A survey of applications to Matomäki–Radziwiłł’s theorem

Multiplicative functions study group, Week 10

Robin Visser
Mathematics Institute
University of Warwick

17 March 2023
Main theorem of Matomäki-Radziwiłł

Theorem (Matomäki-Radziwiłł, 2015)

Let $f : \mathbb{N} \to [-1, 1]$ be a multiplicative function and let $2 \leq h \leq X$. Then for $(1 + o(1))X$ values of $X \leq x \leq 2X$ we have

$$\left| \frac{1}{h} \sum_{x \leq n \leq x+h} f(n) - \frac{1}{X} \sum_{X \leq n \leq 2X} f(n) \right| \leq o(1) \quad \text{as } h, X \to \infty.$$
Main theorem of Matomäki-Radziwiłł

Theorem (Matomäki-Radziwiłł, 2015)

Let \(f : \mathbb{N} \to [-1, 1] \) be a multiplicative function andd let \(2 \leq h \leq X \). Then for \((1 + o(1))X\) values of \(X \leq x \leq 2X \) we have

\[
\left| \frac{1}{h} \sum_{x \leq n \leq x+h} f(n) - \frac{1}{X} \sum_{X \leq n \leq 2X} f(n) \right| \leq o(1) \quad \text{as } h, X \to \infty.
\]

E.g. Applying the above to the Liouville function \(\lambda(n) = (-1)^{\Omega(n)} \) with \(h = X^\delta \), we get

Theorem (Matomäki-Radziwiłł, 2015)

Let \(\delta > 0 \). For \((1 + o(1))X\) values of \(X \leq x \leq 2X \), we have

\[
\sum_{x \leq n \leq x+X^\delta} \lambda(n) = o(X^\delta) \quad \text{as } X \to \infty.
\]
Main theorem of Matomäki-Radziwiłł

Theorem (Matomäki-Radziwiłł, 2015)

Let \(f : [-1, 1] \) be a multiplicative function and let \(10 \leq h \leq x \). Then we have

\[
\frac{1}{h \sqrt{x} \log 2} \sum_{x \leq n_1 \leq x+h \sqrt{x}} f(n_1) f(n_2) = \left(\frac{1}{\sqrt{x}} \sum_{\sqrt{x} \leq n \leq 2 \sqrt{x}} f(n) \right)^2 + o(1)
\]

as \(h, X \to \infty \)
Chowla’s conjecture

Conjecture (Chowla, 1965)

Let h_1, \ldots, h_k be distinct natural numbers. Then

$$\sum_{1 \leq n \leq x} \lambda(n + h_1) \cdots \lambda(n + h_k) = o(X) \quad \text{as } X \to \infty.$$
Chowla’s conjecture

Conjecture (Chowla, 1965)
Let \(h_1, \ldots, h_k \) be distinct natural numbers. Then

\[
\sum_{1 \leq n \leq X} \lambda(n + h_1) \cdots \lambda(n + h_k) = o(X) \quad \text{as } X \to \infty.
\]

- The case \(k = 1 \) follows by prime number theorem.
Chowla’s conjecture

Conjecture (Chowla, 1965)

Let h_1, \ldots, h_k be distinct natural numbers. Then

$$\sum_{1 \leq n \leq X} \lambda(n + h_1) \cdots \lambda(n + h_k) = o(X) \quad \text{as } X \to \infty.$$

- The case $k = 1$ follows by prime number theorem.
- But every other case remains open (even for $k = 2$ and $h_1 = 0, h_2 = 1$)!
Chowla’s conjecture

Conjecture (Chowla, 1965)

Let h_1, \ldots, h_k be distinct natural numbers. Then

$$
\sum_{1 \leq n \leq x} \lambda(n + h_1) \cdots \lambda(n + h_k) = o(X) \quad \text{as } X \to \infty.
$$

- The case $k = 1$ follows by prime number theorem.
- But every other case remains open (even for $k = 2$ and $h_1 = 0, h_2 = 1$)!
- Compare with twin prime conjecture: $\sum_{n \leq x} \theta(n)\theta(n + 2) \to \infty$ (where $\theta(p) := \log p$ if p prime, and 0 otherwise)
Chowla’s conjecture

Conjecture (Chowla, 1965)

Let h_1, \ldots, h_k be distinct natural numbers. Then

$$\sum_{1 \leq n \leq x} \lambda(n + h_1) \cdots \lambda(n + h_k) = o(X) \quad \text{as } X \to \infty.$$

- The case $k = 1$ follows by prime number theorem.
- But every other case remains open (even for $k = 2$ and $h_1 = 0$, $h_2 = 1$)!
- Compare with twin prime conjecture: $\sum_{n \leq x} \theta(n)\theta(n + 2) \to \infty$ (where $\theta(p) := \log p$ if p prime, and 0 otherwise)
- Could generalise conjecture to

$$\sum_{1 \leq n \leq x} \lambda(a_1 n + h_1) \cdots \lambda(a_k n + h_k) = o(X)$$

such that $a_i h_j - a_j h_i \neq 0$ for all $i < j$.

Averaged form of Chowla’s conjecture

Theorem (Matomäki–Radziwiłł–Tao (2015))

For any natural number k, and any $10 \leq H \leq X$, we have

$$\sum_{1 \leq h_1, \ldots, h_k \leq H} \left| \sum_{1 \leq n \leq X} \lambda(n + h_1) \cdots \lambda(n + h_k) \right| = o(H^k X)$$

provided that $H \to \infty$ arbitrarily slowly with $X \to \infty$.

Averaged form of Chowla’s conjecture

Theorem (Matomäki-Radziwiłowicz-Tao (2015))

For any natural number \(k \), and any \(10 \leq H \leq X \), we have

\[
\sum_{1 \leq h_1, \ldots, h_k \leq H} \left| \sum_{1 \leq n \leq X} \lambda(n + h_1) \cdots \lambda(n + h_k) \right| = o(H^k X)
\]

provided that \(H \to \infty \) arbitrarily slowly with \(X \to \infty \).

- Also have slightly stronger bound:

\[
\sum_{1 \leq h_2, \ldots, h_k \leq H} \left| \sum_{1 \leq n \leq X} \lambda(n)\lambda(n + h_2) \cdots \lambda(n + h_k) \right| = o(H^{k-1} X)
\]
Sketch proof

Can use the Fourier-analytic identity:

\[
\int_{X}^{X+H} f(n) e^{i \alpha n} dn = \sum_{h} |h| \leq N(H - |h|) \int_{X}^{X+H} \bar{f}(n) f(n+h) dn = o(HX)
\]

uniformly for all \(\alpha \in \mathbb{T} \).

Using the circle method:

• Majors arcs: Use the result from Matomäki-Radziwiłł.
• Minor arcs: Use an argument of Katai and Bourgain–Sarnak–Ziegler.
Sketch proof

Can use the Fourier-analytic identity:

$$\int_{\mathbb{T}} \left(\int_{\mathbb{R}} \left| \sum_{x \leq n \leq x+H} f(n)e(\alpha n) \right|^2 \, dx \right)^2 \, d\alpha = \sum_{|h| \leq N} (H - |h|)^2 \left| \sum_{n} f(n)\bar{f}(n + h) \right|^2$$

to reduce the proof for $k = 2$ to showing an estimate of the form:

$$\int_{0}^{X} \left| \sum_{x \leq n \leq x+H} \lambda(n)e(\alpha n) \right| \, dx = o(HX)$$

uniformly for all $\alpha \in \mathbb{T}$.
Sketch proof

Can use the Fourier-analytic identity:

\[
\int_{\mathbb{T}} \left(\int_{\mathbb{R}} \left| \sum_{x \leq n \leq x+H} f(n)e(\alpha n) \right|^2 \, dx \right)^2 \, d\alpha = \sum_{|h| \leq N} (H - |h|)^2 \left| \sum_{n} f(n)\bar{f}(n + h) \right|^2
\]

to reduce the proof for \(k = 2 \) to showing an estimate of the form:

\[
\int_{0}^{X} \left| \sum_{x \leq n \leq x+H} \lambda(n)e(\alpha n) \right| \, dx = o(HX)
\]

uniformly for all \(\alpha \in \mathbb{T} \). Using the circle method:

- Majors arcs: Use the result from Matomäki-Radziwiłł.
- Minor arcs: Use an argument of Katai and Bourgain–Sarnak–Ziegler.
Elliott’s conjecture

• Can we replace λ with arbitrary 1-bounded multiplicative functions $g_i : \mathbb{N} \to \mathbb{C}$?
Elliott’s conjecture

• Can we replace λ with arbitrary 1-bounded multiplicative functions $g_i : \mathbb{N} \to \mathbb{C}$?

• Must be careful to avoid Dirichlet characters, e.g. $g_1 = \chi$ and $g_2 = \overline{\chi}$, then $g_1(n)g_2(n + h)$ will be positive biased.
Elliott’s conjecture

- Can we replace λ with arbitrary 1-bounded multiplicative functions $g_i : \mathbb{N} \to \mathbb{C}$?
- Must be careful to avoid Dirichlet characters, e.g. $g_1 = \chi$ and $g_2 = \overline{\chi}$, then $g_1(n)g_2(n + h)$ will be positive biased.

