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Recall the big picture:
We have F a family of L-functions

Lπ(s) =
∑

fπ(n)n−s ,

each having its own separate functional equation
Λ(s) = wπΛ(1− s) where

Λ(s) := N
s/2
arithLπ,∞(s) · Lπ(s)

and normalized so that the Ramanujan conjecture is fπ(n)� nε.
Then Lπ(s) has root number wπ (±1 if fπ(n) is real), the
(arithmetic) conductor is Narith and the analytic conductor is

Nπ := exp

(
2Re

(
L′π,∞(1/2)

Lπ,∞(1/2)

))
Narith.

Previously we always had Narith instead of Nπ. B2L2 take a family
with Narith = 1, namely F =

⋃
k Hk(1) where Hk(1) is a basis of

weight k newforms for Γ0(1) = Γ1(0) = Γ1 = PSL2(Z ).



The Katz-Sarnak philosophy
For fixed smooth Φ supported in [0, 1], we expect∑

p∈[Na,2Na]

∑
π∈F ,wπ=w
Nπ∈[N,2N]

Φ((Nπ − N)/N)fπ(p)
√
p∑

p∈[Na,2Na]

∑
π∈F ,wπ=w
Nπ∈[N,2N]

Φ((Nπ − N)/N)
→

{
0 (a < 1)

const (a > 1).

Murmurations: a = 1. For piecewise smooth Φ we guess that∑
p∈[yN,yN+X ]

∑
π∈F ,wπ=w
Nπ∈[N,N+Y ]

Φ((Nπ − N)/Y )fπ(p)∑
p∈[yN,yN+X ]

∑
π∈F

Nπ∈[N,N+Y ]
Φ((Nπ − N)/Y )

∼ wN−1/2MΦ(y)

provided we take the limit over a sequence of (N,X ,Y ) with
X ,Y < N and with enough terms in the sum, namely∑

p∈[yN,yN+X ]

∑
π∈F ,wπ=w
Nπ∈[N,N+Y ]

1 > N1+ε.

When this is false, we see noise and a picture like murmurations of
starlings. May need more than N1+ε to see lower-order terms in the
asymptotic? (B2L2 see extra noise when these should be present.)



Theorem (B2L2)
Assume GRH for the L-functions of Dirichlet characters and
modular forms. Fix ε ∈ (0, 1

12 ), δ ∈ {0, 1}, and a compact interval

E ⊂ R>0 with |E | > 0. Let K ,H ∈ R>0 with K
5
6

+ε < H < K 1−ε,
and set N = (K/4π)2. Then as K →∞, we have∑

p prime
p/N∈E

log p
∑

k≡2δ mod 4
|k−K |≤H

∑
f ∈Hk (1) λf (p)∑

p prime
p/N∈E

log p
∑

k≡2δ mod 4
|k−K |≤H

∑
f ∈Hk (1) 1

=
(−1)δ√

N

(
ν(E )

|E |
+ oE ,ε(1)

)
,

where

ν(E ) =
1

ζ(2)

∑∗
a,q∈Z>0

gcd(a,q)=1
(a/q)−2∈E

µ(q)2

ϕ(q)2σ(q)

(q
a

)3
=

1

2

∞∑
t=−∞

∏
p-t

p2 − p − 1

p2 − p

·
∫
E

cos

(
2πt
√
y

)
dy ,

and ∗ indicates terms at the endpoints of E are halved. Notice:
MΦ is a distribution, the guess from the last slide is therefore false
as a short average over p may diverge even with plenty of terms.



Our object of study

Tragically the letter p is now replaced by n for the rest of the
discussion. Please remember than n is a prime. The reason is that
p, q and ` are used for other things.

Much of the technical difficulty comes from the sharp cutoffs
(a/q)−2 ∈ E , |k − K | ≤ H. If these were both smoothed there
would by a power saving and no GRH for modular form L-functions.

At first I will stick to the proof sketch from B2L2 since we are really
just doing routine manipulations. This deals with a semi-smoothed
version, from which the result above follows. We study

Σ0 =
∑

n prime
n/N∈E

log n
∑

k∈2δ+4Z

W

(
k − k0

4h

) ∑
f ∈Hk (1)

λf (n)+OE ,ε

(
hK 2+ε

)
.



