Murmurations in Arithmetic

Murmurations study group, Introductory talk

Robin Visser
organised with Sam Chow and Simon Rydin Myerson
Mathematics Institute
University of Warwick

19 January 2024

Murmurations

Figure: A murmuration of starlings at Gretna - Walter Baxter (cc-by-sa/2.0)

Motivation

Let E / \mathbb{Q} be an elliptic curve. Recall its L-function

$$
L(E, s)=\prod_{p \text { prime }} L_{p}(E, s)^{-1}=\sum_{n \geq 1} a_{n}(E) n^{-s}
$$

where for primes p of good reduction, we have $L_{p}(E, s)=1-a_{p}(E) p^{-s}+p^{1-2 s}$ where $a_{p}(E)=p+1-\# E\left(\mathbb{F}_{p}\right)$.

Motivation

Let E / \mathbb{Q} be an elliptic curve. Recall its L-function

$$
L(E, s)=\prod_{p \text { prime }} L_{p}(E, s)^{-1}=\sum_{n \geq 1} a_{n}(E) n^{-s}
$$

where for primes p of good reduction, we have $L_{p}(E, s)=1-a_{p}(E) p^{-s}+p^{1-2 s}$ where $a_{p}(E)=p+1-\# E\left(\mathbb{F}_{p}\right)$.

Let's investigate the arithmetic statistics of $a_{p}(E)$:

Motivation

Let E / \mathbb{Q} be an elliptic curve. Recall its L-function

$$
L(E, s)=\prod_{p \text { prime }} L_{p}(E, s)^{-1}=\sum_{n \geq 1} a_{n}(E) n^{-s}
$$

where for primes p of good reduction, we have $L_{p}(E, s)=1-a_{p}(E) p^{-s}+p^{1-2 s}$ where $a_{p}(E)=p+1-\# E\left(\mathbb{F}_{p}\right)$.

Let's investigate the arithmetic statistics of $a_{p}(E)$:

1. For a fixed elliptic curve E / \mathbb{Q}, how is $a_{p}(E) / \sqrt{p}$ distributed over all primes p ?

Motivation

Let E / \mathbb{Q} be an elliptic curve. Recall its L-function

$$
L(E, s)=\prod_{p \text { prime }} L_{p}(E, s)^{-1}=\sum_{n \geq 1} a_{n}(E) n^{-s}
$$

where for primes p of good reduction, we have $L_{p}(E, s)=1-a_{p}(E) p^{-s}+p^{1-2 s}$ where $a_{p}(E)=p+1-\# E\left(\mathbb{F}_{p}\right)$.

Let's investigate the arithmetic statistics of $a_{p}(E)$:

1. For a fixed elliptic curve E / \mathbb{Q}, how is $a_{p}(E) / \sqrt{p}$ distributed over all primes p ?
2. For a fixed prime p, how is $a_{p}(E)$ distributed over all elliptic curves E / \mathbb{F}_{p} ?

Motivation

Let E / \mathbb{Q} be an elliptic curve. Recall its L-function

$$
L(E, s)=\prod_{p \text { prime }} L_{p}(E, s)^{-1}=\sum_{n \geq 1} a_{n}(E) n^{-s}
$$

where for primes p of good reduction, we have $L_{p}(E, s)=1-a_{p}(E) p^{-s}+p^{1-2 s}$ where $a_{p}(E)=p+1-\# E\left(\mathbb{F}_{p}\right)$.

Let's investigate the arithmetic statistics of $a_{p}(E)$:

1. For a fixed elliptic curve E / \mathbb{Q}, how is $a_{p}(E) / \sqrt{p}$ distributed over all primes p ?
2. For a fixed prime p, how is $a_{p}(E)$ distributed over all elliptic curves E / \mathbb{F}_{p} ?
3. What if we restrict to elliptic curves E / \mathbb{Q} of given rank and conductor, and investigate $a_{p}(E)$ as p grows linearly with the conductor?

Motivation

1. This was a famous conjecture of Mikio Sato and John Tate. e.g. for an elliptic curve E / \mathbb{Q} without $C M$, the probability measure of $\theta:=\arccos \left(\frac{a_{p}(E)}{2 \sqrt{p}}\right)$ is proportional to $\sin ^{2} \theta d \theta$. Now a theorem (by many authors)!

Motivation

1. This was a famous conjecture of Mikio Sato and John Tate. e.g. for an elliptic curve E / \mathbb{Q} without $C M$, the probability measure of $\theta:=\arccos \left(\frac{a_{p}(E)}{2 \sqrt{p}}\right)$ is proportional to $\sin ^{2} \theta d \theta$. Now a theorem (by many authors)!
2. This is the same as the Sato-Tate distribution, i.e. for a fixed p, the distribution of $\theta:=\arccos \left(\frac{a_{p}(E)}{2 \sqrt{p}}\right)$ over all E / \mathbb{F}_{p} is proportional to $\sin ^{2} \theta d \theta$ for large p (Birch, 1968).