Conjecture (Elliott, 1992)

Let $g_1, \ldots, g_k : \mathbb{N} \to \mathbb{C}$ be 1-bounded multiplicative functions, and let a_1, \ldots, a_k, b_1, \ldots, b_k be positive integers such that $a_i b_j - a_j b_i \neq 0$. Suppose there is an index ℓ such that g_ℓ satisfies

$$\sum_{p} \frac{1 - \text{Re}(g_\ell(p)\chi(p)p^{-it})}{p} = \infty$$

for all Dirichlet characters χ and $t \in \mathbb{R}$. (i.e. g_ℓ does not behave “like a Dirichlet character”). Then

$$\sum_{1 \leq n \leq X} g_1(a_1 n + b_1) \cdots g_k(a_k n + b_k) = o(X) \quad \text{as} \quad X \to \infty.$$
Elliott’s conjecture

- This is **not** true in general (if g_j complex-valued).
Elliott’s conjecture

- This is **not** true in general (if g_j complex-valued).
- Matomäki-Radziwiłł–Tao construct a counterexample, where g_ℓ can be arbitrarily close to a sequence of functions of the form $n \mapsto n^{it_m}$ without **globally** pretending to be n^{it} for any fixed t.
Elliott’s conjecture

• This is not true in general (if g_j complex-valued).
• Matomäki-Radziwill–Tao construct a counterexample, where g_ℓ can be arbitrarily close to a sequence of functions of the form $n \mapsto n^{it}$ without globally pretending to be n^{it} for any fixed t.

Elliott’s conjecture (corrected)

Let $g_1, \ldots, g_k : \mathbb{N} \to \mathbb{C}$ be 1-bounded multiplicative functions, and let a_1, \ldots, a_k, b_1, \ldots, b_k be positive integers such that $a_ib_j - a_jb_i \neq 0$. Suppose there is an index ℓ such that g_ℓ satisfies

$$\liminf_{X \to \infty} \inf_{|t| \leq X} \sum_{p \leq X} \frac{1 - \text{Re}(g_\ell(p)\chi(p)p^{-it})}{p} = \infty$$

for all Dirichlet characters χ. (i.e. g_ℓ does not behave “like a Dirichlet character”.) Then

$$\sum_{1 \leq n \leq X} g_1(a_1 n + b_1) \cdots g_k(a_k n + b_k) = o(X) \quad \text{as} \quad X \to \infty.$$
Averaged form of Elliott’s conjecture

Theorem (Matomäki-Radziwiłł–Tao (2015))

Let $10 \leq H \leq X$ and $A \geq 1$. Let $g_1, \ldots, g_k : \mathbb{N} \to \mathbb{C}$ be 1-bounded functions with at least one g_{ℓ} being multiplicative and “non-pretentious”. Then

$$
\sum_{1 \leq h_1, \ldots, h_k \leq H} \left| \sum_{1 \leq n \leq X} g_1(a_1 n + b_1 + h_1) \cdots g_k(a_k n + b_k + h_k) \right| = o(H^k X)
$$

as $H, X \to \infty$.

• Also have slightly stronger bound:

$$
\sum_{1 \leq h_1, \ldots, h_k \leq H} \left| \sum_{1 \leq n \leq X} g_1(a_1 n + b_1 + h_1) \cdots g_k(a_k n + b_k + h_k) \right| = o(H^{k-1} X)
$$

as $H, X \to \infty$.

Averaged form of Elliott’s conjecture

Theorem (Matomäki–Radziwiłł–Tao (2015))

Let $10 \leq H \leq X$ and $A \geq 1$. Let $g_1, \ldots, g_k : \mathbb{N} \to \mathbb{C}$ be 1-bounded functions with at least one g_ℓ being multiplicative and “non-pretentious”. Then

$$
\sum_{1 \leq h_1, \ldots, h_k \leq H} \left| \sum_{1 \leq n \leq X} g_1(a_1 n + b_1 + h_1) \cdots g_k(a_k n + b_k + h_k) \right| = o(H^k X)
$$

as $H, X \to \infty$.

- Also have slightly stronger bound:

$$
\sum_{1 \leq h_2, \ldots, h_k \leq H} \left| \sum_{1 \leq n \leq X} g_1(a_1 n + b_1) g_2(a_2 n + b_2) \cdots g_k(a_k n + b_k + h_k) \right| = o(H^{k-1} X)
$$

as $H, X \to \infty$.
Conjecture (Chowla, 1965)
For any positive integer \(k \), and choice of signs \(\epsilon_1, \ldots, \epsilon_k \in \{-1, 1\} \), the set of positive integers \(n \) such that
\[
\lambda(n+1) = \epsilon_1, \quad \lambda(n+2) = \epsilon_2, \ldots, \quad \lambda(n+k) = \epsilon_k,
\]
has density \(\frac{1}{2^k} \).

• For \(k = 1 \), this follows by the prime number theorem:
\[
P_n \leq X \lambda(n) = o(X).
\]

Theorem (Hildebrand, 1986)
Let \(\epsilon_1, \epsilon_2, \epsilon_3 \in \{-1, 1\} \). Then there exist infinitely many \(n \) such that
\[
\lambda(n+1) = \epsilon_1, \quad \lambda(n+2) = \epsilon_2, \quad \lambda(n+3) = \epsilon_3.
\]
Proof uses ad hoc elementary arguments, using the multiplicative property of \(\lambda \) with the primes 2, 3, 5.
Sign patterns of the Liouville function

Conjecture (Chowla, 1965)

For any positive integer \(k \), and choice of signs \(\epsilon_1, \ldots, \epsilon_k \in \{-1, 1\} \), the set of positive integers \(n \) such that

\[
\lambda(n + 1) = \epsilon_1, \quad \lambda(n + 2) = \epsilon_2, \quad \ldots, \quad \lambda(n + k) = \epsilon_k
\]

has density \(1/2^k \).
Sign patterns of the Liouville function

Conjecture (Chowla, 1965)

For any positive integer k, and choice of signs $\epsilon_1, \ldots, \epsilon_k \in \{-1, 1\}$, the set of positive integers n such that

$$\lambda(n + 1) = \epsilon_1, \quad \lambda(n + 2) = \epsilon_2, \quad \ldots, \quad \lambda(n + k) = \epsilon_k$$

has density $1/2^k$.

- For $k = 1$, this follows by the prime number theorem: $\sum_{n \leq X} \lambda(n) = o(X)$.

Theorem (Hildebrand, 1986)

Let $\epsilon_1, \epsilon_2, \epsilon_3 \in \{-1, +1\}$. Then there exist infinitely many n such that

$$\lambda(n + 1) = \epsilon_1, \quad \lambda(n + 2) = \epsilon_2, \quad \lambda(n + 3) = \epsilon_3.$$

Proof uses ad hoc elementary arguments, using the multiplicative property of λ with the primes 2, 3, 5.
Sign patterns of the Liouville function

Conjecture (Chowla, 1965)

For any positive integer k, and choice of signs $\epsilon_1, \ldots, \epsilon_k \in \{-1, 1\}$, the set of positive integers n such that

$$
\lambda(n + 1) = \epsilon_1, \quad \lambda(n + 2) = \epsilon_2, \quad \ldots, \quad \lambda(n + k) = \epsilon_k
$$

has density $1/2^k$.

- For $k = 1$, this follows by the prime number theorem: $\sum_{n \leq X} \lambda(n) = o(X)$.

Theorem (Hildebrand, 1986)

Let $\epsilon_1, \epsilon_2, \epsilon_3 \in \{-1, +1\}$. Then there exist infinitely many n such that

$$
\lambda(n + 1) = \epsilon_1, \quad \lambda(n + 2) = \epsilon_2, \quad \lambda(n + 3) = \epsilon_3.
$$
Sign patterns of the Liouville function

Conjecture (Chowla, 1965)

For any positive integer k, and choice of signs $\epsilon_1, \ldots, \epsilon_k \in \{-1, 1\}$, the set of positive integers n such that

$$\lambda(n+1) = \epsilon_1, \quad \lambda(n+2) = \epsilon_2, \quad \ldots, \quad \lambda(n+k) = \epsilon_k$$

has density $1/2^k$.

• For $k = 1$, this follows by the prime number theorem: $\sum_{n \leq X} \lambda(n) = o(X)$.

