldots, \quad \lambda(n+k)=\epsilon_{k}
$$

has density $1 / 2^{k}$.

## Sign patterns of the Liouville function

## Conjecture (Chowla, 1965)

For any positive integer $k$, and choice of signs $\epsilon_{1}, \ldots, \epsilon_{k} \in\{-1,1\}$, the set of positive integers $n$ such that

$$
\lambda(n+1)=\epsilon_{1}, \quad \lambda(n+2)=\epsilon_{2}, \quad \ldots, \quad \lambda(n+k)=\epsilon_{k}
$$

has density $1 / 2^{k}$.

- For $k=1$, this follows by the prime number theorem: $\sum_{n \leq X} \lambda(n)=o(X)$.


## Sign patterns of the Liouville function

## Conjecture (Chowla, 1965)

For any positive integer $k$, and choice of signs $\epsilon_{1}, \ldots, \epsilon_{k} \in\{-1,1\}$, the set of positive integers $n$ such that

$$
\lambda(n+1)=\epsilon_{1}, \quad \lambda(n+2)=\epsilon_{2}, \quad \ldots, \quad \lambda(n+k)=\epsilon_{k}
$$

has density $1 / 2^{k}$.

- For $k=1$, this follows by the prime number theorem: $\sum_{n \leq X} \lambda(n)=o(X)$.


## Theorem (Hildebrand, 1986)

Let $\epsilon_{1}, \epsilon_{2}, \epsilon_{3} \in\{-1,+1\}$. Then there exist infinitely many $n$ such that

$$
\lambda(n+1)=\epsilon_{1}, \quad \lambda(n+2)=\epsilon_{2}, \quad \lambda(n+3)=\epsilon_{3} .
$$

## Sign patterns of the Liouville function

## Conjecture (Chowla, 1965)

For any positive integer $k$, and choice of signs $\epsilon_{1}, \ldots, \epsilon_{k} \in\{-1,1\}$, the set of positive integers $n$ such that

$$
\lambda(n+1)=\epsilon_{1}, \quad \lambda(n+2)=\epsilon_{2}, \quad \ldots, \quad \lambda(n+k)=\epsilon_{k}
$$

has density $1 / 2^{k}$.

- For $k=1$, this follows by the prime number theorem: $\sum_{n \leq X} \lambda(n)=o(X)$.


## Theorem (Hildebrand, 1986)

Let $\epsilon_{1}, \epsilon_{2}, \epsilon_{3} \in\{-1,+1\}$. Then there exist infinitely many $n$ such that

$$
\lambda(n+1)=\epsilon_{1}, \quad \lambda(n+2)=\epsilon_{2}, \quad \lambda(n+3)=\epsilon_{3} .
$$

Proof uses ad hoc elementary arguments, using the multiplicative property of $\lambda$ with the primes 2, 3, 5 .

## Sign patterns of the Liouville function

## Theorem (Matomäki-Radziwitt-Tao, 2015)

Let $\epsilon_{1}, \epsilon_{2}, \epsilon_{3} \in\{-1,+1\}$. Then there are a positive (lower) density of integers $n$ such that

$$
\lambda(n+1)=\epsilon_{1}, \quad \lambda(n+2)=\epsilon_{2}, \quad \lambda(n+3)=\epsilon_{3} .
$$

## Sign patterns of the Liouville function

## Theorem (Matomäki-Radziwiłt-Tao, 2015)

Let $\epsilon_{1}, \epsilon_{2}, \epsilon_{3} \in\{-1,+1\}$. Then there are a positive (lower) density of integers $n$ such that

$$
\lambda(n+1)=\epsilon_{1}, \quad \lambda(n+2)=\epsilon_{2}, \quad \lambda(n+3)=\epsilon_{3} .
$$

- Matomäki-Radziwiłł showed $k=2$ case in their original paper.


## Sign patterns of the Liouville function

## Theorem (Matomäki-Radziwiłt-Tao, 2015)

Let $\epsilon_{1}, \epsilon_{2}, \epsilon_{3} \in\{-1,+1\}$. Then there are a positive (lower) density of integers $n$ such that

$$
\lambda(n+1)=\epsilon_{1}, \quad \lambda(n+2)=\epsilon_{2}, \quad \lambda(n+3)=\epsilon_{3} .
$$

- Matomäki-Radziwiłł showed $k=2$ case in their original paper.
- In 2017, Klurman-Manerla proved the upper logarithmic density is at least $1 / 28$.


## Sign patterns of the Liouville function

## Theorem (Matomäki-Radziwiłt-Tao, 2015)

Let $\epsilon_{1}, \epsilon_{2}, \epsilon_{3} \in\{-1,+1\}$. Then there are a positive (lower) density of integers $n$ such that

$$
\lambda(n+1)=\epsilon_{1}, \quad \lambda(n+2)=\epsilon_{2}, \quad \lambda(n+3)=\epsilon_{3} .
$$

- Matomäki-Radziwiłł showed $k=2$ case in their original paper.
- In 2017, Klurman-Manerla proved the upper logarithmic density is at least $1 / 28$.
- In 2017, Tao-Teräväinen proven the logarithmic density for $k=3$ is exactly $\frac{1}{8}$, and for $k=4$ is at least $\frac{1}{32}$.


## Sign patterns of the Liouville function

- By Matomäki-Radziwiłt, we have

$$
\limsup _{x \rightarrow \infty} \frac{1}{X} \sum_{x \leq x \leq 2 X}\left|\frac{1}{h} \sum_{x \leq n \leq x+h} \lambda(n)\right|=o(1) \quad \text { as } h \rightarrow \infty .
$$

## Sign patterns of the Liouville function

- By Matomäki-Radziwiłt, we have

$$
\limsup _{X \rightarrow \infty} \frac{1}{X} \sum_{x \leq x \leq 2 X}\left|\frac{1}{h} \sum_{x \leq n \leq x+h} \lambda(n)\right|=o(1) \quad \text { as } h \rightarrow \infty \text {. }
$$

- By summation by parts we get

$$
\limsup _{x \rightarrow \infty} \frac{1}{\log x} \sum_{n \leq x} \frac{1}{n}\left|\frac{1}{h} \sum_{j=0}^{h} \lambda(n+j)\right|=o(1) \quad \text { as } h \rightarrow \infty .
$$