Motivation

1. This was a famous conjecture of Mikio Sato and John Tate. e.g. for an elliptic curve E / \mathbb{Q} without $C M$, the probability measure of $\theta:=\arccos \left(\frac{a_{p}(E)}{2 \sqrt{p}}\right)$ is proportional to $\sin ^{2} \theta d \theta$. Now a theorem (by many authors)!
2. This is the same as the Sato-Tate distribution, i.e. for a fixed p, the distribution of $\theta:=\arccos \left(\frac{a_{p}(E)}{2 \sqrt{p}}\right)$ over all E / \mathbb{F}_{p} is proportional to $\sin ^{2} \theta d \theta$ for large p (Birch, 1968).
3. By restricting to elliptic curves E / \mathbb{Q} with given rank r and conductor $N \in\left[N_{1}, N_{2}\right]$, and investigating the average of $a_{p}(E)$ as $p \sim N$, this gives rise to the murmurations phenomenon!

Machine-learning experiments

During 2019-2022, Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver, and Alexey Pozdnyakov conducted some machine-learning experiments on datasets of arithmetic curves.

Machine-learning experiments

During 2019-2022, Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver, and Alexey Pozdnyakov conducted some machine-learning experiments on datasets of arithmetic curves.

In one of their experiments, they represented an elliptic curve E / \mathbb{Q} as a vector of its first 1000 values of $a_{p}(E)$:

$$
v_{L}(E):=\left(a_{2}(E), a_{3}(E), a_{5}(E), \ldots, a_{7919}(E)\right) \in \mathbb{Z}^{1000}
$$

Using logistic regression, they were able to predict the rank of E from $v_{L}(E)$ with very high accuracy,

Machine-learning experiments

During 2019-2022, Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver, and Alexey Pozdnyakov conducted some machine-learning experiments on datasets of arithmetic curves.

In one of their experiments, they represented an elliptic curve E / \mathbb{Q} as a vector of its first 1000 values of $a_{p}(E)$:

$$
v_{L}(E):=\left(a_{2}(E), a_{3}(E), a_{5}(E), \ldots, a_{7919}(E)\right) \in \mathbb{Z}^{1000}
$$

Using logistic regression, they were able to predict the rank of E from $v_{L}(E)$ with very high accuracy, e.g. to distinguish between rank 0 and rank 1 curves, the goal is to find $\mathbf{w} \in \mathbb{R}^{1000}$ and $b \in \mathbb{R}$ such that

$$
\sigma\left(v_{L}(E) \cdot \mathbf{w}+b\right), \quad \text { where } \sigma(x)=\frac{1}{1+e^{-x}}
$$

is hopefully close to either 0 or 1 . The results of their experiments successfully predicted the ranks all with accuracies above 96%.

Murmurations

To interpret their model, they plotted the average values of $a_{p}(E)$ over some conductor interval $\left[N_{1}, N_{2}\right]$ for elliptic curves with fixed rank:

Murmurations

To interpret their model, they plotted the average values of $a_{p}(E)$ over some conductor interval $\left[N_{1}, N_{2}\right]$ for elliptic curves with fixed rank:

Fix some $r \geq 0$, and some positive integers $N_{2}>N_{1} \geq 1$. Let $\mathcal{E}_{r}\left[N_{1}, N_{2}\right]$ be a set of isogeny class representatives of all rank r elliptic curves of conductor $N \in\left[N_{1}, N_{2}\right]$. Define the following function:

$$
f_{r}(n):=\frac{1}{\# \mathcal{E}_{r}\left[N_{1}, N_{2}\right]} \sum_{E \in \mathcal{E}_{r}\left[N_{1}, N_{2}\right]} a_{p_{n}}(E)
$$

where p_{n} is the n-th prime number.

Murmurations

To interpret their model, they plotted the average values of $a_{p}(E)$ over some conductor interval $\left[N_{1}, N_{2}\right]$ for elliptic curves with fixed rank:

Fix some $r \geq 0$, and some positive integers $N_{2}>N_{1} \geq 1$. Let $\mathcal{E}_{r}\left[N_{1}, N_{2}\right]$ be a set of isogeny class representatives of all rank r elliptic curves of conductor $N \in\left[N_{1}, N_{2}\right]$. Define the following function:

$$
f_{r}(n):=\frac{1}{\# \mathcal{E}_{r}\left[N_{1}, N_{2}\right]} \sum_{E \in \mathcal{E}_{r}\left[N_{1}, N_{2}\right]} a_{p_{n}}(E)
$$

where p_{n} is the n-th prime number.
The next slide will amaze you!