Theorem (Hildebrand, 1986)

Let $\epsilon_1, \epsilon_2, \epsilon_3 \in \{-1, +1\}$. Then there exist infinitely many n such that

$$\lambda(n+1) = \epsilon_1, \quad \lambda(n+2) = \epsilon_2, \quad \lambda(n+3) = \epsilon_3.$$

Proof uses ad hoc elementary arguments, using the multiplicative property of λ with the primes 2, 3, 5.
Sign patterns of the Liouville function

Theorem (Matomäki-Radziwiłł–Tao, 2015)

Let $\epsilon_1, \epsilon_2, \epsilon_3 \in \{-1, +1\}$. Then there are a positive (lower) density of integers n such that

$$\lambda(n + 1) = \epsilon_1, \quad \lambda(n + 2) = \epsilon_2, \quad \lambda(n + 3) = \epsilon_3.$$
Sign patterns of the Liouville function

Theorem (Matomäki-Radziwiłł–Tao, 2015)

Let $\epsilon_1, \epsilon_2, \epsilon_3 \in \{-1, +1\}$. Then there are a positive (lower) density of integers n such that

$$\lambda(n + 1) = \epsilon_1, \quad \lambda(n + 2) = \epsilon_2, \quad \lambda(n + 3) = \epsilon_3.$$

- Matomäki-Radziwiłł showed $k = 2$ case in their original paper.
Sign patterns of the Liouville function

Theorem (Matomäki-Radziwiłł–Tao, 2015)

Let \(\epsilon_1, \epsilon_2, \epsilon_3 \in \{-1, +1\} \). Then there are a positive (lower) density of integers \(n \) such that

\[
\lambda(n + 1) = \epsilon_1, \quad \lambda(n + 2) = \epsilon_2, \quad \lambda(n + 3) = \epsilon_3.
\]

- Matomäki-Radziwiłł showed \(k = 2 \) case in their original paper.
- In 2017, Klurman–Manerla proved the upper logarithmic density is at least 1/28.
Sign patterns of the Liouville function

Theorem (Matomäki-Radziwill–Tao, 2015)

Let $\varepsilon_1, \varepsilon_2, \varepsilon_3 \in \{-1, +1\}$. Then there are a positive (lower) density of integers n such that

$$
\lambda(n + 1) = \varepsilon_1, \quad \lambda(n + 2) = \varepsilon_2, \quad \lambda(n + 3) = \varepsilon_3.
$$

- Matomäki-Radziwill showed $k = 2$ case in their original paper.
- In 2017, Klurman–Manerla proved the upper logarithmic density is at least $1/28$.
- In 2017, Tao–Teräväinen proven the logarithmic density for $k = 3$ is exactly $\frac{1}{8}$, and for $k = 4$ is at least $\frac{1}{32}$.
Sign patterns of the Liouville function

- By Matomäki-Radziwiłł, we have

\[
\limsup_{X \to \infty} \frac{1}{X} \sum_{X \leq x \leq 2X} \left| \frac{1}{h} \sum_{x \leq n \leq x+h} \lambda(n) \right| = o(1) \quad \text{as } h \to \infty.
\]

- By summation by parts we get

\[
\limsup_{x \to \infty} \frac{1}{\log x} \sum_{n \leq x} \lambda(n) = o(1) \quad \text{as } h \to \infty.
\]

- Thus, for any \(\epsilon > 0 \) and any \(h \) sufficiently large, we have

\[
\sum_{j=0}^{h} \lambda(n+j) \leq \epsilon h \quad \text{with asymptotic probability at least } 1 - \epsilon.
\]

Similarly with \(\lambda \) replaced by \(\mu \).
Sign patterns of the Liouville function

• By Matomäki-Radziwiłł, we have

\[
\limsup_{X \to \infty} \frac{1}{X} \sum_{X \leq x \leq 2X} \left| \frac{1}{h} \sum_{x \leq n \leq x + h} \lambda(n) \right| = o(1) \quad \text{as } h \to \infty.
\]

• By summation by parts we get

\[
\limsup_{x \to \infty} \frac{1}{\log x} \sum_{n \leq x} \frac{1}{n} \left| \frac{1}{h} \sum_{j=0}^{h} \lambda(n+j) \right| = o(1) \quad \text{as } h \to \infty.
\]
Sign patterns of the Liouville function

• By Matomäki-Radziwiłł, we have

\[
\limsup_{X \to \infty} \frac{1}{X} \sum_{X \leq x \leq 2X} \left| \frac{1}{h} \sum_{x \leq n \leq x+h} \lambda(n) \right| = o(1) \quad \text{as } h \to \infty.
\]

• By summation by parts we get

\[
\limsup_{x \to \infty} \frac{1}{\log x} \sum_{n \leq x} \frac{1}{n} \frac{1}{h} \sum_{j=0}^{h} \lambda(n+j) = o(1) \quad \text{as } h \to \infty.
\]

• Thus, for any \(\epsilon > 0 \) and any \(h \) sufficiently large, we have

\[
\left| \sum_{j=0}^{h} \lambda(n+j) \right| \leq \epsilon h
\]

with asymptotic probability at least \(1 - \epsilon \). Similarly with \(\lambda \) replaced by \(\mu \).
Sign patterns of the Liouville function

Sketch proof for $k = 2$:

• Case $(+,-)$: Assume for contradiction $(+, -)$ occurs with density zero. Then $(-, +)$ also occurs with density zero.

• Thus $(+, +)$ and $(-, -)$ occur with combined density 1, thus $\lambda(n) = \lambda(n+1)$ a.a.s.

• By finite additivity, one obtained for any fixed h:

 $\lambda(n) = \lambda(n+1) = \cdots = \lambda(n+h)$

 a.a.s, which contradicts our previous estimate. Similarly for $(-, +)$.

• Case $(+, +)$. Using the $k = 1$ case and inclusion-exclusion, we have that $(-, -)$ occurs with the same density.

• From the pigeonhole principle, at least one of $\lambda(2n+1) = \lambda(2n)$, $\lambda(2n+2) = \lambda(2n+1)$, and $\lambda(2n) = \lambda(2n+2)$ must hold for any n, hence their probabilities must sum to at least 1.

• But $P[\lambda(n+1) = \lambda(n)]$ is average of $P[\lambda(2n+1) = \lambda(2n)]$ and $P[\lambda(2n+2) = \lambda(2n+1)]$, and so the density of $(+, +)$ is at least $1/6$.
Sign patterns of the Liouville function

Sketch proof for $k = 2$:

- Case $(+, -)$: Assume for contradiction $(+, -)$ occurs with density zero. Then $(-, +)$ also occurs with density zero.

- Case $(+,-)$. Using the $k = 1$ case and inclusion-exclusion, we have that $(-,-)$ occurs with the same density.

- From the pigeonhole principle, at least one of $\lambda(2n+1) = \lambda(n)$, $\lambda(2n+2) = \lambda(2n+1)$, and $\lambda(2n) = \lambda(2n+2)$ must hold for any n, hence their probabilities must sum to at least 1.

- But $P[\lambda(n+1) = \lambda(n)]$ is average of $P[\lambda(2n+1) = \lambda(2n)]$ and $P[\lambda(2n+2) = \lambda(2n+1)]$, and so the density of $(+, +)$ is at least $1/6$.

Sign patterns of the Liouville function

Sketch proof for $k = 2$:

• Case $(+, -)$: Assume for contradiction $(+, -)$ occurs with density zero. Then $(-, +)$ also occurs with density zero.

• Thus $(+, +)$ and $(-, -)$ occur with combined density 1, thus $\lambda(n) = \lambda(n + 1)$ a.a.s.
Sign patterns of the Liouville function

Sketch proof for $k = 2$:

- Case $(+, -)$: Assume for contradiction $(+, -)$ occurs with density zero. Then $(-, +)$ also occurs with density zero.

- Thus $(+, +)$ and $(-, -)$ occur with combined density 1, thus $\lambda(n) = \lambda(n + 1)$ a.a.s.

- By finite additivity, one obtained for any fixed h: $\lambda(n) = \lambda(n + 1) = \cdots = \lambda(n + h)$ a.a.s, which contradicts our previous estimate. Similarly for $(-, +)$.
Sign patterns of the Liouville function

Sketch proof for $k = 2$:

- Case $(+, -)$: Assume for contradiction $(+, -)$ occurs with density zero. Then $(-, +)$ also occurs with density zero.
- Thus $(+, +)$ and $(-, -)$ occur with combined density 1, thus $\lambda(n) = \lambda(n + 1)$ a.a.s.
- By finite additivity, one obtained for any fixed h: $\lambda(n) = \lambda(n + 1) = \cdots = \lambda(n + h)$ a.a.s, which contradicts our previous estimate. Similarly for $(-, +)$.
- Case $(+, +)$. Using the $k = 1$ case and inclusion-exclusion, we have that $(-, -)$ occurs with the same density.
Sign patterns of the Liouville function

Sketch proof for $k = 2$:

- Case $(+,-)$: Assume for contradiction $(+, -)$ occurs with density zero. Then $(-, +)$ also occurs with density zero.
- Thus $(+, +)$ and $(-, -)$ occur with combined density 1, thus $\lambda(n) = \lambda(n + 1)$ a.a.s.
- By finite additivity, one obtained for any fixed h: $\lambda(n) = \lambda(n + 1) = \cdots = \lambda(n + h)$ a.a.s, which contradicts our previous estimate. Similarly for $(-, +)$.
- Case $(+, +)$. Using the $k = 1$ case and inclusion-exclusion, we have that $(−, −)$ occurs with the same density.
- From the pigeonhole principle, at least one of $\lambda(2n + 1) = \lambda(2n)$, $\lambda(2n + 2) = \lambda(2n + 1)$, and $\lambda(2n) = \lambda(2n + 2)$ must hold for any n, hence their probabilities must sum to at least 1.
Sign patterns of the Liouville function

Sketch proof for $k = 2$:

- Case $(+, -)$: Assume for contradiction $(+, -)$ occurs with density zero. Then $(-, +)$ also occurs with density zero.
- Thus $(+, +)$ and $(-, -)$ occur with combined density 1, thus $\lambda(n) = \lambda(n + 1)$ a.a.s.
- By finite additivity, one obtained for any fixed h: $\lambda(n) = \lambda(n + 1) = \cdots = \lambda(n + h)$ a.a.s, which contradicts our previous estimate. Similarly for $(-, +)$.
- Case $(+, +)$. Using the $k = 1$ case and inclusion-exclusion, we have that $(-, -)$ occurs with the same density.
- From the pigeonhole principle, at least one of $\lambda(2n + 1) = \lambda(2n)$, $\lambda(2n + 2) = \lambda(2n + 1)$, and $\lambda(2n) = \lambda(2n + 2)$ must hold for any n, hence their probabilities must sum to at least 1.
- But $P[\lambda(n + 1) = \lambda(n)]$ is average of $P[\lambda(2n + 1) = \lambda(2n)]$ and $P[\lambda(2n + 2) = \lambda(2n + 1)]$, and so the density of $(+, +)$ is at least $1/6$.