## Sign patterns of the Liouville function

- By Matomäki-Radziwiłf, we have

$$
\limsup _{X \rightarrow \infty} \frac{1}{X} \sum_{x \leq x \leq 2 X}\left|\frac{1}{h} \sum_{x \leq n \leq x+h} \lambda(n)\right|=o(1) \quad \text { as } h \rightarrow \infty .
$$

- By summation by parts we get

$$
\limsup _{x \rightarrow \infty} \frac{1}{\log x} \sum_{n \leq x} \frac{1}{n}\left|\frac{1}{h} \sum_{j=0}^{h} \lambda(n+j)\right|=o(1) \quad \text { as } h \rightarrow \infty .
$$

- Thus, for any $\epsilon>0$ and any $h$ sufficiently large, we have

$$
\left|\sum_{j=0}^{h} \lambda(n+j)\right| \leq \epsilon h
$$

with asymptotic probability at least $1-\epsilon$. Similarly with $\lambda$ replaced by $\mu$.

## Sign patterns of the Liouville function

Sketch proof for $k=2$ :

## Sign patterns of the Liouville function

Sketch proof for $k=2$ :

- Case $(+,-)$ : Assume for contradiction $(+,-)$ occurs with density zero. Then $(-,+)$ also occurs with density zero.


## Sign patterns of the Liouville function

Sketch proof for $k=2$ :

- Case $(+,-)$ : Assume for contradiction $(+,-)$ occurs with density zero. Then $(-,+)$ also occurs with density zero.
- Thus $(+,+)$ and $(-,-)$ occur with combined density 1 , thus $\lambda(n)=\lambda(n+1)$ a.a.s.


## Sign patterns of the Liouville function

Sketch proof for $k=2$ :

- Case $(+,-)$ : Assume for contradiction $(+,-)$ occurs with density zero. Then $(-,+)$ also occurs with density zero.
- Thus $(+,+)$ and $(-,-)$ occur with combined density 1 , thus $\lambda(n)=\lambda(n+1)$ a.a.s.
- By finite additivity, one obtained for any fixed $h: \lambda(n)=\lambda(n+1)=\cdots=\lambda(n+h)$ a.a.s, which contradicts our previous estimate. Similarly for $(-,+)$.


## Sign patterns of the Liouville function

Sketch proof for $k=2$ :

- Case $(+,-)$ : Assume for contradiction $(+,-)$ occurs with density zero. Then $(-,+)$ also occurs with density zero.
- Thus $(+,+)$ and $(-,-)$ occur with combined density 1 , thus $\lambda(n)=\lambda(n+1)$ a.a.s.
- By finite additivity, one obtained for any fixed $h: \lambda(n)=\lambda(n+1)=\cdots=\lambda(n+h)$ a.a.s, which contradicts our previous estimate. Similarly for $(-,+)$.
- Case $(+,+)$. Using the $k=1$ case and inclusion-exclusion, we have that $(-,-)$ occurs with the same density.


## Sign patterns of the Liouville function

Sketch proof for $k=2$ :

- Case $(+,-)$ : Assume for contradiction $(+,-)$ occurs with density zero. Then $(-,+)$ also occurs with density zero.
- Thus $(+,+)$ and $(-,-)$ occur with combined density 1 , thus $\lambda(n)=\lambda(n+1)$ a.a.s.
- By finite additivity, one obtained for any fixed $h: \lambda(n)=\lambda(n+1)=\cdots=\lambda(n+h)$ a.a.s, which contradicts our previous estimate. Similarly for $(-,+)$.
- Case $(+,+)$. Using the $k=1$ case and inclusion-exclusion, we have that $(-,-)$ occurs with the same density.
- From the pigeonhole principle, at least one of $\lambda(2 n+1)=\lambda(2 n)$, $\lambda(2 n+2)=\lambda(2 n+1)$, and $\lambda(2 n)=\lambda(2 n+2)$ must hold for any $n$, hence their probabilities must sum to at least 1 .


## Sign patterns of the Liouville function

Sketch proof for $k=2$ :

- Case $(+,-)$ : Assume for contradiction $(+,-)$ occurs with density zero. Then $(-,+)$ also occurs with density zero.
- Thus $(+,+)$ and $(-,-)$ occur with combined density 1 , thus $\lambda(n)=\lambda(n+1)$ a.a.s.
- By finite additivity, one obtained for any fixed $h: \lambda(n)=\lambda(n+1)=\cdots=\lambda(n+h)$ a.a.s, which contradicts our previous estimate. Similarly for $(-,+)$.
- Case $(+,+)$. Using the $k=1$ case and inclusion-exclusion, we have that $(-,-)$ occurs with the same density.
- From the pigeonhole principle, at least one of $\lambda(2 n+1)=\lambda(2 n)$, $\lambda(2 n+2)=\lambda(2 n+1)$, and $\lambda(2 n)=\lambda(2 n+2)$ must hold for any $n$, hence their probabilities must sum to at least 1 .
- But $\mathbb{P}[\lambda(n+1)=\lambda(n)]$ is average of $\mathbb{P}[\lambda(2 n+1)=\lambda(2 n)]$ and $\mathbb{P}[\lambda(2 n+2)=\lambda(2 n+1)]$, and so the density of $(+,+)$ is at least $1 / 6$.


## Sign patterns of the Liouville function

Case $k=3$ :

## Sign patterns of the Liouville function

Case $k=3$ :

- Assume for contradiction $(+,+,-)$ occurs with density zero. This means that if $\lambda(n)=\lambda(n+1)=+1$, then $\lambda(n+2)=+1$ a.a.s.


## Sign patterns of the Liouville function

Case $k=3$ :

- Assume for contradiction $(+,+,-)$ occurs with density zero. This means that if $\lambda(n)=\lambda(n+1)=+1$, then $\lambda(n+2)=+1$ a.a.s.
- Iterating this, for any fixed $h \geq 1$, we have that $\lambda(n)=\lambda(n+1)=+1$ implies $\lambda(n)=\lambda(n+1)=\cdots=\lambda(n+h)=+1$ a.a.s.


