Murmurations in the weight aspect

Simon L Rydin Myerson, Murmurations study group, number theory seminar, University of Warwick
after Bober, Booker, Lee \& Lowry-Duda (B2L2)

Recall the big picture:

We have \mathcal{F} a family of L-functions

$$
L_{\pi}(s)=\sum f_{\pi}(n) n^{-s}
$$

each having its own separate functional equation $\Lambda(s)=w_{\pi} \bar{\Lambda}(1-s)$ where

$$
\Lambda(s):=N_{\text {arith }}^{s / 2} L_{\pi, \infty}(s) \cdot L_{\pi}(s)
$$

and normalized so that the Ramanujan conjecture is $f_{\pi}(n) \ll n^{\epsilon}$. Then $L_{\pi}(s)$ has root number w_{π} (± 1 if $f_{\pi}(n)$ is real), the (arithmetic) conductor is $N_{\text {arith }}$ and the analytic conductor is

$$
N_{\pi}:=\exp \left(2 \operatorname{Re}\left(\frac{L_{\pi, \infty}^{\prime}(1 / 2)}{L_{\pi, \infty}(1 / 2)}\right)\right) N_{\text {arith }}
$$

Previously we always had $N_{\text {arith }}$ instead of N_{π}. B2L2 take a family with $N_{\text {arith }}=1$, namely $\mathcal{F}=\bigcup_{k} H_{k}(1)$ where $H_{k}(1)$ is a basis of weight k newforms for $\Gamma_{0}(1)=\Gamma_{1}(0)=\Gamma_{1}=\operatorname{PSL}_{2}(Z)$.

The Katz-Sarnak philosophy

For fixed smooth Φ supported in $[0,1]$, we expect

$$
\frac{\sum_{p \in\left[N^{\mathrm{a}}, 2 N^{\mathrm{a}}\right]} \sum_{\substack{\pi \in \mathcal{F}, w_{\pi}=w \\ N_{\pi} \in[N, 2 N]}} \Phi\left(\left(N_{\pi}-N\right) / N\right) f_{\pi}(p) \sqrt{p}}{\sum_{p \in\left[N^{\mathrm{a}}, 2 N^{\mathrm{a}}\right]} \sum_{\substack{\pi \in \mathcal{F}, w_{\pi}=w \\ N_{\pi} \in[N, 2 N]}} \Phi\left(\left(N_{\pi}-N\right) / N\right)} \rightarrow \begin{cases}0 & (a<1) \\ \text { const } & (a>1) .\end{cases}
$$

Murmurations: $a=1$. For piecewise smooth Φ we guess that

$$
\frac{\sum_{p \in[y N, y N+X]} \sum_{\substack{\pi \in \mathcal{F}, w_{\pi}=w \\ N_{\pi} \in[N, N+Y]}} \Phi\left(\left(N_{\pi}-N\right) / Y\right) f_{\pi}(p)}{\sum_{p \in[y N, y N+X]} \sum_{\substack{\pi \in \mathcal{F} \\ N_{\pi} \in[N, N+Y]}} \Phi\left(\left(N_{\pi}-N\right) / Y\right)} \sim w N^{-1 / 2} M_{\Phi}(y)
$$

provided we take the limit over a sequence of (N, X, Y) with $X, Y<N$ and with enough terms in the sum, namely

$$
\sum_{p \in[y N, y N+X]} \sum_{\substack{\pi \in \mathcal{F}, w_{\pi}=w \\ N_{\pi} \in[N, N+Y]}} 1>N^{1+\epsilon}
$$

When this is false, we see noise and a picture like murmurations of starlings. May need more than $N^{1+\epsilon}$ to see lower-order terms in the asymptotic? (B2L2 see extra noise when these should be present.)

Theorem (B2L2)

Assume GRH for the L-functions of Dirichlet characters and modular forms. Fix $\varepsilon \in\left(0, \frac{1}{12}\right), \delta \in\{0,1\}$, and a compact interval $E \subset \mathbb{R}_{>0}$ with $|E|>0$. Let $K, H \in \mathbb{R}_{>0}$ with $K^{\frac{5}{6}+\varepsilon}<H<K^{1-\varepsilon}$, and set $N=(K / 4 \pi)^{2}$. Then as $K \rightarrow \infty$, we have

$$
\left.\frac{\sum_{p \text { prime }}^{p / N \in E}}{} \log p \sum_{k=2 \delta \bmod _{k} 4}^{|k-K| \leq H}<\sum_{f \in H_{k}(1)} \lambda_{f}(p) \right\rvert\,(-1)^{\delta}\left(\frac{\nu(E)}{|E|}+o_{E, \varepsilon}(1)\right),
$$

