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Murmurations

Figure: A murmuration of starlings at Gretna - Walter Baxter (cc-by-sa/2.0)
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Motivation

Let E/Q be an elliptic curve. Recall its L-function

L(E,s)= [] Lp(E.s)'=> an(E)n*

p prime n>1

where for primes p of good reduction, we have L,(E,s) =1 — a,(E)p~° + p1~2° where

ap(E) = p+1— #E(F,).
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Motivation

Let E/Q be an elliptic curve. Recall its L-function

L(E,s)= [] Lp(E.s)'=> an(E)n*

p prime n>1

2

where for primes p of good reduction, we have L,(E,s) =1 — a,(E)p~° + p1~2° where

ap(E) = p+1— #E(F,).

Let's investigate the arithmetic statistics of a,(E):
1. For a fixed elliptic curve E/Q, how is a,(E)//p distributed over all primes p?
2. For a fixed prime p, how is a,(E) distributed over all elliptic curves E/F,?

3. What if we restrict to elliptic curves E/Q of given rank and conductor, and
investigate a,(E) as p grows linearly with the conductor?
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Motivation

1. This was a famous conjecture of Mikio Sato and John Tate. e.g. for an elliptic

curve E/Q without CM, the probability measure of 6 := arccos(az"\(/’?

) is proportional

to sin?0df. Now a theorem (by many authors)!
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Motivation

1. This was a famous conjecture of Mikio Sato and John Tate. e.g. for an elliptic
curve E/Q without CM, the probability measure of 6 := arccos(az"\(/?) is proportional

to sin?0df. Now a theorem (by many authors)!

2. This is the same as the Sato-Tate distribution, i.e. for a fixed p, the distribution of
6 := arccos( 2\(}) over all E/F, is proportional to sin? §df for large p (Birch, 1968).

3. By restricting to elliptic curves E/Q with given rank r and conductor N € [Ny, Ny],
and investigating the average of a,(E) as p ~ N, this gives rise to the
murmurations phenomenon!
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Machine-learning experiments

During 2019-2022, Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver, and Alexey Pozdnyakov
conducted some machine-learning experiments on datasets of arithmetic curves.
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During 2019-2022, Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver, and Alexey Pozdnyakov
conducted some machine-learning experiments on datasets of arithmetic curves.

In one of their experiments, they represented an elliptic curve E/Q as a vector of its first
1000 values of ap(E):

VL(E) = (ag(E), 33(E), 35(E), ey 37919(E)) S ZlOOO'

Using logistic regression, they were able to predict the rank of E from v, (E) with very
high accuracy, e.g. to distinguish between rank 0 and rank 1 curves, the goal is to find
w € R0 and b € R such that

B 1

Cl4ex

is hopefully close to either 0 or 1. The results of their experiments successfully predicted
the ranks all with accuracies above 96%.

o(vi(E)-w+b), where o(x)
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Murmurations

To interpret their model, they plotted the average values of a,(E) over some conductor
interval [Ny, Na] for elliptic curves with fixed rank:
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interval [Ny, Na] for elliptic curves with fixed rank:

Fix some r > 0, and some positive integers No > Ny > 1. Let &[Ny, Np] be a set of
isogeny class representatives of all rank r elliptic curves of conductor N € [Ny, Np]. Define
the following function:

1
fr(n) 3:m Z ap,(E)

Ec&r[N1,Ny]

where p, is the n-th prime number.

The next slide will amaze you! (or not, that's also fine)
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Murmurations of elliptic curves
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Figure: Scatter plot of (n, f,(n)) for ranks r = 0 (blue) and r = 1 (red) with conductor N between
N; = 7500 and N> = 10000 (He-Lee—Oliver-Pozdnyakov 2022).
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Figure: Scatter plot of (n, f,(n)) for ranks r = 0 (blue) and r = 2 (green) with conductor N between

Ny = 5000 and N> = 10000 (He—Lee-Oliver—Pozdnyakov 2022). 625
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Figure: Scatter plot of (n, f,(n)) for ranks r = 0 (blue) and r = 2 (green) with conductor N between

Ny = 5000 and N> = 10000 (He—Lee-Oliver—Pozdnyakov 2022). 625



Murmurations of elliptic curves

Figure: Murmurations - Alain Delorme
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More murmurations