## Sign patterns of the Liouville function

Case $k=3$ :

- Assume for contradiction $(+,+,-)$ occurs with density zero. This means that if $\lambda(n)=\lambda(n+1)=+1$, then $\lambda(n+2)=+1$ a.a.s.
- Iterating this, for any fixed $h \geq 1$, we have that $\lambda(n)=\lambda(n+1)=+1$ implies $\lambda(n)=\lambda(n+1)=\cdots=\lambda(n+h)=+1$ a.a.s.
- As $(+,+)$ occurs with density $1 / 6$, thus $\lambda(n)=\lambda(n+1)=\cdots=\lambda(n+h)=+1$ occurs with probability at least $c>0$ independent of $h$. But this contradicts Matomäki-Radziwitł.


## Sign patterns of the Liouville function

Case $k=3$ :

- Assume for contradiction $(+,+,-)$ occurs with density zero. This means that if $\lambda(n)=\lambda(n+1)=+1$, then $\lambda(n+2)=+1$ a.a.s.
- Iterating this, for any fixed $h \geq 1$, we have that $\lambda(n)=\lambda(n+1)=+1$ implies $\lambda(n)=\lambda(n+1)=\cdots=\lambda(n+h)=+1$ a.a.s.
- As $(+,+)$ occurs with density $1 / 6$, thus $\lambda(n)=\lambda(n+1)=\cdots=\lambda(n+h)=+1$ occurs with probability at least $c>0$ independent of $h$. But this contradicts Matomäki-Radziwiłt.
- Same argument works for $(-,+,+),(+,-,-),(-,-,+)$.


## Sign patterns of the Liouville function

Remaining cases: $(+,+,+),(-,-,-),(+,-,+),(-,+,-)$

## Sign patterns of the Liouville function

Remaining cases: $(+,+,+),(-,-,-),(+,-,+),(-,+,-)$

- Case $(+,+,+)$ : Assume for contradiction $(+,+,+)$ occurs with density zero.


## Sign patterns of the Liouville function

Remaining cases: $(+,+,+),(-,-,-),(+,-,+),(-,+,-)$

- Case $(+,+,+)$ : Assume for contradiction $(+,+,+)$ occurs with density zero.
- Use the multiplicative nature of $\lambda$ (using the primes $2,3,5$ ), one can show $\lambda(3 n+1)=-\lambda(3 n+2)$ a.a.s, and $\lambda(3 n-1)=-\lambda(3 n+1)$ a.a.s.


## Sign patterns of the Liouville function

Remaining cases: $(+,+,+),(-,-,-),(+,-,+),(-,+,-)$

- Case $(+,+,+)$ : Assume for contradiction $(+,+,+)$ occurs with density zero.
- Use the multiplicative nature of $\lambda$ (using the primes $2,3,5$ ), one can show $\lambda(3 n+1)=-\lambda(3 n+2)$ a.a.s, and $\lambda(3 n-1)=-\lambda(3 n+1)$ a.a.s.
- Use this to show that $\lambda$ "behaves like" the Dirichlet character $\chi_{3}$, i.e. $\lambda \chi_{3}$ is almost always constant away from multiples of 3 .


## Sign patterns of the Liouville function

Remaining cases: $(+,+,+),(-,-,-),(+,-,+),(-,+,-)$

- Case $(+,+,+)$ : Assume for contradiction $(+,+,+)$ occurs with density zero.
- Use the multiplicative nature of $\lambda$ (using the primes $2,3,5$ ), one can show $\lambda(3 n+1)=-\lambda(3 n+2)$ a.a.s, and $\lambda(3 n-1)=-\lambda(3 n+1)$ a.a.s.
- Use this to show that $\lambda$ "behaves like" the Dirichlet character $\chi_{3}$, i.e. $\lambda \chi_{3}$ is almost always constant away from multiples of 3 .
- Use Matomäki-Radziwiłł on $\lambda \chi_{3}$, i.e. for any $\epsilon>0$ and sufficiently large $h$

$$
\left|\sum_{j=0}^{h} \lambda(n+j) \chi_{3}(n+j)\right| \leq \epsilon h
$$

with asymptotic probability at least $1-\epsilon$.

## Sign patterns of the Liouville function

Remaining cases: $(+,+,+),(-,-,-),(+,-,+),(-,+,-)$

- Case $(+,+,+)$ : Assume for contradiction $(+,+,+)$ occurs with density zero.
- Use the multiplicative nature of $\lambda$ (using the primes $2,3,5$ ), one can show $\lambda(3 n+1)=-\lambda(3 n+2)$ a.a.s, and $\lambda(3 n-1)=-\lambda(3 n+1)$ a.a.s.
- Use this to show that $\lambda$ "behaves like" the Dirichlet character $\chi_{3}$, i.e. $\lambda \chi_{3}$ is almost always constant away from multiples of 3 .
- Use Matomäki-Radziwiłł on $\lambda \chi_{3}$, i.e. for any $\epsilon>0$ and sufficiently large $h$

$$
\left|\sum_{j=0}^{h} \lambda(n+j) \chi_{3}(n+j)\right| \leq \epsilon h
$$

with asymptotic probability at least $1-\epsilon$.

- This yields a contradiction.


## Sign patterns of the Möbius function

Note that an analogous conjecture for $\mu$ is not true. E.g. the sign pattern (1, 1, 1, 1) never occurs.

## Sign patterns of the Möbius function

Note that an analogous conjecture for $\mu$ is not true. E.g. the sign pattern (1, 1, 1, 1) never occurs.

## Theorem (Matomäki-Radziwiłt-Tao, 2015)

Let $\epsilon_{1}, \epsilon_{2} \in\{-1,0,+1\}$. Then there are a positive (lower) density of integers $n$ such that

$$
\mu(n)=\epsilon_{1} \text { and } \mu(n+1)=\epsilon_{2} .
$$

## Sign patterns of the Möbius function

Note that an analogous conjecture for $\mu$ is not true. E.g. the sign pattern (1, 1, 1, 1) never occurs.