where

$$
\begin{aligned}
\nu(E)=\frac{1}{\zeta(2)} \sum_{\substack{a, q \in \mathbb{Z}_{>0}=1 \\
g c d(a, q)=1 \\
(a / q)^{-2} \in E}}^{*} \frac{\mu(q)^{2}}{\varphi(q)^{2} \sigma(q)}\left(\frac{q}{a}\right)^{3} & =\frac{1}{2} \sum_{t=-\infty}^{\infty} \prod_{p \nmid t} \frac{p^{2}-p-1}{p^{2}-p} \\
& \cdot \int_{E} \cos \left(\frac{2 \pi t}{\sqrt{y}}\right) d y
\end{aligned}
$$

and $*$ indicates terms at the endpoints of E are halved. Notice: M_{Φ} is a distribution, the guess from the last slide is therefore false as a short average over p may diverge even with plenty of terms.

Our object of study

Tragically the letter p is now replaced by n for the rest of the discussion. Please remember than n is a prime. The reason is that p, q and ℓ are used for other things.

Much of the technical difficulty comes from the sharp cutoffs $(a / q)^{-2} \in E,|k-K| \leq H$. If these were both smoothed there would by a power saving and no GRH for modular form L-functions.

At first I will stick to the proof sketch from B2L2 since we are really just doing routine manipulations. This deals with a semi-smoothed version, from which the result above follows. We study

$$
\Sigma_{0}=\sum_{\substack{n \text { prime } \\ n / N \in E}} \log n \sum_{k \in 2 \delta+4 \mathbb{Z}} W\left(\frac{k-k_{0}}{4 h}\right) \sum_{f \in H_{k}(1)} \lambda_{f}(n)+O_{E, \varepsilon}\left(h K^{2+\varepsilon}\right) .
$$

First steps

Definition

$$
\begin{gathered}
\psi_{D}(m)=\left(\frac{d}{m / \operatorname{gcd}(m, \ell)}\right) \quad\left(D=d \ell^{2}\right) \\
\phi_{t, n}=\arcsin \left(\frac{t}{2 \sqrt{n}}\right) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \quad\left(t \in \mathbb{Z}, t^{2}<4 n\right) .
\end{gathered}
$$

The Eichler-Selberg trace formula for $\sum_{f \in H_{k}(1)} \lambda_{f}(n)$ gives

$$
\begin{aligned}
& \Sigma_{0}=\frac{(-1)^{\delta}}{\pi} \sum_{\substack{n \text { prime } \\
n / N \in E}} \log n \sum_{k \in 2 \delta+4 \mathbb{Z}} W\left(\frac{k-k_{0}}{4 h}\right) \\
& \sum_{\substack{t \in \mathbb{Z} \\
t^{2}<4 n}} L\left(1, \psi_{t^{2}-4 n}\right) \cos \left((k-1) \phi_{t, n}\right)
\end{aligned}
$$

Second steps

We perform Poisson summation in k to get
$\frac{(-1)^{\delta}}{\pi} \sum_{\substack{n \text { prime } \\ n / N \in E}} \log n \sum_{\substack{t \in \mathbb{Z} \\ t^{2}<4 n}} L\left(1, \psi_{t^{2}-4 n}\right) \sum_{k \in 2 \delta+4 \mathbb{Z}} W\left(\frac{k-k_{0}}{4 h}\right) \cos \left((k-1) \phi_{t, n}\right)$
Definition

$$
T=K^{1+\epsilon_{0}} / h
$$

By elementary arguments, the terms with $\ell \neq 0$ turn out to be $O\left(h^{-1} K^{3} \log K\right)$; because the terms with $|t|>T$ are tiny, we get only a tiny error on replacing $2 \phi_{t, n}$ by $t n^{-1 / 2}$. Hence

$$
\begin{array}{r}
\Sigma_{0}=\frac{(-1)^{\delta} h}{\pi} \sum_{\substack{n \text { prime } \\
n / N \in E}} \log n \sum_{\substack{t \in \mathbb{Z} \\
|t| \leq T}} L\left(1, \psi_{t^{2}-4 n}\right) \cos \left(\frac{\left(k_{0}-1\right) t}{2 \sqrt{n}}\right) \\
\widehat{W}\left(\frac{h t}{\pi \sqrt{n}}\right)+O_{E, \varepsilon_{0}}\left(\frac{K^{3} \log K}{h}\right) .
\end{array}
$$