Case $k = 3$:

Assume for contradiction $(+, +, +)$ occurs with density zero. This means that if $\lambda(n) = \lambda(n + 1) = +1$, then $\lambda(n + 2) = +1$ a.a.s.

Iterating this, for any fixed $h \geq 1$, we have that $\lambda(n) = \lambda(n + 1) = +1$ implies $\lambda(n) = \lambda(n + 1) = \cdots = \lambda(n + h) = +1$ a.a.s.

As $(+, +)$ occurs with density $1/6$, thus $\lambda(n) = \lambda(n + 1) = \cdots = \lambda(n + h) = +1$ occurs with probability at least $c > 0$ independent of h. But this contradicts Matomäki-Radziwiłł.

Same argument works for $(-, +, +)$, $(+, -, -)$, $(-, -, +)$.
Case $k = 3$:

- Assume for contradiction $(+, +, -)$ occurs with density zero. This means that if $\lambda(n) = \lambda(n + 1) = +1$, then $\lambda(n + 2) = +1$ a.a.s.
Case $k = 3$:

- Assume for contradiction $(+, +, -)$ occurs with density zero. This means that if $\lambda(n) = \lambda(n + 1) = +1$, then $\lambda(n + 2) = +1$ a.a.s.

- Iterating this, for any fixed $h \geq 1$, we have that $\lambda(n) = \lambda(n + 1) = +1$ implies $\lambda(n) = \lambda(n + 1) = \cdots = \lambda(n + h) = +1$ a.a.s.
Case $k = 3$:

- Assume for contradiction $(+, +, -)$ occurs with density zero. This means that if $\lambda(n) = \lambda(n + 1) = +1$, then $\lambda(n + 2) = +1$ a.a.s.

- Iterating this, for any fixed $h \geq 1$, we have that $\lambda(n) = \lambda(n + 1) = +1$ implies $\lambda(n) = \lambda(n + 1) = \cdots = \lambda(n + h) = +1$ a.a.s.

- As $(+, +)$ occurs with density $1/6$, thus $\lambda(n) = \lambda(n + 1) = \cdots = \lambda(n + h) = +1$ occurs with probability at least $c > 0$ independent of h. But this contradicts Matomäki-Radziwiłł.
Sign patterns of the Liouville function

Case $k = 3$:

- Assume for contradiction $(+, +, -)$ occurs with density zero. This means that if $\lambda(n) = \lambda(n + 1) = +1$, then $\lambda(n + 2) = +1$ a.a.s.

- Iterating this, for any fixed $h \geq 1$, we have that $\lambda(n) = \lambda(n + 1) = +1$ implies $\lambda(n) = \lambda(n + 1) = \cdots = \lambda(n + h) = +1$ a.a.s.

- As $(+, +)$ occurs with density $1/6$, thus $\lambda(n) = \lambda(n + 1) = \cdots = \lambda(n + h) = +1$ occurs with probability at least $c > 0$ independent of h. But this contradicts Matomäki-Radziwiłł.

- Same argument works for $(-, +, +)$, $(+, -, -)$, $(-, -, +)$.
Sign patterns of the Liouville function

Remaining cases: (+, +, +), (−, −, −), (+, −, +), (−, +, −)

• Case (+, +, +): Assume for contradiction (+, +, +) occurs with density zero.

• Use the multiplicative nature of λ (using the primes 2, 3, 5), one can show $\lambda(3^n + 1) = −\lambda(3^n + 2)$ a.a.s, and $\lambda(3^n − 1) = −\lambda(3^n + 1)$ a.a.s.

• Use this to show that λ “behaves like” the Dirichlet character χ_3, i.e. $\lambda\chi_3$ is almost always constant away from multiples of 3.

• Use Matom¨ aki-Radziwi l l on $\lambda\chi_3$, i.e. for any $\epsilon > 0$ and sufficiently large h

\[\sum_{j=0}^{X} \lambda(n+j)\chi_3(n+j) \leq \epsilon h\] with asymptotic probability at least $1 − \epsilon$.

• This yields a contradiction.
Sign patterns of the Liouville function

Remaining cases: (+, +, +), (−, −, −), (+, −, +), (−, +, −)

• Case (+, +, +): Assume for contradiction (+, +, +) occurs with density zero.
Sign patterns of the Liouville function

Remaining cases: (+, +, +), (−, −, −), (+, −, +), (−, +, −)

• Case (+, +, +): Assume for contradiction (+, +, +) occurs with density zero.

• Use the multiplicative nature of λ (using the primes 2, 3, 5), one can show $\lambda(3n + 1) = -\lambda(3n + 2)$ a.a.s, and $\lambda(3n − 1) = -\lambda(3n + 1)$ a.a.s.
Sign patterns of the Liouville function

Remaining cases: $(+, +, +), (-, -, -), (+, -, +), (-, +, -)$

- Case $(+, +, +)$: Assume for contradiction $(+, +, +)$ occurs with density zero.

- Use the multiplicative nature of λ (using the primes 2, 3, 5), one can show $\lambda(3n + 1) = -\lambda(3n + 2)$ a.a.s, and $\lambda(3n - 1) = -\lambda(3n + 1)$ a.a.s.

- Use this to show that λ “behaves like” the Dirichlet character χ_3, i.e. $\lambda \chi_3$ is almost always constant away from multiples of 3.
Sign patterns of the Liouville function

Remaining cases: $(+, +, +), (-, -, -), (+, -, +), (-, +, -)$

- Case $(+, +, +)$: Assume for contradiction $(+, +, +)$ occurs with density zero.
- Use the multiplicative nature of λ (using the primes $2, 3, 5$), one can show $\lambda(3n + 1) = -\lambda(3n + 2)$ a.a.s, and $\lambda(3n - 1) = -\lambda(3n + 1)$ a.a.s.
- Use this to show that λ “behaves like” the Dirichlet character χ_3, i.e. $\lambda \chi_3$ is almost always constant away from multiples of 3.
- Use Matomäki-Radziwiłł on $\lambda \chi_3$, i.e. for any $\epsilon > 0$ and sufficiently large h

$$\left| \sum_{j=0}^{h} \lambda(n + j) \chi_3(n + j) \right| \leq \epsilon h$$

with asymptotic probability at least $1 - \epsilon$.

Sign patterns of the Liouville function

Remaining cases: (+, +, +), (−, −, −), (+, −, +), (−, +, −)

• Case (+, +, +): Assume for contradiction (+, +, +) occurs with density zero.

• Use the multiplicative nature of \(\lambda \) (using the primes 2, 3, 5), one can show \(\lambda(3n+1) = -\lambda(3n+2) \) a.a.s, and \(\lambda(3n-1) = -\lambda(3n+1) \) a.a.s.

• Use this to show that \(\lambda \) “behaves like” the Dirichlet character \(\chi_3 \), i.e. \(\lambda \chi_3 \) is almost always constant away from multiples of 3.

• Use Matomäki-Radziwiłł on \(\lambda \chi_3 \), i.e. for any \(\epsilon > 0 \) and sufficiently large \(h \)

\[
\left| \sum_{j=0}^{h} \lambda(n+j)\chi_3(n+j) \right| \leq \epsilon h
\]

with asymptotic probability at least \(1 - \epsilon \).

• This yields a contradiction.
Note that an analogous conjecture for μ is not true. E.g. the sign pattern $(1, 1, 1, 1)$ never occurs.
Sign patterns of the Möbius function

Note that an analogous conjecture for μ is not true. E.g. the sign pattern $(1, 1, 1, 1)$ never occurs.

Theorem (Matomäki-Radziwiłł–Tao, 2015)

Let $\epsilon_1, \epsilon_2 \in \{-1, 0, +1\}$. Then there are a positive (lower) density of integers n such that $\mu(n) = \epsilon_1$ and $\mu(n + 1) = \epsilon_2$.

• $\mu(n) = 1$ occurs with density $\frac{1}{\zeta(2)} = \frac{6}{\pi^2}$.
• Thus, the events $\mu(n) = 1$, $\mu(n) = 0$, $\mu(n) = -1$ occur with asymptotic probability $\frac{1}{2}\zeta(2)$, $\frac{1}{2}\zeta(2)$, $\frac{1}{2}\zeta(2)$ respectively.
Sign patterns of the Möbius function

Note that an analogous conjecture for μ is not true. E.g. the sign pattern $(1, 1, 1, 1)$ never occurs.