## Theorem (Matomäki-RadziwiH-Tao, 2015)

Let $\epsilon_{1}, \epsilon_{2} \in\{-1,0,+1\}$. Then there are a positive (lower) density of integers $n$ such that

$$
\mu(n)=\epsilon_{1} \text { and } \mu(n+1)=\epsilon_{2} .
$$

- Case $k=1$ : By the prime number theorem $\sum_{n \leq X} \frac{\mu(n)}{n}=o(\log X)$, which shows the cases $\epsilon=+1$ and $\epsilon=-1$ occur with equal density.


## Sign patterns of the Möbius function

Note that an analogous conjecture for $\mu$ is not true. E.g. the sign pattern (1, 1, 1, 1) never occurs.

## Theorem (Matomäki-RadziwiH-Tao, 2015)

Let $\epsilon_{1}, \epsilon_{2} \in\{-1,0,+1\}$. Then there are a positive (lower) density of integers $n$ such that

$$
\mu(n)=\epsilon_{1} \text { and } \mu(n+1)=\epsilon_{2} .
$$

- Case $k=1$ : By the prime number theorem $\sum_{n \leq X} \frac{\mu(n)}{n}=o(\log X)$, which shows the cases $\epsilon=+1$ and $\epsilon=-1$ occur with equal density.
- $\mu^{2}(n)=1$ occurs with density $\frac{1}{\zeta(2)}=\frac{6}{\pi^{2}}$.


## Sign patterns of the Möbius function

Note that an analogous conjecture for $\mu$ is not true. E.g. the sign pattern (1, 1, 1, 1) never occurs.

## Theorem (Matomäki-Radziwiłt-Tao, 2015)

Let $\epsilon_{1}, \epsilon_{2} \in\{-1,0,+1\}$. Then there are a positive (lower) density of integers $n$ such that

$$
\mu(n)=\epsilon_{1} \text { and } \mu(n+1)=\epsilon_{2} .
$$

- Case $k=1$ : By the prime number theorem $\sum_{n \leq X} \frac{\mu(n)}{n}=o(\log X)$, which shows the cases $\epsilon=+1$ and $\epsilon=-1$ occur with equal density.
- $\mu^{2}(n)=1$ occurs with density $\frac{1}{\zeta(2)}=\frac{6}{\pi^{2}}$.
- Thus, the events $\mu(n)=1, \mu(n)=0, \mu(n)=-1$ occur with asymptotic probability $\frac{1}{2 \zeta(2)}, 1-\frac{1}{\zeta(2)}, \frac{1}{2 \zeta(2)}$ respectively.


## Sign patterns of the Möbius function

Sketch proof for $k=2$ :

## Sign patterns of the Möbius function

Sketch proof for $k=2$ :

- Can use standard sieve theory arguments to deduce that the probability that $\mu^{2}(n)=\mu^{2}(n+1)=1$ is

$$
c:=\prod_{p}\left(1-\frac{2}{p^{2}}\right)=0.3226 \ldots
$$

## Sign patterns of the Möbius function

Sketch proof for $k=2$ :

- Can use standard sieve theory arguments to deduce that the probability that $\mu^{2}(n)=\mu^{2}(n+1)=1$ is

$$
c:=\prod_{p}\left(1-\frac{2}{p^{2}}\right)=0.3226 \ldots
$$

- The case $k=1$ and the Chinese remainder theorem proves that density for $(0,+1)$ and $(0,-1)$ are the same. Similarly, the density for $(+1,0)$ and $(-1,0)$ are the same.


## Sign patterns of the Möbius function

Sketch proof for $k=2$ :

- Can use standard sieve theory arguments to deduce that the probability that $\mu^{2}(n)=\mu^{2}(n+1)=1$ is

$$
c:=\prod_{p}\left(1-\frac{2}{p^{2}}\right)=0.3226 \ldots
$$

- The case $k=1$ and the Chinese remainder theorem proves that density for $(0,+1)$ and $(0,-1)$ are the same. Similarly, the density for $(+1,0)$ and $(-1,0)$ are the same.
- Thus, by inclusion-exclusion, the case $(0,0)$ has density $1-\frac{2}{\zeta(2)}+c=0.1067 \ldots$.


## Sign patterns of the Möbius function

Sketch proof for $k=2$ :

- Can use standard sieve theory arguments to deduce that the probability that $\mu^{2}(n)=\mu^{2}(n+1)=1$ is

$$
c:=\prod_{p}\left(1-\frac{2}{p^{2}}\right)=0.3226 \ldots
$$

- The case $k=1$ and the Chinese remainder theorem proves that density for $(0,+1)$ and $(0,-1)$ are the same. Similarly, the density for $(+1,0)$ and $(-1,0)$ are the same.
- Thus, by inclusion-exclusion, the case $(0,0)$ has density $1-\frac{2}{\zeta(2)}+c=0.1067 \ldots$.
- Further inclusion-exclusion shows that each of the cases $(+1,0),(-1,0),(0,+1)$, $(0,-1)$ have density $\frac{1}{2}\left(\frac{1}{\zeta(2)}-c\right)=0.1426 \ldots$


## Sign patterns of the Möbius function

Remaining cases: $\quad(+1,+1),(+1,-1),(-1,+1),(-1,-1)$.

## Sign patterns of the Möbius function

Remaining cases: $\quad(+1,+1),(+1,-1),(-1,+1),(-1,-1)$.

- Assume density of $(1, \epsilon)$ is zero, for some $\epsilon \in\{-1,+1\}$. Then density of $(-1,-\epsilon)$ is zero, which implies

$$
\mu^{2}(n)=\mu^{2}(n+1)=1 \Longrightarrow \mu(n)=-\epsilon \mu(n+1) \quad \text { a.a.s. }
$$

## Sign patterns of the Möbius function

Remaining cases: $\quad(+1,+1),(+1,-1),(-1,+1),(-1,-1)$.

- Assume density of $(1, \epsilon)$ is zero, for some $\epsilon \in\{-1,+1\}$. Then density of $(-1,-\epsilon)$ is zero, which implies

$$
\mu^{2}(n)=\mu^{2}(n+1)=1 \Longrightarrow \mu(n)=-\epsilon \mu(n+1) \quad \text { a.a.s. }
$$

- Define the completely multiplicative function $\chi(n)=(-\epsilon)^{v_{2}(n)}$. Thus, we have

$$
\mu^{2}(n)=\mu^{2}(n+1)=1 \Longrightarrow \mu \chi(n)=\mu \chi(n+1) \quad \text { a.a.s. }
$$

## Sign patterns of the Möbius function

Remaining cases: $\quad(+1,+1),(+1,-1),(-1,+1),(-1,-1)$.

