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Murmurations

Figure: A murmuration of starlings at Gretna - Walter Baxter (cc-by-sa/2.0)
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Motivation
Let E/Q be an elliptic curve. Recall its L-function

L(E , s) =
∏

p prime
Lp(E , s)−1 =

∑
n≥1

an(E)n−s

where for primes p of good reduction, we have Lp(E , s) = 1 − ap(E)p−s + p1−2s where
ap(E) = p + 1 −#E(Fp).

Let’s investigate the arithmetic statistics of ap(E):
1. For a fixed elliptic curve E/Q, how is ap(E)/

√p distributed over all primes p?
2. For a fixed prime p, how is ap(E) distributed over all elliptic curves E/Fp?
3. What if we restrict to elliptic curves E/Q of given rank and conductor, and

investigate ap(E) as p grows linearly with the conductor?
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Motivation

1. This was a famous conjecture of Mikio Sato and John Tate. e.g. for an elliptic
curve E/Q without CM, the probability measure of θ := arccos(ap(E)

2√p ) is proportional
to sin2 θdθ. Now a theorem (by many authors)!

2. This is the same as the Sato-Tate distribution, i.e. for a fixed p, the distribution of
θ := arccos(ap(E)

2√p ) over all E/Fp is proportional to sin2 θdθ for large p (Birch, 1968).

3. By restricting to elliptic curves E/Q with given rank r and conductor N ∈ [N1,N2],
and investigating the average of ap(E) as p ∼ N, this gives rise to the
murmurations phenomenon!
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Machine-learning experiments
During 2019-2022, Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver, and Alexey Pozdnyakov
conducted some machine-learning experiments on datasets of arithmetic curves.

In one of their experiments, they represented an elliptic curve E/Q as a vector of its first
1000 values of ap(E):

vL(E) :=
(
a2(E), a3(E), a5(E), . . . , a7919(E)

)
∈ Z1000.

Using logistic regression, they were able to predict the rank of E from vL(E) with very
high accuracy,

e.g. to distinguish between rank 0 and rank 1 curves, the goal is to find
w ∈ R1000 and b ∈ R such that

σ(vL(E) · w + b), where σ(x) = 1
1 + e−x

is hopefully close to either 0 or 1. The results of their experiments successfully predicted
the ranks all with accuracies above 96%.
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Murmurations

To interpret their model, they plotted the average values of ap(E) over some conductor
interval [N1,N2] for elliptic curves with fixed rank:

Fix some r ≥ 0, and some positive integers N2 > N1 ≥ 1. Let Er [N1,N2] be a set of
isogeny class representatives of all rank r elliptic curves of conductor N ∈ [N1,N2]. Define
the following function:

fr (n) :=
1

#Er [N1,N2]

∑
E∈Er [N1,N2]

apn(E)

where pn is the n-th prime number.

The next slide will amaze you!

(or not, that’s also fine)
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Murmurations of elliptic curves
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Figure: Scatter plot of (n, fr (n)) for ranks r = 0 (blue) and r = 1 (red) with conductor N between
N1 = 7 500 and N2 = 10 000 (He–Lee–Oliver–Pozdnyakov 2022).
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Figure: Scatter plot of (n, fr (n)) for ranks r = 0 (blue) and r = 2 (green) with conductor N between
N1 = 5 000 and N2 = 10 000 (He–Lee–Oliver–Pozdnyakov 2022).
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Murmurations of elliptic curves

Figure: Murmurations - Alain Delorme
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More murmurations
Do we see murmurations in larger conductor intervals?
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Figure: Scatter plot of (n, fr (n)) for ranks r = 0 (blue) and r = 1 (red) with conductor N between
N1 = 214 and N2 = 215 for all pn ≤ 215.
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Drew’s Letter
In August 2022, Drew Sutherland wrote a letter to Mike Rubinstein and Peter Sarnak,
where he made the following observations:

• Murmurations occur over a wide range of conductor intervals. For a fixed c, plotting
the averages EE ap over the conductor interval [X , cX ] seems to give the same shape
(with appropriate scaling) as X → ∞.

• Ordering by conductor is important! Ordering by absolute discriminant, naive height,
Faltings height, or almost anything else won’t clearly give oscillations.

• This phenomenon is not specific to elliptic curves, and can be seen for many families
of arithmetic L-functions. E.g. Dirichlet characters, higher dimension abelian
varieties, newforms for Γ0(N), higher genus curves, etc.

• This phenomenon appears to only occur in primitive arithmetic L-function, e.g. no
oscillations are visible when plotting L-functions of products of elliptic curves.
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Murmurations for Dirichlet characters

Theorem (Lee–Oliver–Pozdnyakov 2023)
Assume RH. Let D+(N) (resp. D−(N)) denote the set of primitive even (resp. odd)
Dirichlet characters mod N. Fix some δ ∈ (1

2 , 1), and let y := P/X. Then

lim
X→∞

logX
X δ

∑
N∈[X ,X+Xδ]

N prime

∑
χ∈D±(N)

χ(P)

G(χ)
=

{
cos (2πy), if +,

−i sin(2πy), if −,

where G(χ) :=
∑m

a=1 χ(a)e2πia/m is the Gauss sum of χ.