Theorem (Matomäki-Radziwiłł–Tao, 2015)

Let $\epsilon_1, \epsilon_2 \in \{-1, 0, +1\}$. Then there are a positive (lower) density of integers n such that

$$\mu(n) = \epsilon_1 \text{ and } \mu(n + 1) = \epsilon_2.$$

- **Case $k = 1$:** By the prime number theorem $\sum_{n \leq X} \frac{\mu(n)}{n} = o(\log X)$, which shows the cases $\epsilon = +1$ and $\epsilon = -1$ occur with equal density.
Sign patterns of the Möbius function

Note that an analogous conjecture for \(\mu \) is not true. E.g. the sign pattern \((1, 1, 1, 1)\) never occurs.

Theorem (Matomäki-Radziwiłł–Tao, 2015)

Let \(\epsilon_1, \epsilon_2 \in \{-1, 0, +1\} \). Then there are a positive (lower) density of integers \(n \) such that

\[
\mu(n) = \epsilon_1 \text{ and } \mu(n + 1) = \epsilon_2.
\]

- **Case** \(k = 1 \): By the prime number theorem \(\sum_{n \leq X} \frac{\mu(n)}{n} = o(\log X) \), which shows the cases \(\epsilon = +1 \) and \(\epsilon = -1 \) occur with equal density.
- \(\mu^2(n) = 1 \) occurs with density \(\frac{1}{\zeta(2)} = \frac{6}{\pi^2} \).
Note that an analogous conjecture for μ is not true. E.g. the sign pattern $(1, 1, 1, 1)$ never occurs.

Theorem (Matomäki-Radziwiłł–Tao, 2015)

Let $\epsilon_1, \epsilon_2 \in \{-1, 0, +1\}$. Then there are a positive (lower) density of integers n such that

$$\mu(n) = \epsilon_1 \text{ and } \mu(n + 1) = \epsilon_2.$$

- **Case $k = 1$:** By the prime number theorem $\sum_{n \leq X} \frac{\mu(n)}{n} = o(\log X)$, which shows the cases $\epsilon = +1$ and $\epsilon = -1$ occur with equal density.

- $\mu^2(n) = 1$ occurs with density $\frac{1}{\zeta(2)} = \frac{6}{\pi^2}$.

- Thus, the events $\mu(n) = 1, \mu(n) = 0, \mu(n) = -1$ occur with asymptotic probability $\frac{1}{2\zeta(2)}, 1 - \frac{1}{\zeta(2)}, \frac{1}{2\zeta(2)}$ respectively.
Sign patterns of the Möbius function

Sketch proof for $k = 2$:

- Can use standard sieve theory arguments to deduce that the probability that $\mu_2(n) = \mu_2(n+1) = 1$ is $c := \prod_{p} 1 - 2p^2 = 0$.
- The case $k = 1$ and the Chinese remainder theorem proves that density for $(0, +1)$ and $(0, -1)$ are the same. Similarly, the density for $(+1, 0)$ and $(-1, 0)$ are the same.
- Thus, by inclusion-exclusion, the case $(0, 0)$ has density $1 - 2\zeta(2) + c = 0$.
- Further inclusion-exclusion shows that each of the cases $(+1, 0)$, $(-1, 0)$, $(0, +1)$, $(0, -1)$ have density $\frac{1}{2}(1 - \zeta(2) - c) = 0$.

Sign patterns of the Möbius function

Sketch proof for \(k = 2 \):

- Can use standard sieve theory arguments to deduce that the probability that
 \(\mu^2(n) = \mu^2(n + 1) = 1 \) is

 \[
 c := \prod_p \left(1 - \frac{2}{p^2} \right) = 0.3226 \ldots
 \]
Sign patterns of the Möbius function

Sketch proof for $k = 2$:

- Can use standard sieve theory arguments to deduce that the probability that $\mu^2(n) = \mu^2(n + 1) = 1$ is
 $$c := \prod_p \left(1 - \frac{2}{p^2}\right) = 0.3226\ldots$$

- The case $k = 1$ and the Chinese remainder theorem proves that density for $(0, +1)$ and $(0, -1)$ are the same. Similarly, the density for $(+1, 0)$ and $(-1, 0)$ are the same.
Sign patterns of the Möbius function

Sketch proof for $k = 2$:

• Can use standard sieve theory arguments to deduce that the probability that $\mu^2(n) = \mu^2(n + 1) = 1$ is

$$c := \prod_p \left(1 - \frac{2}{p^2}\right) = 0.3226\ldots$$

• The case $k = 1$ and the Chinese remainder theorem proves that density for $(0, +1)$ and $(0, -1)$ are the same. Similarly, the density for $(+1, 0)$ and $(-1, 0)$ are the same.

• Thus, by inclusion-exclusion, the case $(0, 0)$ has density $1 - \frac{2}{\zeta(2)} + c = 0.1067\ldots$
Sign patterns of the Möbius function

Sketch proof for \(k = 2 \):

- Can use standard sieve theory arguments to deduce that the probability that \(\mu^2(n) = \mu^2(n + 1) = 1 \) is

\[
c := \prod_p \left(1 - \frac{2}{p^2} \right) = 0.3226 \ldots
\]

- The case \(k = 1 \) and the Chinese remainder theorem proves that density for \((0, +1)\) and \((0, -1)\) are the same. Similarly, the density for \((+1, 0)\) and \((-1, 0)\) are the same.

- Thus, by inclusion-exclusion, the case \((0, 0)\) has density \(1 - \frac{2}{\zeta(2)} + c = 0.1067 \ldots \).

- Further inclusion-exclusion shows that each of the cases \((+1, 0)\), \((-1, 0)\), \((0, +1)\), \((0, -1)\) have density \(\frac{1}{2} \left(\frac{1}{\zeta(2)} - c \right) = 0.1426 \ldots \)
Sign patterns of the Möbius function

Remaining cases: \((+1, +1), (+1, -1), (-1, +1), (-1, -1)\).
Sign patterns of the Möbius function

Remaining cases: $(+1, +1), (+1, -1), (-1, +1), (-1, -1)$.

- Assume density of $(1, \epsilon)$ is zero, for some $\epsilon \in \{-1, +1\}$. Then density of $(-1, -\epsilon)$ is zero, which implies

$$\mu^2(n) = \mu^2(n + 1) = 1 \implies \mu(n) = -\epsilon \mu(n + 1) \text{ a.a.s.}$$
Sign patterns of the Möbius function

Remaining cases: $(+1,+1), (+1,-1), (-1,+1), (-1,-1)$.

- Assume density of $(1, \epsilon)$ is zero, for some $\epsilon \in \{-1, +1\}$. Then density of $(-1, -\epsilon)$ is zero, which implies

 $$\mu^2(n) = \mu^2(n + 1) = 1 \implies \mu(n) = -\epsilon \mu(n + 1) \quad \text{a.a.s.}$$

- Define the completely multiplicative function $\chi(n) = (-\epsilon)^{v_2(n)}$. Thus, we have

 $$\mu^2(n) = \mu^2(n + 1) = 1 \implies \mu\chi(n) = \mu\chi(n + 1) \quad \text{a.a.s.}$$
Sign patterns of the Möbius function

Remaining cases:
\((+1, +1), (+1, -1), (-1, +1), (-1, -1)\).

- Assume density of \((1, \epsilon)\) is zero, for some \(\epsilon \in \{-1, +1\}\). Then density of \((-1, -\epsilon)\) is zero, which implies

\[
\mu^2(n) = \mu^2(n + 1) = 1 \implies \mu(n) = -\epsilon \mu(n + 1) \quad \text{a.a.s.}
\]

- Define the completely multiplicative function \(\chi(n) = (-\epsilon)^{v_2(n)}\). Thus, we have

\[
\mu^2(n) = \mu^2(n + 1) = 1 \implies \mu \chi(n) = \mu \chi(n + 1) \quad \text{a.a.s.}
\]

- More generally, if \(d\) divides \(n\), then

\[
\mu^2(n) = \mu^2(n + d) = 1 \implies \mu \chi(n) = \mu \chi(n + d) \quad \text{a.a.s.}
\]
Sign patterns of the Möbius function

Remaining cases: \((+1, +1), (+1, -1), (-1, +1), (-1, -1)\).

- Assume density of \((1, \epsilon)\) is zero, for some \(\epsilon \in \{-1, +1\}\). Then density of \((-1, -\epsilon)\) is zero, which implies
 \[
 \mu^2(n) = \mu^2(n + 1) = 1 \implies \mu(n) = -\epsilon \mu(n + 1) \quad \text{a.a.s.}
 \]

- Define the completely multiplicative function \(\chi(n) = (-\epsilon)^{v_2(n)}\). Thus, we have
 \[
 \mu^2(n) = \mu^2(n + 1) = 1 \implies \mu\chi(n) = \mu\chi(n + 1) \quad \text{a.a.s.}
 \]

- More generally, if \(d\) divides \(n\), then
 \[
 \mu^2(n) = \mu^2(n + d) = 1 \implies \mu\chi(n) = \mu\chi(n + d) \quad \text{a.a.s.}
 \]

- Can use this to create long “chains” \(n + a_1, n + a_2\) on which \(\mu\chi\) is constant. This is incompatible with Matomäki-Radziwiłł!
Theorem (Tao, 2015)

Let a_1, a_2 be positive integers and b_1, b_2 be integers such that $a_1 b_2 - a_2 b_1 \neq 0$. Let $1 \leq \omega(x) \leq x$ be a function that goes to infinity as $x \to \infty$. Then one has

$$X_{x/\omega(x)} < n \leq x \lambda(a_1 n + b_1) \lambda(a_2 n + b_2) n = o(\log \omega(x))$$

as $x \to \infty$.