- Assume density of $(1, \epsilon)$ is zero, for some $\epsilon \in\{-1,+1\}$. Then density of $(-1,-\epsilon)$ is zero, which implies

$$
\mu^{2}(n)=\mu^{2}(n+1)=1 \Longrightarrow \mu(n)=-\epsilon \mu(n+1) \quad \text { a.a.s. }
$$

- Define the completely multiplicative function $\chi(n)=(-\epsilon)^{v_{2}(n)}$. Thus, we have

$$
\mu^{2}(n)=\mu^{2}(n+1)=1 \Longrightarrow \mu \chi(n)=\mu \chi(n+1) \quad \text { a.a.s. }
$$

- More generally, if $d$ divides $n$, then

$$
\mu^{2}(n)=\mu^{2}(n+d)=1 \Longrightarrow \mu \chi(n)=\mu \chi(n+d) \quad \text { a.a.s. }
$$

## Sign patterns of the Möbius function

Remaining cases: $\quad(+1,+1),(+1,-1),(-1,+1),(-1,-1)$.

- Assume density of $(1, \epsilon)$ is zero, for some $\epsilon \in\{-1,+1\}$. Then density of $(-1,-\epsilon)$ is zero, which implies

$$
\mu^{2}(n)=\mu^{2}(n+1)=1 \Longrightarrow \mu(n)=-\epsilon \mu(n+1) \quad \text { a.a.s. }
$$

- Define the completely multiplicative function $\chi(n)=(-\epsilon)^{v_{2}(n)}$. Thus, we have

$$
\mu^{2}(n)=\mu^{2}(n+1)=1 \Longrightarrow \mu \chi(n)=\mu \chi(n+1) \quad \text { a.a.s. }
$$

- More generally, if $d$ divides $n$, then

$$
\mu^{2}(n)=\mu^{2}(n+d)=1 \Longrightarrow \mu \chi(n)=\mu \chi(n+d) \quad \text { a.a.s. }
$$

- Can use this to create long "chains" $n+a_{1}, n+a_{2}$ on which $\mu \chi$ is constant. This is incompatible with Matomäki-Radziwitt!


## Log averaged Chowla and Elliott conjecture

## Log averaged Chowla and Elliott conjecture

## Theorem (Tao, 2015)

Let $a_{1}, a_{2}$ be positive integers and $b_{1}, b_{2}$ be integers such that $a_{1} b_{2}-a_{2} b_{1} \neq 0$. Let $1 \leq \omega(x) \leq x$ be a function that goes to infinity as $x \rightarrow \infty$. Then one has

$$
\sum_{x / \omega(x)<n \leq x} \frac{\lambda\left(a_{1} n+b_{1}\right) \lambda\left(a_{2} n+b_{2}\right)}{n}=o(\log \omega(x)) \quad \text { as } x \rightarrow \infty .
$$

## Log averaged Chowla and Elliott conjecture

## Theorem (Tao, 2015)

Let $a_{1}, a_{2}$ be positive integers and $b_{1}, b_{2}$ be integers such that $a_{1} b_{2}-a_{2} b_{1} \neq 0$. Let $1 \leq \omega(x) \leq x$ be a function that goes to infinity as $x \rightarrow \infty$. Then one has

$$
\sum_{x / \omega(x)<n \leq x} \frac{\lambda\left(a_{1} n+b_{1}\right) \lambda\left(a_{2} n+b_{2}\right)}{n}=o(\log \omega(x)) \quad \text { as } x \rightarrow \infty .
$$

## Theorem (Tao, 2015)

Let $a_{1}, a_{2}$ be natural, $b_{1}, b_{2}$ integers such that $a_{1} b_{2}-a_{2} b_{1} \neq 0$. Let $g_{1}, g_{2}: \mathbb{N} \rightarrow \mathbb{C}$ be multiplicative 1-bounded functions, with $g_{1}$ "non-pretentious". Then

$$
\sum_{x / \omega(x)<n \leq x} \frac{g_{1}\left(a_{1} n+b_{1}\right) g_{2}\left(a_{2} n+b_{2}\right)}{n}=o(\log \omega(x)) \quad \text { as } x \rightarrow \infty .
$$

## Log averaged Chowla

Case: $\omega(x)=x, a_{1}=a_{2}=1, b_{1}=0, b_{2}=1$

## Log averaged Chowla

Case: $\omega(x)=x, a_{1}=a_{2}=1, b_{1}=0, b_{2}=1$
Theorem (Tao, 2015)

$$
\sum_{1<n \leq x} \frac{\lambda(n) \lambda(n+1)}{n}=o(\log x) a s x \rightarrow \infty
$$

## Log averaged Chowla

Case: $\omega(x)=x, a_{1}=a_{2}=1, b_{1}=0, b_{2}=1$

## Theorem (Tao, 2015)

$$
\sum_{1<n \leq x} \frac{\lambda(n) \lambda(n+1)}{n}=o(\log x) a s x \rightarrow \infty
$$

This implies the following corollary

## Theorem (Tao, 2015)

Let $\epsilon_{1}, \epsilon_{2} \in\{-1,+1\}$. Then the set of positive integers $n$ such that $\lambda(n)=\epsilon_{1}$ and $\lambda(n+1)=\epsilon_{2}$ has logarithmic density $1 / 4$, i.e.

$$
\frac{1}{\log x} \sum_{\substack{n \leq x \\ \lambda(n)=\epsilon_{1}, \lambda(n+1)=\epsilon_{2}}} \frac{1}{n}=\frac{1}{4}+o(1)
$$

## Log density of Möbius function

Log averaged Elliott conjectured, applied to $\mu$ and $\mu^{2}$ provides the following estimates

$$
\sum_{n \leq x} \frac{\mu(n) \mu(n+1)}{n}, \quad \sum_{n \leq x} \frac{\mu^{2}(n) \mu(n+1)}{n}, \quad \sum_{n \leq x} \frac{\mu(n) \mu^{2}(n+1)}{n}=o(\log x)
$$