Murmurations

To interpret their model, they plotted the average values of $a_{p}(E)$ over some conductor interval $\left[N_{1}, N_{2}\right]$ for elliptic curves with fixed rank:

Fix some $r \geq 0$, and some positive integers $N_{2}>N_{1} \geq 1$. Let $\mathcal{E}_{r}\left[N_{1}, N_{2}\right]$ be a set of isogeny class representatives of all rank r elliptic curves of conductor $N \in\left[N_{1}, N_{2}\right]$. Define the following function:

$$
f_{r}(n):=\frac{1}{\# \mathcal{E}_{r}\left[N_{1}, N_{2}\right]} \sum_{E \in \mathcal{E}_{r}\left[N_{1}, N_{2}\right]} a_{p_{n}}(E)
$$

where p_{n} is the n-th prime number.

The next slide will amaze you! (or not, that's also fine)

Murmurations of elliptic curves

Figure: Scatter plot of $\left(n, f_{r}(n)\right)$ for ranks $r=0$ (blue) and $r=1$ (red) with conductor N between $N_{1}=7500$ and $N_{2}=10000$ (He-Lee-Oliver-Pozdnyakov 2022).

Murmurations of elliptic curves

Figure: Scatter plot of $\left(n, f_{r}(n)\right)$ for ranks $r=0$ (blue) and $r=1$ (red) with conductor N between $N_{1}=7500$ and $N_{2}=10000$ (He-Lee-Oliver-Pozdnyakov 2022).

Murmurations of elliptic curves

Figure: Scatter plot of $\left(n, f_{r}(n)\right)$ for ranks $r=0$ (blue) and $r=2$ (green) with conductor N between $N_{1}=5000$ and $N_{2}=10000$ (He-Lee-Oliver-Pozdnyakov 2022).

Murmurations of elliptic curves

Figure: Scatter plot of $\left(n, f_{r}(n)\right)$ for ranks $r=0$ (blue) and $r=2$ (green) with conductor N between $N_{1}=5000$ and $N_{2}=10000$ (He-Lee-Oliver-Pozdnyakov 2022).

Murmurations of elliptic curves

Figure: Murmurations - Alain Delorme

More murmurations

Do we see murmurations in larger conductor intervals?

More murmurations

Do we see murmurations in larger conductor intervals?

Figure: Scatter plot of $\left(n, f_{r}(n)\right)$ for ranks $r=0$ (blue) and $r=1$ (red) with conductor N between $N_{1}=2^{14}$ and $N_{2}=2^{15}$ for all $p_{n} \leq 2^{15}$.

More murmurations

Do we see murmurations in larger conductor intervals?

Figure: Scatter plot of $\left(n, f_{r}(n)\right)$ for ranks $r=0$ (blue) and $r=1$ (red) with conductor N between $N_{1}=2^{15}$ and $N_{2}=2^{16}$ for all $p_{n} \leq 2^{16}$.

More murmurations

Do we see murmurations in larger conductor intervals?

Figure: Scatter plot of $\left(n, f_{r}(n)\right)$ for ranks $r=0$ (blue) and $r=1$ (red) with conductor N between $N_{1}=2^{16}$ and $N_{2}=2^{17}$ for $p_{n} \leq 2^{17}$.

More murmurations

Do we see murmurations in larger conductor intervals?

Figure: Scatter plot of $\left(n, f_{r}(n)\right)$ for ranks $r=0$ (blue) and $r=1$ (red) with conductor N between $N_{1}=2^{17}$ and $N_{2}=2^{18}$ for $p_{n} \leq 2^{18}$.

Drew's Letter

In August 2022, Drew Sutherland wrote a letter to Mike Rubinstein and Peter Sarnak, where he made the following observations:

Drew's Letter

In August 2022, Drew Sutherland wrote a letter to Mike Rubinstein and Peter Sarnak, where he made the following observations:

- Murmurations occur over a wide range of conductor intervals. For a fixed c, plotting the averages $\mathbb{E}_{E} a_{p}$ over the conductor interval $[X, c X]$ seems to give the same shape (with appropriate scaling) as $X \rightarrow \infty$.

Drew's Letter

In August 2022, Drew Sutherland wrote a letter to Mike Rubinstein and Peter Sarnak, where he made the following observations:

- Murmurations occur over a wide range of conductor intervals. For a fixed c, plotting the averages $\mathbb{E}_{E} a_{p}$ over the conductor interval $[X, c X]$ seems to give the same shape (with appropriate scaling) as $X \rightarrow \infty$.
- Ordering by conductor is important! Ordering by absolute discriminant, naive height, Faltings height, or almost anything else won't clearly give oscillations.

Drew's Letter

In August 2022, Drew Sutherland wrote a letter to Mike Rubinstein and Peter Sarnak, where he made the following observations:

- Murmurations occur over a wide range of conductor intervals. For a fixed c, plotting the averages $\mathbb{E}_{E} a_{p}$ over the conductor interval $[X, C X]$ seems to give the same shape (with appropriate scaling) as $X \rightarrow \infty$.
- Ordering by conductor is important! Ordering by absolute discriminant, naive height, Faltings height, or almost anything else won't clearly give oscillations.
- This phenomenon is not specific to elliptic curves, and can be seen for many families of arithmetic L-functions. E.g. Dirichlet characters, higher dimension abelian varieties, newforms for $\Gamma_{0}(N)$, higher genus curves, etc.

