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Setup

Let E/Q be an elliptic curve and fix M ∈ N. Define the vector

v(E ) =

(
ap1(E )

2
√
p1

, . . . ,
apM (E )

2
√
pM

)
,

where pn is the n-th prime number and

ap(E ) := p + 1−#E (Fp).

We are interested in properties of sets {v(E )} as E ranges over elliptic

curves in a given conductor range.

See Robin’s talk for more background and motivation.
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Murmurations

Let Er (N1,N2) denote the set of elliptic curves of rank r with conductor

between N1 and N2 (consider one representative per isogeny class).

Define the averages

fr (n) :=
1

#Er (N1,N2)

∑
E∈Er (N1,N2)

apn(E )

2
√
pn
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Murmurations
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Figure 1: Top: f0(n) and f1(n) for curves in Er (7500, 10000).Bottom: f0(n)

and f2(n) for curves in Er (5000, 10000).
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Data source

Elliptic curves are sourced from John Cremona’s EC database, via the

The L-functions and modular forms database (LMFDB).
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Data preparation

Useful principles when dealing with data:

▶ Make it easy to load and manipulate data.

▶ Make it fast.

▶ Make it generalizable.

This is achieved by:

▶ Transform Sage files into Polars dataframes.

▶ Precompute ap invariants and store everything in an efficient format.

▶ Create class template for fast loading of data in format suitable to

machine learning (Python) packages.

▶ Put on data scientist hat.
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Some tools
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Data loading
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Data loading

Figure 2: Get the v(E) vectors for 36000 random elliptic curves in a given

conductor range with ranks 0, 1 and 2. Balanced means that the amount of

curves with each rank is the same. Each vector v(E) is a point in R1000.
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Dimensionality Reduction

Dimensionality reduction is a set of techniques used to reduce the

number of features (dimensions) in a dataset while retaining as much

relevant information as possible. It is used for improved performance of

algorithms (circumvent “curse of dimensionality”), noise reduction, data

visualization and data compression.

Methods include:

▶ Principal Component Analysis (PCA)

▶ Linear Discriminant Analysis (LDA)

▶ Uniform Manifold Approximation and Projection (UMAP)

▶ t-distributed Stochastic Neighbor Embedding (t-SNE)

as well as neural network-based methods such as autoencoders.
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Principal Component Analysis

Assume our data consists of the vectors {vi}i≤m ⊂ RM (for example,

M = 1000). The goal is to find a linear subspace L with dim L = k that

approximates the data as well as possible, in the sense that

m∑
i=1

dist(vi , L)
2

is minimal among k-dimensional linear subspaces L.

Solution: Let X be the matrix with the vi as rows, and S = XTX . The

eigenvector ui corresponding to the i-th largest eigenvalue of S is called

the i-th principal component. Moreover, L = span⟨u1, . . . , uk⟩ is the
best-approximating k-dimensional linear subspace.
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Principal Component Analysis
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Figure 3: First two principal components.
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Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a statistical method used in

machine learning and pattern recognition for both dimensionality

reduction and classification.

▶ LDA is a supervised method. It aims to find a projection that

maximizes the distance between different labels.
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Linear Discriminant Analysis
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Figure 4: Linear discriminant analysis.
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Prediction and classification

Machine learning methods can be used to predict the rank of an elliptic

curve. This is an example of a classification problem (like recognizing

items from images). Some approaches:

▶ Logistic regression (used in HLOP Murmurations paper)

▶ Support Vector Machines (used in this talk)

▶ Tree-based methods (random forests, XGBoost)

▶ Neural networks
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Support Vector Machines

Figure 5: Support vector machine
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Support Vector Machines

Assume a set of points {vi} ⊂ Rd with labels {yi} ∈ {−1, 1} is linearly

separable. A support vector machine (SVM) is a linear hyperplane

h(x) = wT x + b

such that for all data points vi ,

wT vi + b ≥ 1 if yi = 1, wT vi + b ≤ −1 if yi = −1.

A separating hyperplane of maximal margin can be found by solving the

optimization problem:

minimize
1

2
∥w∥2

subject to yi (w
T vi + b)− 1 ≥ 0, 1 ≤ i ≤ n.
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Support Vector Machines

SVMs generalize to

▶ multiple classes,

▶ non-linearly separable data (by penalizing errors in the optimization

problem, thus trying to minimize the misclassification error),

▶ non-linear separation via the kernel trick.

The dual problem of the SVM optimization problem depends only on the

inner products ⟨vi , vj⟩ of the data. We can therefore embed the data into

a Hilbert space, φ : Rd → H, such that

⟨φ(vi ), φ(vj)⟩ = K (vi , vj)

for a kernel function K . Example: the radial basis function (RBF) kernel

K (vi , vj) = e−
∥vi−vj∥

2

2σ2 .
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Support Vector Machines

Figure 6: Non-linear SVM (from scikit-learn)
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Support Vector Machines

We can apply SVMs to predict the rank of elliptic curves.
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For distinguishing between rank 0 and 2 we get accuracy of 0.99.
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Thank You!
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