First steps

Definition

ψD(m) =

(
d

m/ gcd(m, `)

)
(D = d`2)

φt,n = arcsin

(
t

2
√
n

)
∈
(
−π

2
,
π

2

)
(t ∈ Z, t2 < 4n).

The Eichler-Selberg trace formula for
∑

f ∈Hk (1) λf (n) gives

Σ0 =
(−1)δ

π

∑
n prime
n/N∈E

log n
∑

k∈2δ+4Z

W

(
k − k0

4h

)
∑
t∈Z

t2<4n

L(1, ψt2−4n) cos((k − 1)φt,n).



Second steps
We perform Poisson summation in k to get

(−1)δ

π

∑
n prime
n/N∈E

log n
∑
t∈Z

t2<4n

L(1, ψt2−4n)
∑

k∈2δ+4Z

W

(
k − k0

4h

)
cos((k−1)φt,n) = h cos((k0−1)φt,n)

∑
`∈Z

Ŵ
(
h`+2hφt,n/π

)
,

Definition

T = K 1+ε0/h.

By elementary arguments, the terms with ` 6= 0 turn out to be
O(h−1K 3 logK ); because the terms with |t| > T are tiny, we get
only a tiny error on replacing 2φt,n by tn−1/2. Hence

Σ0 =
(−1)δh

π

∑
n prime
n/N∈E

log n
∑
t∈Z
|t|≤T

L(1, ψt2−4n) cos

(
(k0 − 1)t

2
√
n

)

Ŵ

(
ht

π
√
n

)
+ OE ,ε0

(
K 3 logK

h

)
.



Lemma 4.5

Now we reach the real number theory. We want to apply the PNT
in APs, in the form (Lemma 4.5):
Assume GRH for Dirichlet L-functions. Let t ∈ Z and A,B ∈ R
with t2

4 < A < B, and let Φ ∈ C 1([A,B]). Set

M = maxu∈[A,B]|Φ(u)| and V =
∫ B
A |Φ

′(u)| du. Then

∑
n∈[A,B]
n prime

L(1, ψt2−4n)Φ(n) log n = L(1, ψt)

∫ B

A
Φ(u) du

+ Oε
(
M

4
5 (M + V )

1
5B

9
10

+ε
)
∀ε ∈ (0, 1

10 ],

where

ψt(m) =
1

ϕ(m2)

∑
n mod m2

(n,m)=1

ψt2−4n(m).



Lemma 4.3

Actually to prove this we need (Lemma 4.3):
L(s, ψt) continues analytically to <(s) > 1

2 and satisfies

L(1, ψt) = Cf (t),

where

C = L(1, ψ1) =
∏
p

(
1− 1

(p − 1)2(p + 1)

)
= 0.6151326573181718 . . .

and

f (t) = P(1, t) =
∏
p|t

(
1 +

1

p2 − p − 1

)
.



Finally getting somewhere

Definition

λk0 =
k0 − 1

4π
√
N

xk0(α) =
k0 − 1

4αh

E = [α−2
2 , α−2

1 ]

By the lemmas above we get

Σ0 =
2h(−1)δ

π

(
k0 − 1

4π

)2 ∫ λk0
α2

λk0
α1

∑
t∈Z
|t|≤T

L(1, ψt) cos(2παt)Ŵ

(
t

xk0(α)

)
dα

α3
+ OE ,ε,ε0

(
K 3+ε

h
1
5

)
.



Proposition 5.1
Now the (to me) most satisfying result in the paper is needed,
which is Proposition 5.1:
Assume GRH for Dirichlet L-functions. Let α, θ, x ∈ R and
a, q ∈ Z with x , q ≥ 1, gcd(a, q) = 1, α = a

q + θ, and |θ| ≤ 1
q2 .

Then,

∑
t∈Z

L(1, ψt) cos(2παt)Ŵ
( t
x

)
=

µ(q)2

ϕ(q)2σ(q)
xW (xθ)

+ O
(
qx−1 max(1, x |θ|)

)
+ Oε

(
q3x−

7
4

+ε max(1, x |θ|)
7
2
)
.

I wish I had time to get into the proof!
Morally, we can now ‘just’ use the circle method to estimate∫ λk0

α2

λk0
α1

∑
t∈Z
|t|≤T

L(1, ψt) cos(2παt)Ŵ

(
t

xk0(α)

)
dα

α3
.

This is not entirely straightforward especially at the endpoints.