Drew's Letter

In August 2022, Drew Sutherland wrote a letter to Mike Rubinstein and Peter Sarnak, where he made the following observations:

- Murmurations occur over a wide range of conductor intervals. For a fixed c, plotting the averages $\mathbb{E}_{E} a_{p}$ over the conductor interval $[X, C X]$ seems to give the same shape (with appropriate scaling) as $X \rightarrow \infty$.
- Ordering by conductor is important! Ordering by absolute discriminant, naive height, Faltings height, or almost anything else won't clearly give oscillations.
- This phenomenon is not specific to elliptic curves, and can be seen for many families of arithmetic L-functions. E.g. Dirichlet characters, higher dimension abelian varieties, newforms for $\Gamma_{0}(N)$, higher genus curves, etc.
- This phenomenon appears to only occur in primitive arithmetic L-function, e.g. no oscillations are visible when plotting L-functions of products of elliptic curves.

Murmurations for Dirichlet characters

Murmurations for Dirichlet characters

Theorem (Lee-Oliver-Pozdnyakov 2023)

Assume RH. Let $\mathcal{D}_{+}(N)$ (resp. $\left.\mathcal{D}_{-}(N)\right)$ denote the set of primitive even (resp. odd) Dirichlet characters $\bmod N$. Fix some $\delta \in\left(\frac{1}{2}, 1\right)$, and let $y:=P / X$. Then

$$
\lim _{X \rightarrow \infty} \frac{\log X}{X^{\delta}} \sum_{\substack{N \in[X, X+X \\ N \text { prime }}} \sum_{\chi \in \mathcal{D}_{ \pm}(N)} \frac{\chi(P)}{G(\chi)}= \begin{cases}\cos (2 \pi y), & \text { if }+, \\ -i \sin (2 \pi y), & \text { if }-,\end{cases}
$$

where $G(\chi):=\sum_{a=1}^{m} \chi(a) e^{2 \pi i a / m}$ is the Gauss sum of χ.

Murmurations for Dirichlet characters

Theorem (Lee-Oliver-Pozdnyakov 2023)

Assume RH. Let $\mathcal{D}_{+}(N)$ (resp. $\left.\mathcal{D}_{-}(N)\right)$ denote the set of primitive even (resp. odd) Dirichlet characters $\bmod N$. Fix some $\delta \in\left(\frac{1}{2}, 1\right)$, and let $y:=P / X$. Then

$$
\lim _{X \rightarrow \infty} \frac{\log X}{X^{\delta}} \sum_{\substack{N \in[X, X+X \\ N \text { prime }}} \sum_{\chi \in \mathcal{D}_{ \pm}(N)} \frac{\chi(P)}{G(\chi)}= \begin{cases}\cos (2 \pi y), & \text { if }+, \\ -i \sin (2 \pi y), & \text { if }-,\end{cases}
$$

where $G(\chi):=\sum_{a=1}^{m} \chi(a) e^{2 \pi i a / m}$ is the Gauss sum of χ.

- Proof uses the Fourier expansion of additive characters in terms of Dirichlet characters, the prime number theorem, and elementary analysis on \mathbb{R} (Pozdnyakov 2023).

Murmurations for Dirichlet characters

To obtain averages over some geometric interval $[X, c X]$, integrate over the interval $[1, c]$:

Theorem (Lee-Oliver-Pozdnyakov 2023)

Fix some $c>1$. Let $y:=P / X$. Then

$$
\lim _{X \rightarrow \infty} \frac{\log X}{X} \sum_{\substack{N \in[X, c X] \\ N \text { prime }}} \sum_{\chi \in \mathcal{D}_{ \pm}(N)} \frac{\chi(P)}{G(\chi)}= \begin{cases}\int_{1}^{c} \cos \left(\frac{2 \pi y}{u}\right) d u, & \text { if }+, \\ -i \int_{1}^{c} \sin \left(\frac{2 \pi y}{u}\right) d u, & \text { if }-.\end{cases}
$$

Murmurations for Dirichlet characters

Figure: Scatter plot of $\left(n, \mathbb{E}_{N} \mathbb{E}_{\chi} \chi\left(p_{n}\right) / G(\chi)\right)$ for even (blue) and odd (red) primitive Dirichlet characters χ with level N between $N_{1}=2^{6}$ and $N_{2}=2^{7}$ for all $p_{n} \leq 2^{8}$.