• Proof uses the Fourier expansion of additive characters in terms of Dirichlet
characters, the prime number theorem, and elementary analysis on R (Pozdnyakov
2023).
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Murmurations for Dirichlet characters

To obtain averages over some geometric interval [X , cX ], integrate over the interval [1, c]:

Theorem (Lee–Oliver–Pozdnyakov 2023)
Fix some c > 1. Let y := P/X. Then

lim
X→∞

logX
X

∑
N∈[X ,cX ]
N prime

∑
χ∈D±(N)

χ(P)

G(χ)
=


∫ c

1
cos

(2πy
u

)
du, if +,

−i
∫ c

1
sin

(2πy
u

)
du, if − .
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Murmurations for Dirichlet characters
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Figure: Scatter plot of (n,ENEχχ(pn)/G(χ)) for even (blue) and odd (red) primitive Dirichlet characters
χ with level N between N1 = 26 and N2 = 27 for all pn ≤ 28.
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Murmurations for Dirichlet characters
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Figure: Scatter plot of (n,ENEχχ(pn)/G(χ)) for even (blue) and odd (red) primitive Dirichlet characters
χ with level N between N1 = 28 and N2 = 29 for all pn ≤ 210.
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Murmurations of Dirichlet characters

Theorem (Lee–Oliver–Pozdnyakov 2023)
Let D±(N) be as before and let I+(N) (resp. I−(N)) denote the set of imprimitive even
(resp. odd) nontrivial Dirichlet characters mod N. Fix δ ∈ (0, 1) and y := P/X. Then

lim
X→∞

1
X δ

∑
N∈[X ,X+Xδ]

N 6≡2mod 4

( ∑
χ∈D±(N)

χ(P)

G(χ)
± 1

N
∑

χ∈I±(N)

G(χ)χ(P)

)
=

{ 5
π2 cos (2πy), if +,

−i 5
π2 sin(2πy), if −,

where G(χ) is the Gauss sum of χ. Similarly, for some fixed c > 1,

lim
X→∞

1
X

∑
N∈[X ,cX ]
N 6≡2mod 4

( ∑
χ∈D±(N)

χ(P)

G(χ)
± 1

N
∑

χ∈I±(N)

G(χ)χ(P)

)
=


5
π2

∫ c
1 cos (2πy

u )du, if +,

−i 5
π2

∫ c
1 sin (2πy

u )du, if − .
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Murmurations of newforms for Γ0(N)
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Murmurations of newforms for Γ0(N)
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Figure: Scatter plot of (n,ENEf apn(f )) over all newforms f ∈ Hnew
k (N) with root number ε and level

N ∈ [28, 29] for all pn ≤ 29. Top plot is weight k = 2 and bottom plot is weight k = 4. 14 / 25
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Zubrilina’s breakthrough
Theorem (Zubrilina 2023)
Let Hnew

k (N) be a basis of trivial character weight k newforms for Γ0(N). Let
X ,Y ,P → ∞ with P prime, and assume that Y = (1 + o(1))X1−δ2 and P � X1+δ1 for
some δ1, δ2 > 0 with 2δ1 < δ2 < 1. Let y := P/X. Then∑�−free

N∈[X ,X+Y ]

∑
f ∈Hnew

k (N) ε(f )af (P)P1−k/2∑�−free
N∈[X ,X+Y ]

∑
f ∈Hnew

k (N) 1
= Mk(y) + Oε

(
X−δ′+ε +

1
P

)

where Mk(y) is the weight k murmuration density function:

Mk(y) := Dk

(
A√y + (−1)k/2−1B

∑
1≤r≤2√y

c(r)
√

4y − r2Uk−2

( r
2√y

)
− δk=2πy

)

A =
∏

p(1+
p

(p+1)2(p−1) ),B =
∏

p
p4−2p2−p+1

(p2−1)2 , c(r) =
∏

p|r (1+
p2

p4−2p2−p+1 ),Dk =
12

(k−1)π
∏

p(1−
1

p2+p
)
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Murmuration density function
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Figure: Murmuration density function Mk(y) for weights k = 2 and k = 4.
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Figure: Murmuration density function Mk(y) for weights k = 6 and k = 8.
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Zubrilina’s breakthrough

To obtain averages over some geometric interval [X , cX ], integrate uMk(y/u) over the
interval [1, c]:

Theorem (Zubrilina 2023)
Let P � X6/5, let c > 1 be constant and y := P/X Then as X → ∞:∑�−free

N∈[X ,cX ]

∑
f ∈Hnew

k (N) ε(f )af (p)p1−k/2∑�−free
N∈[X ,cX ]

∑
f ∈Hnew

k (N) 1
=

2
(c2 − 1)

∫ c

1
uMk(y/u)du + oy (1)

17 / 25



Zubrilina’s breakthrough
• Case k = c = 2:

Theorem (Zubrilina 2023)
Let P � X6/5 and y := P/X. Then as X → ∞, the dyadic average∑�−free

N∈[X ,2X ]

∑
f ∈Hnew

2 (N) ε(f )af (P)∑�−free
N∈[X ,2X ]

∑
f ∈Hnew

2 (N) 1

converges to the function
α
√y − βy if y ∈ [0, 1/4],

α
√y − βy + γπy2 − γ(1 − 2y)

√
y − 1/4 − 2γy2arcsin(1/2y − 1) if y ∈ [1/4, 1/2],

α
√y − βy + 2γy2(arcsin(1/y − 1)− arcsin(1/2y − 1))

−γ(1 − 2y)
√

y − 1/4 + 2γ(1 − y)
√

2y − 1 if y ∈ [1/2, 1],

where α ≈ 6.38936, β ≈ 11.3536, and γ ≈ 2.6436.
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Zubrilina’s breakthrough
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1 uMk(y/u)du for weights k = 2 and k = 4. 19 / 25
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Zubrilina’s breakthrough
Idea of proof for weight k = 2:

•
∑

f ∈Hnew
2 (N)

af (p)ε(f ) = Tr(Tp ◦ WN)

Theorem (Yamauchi 1973, Skoruppa-Zagier 1988)
For weight k = 2, N squarefree, and a prime P 6 |N,

Tr(Tp ◦ WN) =
H1(−4PN)

2 +
∑

0<r≤2
√

P/N

H1(r2N2 − 4PN)− P − 1

where H1(−d) is the Hurwitz class number.

• Can express H1(−d) =
∑

f ∈N : f 2|d

h(−d/f 2) + O(1).

• Apply the class number formula!
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Peter’s Letter
In August 2023, Peter Sarnak wrote a letter to Drew Sutherland and Nina Zubrilina giving
some deeper theoretical observations about murmurations in general families of
L-functions.

In general, given some suitable family F of L-functions with a natural ordering (usually by
conductor), and a constant θ > 0, we can study the double averages:∑

P∼Nθ

∑
π∈F Φ(Nπ/N)aπ(P)∑

P∼Nθ

∑
π∈F Φ(Nπ/N)

,

where Φ : (0,∞) → R is a smooth nonnegative weight function.

Sarnak remarked that these double averages are related to the 1-level densities of the
zeros of L(s, π). Using random matrix theory, Katz and Sarnak predicted that these
averages for θ < 1 behave differently to θ > 1. The murmurations phenomenon arises at
the sharp phase transition when θ = 1!
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Murmurations in the weight aspect
Another breakthrough by Bober–Booker–Lee–Lowry-Duda:

Theorem (Bober–Booker–Lee–Lowry-Duda 2023)
Assume GRH. Fix ε > 0 small and δ ∈ {0, 1}. Fix a compact interval E ⊂ R>0 with
|E | > 0. Let K ,H ∈ R>0 with K

5
6+ε < H < K1−ε. As K → ∞:∑

p/N∈E log p
∑

k≡2δmod4
|k−K |≤H

∑
f ∈Hnew

k (1) λf (p)∑
p/N∈E log p

∑
k≡2δmod4
|k−K |≤H

∑
f ∈Hnew

k (1) 1 =
(−1)δ√

N

(
ν(E)

|E |
+ oE ,ε(1)

)
,

where Hnew
k (1) is a basis of level 1 weight k newforms and where

ν(E) =
1

ζ(2)
∑

a,q∈Z>0
gcd(a,q)=1
(a/q)−2∈E

µ(q)2

ϕ(q)2σ(q)

(q
a

)3
=

1
2

∞∑
t=−∞

∏
p 6|t

p2 − p − 1
p2 − p ·

∫
E
cos

(2πt
√y

)
dy .
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Murmurations in the weight aspect

Figure: A comparison of (−1)δν([0, t]) and the left-hand side of the main theorem, scaled by t
√

N, for
K = 3830,H = 100, and t ∈ [0, 2]. (Bober–Booker–Lee–Lowry-Duda 2023)
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Suggested talk schedule
• Week 3 (26 Jan): Work through He–Lee–Oliver–Pozdnyakov machine learning

paper. Predicting ranks of elliptic curves using logistic regression. Background on
other machine learning strategies.

• Week 4 (02 Feb): Work through Drew Sutherland’s and Peter Sarnak’s letters. Give
some background on existing conjectures and theorems on horizontal/vertical trace
distributions of ap(f ) (Sato-Tate conjecture, Katz-Sarnak philosophy, Birch, Serre,
etc.)

• Week 5 - 6 (09, 16 Feb): Murmurations of Dirichlet characters
(Lee–Oliver–Pozdnyakov)

• Week 7 - 9 (23 Feb; 01, 08 Mar): Murmurations of weight k newforms (Nina
Zubrilina)

• Week 10 (15 Mar): Murmurations of modular forms in the weight aspect
(Bober–Booker–Lee–Lowry-Duda)
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