Do we see murmurations in larger conductor intervals?
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Figure: Scatter plot of (n, f,(n)) for ranks r = 0 (blue) and r = 1 (red) with conductor N between
Ny =2 and N> = 2'° for all pn < 215,
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Figure: Scatter plot of (n, f,(n)) for ranks r = 0 (blue) and r = 1 (red) with conductor N between
N; = 2% and N» = 216 for all pn < 216
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Do we see murmurations in larger conductor intervals?
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Figure: Scatter plot of (n, f,(n)) for ranks r = 0 (blue) and r = 1 (red) with conductor N between
N; = 2% and N, = 27 for pn < 217,
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More murmurations

Do we see murmurations in larger conductor intervals?
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Figure: Scatter plot of (n, f,(n)) for ranks r = 0 (blue) and r = 1 (red) with conductor N between
N: =2 and N, = 2*8 for pn < 218,

8/25



Drew’s Letter

In August 2022, Drew Sutherland wrote a letter to Mike Rubinstein and Peter Sarnak,
where he made the following observations:
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In August 2022, Drew Sutherland wrote a letter to Mike Rubinstein and Peter Sarnak,
where he made the following observations:
e Murmurations occur over a wide range of conductor intervals. For a fixed ¢, plotting
the averages Ega, over the conductor interval [X, cX] seems to give the same shape
(with appropriate scaling) as X — oc.

® QOrdering by conductor is important! Ordering by absolute discriminant, naive height,
Faltings height, or almost anything else won't clearly give oscillations.

® This phenomenon is not specific to elliptic curves, and can be seen for many families
of arithmetic L-functions. E.g. Dirichlet characters, higher dimension abelian
varieties, newforms for [o(/N), higher genus curves, etc.

® This phenomenon appears to only occur in primitive arithmetic L-function, e.g. no
oscillations are visible when plotting L-functions of products of elliptic curves.
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Murmurations for Dirichlet characters
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Murmurations for Dirichlet characters

Theorem (Lee—Oliver—Pozdnyakov 2023)

Assume RH. Let Dy (N) (resp. D_(N)) denote the set of primitive even (resp. odd)
Dirichlet characters mod N. Fix some § € (3,1), and let y :== P/X. Then

. log X XP
m % Sy -
NE[X,X+X] xED(N)

N prime

cos (2my), if +,
—isin(2my), if —,

where G(x) := 3.7, x(a)e?™@/™ s the Gauss sum of .
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Murmurations for Dirichlet characters

Theorem (Lee—Oliver—Pozdnyakov 2023)

Assume RH. Let Dy (N) (resp. D_(N)) denote the set of primitive even (resp. odd)
Dirichlet characters mod N. Fix some § € (3,1), and let y :== P/X. Then

log X (P) cos (27 if +,
im X% X { (2my), |
Xroe NE[X,X+X3] xED+(N) G(x) —isin(2my), if —,
N prime

where G(x) := 3.7, x(a)e?™@/™ s the Gauss sum of .

® Proof uses the Fourier expansion of additive characters in terms of Dirichlet
characters, the prime number theorem, and elementary analysis on R (Pozdnyakov
2023).
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Murmurations for Dirichlet characters

To obtain averages over some geometric interval [X, cX], integrate over the interval [1, c|:

Theorem (Lee—Oliver—Pozdnyakov 2023)
Fix some ¢ > 1. Let y .= P/X. Then

(o}
) / cos (27T—y)du, if +,
)

. logX x(P)
AT 2 2 Gy [ n (2
1

Ne[X,cX] xeD+(N)
N prime
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Murmurations for Dirichlet characters
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Figure: Scatter plot of (n, ENE, x(pn)/G(x)) for even (blue) and odd (red) primitive Dirichlet characters
x with level N between N; = 2% and N, = 27 for all pn < 28,
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Figure: Scatter plot of (n, ENE, x(pn)/G(x)) for even (blue) and odd (red) primitive Dirichlet characters

x with level N between N; = 2" and N, = 28 for all Pn < 29
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Murmurations for Dirichlet characters
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Figure: Scatter plot of (n, ENEyx(pn)/G(x)) for even (blue) and odd (red) primitive Dirichlet characters
x with level N between N; = 2% and N, = 2° for all pn < 210,
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Murmurations of Dirichlet characters

Theorem (Lee—Oliver—Pozdnyakov 2023)

Let Dy (N) be as before and let 7, (N) (resp. Z_(N)) denote the set of imprimitive even
(resp. odd) nontrivial Dirichlet characters mod N. Fix 6 € (0,1) and y := P/X. Then