Murmurations for Dirichlet characters

Figure: Scatter plot of $\left(n, \mathbb{E}_{N} \mathbb{E}_{\chi} \chi\left(p_{n}\right) / G(\chi)\right)$ for even (blue) and odd (red) primitive Dirichlet characters χ with level N between $N_{1}=2^{7}$ and $N_{2}=2^{8}$ for all $p_{n} \leq 2^{9}$.

Murmurations for Dirichlet characters

Figure: Scatter plot of $\left(n, \mathbb{E}_{N} \mathbb{E}_{\chi} \chi\left(p_{n}\right) / G(\chi)\right)$ for even (blue) and odd (red) primitive Dirichlet characters χ with level N between $N_{1}=2^{8}$ and $N_{2}=2^{9}$ for all $p_{n} \leq 2^{10}$.

Murmurations of Dirichlet characters

Theorem (Lee-Oliver-Pozdnyakov 2023)

Let $\mathcal{D}_{ \pm}(N)$ be as before and let $\mathcal{I}_{+}(N)$ (resp. $\mathcal{I}_{-}(N)$) denote the set of imprimitive even (resp. odd) nontrivial Dirichlet characters mod N. Fix $\delta \in(0,1)$ and $y:=P / X$. Then

$$
\lim _{X \rightarrow \infty} \frac{1}{X^{\delta}} \sum_{\substack{N \in\left[X, X+X^{\delta}\right] \\ N \neq 2 \bmod 4}}\left(\sum_{\chi \in \mathcal{D}_{ \pm}(N)} \frac{\chi(P)}{G(\chi)} \pm \frac{1}{N} \sum_{\chi \in \mathcal{I}_{ \pm}(N)} G(\bar{\chi}) \chi(P)\right)= \begin{cases}\frac{5}{\pi^{2}} \cos (2 \pi y), & \text { if }+, \\ -i \frac{5}{\pi^{2}} \sin (2 \pi y), & \text { if }-,\end{cases}
$$

where $G(\chi)$ is the Gauss sum of χ. Similarly, for some fixed $c>1$,
$\lim _{X \rightarrow \infty} \frac{1}{X} \sum_{\substack{N \in[X, c x] \\ N \neq 2 \bmod 4}}\left(\sum_{\chi \in \mathcal{D}_{ \pm}(N)} \frac{\chi(P)}{G(\chi)} \pm \frac{1}{N} \sum_{\chi \in \mathcal{I}_{ \pm}(N)} G(\bar{\chi}) \chi(P)\right)= \begin{cases}\frac{5}{\pi^{2}} \int_{1}^{c} \cos \left(\frac{2 \pi y}{u}\right) d u, & \text { if }+, \\ -i \frac{5}{\pi^{2}} \int_{1}^{c} \sin \left(\frac{2 \pi y}{u}\right) d u, & \text { if }-.\end{cases}$

Murmurations of newforms for $\Gamma_{0}(N)$

Murmurations of newforms for $\Gamma_{0}(N)$

Figure: Scatter plot of $\left(n, \mathbb{E}_{N} \mathbb{E}_{f} a_{p_{n}}(f)\right)$ over all newforms $f \in H_{k}^{\text {new }}(N)$ with root number ε and level $N \in\left[2^{8}, 2^{9}\right]$ for all $p_{n} \leq 2^{9}$. Top plot is weight $k=2$ and bottom plot is weight $k=4$.

Murmurations of newforms for $\Gamma_{0}(N)$

Figure: Scatter plot of $\left(n, \mathbb{E}_{N} \mathbb{E}_{f} a_{p_{n}}(f)\right)$ over all newforms $f \in H_{k}^{\text {new }}(N)$ with root number ε and level $N \in\left[2^{9}, 2^{10}\right]$ for all $p_{n} \leq 2^{10}$. Top plot is weight $k=2$ and bottom plot is weight $k=4$.

Murmurations of newforms for $\Gamma_{0}(N)$

Figure: Scatter plot of $\left(n, \mathbb{E}_{N} \mathbb{E}_{f} a_{p_{n}}(f)\right)$ over all newforms $f \in H_{k}^{\text {new }}(N)$ with root number ε and level $N \in\left[2^{10}, 2^{11}\right]$ for all $p_{n} \leq 2^{11}$. Top plot is weight $k=2$ and bottom plot is weight $k=4$.