## Log density of Möbius function

Log averaged Elliott conjectured, applied to $\mu$ and $\mu^{2}$ provides the following estimates

$$
\sum_{n \leq x} \frac{\mu(n) \mu(n+1)}{n}, \quad \sum_{n \leq x} \frac{\mu^{2}(n) \mu(n+1)}{n}, \quad \sum_{n \leq x} \frac{\mu(n) \mu^{2}(n+1)}{n}=o(\log x)
$$

## Theorem (Tao, 2015)

Let $c:=\prod_{p}\left(1-\frac{2}{p^{2}}\right)=0.3226 \ldots$. Let $\epsilon_{1}, \epsilon_{2} \in\{-1,0,+1\}$.
Then the set $\left\{n: \mu(n)=\epsilon_{1}, \mu(n+1)=\epsilon_{2}\right\}$ has logarithmic density:

- $1-\frac{2}{\zeta(2)}+c=0.1067 \ldots, \quad$ if $\left(\epsilon_{1}, \epsilon_{2}\right)=(0,0)$.
- $\frac{1}{2}\left(\frac{1}{\zeta(2)}-c\right)=0.1426 \ldots, \quad$ if $\left(\epsilon_{1}, \epsilon_{2}\right)=(1,0),(-1,0),(0,1),(0,-1)$.
- $\frac{c}{4}=0.0806 \ldots$
otherwise.


## Erdös discrepancy problem

## Erdös discrepancy problem

## Conjecture (Erdös, 1932)

Let $f: \mathbb{N} \rightarrow\{-1,+1\}$. Then

$$
\sup _{n, d \in \mathbb{N}}|f(d)+f(2 d)+\cdots+f(n d)|=\infty
$$

(equivalently, for all $C>0$, there exists $n, d \geq 1$ such that $|f(d)+\cdots+f(n d)| \geq C$ )

## Erdös discrepancy problem

## Conjecture (Erdös, 1932)

Let $f: \mathbb{N} \rightarrow\{-1,+1\}$. Then

$$
\sup _{n, d \in \mathbb{N}}|f(d)+f(2 d)+\cdots+f(n d)|=\infty
$$

(equivalently, for all $C>0$, there exists $n, d \geq 1$ such that $|f(d)+\cdots+f(n d)| \geq C$ )

- Van der Waerden's theorem (1927) implies that

$$
\sup _{a, n, d \geq 1}|f(a)+f(a+d)+\cdots+f(a+(n-1) d)|=\infty
$$

## Erdös discrepancy problem

## Conjecture (Erdös, 1932)

Let $f: \mathbb{N} \rightarrow\{-1,+1\}$. Then

$$
\sup _{n, d \in \mathbb{N}}|f(d)+f(2 d)+\cdots+f(n d)|=\infty
$$

(equivalently, for all $C>0$, there exists $n, d \geq 1$ such that $|f(d)+\cdots+f(n d)| \geq C$ )

- Van der Waerden's theorem (1927) implies that

$$
\sup _{a, n, d \geq 1}|f(a)+f(a+d)+\cdots+f(a+(n-1) d)|=\infty
$$

- Roth showed $\sup _{n \leq N, a, d}$ is at least $\geq \frac{1}{20} N^{1 / 4}$. This is best possible bound (Matousek, Spencer, 1996)


## Erdös discrepancy problem


"A precipice lies two paces to your left and a pit of vipers two paces to your right. Can you devise a series of steps that will avoid the hazards, even if you are forced to take every second, third or Nth step in your series?" - Quanta Magazine, 2015

## Erdös discrepancy problem

Erdös: For all $C>0$, there exists some $n, d \geq 1$ such that $|f(d)+\cdots+f(n d)| \geq C$.

## Erdös discrepancy problem

Erdös: For all $C>0$, there exists some $n, d \geq 1$ such that $|f(d)+\cdots+f(n d)| \geq C$.

- Case $C=1$ : Clearly true for $n=1$.


## Erdös discrepancy problem

Erdös: For all $C>0$, there exists some $n, d \geq 1$ such that $|f(d)+\cdots+f(n d)| \geq C$.

- Case $C=1$ : Clearly true for $n=1$.
- Case $C=2$ : The finite sequence

$$
+1,-1,-1,+1,-1,+1,+1,-1,-1,+1,-1
$$

has discrepancy 1. A brute force search (or by an elementary deduction argument) proves any sequence of length $N \geq 12$ has discrepancy at least 2 .

## Erdös discrepancy problem

Erdös: For all $C>0$, there exists some $n, d \geq 1$ such that $|f(d)+\cdots+f(n d)| \geq C$.

- Case $C=1$ : Clearly true for $n=1$.
- Case $C=2$ : The finite sequence

$$
+1,-1,-1,+1,-1,+1,+1,-1,-1,+1,-1
$$

has discrepancy 1. A brute force search (or by an elementary deduction argument) proves any sequence of length $N \geq 12$ has discrepancy at least 2 .

- Case $C=3$ : Konev-Lisitsa (2014) obtained a sequence of length $N=1160$ with discrepancy 2

$$
\begin{aligned}
& -++-+--++-++-+--+--++-+--+--+ \\
& +-+--++-++-+-++--++-+---+-++-\ldots
\end{aligned}
$$

This was proven optimal using a SAT solver.

## Erdös discrepancy problem

- Case $C=4$ : Konev-Lisitsa obtained sequences of length $>130000$ and discrepancy 3 (unknown if best possible?). Le Bras-Gomes-Selman produced a completely multiplicative sequence of length 127645 of discrepancy 3.


## Erdös discrepancy problem

- Case $C=4$ : Konev-Lisitsa obtained sequences of length $>130000$ and discrepancy 3 (unknown if best possible?). Le Bras-Gomes-Selman produced a completely multiplicative sequence of length 127645 of discrepancy 3.
- Can construct examples where $\sup _{n \leq N, d}|f(1)+\cdots+f(n d)| \ll \log N$.