Theorem (Tao, 2015)

Let a_1, a_2 be natural, b_1, b_2 integers such that $a_1 b_2 - a_2 b_1 \neq 0$. Let $g_1, g_2 : \mathbb{N} \to \mathbb{C}$ be multiplicative 1-bounded functions, with g_1 "non-pretentious". Then

$$X_{x/\omega(x)} < n \leq x g_1(a_1 n + b_1) g_2(a_2 n + b_2) n = o(\log \omega(x))$$

as $x \to \infty$.

Log averaged Chowla and Elliott conjecture
Log averaged Chowla and Elliott conjecture

Theorem (Tao, 2015)

Let a_1, a_2 be positive integers and b_1, b_2 be integers such that $a_1 b_2 - a_2 b_1 \neq 0$. Let $1 \leq \omega(x) \leq x$ be a function that goes to infinity as $x \to \infty$. Then one has

$$\sum_{x/\omega(x) < n \leq x} \frac{\lambda(a_1 n + b_1) \lambda(a_2 n + b_2)}{n} = o(\log \omega(x)) \quad \text{as } x \to \infty.$$
Log averaged Chowla and Elliott conjecture

Theorem (Tao, 2015)

Let a_1, a_2 be positive integers and b_1, b_2 be integers such that $a_1b_2 - a_2b_1 \neq 0$. Let $1 \leq \omega(x) \leq x$ be a function that goes to infinity as $x \to \infty$. Then one has

$$\sum_{x/\omega(x) < n \leq x} \frac{\lambda(a_1n + b_1)\lambda(a_2n + b_2)}{n} = o(\log \omega(x)) \quad \text{as } x \to \infty.$$

Theorem (Tao, 2015)

Let a_1, a_2 be natural, b_1, b_2 integers such that $a_1b_2 - a_2b_1 \neq 0$. Let $g_1, g_2 : \mathbb{N} \to \mathbb{C}$ be multiplicative 1-bounded functions, with g_1 “non-pretentious”. Then

$$\sum_{x/\omega(x) < n \leq x} \frac{g_1(a_1n + b_1)g_2(a_2n + b_2)}{n} = o(\log \omega(x)) \quad \text{as } x \to \infty.$$
Log averaged Chowla

Case: $\omega(x) = x, a_1 = a_2 = 1, b_1 = 0, b_2 = 1$
Log averaged Chowla

Case: \(\omega(x) = x, \ a_1 = a_2 = 1, \ b_1 = 0, \ b_2 = 1 \)

Theorem (Tao, 2015)

\[
\sum_{1 < n \leq x} \frac{\lambda(n)\lambda(n + 1)}{n} = o(\log x) \text{ as } x \to \infty.
\]
Log averaged Chowla

Case: $\omega(x) = x$, $a_1 = a_2 = 1$, $b_1 = 0$, $b_2 = 1$

Theorem (Tao, 2015)

$$\sum_{1 < n \leq x} \frac{\lambda(n)\lambda(n+1)}{n} = o(\log x) \text{ as } x \to \infty.$$

This implies the following corollary

Theorem (Tao, 2015)

Let $\epsilon_1, \epsilon_2 \in \{-1, +1\}$. Then the set of positive integers n such that $\lambda(n) = \epsilon_1$ and $\lambda(n+1) = \epsilon_2$ has logarithmic density $1/4$, i.e.

$$\frac{1}{\log x} \sum_{n \leq x} \frac{1}{n} = \frac{1}{4} + o(1)$$

Note, if natural density exists, then it is equal to the log density. But can have log density existing, but natural density doesn't exits.
Log density of Möbius function

Log averaged Elliott conjectured, applied to μ and μ^2 provides the following estimates

\[
\sum_{n \leq x} \frac{\mu(n)\mu(n + 1)}{n}, \quad \sum_{n \leq x} \frac{\mu^2(n)\mu(n + 1)}{n}, \quad \sum_{n \leq x} \frac{\mu(n)\mu^2(n + 1)}{n} = o(\log x)
\]
Log density of Möbius function

Log averaged Elliott conjectured, applied to μ and μ^2 provides the following estimates

$$\sum_{n \leq x} \frac{\mu(n)\mu(n+1)}{n}, \quad \sum_{n \leq x} \frac{\mu^2(n)\mu(n+1)}{n}, \quad \sum_{n \leq x} \frac{\mu(n)\mu^2(n+1)}{n} = o(\log x)$$

Theorem (Tao, 2015)

Let $c := \prod_p (1 - \frac{2}{p^2}) = 0.3226 \ldots$. Let $\epsilon_1, \epsilon_2 \in \{-1, 0, +1\}$. Then the set \{n : $\mu(n) = \epsilon_1, \mu(n+1) = \epsilon_2$\} has logarithmic density:

- $1 - \frac{2}{\zeta(2)} + c = 0.1067 \ldots$, if $(\epsilon_1, \epsilon_2) = (0, 0)$.
- $\frac{1}{2} \left(\frac{1}{\zeta(2)} - c \right) = 0.1426 \ldots$, if $(\epsilon_1, \epsilon_2) = (1, 0), (-1, 0), (0, 1), (0, -1)$.
- $\frac{c}{4} = 0.0806 \ldots$ otherwise.
Erdős discrepancy problem

Conjecture (Erdős, 1932)

Let \(f : \mathbb{N} \rightarrow \{-1, +1\} \). Then

\[
\sup_{n, d \in \mathbb{N}} |f(d) + f(2d) + \cdots + f(nd)| = \infty
\]

(equivalently, for all \(C > 0 \), there exists \(n, d \geq 1 \) such that

\[
|f(d) + \cdots + f(nd)| \geq C
\]

• Van der Waerden's theorem (1927) implies that

\[
\sup_{a, n, d \geq 1} |f(a) + f(a+d) + \cdots + f(a+(n-1)d)| = \infty
\]

• Roth showed \(\sup_{n \leq N, a, d} \geq \frac{1}{2} \frac{N}{4} \). This is best possible bound (Matousek, Spencer, 1996)
Erdős discrepancy problem

<table>
<thead>
<tr>
<th>Conjecture (Erdős, 1932)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $f : \mathbb{N} \rightarrow {-1, +1}$. Then</td>
</tr>
<tr>
<td>$\sup_{n,d \in \mathbb{N}}</td>
</tr>
<tr>
<td>(equivalently, for all $C > 0$, there exists $n, d \geq 1$ such that $</td>
</tr>
</tbody>
</table>
Conjecture (Erdős, 1932)

Let \(f : \mathbb{N} \to \{-1, +1\} \). Then

\[
\sup_{n,d \in \mathbb{N}} |f(d) + f(2d) + \cdots + f(nd)| = \infty
\]

(equivalently, for all \(C > 0 \), there exists \(n, d \geq 1 \) such that \(|f(d) + \cdots + f(nd)| \geq C \))

- Van der Waerden’s theorem (1927) implies that

\[
\sup_{a, n, d \geq 1} |f(a) + f(a + d) + \cdots + f(a + (n - 1)d)| = \infty
\]
Erdös discrepancy problem

Conjecture (Erdös, 1932)

Let $f : \mathbb{N} \rightarrow \{-1, +1\}$. Then

$$\sup_{n,d \in \mathbb{N}} |f(d) + f(2d) + \cdots + f(nd)| = \infty$$

(equivalently, for all $C > 0$, there exists $n, d \geq 1$ such that $|f(d) + \cdots + f(nd)| \geq C$)

- Van der Waerden’s theorem (1927) implies that

 $$\sup_{a,n,d \geq 1} |f(a) + f(a + d) + \cdots + f(a + (n - 1)d)| = \infty$$

- Roth showed $\sup_{n \leq N, a, d}$ is at least $\geq \frac{1}{20} N^{1/4}$. This is best possible bound (Matousek, Spencer, 1996)
Erdös discrepancy problem

“A precipice lies two paces to your left and a pit of vipers two paces to your right. Can you devise a series of steps that will avoid the hazards, even if you are forced to take every second, third or Nth step in your series?” - Quanta Magazine, 2015
Erdős discrepancy problem

Erdős: For all $C > 0$, there exists some $n, d \geq 1$ such that $|f(d) + \cdots + f(nd)| \geq C$.

• Case $C = 1$: Clearly true for $n = 1$.

• Case $C = 2$: The finite sequence $+1, -1, -1, +1, -1, +1, +1, -1, -1, +1, -1$ has discrepancy 1. A brute force search (or by an elementary deduction argument) proves any sequence of length $N \geq 12$ has discrepancy at least 2.

• Case $C = 3$: Konev–Lisitsa (2014) obtained a sequence of length $N = 1160$ with discrepancy 2^{22}.
Erdös discrepancy problem

Erdös: For all $C > 0$, there exists some $n, d \geq 1$ such that $|f(d) + \cdots + f(nd)| \geq C$.