Zubrilina's breakthrough

Theorem (Zubrilina 2023)

Let $H_{k}^{\text {new }}(N)$ be a basis of trivial character weight k newforms for $\Gamma_{0}(N)$. Let $X, Y, P \rightarrow \infty$ with P prime, and assume that $Y=(1+o(1)) X^{1-\delta_{2}}$ and $P \ll X^{1+\delta_{1}}$ for some $\delta_{1}, \delta_{2}>0$ with $2 \delta_{1}<\delta_{2}<1$. Let $y:=P / X$. Then

$$
\frac{\sum_{N \in[X, X+Y]}^{\square-\text { free }} \sum_{f \in H_{k}^{\text {new }}(N)} \varepsilon(f) a_{f}(P) P^{1-k / 2}}{\sum_{N \in[X, X+Y]}^{\square-f r e e} \sum_{f \in H_{k}^{\text {new }}(N)} 1}=M_{k}(y)+O_{\varepsilon}\left(X^{-\delta^{\prime}+\epsilon}+\frac{1}{P}\right)
$$

Zubrilina's breakthrough

Theorem (Zubrilina 2023)

Let $H_{k}^{\text {new }}(N)$ be a basis of trivial character weight k newforms for $\Gamma_{0}(N)$. Let $X, Y, P \rightarrow \infty$ with P prime, and assume that $Y=(1+o(1)) X^{1-\delta_{2}}$ and $P \ll X^{1+\delta_{1}}$ for some $\delta_{1}, \delta_{2}>0$ with $2 \delta_{1}<\delta_{2}<1$. Let $y:=P / X$. Then

$$
\frac{\sum_{N \in[X, X+Y]}^{\square-\text { free }} \sum_{f \in H_{k}^{\text {new }}(N)} \varepsilon(f) a_{f}(P) P^{1-k / 2}}{\sum_{N \in[X, X+Y]}^{\square-\text { free }} \sum_{f \in H_{k}^{\text {new }}(N)} 1}=M_{k}(y)+O_{\varepsilon}\left(X^{-\delta^{\prime}+\epsilon}+\frac{1}{P}\right)
$$

where $M_{k}(y)$ is the weight k murmuration density function:

$$
M_{k}(y):=D_{k}\left(A \sqrt{y}+(-1)^{k / 2-1} B \sum_{1 \leq r \leq 2 \sqrt{y}} c(r) \sqrt{4 y-r^{2}} U_{k-2}\left(\frac{r}{2 \sqrt{y}}\right)-\delta_{k=2} \pi y\right)
$$

$$
A=\prod_{p}\left(1+\frac{p}{(p+1)^{2}(p-1)}\right), B=\prod_{p} \frac{p^{4}-2 p^{2}-p+1}{\left(p^{2}-1\right)^{2}}, c(r)=\prod_{p \mid r}\left(1+\frac{p^{2}}{p^{4}-2 p^{2}-p+1}\right), D_{k}=\frac{12}{(k-1) \pi \prod_{p}\left(1-\frac{1}{p^{2}+p}\right)}
$$

Murmuration density function

Figure: Murmuration density function $M_{k}(y)$ for weights $k=2$ and $k=4$.

Murmuration density function

Figure: Murmuration density function $M_{k}(y)$ for weights $k=6$ and $k=8$.

Zubrilina's breakthrough

To obtain averages over some geometric interval $[X, c X]$, integrate $u M_{k}(y / u)$ over the interval $[1, c]$:

Theorem (Zubrilina 2023)

Let $P \ll X^{6 / 5}$, let $c>1$ be constant and $y:=P / X$ Then as $X \rightarrow \infty$:

$$
\frac{\sum_{N \in[X, c X]}^{\square-f r e e} \sum_{f \in H_{k}^{\text {new }}(N)} \varepsilon(f) a_{f}(p) p^{1-k / 2}}{\sum_{N \in[X, c X]}^{\square-f r e e} \sum_{f \in H_{k}^{\text {new }}(N)} 1}=\frac{2}{\left(c^{2}-1\right)} \int_{1}^{c} u M_{k}(y / u) d u+o_{y}(1)
$$

Zubrilina's breakthrough

- Case $k=c=2$:

Zubrilina's breakthrough

- Case $k=c=2$:

Theorem (Zubrilina 2023)

Let $P \ll X^{6 / 5}$ and $y:=P / X$. Then as $X \rightarrow \infty$, the dyadic average

$$
\frac{\sum_{N \in[X, 2 X]}^{\square-\text { free }} \sum_{f \in H_{2}^{\text {new }}(N)} \varepsilon(f) a_{f}(P)}{\sum_{N \in[X, 2 X]}^{\square-f r e e} \sum_{f \in H_{2}^{\text {new }}(N)} 1}
$$

converges to the function

$$
\begin{cases}\alpha \sqrt{y}-\beta y & \text { if } y \in[0,1 / 4] \\ \alpha \sqrt{y}-\beta y+\gamma \pi y^{2}-\gamma(1-2 y) \sqrt{y-1 / 4}-2 \gamma y^{2} \arcsin (1 / 2 y-1) & \text { if } y \in[1 / 4,1 / 2], \\ \alpha \sqrt{y}-\beta y+2 \gamma y^{2}(\arcsin (1 / y-1)-\arcsin (1 / 2 y-1)) & \\ -\gamma(1-2 y) \sqrt{y-1 / 4}+2 \gamma(1-y) \sqrt{2 y-1} & \text { if } y \in[1 / 2,1]\end{cases}
$$

where $\alpha \approx 6.38936, \beta \approx 11.3536$, and $\gamma \approx 2.6436$.