## Erdös discrepancy problem

- Case $C=4$ : Konev-Lisitsa obtained sequences of length $>130000$ and discrepancy 3 (unknown if best possible?). Le Bras-Gomes-Selman produced a completely multiplicative sequence of length 127645 of discrepancy 3.
- Can construct examples where $\sup _{n \leq N, d}|f(1)+\cdots+f(n d)| \ll \log N$.

| Discrepancy <br> bound | Completely <br> multiplicative | Multiplicative | Unconstrained |
| :---: | :---: | :---: | :---: |
| $C=1$ | 1 | 1 | 1 |
| $C=2$ | 10 | 12 | 12 |
| $C=3$ | 247 | 345 | 1161 |
| $C=4$ | 127646 | 127646 | $>130000$ |

Table: Minimum length $N$ required for any $\pm 1$ sequence to have discrepancy $\geq C$.

## Examples

## Examples

- Conjecture is false if any positive density of zeros are allowed: E.g Let $\chi: \mathbb{N} \rightarrow \mathbb{C}$ be non-principal Dirichlet character of period $q$. Then $|\chi(d)+\chi(2 d)+\cdots+\chi(n d)| \leq q$.


## Examples

- Conjecture is false if any positive density of zeros are allowed: E.g Let $\chi: \mathbb{N} \rightarrow \mathbb{C}$ be non-principal Dirichlet character of period $q$. Then $|\chi(d)+\chi(2 d)+\cdots+\chi(n d)| \leq q$.
- (Borwein-Choi-Coons): Let $\tilde{\chi}_{3}: \mathbb{N} \rightarrow \mathbb{C}$ such that

$$
\tilde{\chi}_{3}(n):= \begin{cases}+1 & \text { if } n=3^{k}(3 m+1) \\ -1 & \text { if } n=3^{k}(3 m+2)\end{cases}
$$

Then $\chi(1)+\cdots+\chi(n)$ is the number of 1 s in the base 3 expansion of $n$, thus this grows as $O(\log N)$.

## Examples

- Conjecture is false if any positive density of zeros are allowed: E.g Let $\chi: \mathbb{N} \rightarrow \mathbb{C}$ be non-principal Dirichlet character of period $q$. Then $|\chi(d)+\chi(2 d)+\cdots+\chi(n d)| \leq q$.
- (Borwein-Choi-Coons): Let $\tilde{\chi}_{3}: \mathbb{N} \rightarrow \mathbb{C}$ such that

$$
\tilde{\chi}_{3}(n):= \begin{cases}+1 & \text { if } n=3^{k}(3 m+1) \\ -1 & \text { if } n=3^{k}(3 m+2)\end{cases}
$$

Then $\chi(1)+\cdots+\chi(n)$ is the number of 1 s in the base 3 expansion of $n$, thus this grows as $O(\log N)$.

- (Vector-valued BCC): Let $H$ be real Hilbert space with orthonormal basis $e_{0}, e_{1}, e_{2}, \ldots$. Let $f: \mathbb{N} \rightarrow H$ be the function

$$
f(n):= \begin{cases}+e_{k} & \text { if } n=3^{k}(3 m+1) \\ -e_{k} & \text { if } n=3^{k}(3 m+2)\end{cases}
$$

Using the Pythagorean theorem, we get $\|f(1)+\cdots+f(n)\|_{H}=O(\sqrt{\log n})$.

## Erdös discrepancy problem

## Theorem (Tao, 2015)

Let $f: \mathbb{N} \rightarrow H$ where $H$ is some real or complex Hilbert space, such that $\|f(n)\|_{H}=1$ for all n. Then

$$
\sup _{n, d \in \mathbb{N}}\|f(d)+f(2 d)+\cdots+f(n d)\|_{H}=\infty
$$

In the case of $H=\mathbb{R}$, this proves the Erdös discrepancy problem!

## Erdös discrepancy problem

## Theorem (Tao, 2015)

Let $f: \mathbb{N} \rightarrow H$ where $H$ is some real or complex Hilbert space, such that $\|f(n)\|_{H}=1$ for all n. Then

$$
\sup _{n, d \in \mathbb{N}}\|f(d)+f(2 d)+\cdots+f(n d)\|_{H}=\infty
$$

In the case of $H=\mathbb{R}$, this proves the Erdös discrepancy problem!

- Can in principle give an effective (albeit weak) lower bound on $\sup _{n \leq N, d}\|f(d)+\cdots+f(n d)\|_{H}$.


## Sketch proof

## Sketch proof

- Can use a Fourier analytic argument to reduce the theorem to showing that

$$
\sup _{n \in \mathbb{N}} \mathbb{E}|\mathbf{g}(1)+\mathbf{g}(2)+\cdots+\mathbf{g}(n)|^{2}=\infty
$$

where $\mathbf{g}: \mathbb{N} \rightarrow S^{1}$ is a (stochastic) completely multiplicative function.

## Sketch proof

- Can use a Fourier analytic argument to reduce the theorem to showing that

$$
\sup _{n \in \mathbb{N}} \mathbb{E}|\mathbf{g}(1)+\mathbf{g}(2)+\cdots+\mathbf{g}(n)|^{2}=\infty
$$

where $\mathbf{g}: \mathbb{N} \rightarrow S^{1}$ is a (stochastic) completely multiplicative function.

- Since $|g(1)+\cdots+g(n)|^{2}=\sum|g(n)|^{2}+\sum_{i \neq j} g(i) \bar{g}(j)$, it suffices to study the covariances $\sum_{n \leq x} g(n) \bar{g}(n+h)$.


## Sketch proof

- Can use a Fourier analytic argument to reduce the theorem to showing that

$$
\sup _{n \in \mathbb{N}} \mathbb{E}|\mathbf{g}(1)+\mathbf{g}(2)+\cdots+\mathbf{g}(n)|^{2}=\infty
$$

where $\mathbf{g}: \mathbb{N} \rightarrow S^{1}$ is a (stochastic) completely multiplicative function.

- Since $|g(1)+\cdots+g(n)|^{2}=\sum|g(n)|^{2}+\sum_{i \neq j} g(i) \bar{g}(j)$, it suffices to study the covariances $\sum_{n \leq x} g(n) \bar{g}(n+h)$.
- Use the log averaged Elliott theorem to show that any counterexample to the above must behave like a Dirichlet character $n \mapsto \chi(n) n^{i t}$.