Lemma 4.5

Now we reach the real number theory. We want to apply the PNT in APs, in the form (Lemma 4.5):
Assume GRH for Dirichlet L-functions. Let $t \in \mathbb{Z}$ and $A, B \in \mathbb{R}$ with $\frac{t^{2}}{4}<A<B$, and let $\Phi \in C^{1}([A, B])$. Set
$M=\max _{u \in[A, B]}|\Phi(u)|$ and $V=\int_{A}^{B}\left|\Phi^{\prime}(u)\right| d u$. Then

$$
\begin{aligned}
& \sum_{\substack{n \in[A, B] \\
n \text { prime }}} L\left(1, \psi_{t^{2}-4 n}\right) \Phi(n) \log n=L\left(1, \bar{\psi}_{t}\right) \int_{A}^{B} \Phi(u) d u \\
& \\
& \quad+O_{\varepsilon}\left(M^{\frac{4}{5}}(M+V)^{\frac{1}{5}} B^{\frac{9}{10}+\varepsilon}\right) \quad \forall \varepsilon \in\left(0, \frac{1}{10}\right]
\end{aligned}
$$

where

$$
\bar{\psi}_{t}(m)=\frac{1}{\varphi\left(m^{2}\right)} \sum_{\substack{n \mathrm{mod} m^{2} \\(n, m)=1}} \psi_{t^{2}-4 n}(m)
$$

Lemma 4.3

Actually to prove this we need (Lemma 4.3): $L\left(s, \bar{\psi}_{t}\right)$ continues analytically to $\Re(s)>\frac{1}{2}$ and satisfies

$$
L\left(1, \bar{\psi}_{t}\right)=C f(t)
$$

where
$C=L\left(1, \bar{\psi}_{1}\right)=\prod_{p}\left(1-\frac{1}{(p-1)^{2}(p+1)}\right)=0.6151326573181718 \ldots$
and

$$
f(t)=P(1, t)=\prod_{p \mid t}\left(1+\frac{1}{p^{2}-p-1}\right) .
$$

Finally getting somewhere

Definition

$$
\begin{gathered}
\lambda_{k_{0}}=\frac{k_{0}-1}{4 \pi \sqrt{N}} \\
x_{k_{0}}(\alpha)=\frac{k_{0}-1}{4 \alpha h} \\
E=\left[\alpha_{2}^{-2}, \alpha_{1}^{-2}\right]
\end{gathered}
$$

By the lemmas above we get

$$
\begin{aligned}
\Sigma_{0}= & \frac{2 h(-1)^{\delta}}{\pi}\left(\frac{k_{0}-1}{4 \pi}\right)^{2} \int_{\lambda_{k_{0}} \alpha_{1}}^{\lambda_{k_{0}} \alpha_{2}} \sum_{\substack{t \in \mathbb{Z} \\
|t| \leq T}} \\
& L\left(1, \bar{\psi}_{t}\right) \cos (2 \pi \alpha t) \widehat{W}\left(\frac{t}{x_{k_{0}}(\alpha)}\right) \frac{d \alpha}{\alpha^{3}}+O_{E, \varepsilon, \varepsilon_{0}}\left(\frac{K^{3+\varepsilon}}{h^{\frac{1}{5}}}\right) .
\end{aligned}
$$

Proposition 5.1

Now the (to me) most satisfying result in the paper is needed, which is Proposition 5.1:
Assume GRH for Dirichlet L-functions. Let $\alpha, \theta, x \in \mathbb{R}$ and $a, q \in \mathbb{Z}$ with $x, q \geq 1, \operatorname{gcd}(a, q)=1, \alpha=\frac{a}{q}+\theta$, and $|\theta| \leq \frac{1}{q^{2}}$. Then,

$$
\begin{aligned}
\sum_{t \in \mathbb{Z}} L\left(1, \bar{\psi}_{t}\right) \cos (2 \pi \alpha t) \widehat{W}\left(\frac{t}{x}\right)=\frac{\mu(q)^{2}}{\varphi(q)^{2} \sigma(q)} x W(x \theta) \\
\quad+O\left(q x^{-1} \max (1, x|\theta|)\right)+O_{\varepsilon}\left(q^{3} x^{-\frac{7}{4}+\varepsilon} \max (1, x|\theta|)^{\frac{7}{2}}\right)
\end{aligned}
$$

I wish I had time to get into the proof!
Morally, we can now 'just' use the circle method to estimate

$$
\int_{\lambda_{k_{0}} \alpha_{1}}^{\lambda_{k_{0}} \alpha_{2}} \sum_{\substack{t \in \mathbb{Z} \\|t| \leq T}} L\left(1, \bar{\psi}_{t}\right) \cos (2 \pi \alpha t) \widehat{W}\left(\frac{t}{x_{k_{0}}(\alpha)}\right) \frac{d \alpha}{\alpha^{3}}
$$

This is not entirely straightforward especially at the endpoints,