Zubrilina's breakthrough

Figure: Plots of $\pm \frac{2}{3} \int_{1}^{2} u M_{k}(y / u) d u$ for weights $k=2$ and $k=4$.

Zubrilina's breakthrough

Figure: Plots of $\pm \frac{2}{3} \int_{1}^{2} u M_{k}(y / u) d u$ for weights $k=6$ and $k=8$.

Zubrilina's breakthrough

Idea of proof for weight $k=2$:

Zubrilina's breakthrough

Idea of proof for weight $k=2$:

- $\sum_{f \in H_{2}^{\text {new }}(N)} a_{f}(p) \varepsilon(f)=\operatorname{Tr}\left(T_{p} \circ W_{N}\right)$

Zubrilina's breakthrough

Idea of proof for weight $k=2$:

- $\sum_{f \in H_{2}^{\text {new }}(N)} a_{f}(p) \varepsilon(f)=\operatorname{Tr}\left(T_{p} \circ W_{N}\right)$

Theorem (Yamauchi 1973, Skoruppa-Zagier 1988)

For weight $k=2, N$ squarefree, and a prime P XN,

$$
\operatorname{Tr}\left(T_{p} \circ W_{N}\right)=\frac{H_{1}(-4 P N)}{2}+\sum_{0<r \leq 2 \sqrt{P / N}} H_{1}\left(r^{2} N^{2}-4 P N\right)-P-1
$$

where $H_{1}(-d)$ is the Hurwitz class number.

Zubrilina's breakthrough

Idea of proof for weight $k=2$:

- $\sum_{f \in H_{2}^{\text {new }}(N)} a_{f}(p) \varepsilon(f)=\operatorname{Tr}\left(T_{p} \circ W_{N}\right)$

Theorem (Yamauchi 1973, Skoruppa-Zagier 1988)

For weight $k=2, N$ squarefree, and a prime P XN,

$$
\operatorname{Tr}\left(T_{p} \circ W_{N}\right)=\frac{H_{1}(-4 P N)}{2}+\sum_{0<r \leq 2 \sqrt{P / N}} H_{1}\left(r^{2} N^{2}-4 P N\right)-P-1
$$

where $H_{1}(-d)$ is the Hurwitz class number.

- Can express $H_{1}(-d)=\sum_{f \in \mathbb{N}: f^{2} \mid d} h\left(-d / f^{2}\right)+O(1)$.

Zubrilina's breakthrough

Idea of proof for weight $k=2$:

- $\sum_{f \in H_{2}^{\text {new }}(N)} a_{f}(p) \varepsilon(f)=\operatorname{Tr}\left(T_{p} \circ W_{N}\right)$

Theorem (Yamauchi 1973, Skoruppa-Zagier 1988)

For weight $k=2, N$ squarefree, and a prime P XN,

$$
\operatorname{Tr}\left(T_{p} \circ W_{N}\right)=\frac{H_{1}(-4 P N)}{2}+\sum_{0<r \leq 2 \sqrt{P / N}} H_{1}\left(r^{2} N^{2}-4 P N\right)-P-1
$$

where $H_{1}(-d)$ is the Hurwitz class number.

- Can express $H_{1}(-d)=\sum_{f \in \mathbb{N}: f^{2} \mid d} h\left(-d / f^{2}\right)+O(1)$.
- Apply the class number formula!

Peter's Letter

In August 2023, Peter Sarnak wrote a letter to Drew Sutherland and Nina Zubrilina giving some deeper theoretical observations about murmurations in general families of L-functions.

Peter's Letter

In August 2023, Peter Sarnak wrote a letter to Drew Sutherland and Nina Zubrilina giving some deeper theoretical observations about murmurations in general families of L-functions.

In general, given some suitable family \mathcal{F} of L-functions with a natural ordering (usually by conductor), and a constant $\theta>0$, we can study the double averages:

$$
\frac{\sum_{P \sim N^{\theta}} \sum_{\pi \in \mathcal{F}} \Phi\left(N_{\pi} / N\right) a_{\pi}(P)}{\sum_{P \sim N^{\theta}} \sum_{\pi \in \mathcal{F}} \Phi\left(N_{\pi} / N\right)},
$$

where $\Phi:(0, \infty) \rightarrow \mathbb{R}$ is a smooth nonnegative weight function.

Peter's Letter

In August 2023, Peter Sarnak wrote a letter to Drew Sutherland and Nina Zubrilina giving some deeper theoretical observations about murmurations in general families of L-functions.