## Sketch proof

- Can use a Fourier analytic argument to reduce the theorem to showing that

$$
\sup _{n \in \mathbb{N}} \mathbb{E}|\mathbf{g}(1)+\mathbf{g}(2)+\cdots+\mathbf{g}(n)|^{2}=\infty
$$

where $\mathbf{g}: \mathbb{N} \rightarrow S^{1}$ is a (stochastic) completely multiplicative function.

- Since $|g(1)+\cdots+g(n)|^{2}=\sum|g(n)|^{2}+\sum_{i \neq j} g(i) \bar{g}(j)$, it suffices to study the covariances $\sum_{n \leq x} g(n) \bar{g}(n+h)$.
- Use the log averaged Elliott theorem to show that any counterexample to the above must behave like a Dirichlet character $n \mapsto \chi(n) n^{i t}$.
- Do a similar (but more intricate) analysis of the Borwein-Choi-Coons example to establish a lower bound for $\mathbb{E}|\mathbf{g}(1)+\ldots \mathbf{g}(n)|^{2}$.


## Sketch proof

- Can use a Fourier analytic argument to reduce the theorem to showing that

$$
\sup _{n \in \mathbb{N}} \mathbb{E}|\mathbf{g}(1)+\mathbf{g}(2)+\cdots+\mathbf{g}(n)|^{2}=\infty
$$

where $\mathbf{g}: \mathbb{N} \rightarrow S^{1}$ is a (stochastic) completely multiplicative function.

- Since $|g(1)+\cdots+g(n)|^{2}=\sum|g(n)|^{2}+\sum_{i \neq j} g(i) \bar{g}(j)$, it suffices to study the covariances $\sum_{n \leq x} g(n) \bar{g}(n+h)$.
- Use the log averaged Elliott theorem to show that any counterexample to the above must behave like a Dirichlet character $n \mapsto \chi(n) n^{i t}$.
- Do a similar (but more intricate) analysis of the Borwein-Choi-Coons example to establish a lower bound for $\mathbb{E}|\mathbf{g}(1)+\ldots \mathbf{g}(n)|^{2}$.
- Proof can give an effective lower bound on the growth rate, but will be weaker than $\sqrt{\log N}$.

A poem

## A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwilf's paper:

## A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłt's paper:
"In number theory's land of yore,

## A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłt's paper:
"In number theory's land of yore, Where mysteries and conjectures soar,

## A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwitt's paper:
"In number theory's land of yore, Where mysteries and conjectures soar, Matomäki and Radziwitt's paper stands,

## A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwitt's paper:
"In number theory's land of yore, Where mysteries and conjectures soar, Matomäki and Radziwitt's paper stands, A testament to their brilliant hands.

## A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłt's paper:
"In number theory's land of yore, Where mysteries and conjectures soar, Matomäki and Radziwitt's paper stands, A testament to their brilliant hands.

Short and long averages, they relate,

## A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłt's paper:
"In number theory's land of yore, Where mysteries and conjectures soar, Matomäki and Radziwitt's paper stands, A testament to their brilliant hands.

Short and long averages, they relate, A powerful tool to analyze f's fate,

## A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłt's paper:
"In number theory's land of yore, Where mysteries and conjectures soar, Matomäki and Radziwitt's paper stands, A testament to their brilliant hands.

Short and long averages, they relate, A powerful tool to analyze f's fate, With cancellations for Möbius shown,

## A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłt's paper:
"In number theory's land of yore, Where mysteries and conjectures soar, Matomäki and Radziwitt's paper stands, A testament to their brilliant hands.

Short and long averages, they relate, A powerful tool to analyze f's fate, With cancellations for Möbius shown, And Chowla's conjecture slowly grown.

## A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłt's paper:
"In number theory's land of yore, Where mysteries and conjectures soar, Matomäki and Radziwitt's paper stands, A testament to their brilliant hands.

Short and long averages, they relate, A powerful tool to analyze f's fate, With cancellations for Möbius shown, And Chowla's conjecture slowly grown.

A masterpiece of theory and proof,

## A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłt's paper:
"In number theory's land of yore, Where mysteries and conjectures soar, Matomäki and Radziwitt's paper stands, A testament to their brilliant hands.

Short and long averages, they relate, A powerful tool to analyze f's fate, With cancellations for Möbius shown, And Chowla's conjecture slowly grown.

A masterpiece of theory and proof, Innovative, insightful, and aloof,

## A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłt's paper:
"In number theory's land of yore, Where mysteries and conjectures soar, Matomäki and Radziwitt's paper stands, A testament to their brilliant hands.

Short and long averages, they relate, A powerful tool to analyze f's fate, With cancellations for Möbius shown, And Chowla's conjecture slowly grown.

A masterpiece of theory and proof, Innovative, insightful, and aloof, This paper's insights will inspire,

## A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłt's paper:
"In number theory's land of yore, Where mysteries and conjectures soar, Matomäki and Radziwitt's paper stands,
A testament to their brilliant hands.
Short and long averages, they relate,
A powerful tool to analyze f's fate, With cancellations for Möbius shown, And Chowla's conjecture slowly grown.

A masterpiece of theory and proof, Innovative, insightful, and aloof, This paper's insights will inspire, Awe and wonder, they shall acquire."

## References

(R. Matomäki, K., Radziwitł, M. (2015)

A note on the Liouville function in short intervals
Preprint, Available at: arXiv:1502.02374.

- Matomäki, K., Radziwitt, M. (2016)

Multiplicative functions in short intervals
Ann. of Math. (2) 183, no. 3, 1015-1056.
國 Matomäki, K., Radziwitt, M., Tao, T. (2015)
An averaged form of Chowla's conjecture
Algebra Number Theory 9, no. 9, 2167-2196.

## References

围 Matomäki, K., Radziwitt, M., Tao, T. (2016)
Sign patterns of the Liouville and Möbius functions
Forum Math. Sigma 4, Paper No. e14, 44 pp.
國 Tao, T. (2016)
The logarithmically averaged Chowla and Elliott conjectures for two-point correlations
Forum Math. Pi 4, e8, 36 pp.
Tao, T. (2016)
The Erdős discrepancy problem
Discrete Anal, Paper No. 1, 29 pp.

## Thank you!