- Case $C = 1$: Clearly true for $n = 1$.

• Case $C = 2$: The finite sequence $\pm 1, -1, -1, \pm 1, -1, \pm 1, \pm 1, -1, -1, \pm 1, \pm 1, \cdots$ has discrepancy 1. A brute force search (or by an elementary deduction argument) proves any sequence of length $N \geq 12$ has discrepancy at least 2.

• Case $C = 3$: Konev–Lisitsa (2014) obtained a sequence of length $N = 1160$ with discrepancy $2^{\pm \pm - - + + - - + + - \cdots}$. This was proven optimal using a SAT solver.
Erdős discrepancy problem

Erdős: For all $C > 0$, there exists some $n, d \geq 1$ such that $|f(d) + \cdots + f(nd)| \geq C$.

- Case $C = 1$: Clearly true for $n = 1$.
- Case $C = 2$: The finite sequence

 +1, −1, −1, +1, −1, +1, +1, −1, −1, +1, −1

 has discrepancy 1. A brute force search (or by an elementary deduction argument) proves any sequence of length $N \geq 12$ has discrepancy at least 2.
Erdős discrepancy problem

Erdős: For all $C > 0$, there exists some $n, d \geq 1$ such that $|f(d) + \cdots + f(nd)| \geq C$.

• Case $C = 1$: Clearly true for $n = 1$.

• Case $C = 2$: The finite sequence

$$+1, -1, -1, +1, -1, +1, +1, -1, -1, +1, -1$$

has discrepancy 1. A brute force search (or by an elementary deduction argument) proves any sequence of length $N \geq 12$ has discrepancy at least 2.

• Case $C = 3$: Konev–Lisitsa (2014) obtained a sequence of length $N = 1160$ with discrepancy 2

$$- + + - + - - + - + + - + - - + - + - + - - - + -$$

$$+ - + - + + - - + + - - + - - + - + - + - + - + + - \ldots$$

This was proven optimal using a SAT solver.
Erdös discrepancy problem

- Case $C = 4$: Konev–Lisitsa obtained sequences of length $> 130,000$ and discrepancy 3 (unknown if best possible?). Le Bras–Gomes–Selman produced a completely multiplicative sequence of length 127,645 of discrepancy 3.
Erdös discrepancy problem

- Case $C = 4$: Konev–Lisitsa obtained sequences of length $> 130,000$ and discrepancy 3 (unknown if best possible?). Le Bras–Gomes–Selman produced a *completely multiplicative* sequence of length $127,645$ of discrepancy 3.
- Can construct examples where $\sup_{n \leq N, d} |f(1) + \cdots + f(nd)| \ll \log N$.

<table>
<thead>
<tr>
<th>C</th>
<th>Minimum length N required for any ± 1 sequence to have discrepancy $\geq C$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>247</td>
</tr>
<tr>
<td>4</td>
<td>$127,646$</td>
</tr>
</tbody>
</table>
Erdös discrepancy problem

- Case $C = 4$: Konev–Lisitsa obtained sequences of length $> 130,000$ and discrepancy 3 (unknown if best possible?). Le Bras–Gomes–Selman produced a completely multiplicative sequence of length $127,645$ of discrepancy 3.
- Can construct examples where $\sup_{n \leq N, d} |f(1) + \cdots + f(nd)| \ll \log N$.

<table>
<thead>
<tr>
<th>Discrepancy bound</th>
<th>Completely multiplicative</th>
<th>Multiplicative</th>
<th>Unconstrained</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C = 1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$C = 2$</td>
<td>10</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>$C = 3$</td>
<td>247</td>
<td>345</td>
<td>1161</td>
</tr>
<tr>
<td>$C = 4$</td>
<td>$127,646$</td>
<td>$127,646$</td>
<td>$> 130,000$</td>
</tr>
</tbody>
</table>

Table: Minimum length N required for any ± 1 sequence to have discrepancy $\geq C$.
Examples

- Conjecture is false if any positive density of zeros are allowed: E.g. Let $\chi: \mathbb{N} \to \mathbb{C}$ be a non-principal Dirichlet character of period q. Then $|\chi(d) + \chi(2d) + \cdots + \chi(nd)| \leq q$.

- (Borwein-Choi-Coons): Let $\tilde{\chi}_3: \mathbb{N} \to \mathbb{C}$ such that $\tilde{\chi}_3(n) := +1$ if $n = 3k(3m + 1)$ -1 if $n = 3k(3m + 2)$. Then $\chi(1) + \cdots + \chi(n)$ is the number of 1s in the base 3 expansion of n, thus this grows as $O(\log N)$.

- (Vector-valued BCC): Let H be a real Hilbert space with orthonormal basis e_0, e_1, e_2, \ldots. Let $f: \mathbb{N} \to H$ be the function $f(n) := +e_k$ if $n = 3k(3m + 1)$ $-e_k$ if $n = 3k(3m + 2)$. Using the Pythagorean theorem, we get $\|f(1) + \cdots + f(n)\|_H = O(\sqrt{\log n})$.

Examples

- Conjecture is **false** if any positive density of zeros are allowed: E.g Let $\chi : \mathbb{N} \to \mathbb{C}$ be non-principal Dirichlet character of period q. Then $|\chi(d) + \chi(2d) + \cdots + \chi(nd)| \leq q$.

- (Borwein-Choi-Coons): Let $\tilde{\chi}_3 : \mathbb{N} \to \mathbb{C}$ such that $\tilde{\chi}_3(n) := +1$ if $n = 3k(3m + 1)$, -1 if $n = 3k(3m + 2)$. Then $\chi(1) + \cdots + \chi(n)$ is the number of 1s in the base 3 expansion of n, thus this grows as $O(\log N)$.

- (Vector-valued BCC): Let H be real Hilbert space with orthonormal basis e_0, e_1, e_2, \ldots. Let $f : \mathbb{N} \to H$ be the function $f(n) := +e_k$ if $n = 3k(3m + 1)$, $-e_k$ if $n = 3k(3m + 2)$. Using the Pythagorean theorem, we get $\|f(1) + \cdots + f(n)\|_H = O(\sqrt{\log n})$.

Examples

- Conjecture is **false** if any positive density of zeros are allowed: E.g. Let $\chi : \mathbb{N} \to \mathbb{C}$ be non-principal Dirichlet character of period q. Then $|\chi(d) + \chi(2d) + \cdots + \chi(nd)| \leq q$.
- (Borwein-Choi-Coons): Let $\tilde{\chi}_3 : \mathbb{N} \to \mathbb{C}$ such that
 \[
 \tilde{\chi}_3(n) := \begin{cases}
 +1 & \text{if } n = 3^k(3m + 1) \\
 -1 & \text{if } n = 3^k(3m + 2)
 \end{cases}
 \]
 Then $\chi(1) + \cdots + \chi(n)$ is the number of 1s in the base 3 expansion of n, thus this grows as $O(\log N)$.

Examples

- Conjecture is **false** if any positive density of zeros are allowed: E.g Let $\chi : \mathbb{N} \to \mathbb{C}$ be non-principal Dirichlet character of period q. Then $|\chi(d) + \chi(2d) + \cdots + \chi(nd)| \leq q$.

- (Borwein-Choi-Coons): Let $\tilde{\chi}_3 : \mathbb{N} \to \mathbb{C}$ such that

 \[
 \tilde{\chi}_3(n) := \begin{cases}
 +1 & \text{if } n = 3^k(3m + 1) \\
 -1 & \text{if } n = 3^k(3m + 2)
 \end{cases}
 \]

 Then $\chi(1) + \cdots + \chi(n)$ is the number of 1s in the base 3 expansion of n, thus this grows as $O(\log N)$.

- (Vector-valued BCC): Let H be real Hilbert space with orthonormal basis e_0, e_1, e_2, \ldots. Let $f : \mathbb{N} \to H$ be the function

 \[
 f(n) := \begin{cases}
 +e_k & \text{if } n = 3^k(3m + 1) \\
 -e_k & \text{if } n = 3^k(3m + 2)
 \end{cases}
 \]

 Using the Pythagorean theorem, we get $\|f(1) + \cdots + f(n)\|_H = O(\sqrt{\log n})$.

Erdős discrepancy problem

Theorem (Tao, 2015)

Let \(f : \mathbb{N} \rightarrow H \) where \(H \) is some real or complex Hilbert space, such that \(\| f(n) \|_H = 1 \) for all \(n \). Then

\[
\sup_{n,d \in \mathbb{N}} \| f(d) + f(2d) + \cdots + f(nd) \|_H = \infty.
\]

In the case of \(H = \mathbb{R} \), this proves the Erdős discrepancy problem!
Erdős discrepancy problem

Theorem (Tao, 2015)

Let $f : \mathbb{N} \to H$ where H is some real or complex Hilbert space, such that $\|f(n)\|_H = 1$ for all n. Then

$$\sup_{n,d \in \mathbb{N}} \|f(d) + f(2d) + \cdots + f(nd)\|_H = \infty.$$

In the case of $H = \mathbb{R}$, this proves the Erdős discrepancy problem!