In general, given some suitable family \mathcal{F} of L-functions with a natural ordering (usually by conductor), and a constant $\theta>0$, we can study the double averages:

$$
\frac{\sum_{P \sim N^{\theta}} \sum_{\pi \in \mathcal{F}} \Phi\left(N_{\pi} / N\right) a_{\pi}(P)}{\sum_{P \sim N^{\theta}} \sum_{\pi \in \mathcal{F}} \Phi\left(N_{\pi} / N\right)},
$$

where $\Phi:(0, \infty) \rightarrow \mathbb{R}$ is a smooth nonnegative weight function.
Sarnak remarked that these double averages are related to the 1-level densities of the zeros of $L(s, \pi)$. Using random matrix theory, Katz and Sarnak predicted that these averages for $\theta<1$ behave differently to $\theta>1$. The murmurations phenomenon arises at the sharp phase transition when $\theta=1$!

Murmurations in the weight aspect

Another breakthrough by Bober-Booker-Lee-Lowry-Duda:

Murmurations in the weight aspect

Another breakthrough by Bober-Booker-Lee-Lowry-Duda:

Theorem (Bober-Booker-Lee-Lowry-Duda 2023)

Assume GRH. Fix $\epsilon>0$ small and $\delta \in\{0,1\}$. Fix a compact interval $E \subset \mathbb{R}_{>0}$ with $|E|>0$. Let $K, H \in \mathbb{R}_{>0}$ with $K^{\frac{5}{6}+\epsilon}<H<K^{1-\epsilon}$. As $K \rightarrow \infty$:

$$
\frac{\sum_{p / N \in E} \log p \sum_{\substack{k=2 \delta \bmod 4 \\|k-K| \leq H}} \sum_{f \in H_{k}^{\text {new }}(1)} \lambda_{f}(p)}{\sum_{p / N \in E} \log p \sum_{\substack{k=2 \delta \bmod 4 \\|k-K| \leq H}} \sum_{f \in H_{k}^{\text {new }}(1)} 1}=\frac{(-1)^{\delta}}{\sqrt{N}}\left(\frac{\nu(E)}{|E|}+o_{E, \epsilon}(1)\right),
$$

where $H_{k}^{\text {new }}(1)$ is a basis of level 1 weight k newforms and where

$$
\nu(E)=\frac{1}{\zeta(2)} \sum_{\substack{a, q \in \mathbb{Z}_{>0} \\ g c d(a, q)=1 \\(a / q)^{-2} \in E}} \frac{\mu(q)^{2}}{\varphi(q)^{2} \sigma(q)}\left(\frac{q}{a}\right)^{3}=\frac{1}{2} \sum_{t=-\infty}^{\infty} \prod_{p \mid t} \frac{p^{2}-p-1}{p^{2}-p} \cdot \int_{E} \cos \left(\frac{2 \pi t}{\sqrt{y}}\right) d y .
$$

Murmurations in the weight aspect

Figure: A comparison of $(-1)^{\delta} \nu([0, t])$ and the left-hand side of the main theorem, scaled by $t \sqrt{N}$, for $K=3830, H=100$, and $t \in[0,2]$. (Bober-Booker-Lee-Lowry-Duda 2023)

References

国 Bober，J．，Booker，A．R．，Lee，M．，Lowry－Duda，D．（2023）
Murmurations of modular forms in the weight aspect
Preprint，Available at：arXiv：2310．07746．
國 He，Y．－H．，Lee，K．－H．，Oliver，T．，Pozdnyakov，A．（2022）
Murmurations of elliptic curves
Preprint，Available at：arXiv：2204．10140．
國 Lee，K．H．，Oliver，T．，Pozdnyakov，A．（2023）
Murmurations of Dirichlet characters
Preprint，Available at：arXiv：2307．00256

References

- Sarnak, P. (2023)

Letter to Drew Sutherland and Nina Zubrilina
Tintherland, A. (2023)
Murmurations of arithmetic L-functions
Talk at Arithmetic statistics conference, CIRM.

- Sutherland, A. (2022)

Letter to Michael Rubinstein and Peter Sarnak
Zubrilina, N. (2023)
Murmurations
Preprint, Available at: arXiv:2310.07681.

Suggested talk schedule

- Week 3 (26 Jan): Work through He-Lee-Oliver-Pozdnyakov machine learning paper. Predicting ranks of elliptic curves using logistic regression. Background on other machine learning strategies.
- Week 4 (02 Feb): Work through Drew Sutherland's and Peter Sarnak's letters. Give some background on existing conjectures and theorems on horizontal/vertical trace distributions of $a_{p}(f)$ (Sato-Tate conjecture, Katz-Sarnak philosophy, Birch, Serre, etc.)
- Week 5-6 (09, 16 Feb): Murmurations of Dirichlet characters (Lee-Oliver-Pozdnyakov)
- Week 7-9 (23 Feb; 01, 08 Mar): Murmurations of weight k newforms (Nina Zubrilina)
- Week 10 (15 Mar): Murmurations of modular forms in the weight aspect (Bober-Booker-Lee-Lowry-Duda)