1 P)
i ¥ (X Ggtw X o

Ne[X,X+X] ~ xED+(N) XEZ+(N)
N#2mod 4

) % cos(2my),  if+,
a —isin(2my), if —,

where G(x) is the Gauss sum of x. Similarly, for some fixed ¢ > 1,

%ffcos(zﬂTy)du, if +,

.1 X(P

mx 2 (T G T aoxe) -

L8 Ne[X,cX] ~ x€D+(N) (X) Xel-i (N) —i% ff sin(2%y)du, if —.
N#2mod 4
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Murmurations of newforms for I'y(/V)
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Figure: Scatter plot of (n, EyErap,(f)) over all newforms f € H,
N € [28,2°] for all p, < 2°. Top plot is weight k = 2 and bottom plot is weight k = 4.
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k

(N) with root number € and level
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Murmurations of newforms for I'y(/V)
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Figure: Scatter plot of (n, EyErap,(f)) over all newforms f € H;*"(N) with root number ¢ and level
N € [2°,2'°] for all p, < 2'°. Top plot is weight k = 2 and bottom plot is weight k = 4. 14/25



Murmurations of newforms for I'y(/V)
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Figure: Scatter plot of (n, EyErap,(f)) over all newforms f € H;*"(N) with root number ¢ and level

N € [2%°,2"] for all p, < 2. Top plot is weight k = 2 and bottom plot is weight k = 4.
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Zubrilina’s breakthrough

Theorem (Zubrilina 2023)

Let H}*¥(N) be a basis of trivial character weight k newforms for ['o(N). Let
X,Y,P — co with P prime, and assume that Y = (14 o(1))X*~% and P < X't for
some 81,02 > 0 with 261 < d < 1. Lety := P/X. Then

S NelX X4 ] > rerpen(y £(F)ar(P)PIK/2

O—f
DINEX X+ Y] 2ofeHmw(n) 1

= Mily) + 0. (X7 1 2)
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Zubrilina’s breakthrough

Theorem (Zubrilina 2023)

Let H}*¥(N) be a basis of trivial character weight k newforms for ['o(N). Let
X,Y,P — co with P prime, and assume that Y = (14 o(1))X*~% and P < X't for
some 01,02 > 0 with 201 < 0, < 1. Let y := P/X. Then

S NelX X4 ] > rerpen(y £(F)ar(P)PIK/2

O—f
DINEX X+ Y] 2ofeHmw(n) 1

= Mily) + 0. (X7 1 2)

where My (y) is the weight k murmuration density function:

Mi(y) _Dk<A\f+ DKETIB N o(r)V/Ay — PU 2(

- 5k—27f}’)
1<r<2./y \F>

*—2p° —p+1 _ ? _ 12
A=TL,0+ Gerfny), B = I, EREE (1) = T,y (14 grafim): Dh= e iy

p2+p
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Murmuration density function

Ma(y)
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Figure: Murmuration density function M(y) for weights k = 2 and k = 4.
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Murmuration density function
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Figure: Murmuration density function M(y) for weights k = 6 and k = 8.
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Zubrilina’s breakthrough

To obtain averages over some geometric interval [X, cX], integrate uMy(y/u) over the
interval [1, c]:

Theorem (Zubrilina 2023)
Let P < X5/5, let ¢ > 1 be constant and y := P/X Then as X — oco:

Z%;&ixl ZfGHI'(’eW(N) E(f)af(p)pl—k/2

O—f
ZNepr(e,iX] ZfeHgEW(N) 1

~ g [ M)+, (1)

17/25



Zubrilina’s breakthrough

® Casek=c=2:
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Zubrilina’s breakthrough

® Casek=c=2:
Theorem (Zubrilina 2023)
Let P < X% and y := P/X. Then as X — oo, the dyadic average

> NeDxax] > retpenny €(F)ar(P)

O—f
2 NelX.2x] 2ofeHzen(n) 1

converges to the function

a\/y—ﬂy if y € 0,1/4],
a/y — By +ymy? — (1 = 2y)\/y — 1/4 — 2yy?arcsin(1/2y — 1) ify € [1/4,1/2],
ay — By + 2'yy2(arcsin(1/y — 1) — arcsin(1/2y — 1))

(1 =2y)/y —1/4+29(1 - y)y2y — 1 ify € [1/2,1],

where o =~ 6.38936, 5 ~ 11.3536, and v ~ 2.6436.
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Zubrilina’s breakthrough
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Figure: Plots of &2 ff uMy(y/u)du for weights k = 2 and k = 4.
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Zubrilina’s breakthrough
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Figure: Plots of £2 [ uM(y/u)du for weights k = 6 and k = 8.
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Zubrilina’s breakthrough

Idea of proof for weight k = 2:

20/25



Zubrilina’s breakthrough

Idea of proof for weight k = 2:

. Z ar(p)e(f) = Tr(T, 0 Wy)
fEHYW(N)

20/25



Zubrilina’s breakthrough

Idea of proof for weight k = 2:

. Z ar(p)e(f) = Tr(T, 0 W)
fEHYW(N)

Theorem (Yamauchi 1973, Skoruppa-Zagier 1988)
For weight k = 2, N squarefree, and a prime P [N,

Hi(—4PN
TH{(Tp o Wy) = % + ). Hi(PPN*—4PN)-P -1
0<r<2,/P/N

where Hi(—d) is the Hurwitz class number.
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Zubrilina’s breakthrough

Idea of proof for weight k = 2:

. Z ar(p)e(f) = Tr(T, 0 W)
fEHYW(N)

Theorem (Yamauchi 1973, Skoruppa-Zagier 1988)
For weight k = 2, N squarefree, and a prime P [N,

TH{(Tp 0 Wy) = w + ). Hi(PPN*—4PN)-P -1
0<r<2+/P/N
where Hi(—d) is the Hurwitz class number.
e Can express Hi(—d) = Z h(—d/f?) + O(1).
feN: f2|d
® Apply the class number formulal!
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Peter’s Letter

In August 2023, Peter Sarnak wrote a letter to Drew Sutherland and Nina Zubrilina giving
some deeper theoretical observations about murmurations in general families of
L-functions.
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In general, given some suitable family F of L-functions with a natural ordering (usually by
conductor), and a constant 6 > 0, we can study the double averages:

2 p® Dmer P(Nr/N)ar(P)
> pane 2per ®(Nz/N)

where ® : (0,00) — R is a smooth nonnegative weight function.
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In August 2023, Peter Sarnak wrote a letter to Drew Sutherland and Nina Zubrilina giving
some deeper theoretical observations about murmurations in general families of
L-functions.

In general, given some suitable family F of L-functions with a natural ordering (usually by
conductor), and a constant 6 > 0, we can study the double averages:

2 p® Dmer P(Nr/N)ar(P)
> pane 2per ®(Nz/N)

where ® : (0,00) — R is a smooth nonnegative weight function.

Sarnak remarked that these double averages are related to the 1-level densities of the
zeros of L(s, 7). Using random matrix theory, Katz and Sarnak predicted that these
averages for § < 1 behave differently to 6 > 1. The murmurations phenomenon arises at

the sharp phase transition when 6 = 1!
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Another breakthrough by Bober—Booker—Lee—Lowry-Duda:
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Murmurations in the weight aspect

Another breakthrough by Bober—Booker—Lee—Lowry-Duda:

Theorem (Bober-Booker—Lee—Lowry-Duda 2023)

Assume GRH. Fix e > 0 small and § € {0,1}. Fix a compact interval E C R~ with
|E| > 0. Let K,H € Rog with Ks ™€ < H < K1=¢. As K — co:

2op/nee 08P 2 hpainats Drenrm M) (qys (0 s oe
N = + OE ¢ 1 :)
ZP/NGE log p Zﬁffz?mocﬁl Zfengw(l) 1 \/N |E|

K|<
where H]¢"(1) is a basis of level 1 weight k newforms and where

2 o0 2 -
O T ) —2 X N e ()

a,q€Z>o t=—00 p|t
ged(a,q)=1
(a/q)—2€E
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1.0 1

0.5 1
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—0.5 1
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0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Figure: A comparison of (—1)°4([0, t]) and the left-hand side of the main theorem, scaled by tv/N, for
K =3830,H = 100, and t € [0,2]. (Bober—Booker—Lee-Lowry-Duda 2023)
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Suggested talk schedule

® Week 3 (26 Jan): Work through He—Lee—Oliver—Pozdnyakov machine learning
paper. Predicting ranks of elliptic curves using logistic regression. Background on
other machine learning strategies.

® Week 4 (02 Feb): Work through Drew Sutherland’s and Peter Sarnak’s letters. Give
some background on existing conjectures and theorems on horizontal /vertical trace
distributions of a,(f) (Sato-Tate conjecture, Katz-Sarnak philosophy, Birch, Serre,
etc.)

® Week 5 - 6 (09, 16 Feb): Murmurations of Dirichlet characters
(Lee—Oliver—Pozdnyakov)

e Week 7 - 9 (23 Feb; 01, 08 Mar): Murmurations of weight k newforms (Nina
Zubrilina)

® Week 10 (15 Mar): Murmurations of modular forms in the weight aspect
(Bober—Booker—Lee—Lowry-Duda)
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