- Can in principle give an effective (albeit weak) lower bound on

 $$\sup_{n \leq N, d} \|f(d) + \cdots + f(nd)\|_H.$$
Sketch proof

- Can use a Fourier analytic argument to reduce the theorem to showing that $\sup_{n \in \mathbb{N}} E|g(1) + g(2) + \cdots + g(n)|^2 = \infty$ where $g: \mathbb{N} \to S_1$ is a (stochastic) completely multiplicative function.

- Since $|g(1) + \cdots + g(n)|^2 = P|g(n)|^2 + P_{i \neq j} g(i)g(j)$, it suffices to study the covariances $P_n \leq x g(n)g(n+h)$.

- Use the log averaged Elliott theorem to show that any counterexample to the above must behave like a Dirichlet character $n \mapsto \chi(n)$.

- Do a similar (but more intricate) analysis of the Borwein-Choi-Coons example to establish a lower bound for $E|g(1) + \cdots + g(n)|^2$.

- Proof can give an effective lower bound on the growth rate, but will be weaker than $\sqrt{\log N}$.
Sketch proof

- Can use a Fourier analytic argument to reduce the theorem to showing that

\[\sup_{n \in \mathbb{N}} \mathbb{E} |g(1) + g(2) + \cdots + g(n)|^2 = \infty \]

where \(g : \mathbb{N} \to S^1 \) is a (stochastic) completely multiplicative function.
Sketch proof

- Can use a Fourier analytic argument to reduce the theorem to showing that

\[\sup_{n \in \mathbb{N}} \mathbb{E} |g(1) + g(2) + \cdots + g(n)|^2 = \infty \]

where \(g : \mathbb{N} \to S^1 \) is a (stochastic) completely multiplicative function.

- Since \(|g(1) + \cdots + g(n)|^2 = \sum |g(n)|^2 + \sum_{i \neq j} g(i)\overline{g}(j) \), it suffices to study the covariances \(\sum_{n \leq x} g(n)\overline{g}(n + h) \).
Sketch proof

- Can use a Fourier analytic argument to reduce the theorem to showing that

$$ \sup_{n \in \mathbb{N}} \mathbb{E} \left| g(1) + g(2) + \cdots + g(n) \right|^2 = \infty $$

where $g : \mathbb{N} \to S^1$ is a (stochastic) completely multiplicative function.

- Since $|g(1) + \cdots + g(n)|^2 = \sum |g(n)|^2 + \sum_{i \neq j} g(i) \overline{g}(j)$, it suffices to study the covariances $\sum_{n \leq x} g(n) \overline{g}(n + h)$.

- Use the log averaged Elliott theorem to show that any counterexample to the above must behave like a Dirichlet character $n \mapsto \chi(n)n^it$.
Sketch proof

• Can use a Fourier analytic argument to reduce the theorem to showing that

$$\sup_{n \in \mathbb{N}} E |g(1) + g(2) + \cdots + g(n)|^2 = \infty$$

where \(g : \mathbb{N} \to S^1 \) is a (stochastic) completely multiplicative function.

• Since \(|g(1) + \cdots + g(n)|^2 = \sum |g(n)|^2 + \sum_{i \neq j} g(i)g(j) \), it suffices to study the covariances \(\sum_{n \leq x} g(n)\overline{g}(n + h) \).

• Use the log averaged Elliott theorem to show that any counterexample to the above must behave like a Dirichlet character \(n \mapsto \chi(n)n^it \).

• Do a similar (but more intricate) analysis of the Borwein-Choi-Coons example to establish a lower bound for \(E|g(1) + \ldots g(n)|^2 \).
Sketch proof

• Can use a Fourier analytic argument to reduce the theorem to showing that

$$\sup_{n \in \mathbb{N}} \mathbb{E} |g(1) + g(2) + \cdots + g(n)|^2 = \infty$$

where $g : \mathbb{N} \to S^1$ is a (stochastic) completely multiplicative function.

• Since $|g(1) + \cdots + g(n)|^2 = \sum |g(n)|^2 + \sum_{i \neq j} g(i)\overline{g}(j)$, it suffices to study the covariances $\sum_{n \leq x} g(n)\overline{g}(n + h)$.

• Use the log averaged Elliott theorem to show that any counterexample to the above must behave like a Dirichlet character $n \mapsto \chi(n)n^it$.

• Do a similar (but more intricate) analysis of the Borwein-Choi-Coons example to establish a lower bound for $\mathbb{E} |g(1) + \ldots g(n)|^2$.

• Proof can give an effective lower bound on the growth rate, but will be weaker than $\sqrt{\log N}$.
I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłł's paper:

"In number theory's land of yore,
Where mysteries and conjectures soar,
Matomäki and Radziwiłł's paper stands,
A testament to their brilliant hands.
Short and long averages, they relate,
A powerful tool to analyze
f's fate,
With cancellations for Möbius shown,
And Chowla's conjecture slowly grown.
A masterpiece of theory and proof,
Innovative, insightful, and aloof,
This paper's insights will inspire,
Awe and wonder, they shall acquire."

- ChatGPT, 2023
I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłł’s paper:
A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłł’s paper:

“In number theory’s land of yore,
A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłł’s paper:

“In number theory’s land of yore,
Where mysteries and conjectures soar,

- ChatGPT, 2023
A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłł’s paper:

“In number theory’s land of yore,
Where mysteries and conjectures soar,
Matomäki and Radziwiłł’s paper stands,
Short and long averages, they relate,
A powerful tool to analyze
f’s fate,
With cancellations for Mőbius shown,
And Chowla’s conjecture slowly grown.
A masterpiece of theory and proof,
Innovative, insightful, and aloof,
This paper’s insights will inspire,
Awe and wonder, they shall acquire.”

- ChatGPT, 2023
A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłł’s paper:

“In number theory’s land of yore,
Where mysteries and conjectures soar,
Matomäki and Radziwiłł’s paper stands,
A testament to their brilliant hands.
I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłł’s paper:

“In number theory’s land of yore,
Where mysteries and conjectures soar,
Matomäki and Radziwiłł’s paper stands,
A testament to their brilliant hands.

Short and long averages, they relate,
A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłł’s paper:

“In number theory’s land of yore,
Where mysteries and conjectures soar,
Matomäki and Radziwiłł’s paper stands,
A testament to their brilliant hands.

Short and long averages, they relate,
A powerful tool to analyze f’s fate,
I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłł’s paper:

“In number theory’s land of yore,
Where mysteries and conjectures soar,
Matomäki and Radziwiłł’s paper stands,
A testament to their brilliant hands.

Short and long averages, they relate,
A powerful tool to analyze f’s fate,
With cancellations for Möbius shown,
I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłł’s paper:

“In number theory’s land of yore,
Where mysteries and conjectures soar,
Matomäki and Radziwiłł’s paper stands,
A testament to their brilliant hands.

Short and long averages, they relate,
A powerful tool to analyze f’s fate,
With cancellations for Möbius shown,
And Chowla’s conjecture slowly grown.
A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłł’s paper:

“In number theory’s land of yore,
Where mysteries and conjectures soar,
Matomäki and Radziwiłł’s paper stands,
A testament to their brilliant hands.

Short and long averages, they relate,
A powerful tool to analyze f’s fate,
With cancellations for Möbius shown,
And Chowla’s conjecture slowly grown.

A masterpiece of theory and proof,
A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłł’s paper:

“In number theory’s land of yore,
Where mysteries and conjectures soar,
Matomäki and Radziwiłł’s paper stands,
A testament to their brilliant hands.

Short and long averages, they relate,
A powerful tool to analyze f’s fate,
With cancellations for Möbius shown,
And Chowla’s conjecture slowly grown.

A masterpiece of theory and proof,
Innovative, insightful, and aloof,
I asked ChatGPT to write a poem dedicated to Matomäki-Radziwill’s paper:

“In number theory’s land of yore,
Where mysteries and conjectures soar,
Matomäki and Radziwill’s paper stands,
A testament to their brilliant hands.

Short and long averages, they relate,
A powerful tool to analyze f’s fate,
With cancellations for Möbius shown,
And Chowla’s conjecture slowly grown.

A masterpiece of theory and proof,
Innovative, insightful, and aloof,
This paper’s insights will inspire,
A poem

I asked ChatGPT to write a poem dedicated to Matomäki-Radziwiłł’s paper:

“In number theory’s land of yore,
Where mysteries and conjectures soar,
Matomäki and Radziwiłł’s paper stands,
A testament to their brilliant hands.

Short and long averages, they relate,
A powerful tool to analyze f’s fate,
With cancellations for Möbius shown,
And Chowla’s conjecture slowly grown.

A masterpiece of theory and proof,
Innovative, insightful, and aloof,
This paper’s insights will inspire,
Awe and wonder, they shall acquire.”

- ChatGPT, 2023
References

A note on the Liouville function in short intervals

Matomäki, K., Radziwiłł, M. (2016)
Multiplicative functions in short intervals

An averaged form of Chowla’s conjecture
Algebra Number Theory 9, no. 9, 2167–2196.
References

Matomäki, K., Radziwiłł, M., Tao, T. (2016)
Sign patterns of the Liouville and Möbius functions

Tao, T. (2016)
The logarithmically averaged Chowla and Elliott conjectures for two-point correlations

Tao, T. (2016)
The Erdős discrepancy problem
Thank you!