
Algebraic Number Theory

Basics

• Integral domain: rs = 0 =⇒ r = 0 or s = 0.

• Ideal: A subset I of R such that

– (I,+) subgroup of (R,+).

– For any r ∈ R, x ∈ I, we have rx ∈ I.

• Principal ideal: Generated by on element I = (x). i.e. I = {rx : r ∈ R}.

• Quotient: Let I be ideal of R. The quotient ring R/I is {r + I : r ∈ R}, where
r1 + I = r2 + I iff r1 − r2 ∈ I. Zero element is I and multiplicative identty is 1 + I.

• Maximal: an ideal I 6= R such that, if I ⊆ J ⊆ R, then I = J or J = R (i.e. no ideals
bigger than I)

• Prime: An ideal I 6= R s.t. ab ∈ I =⇒ a ∈ I or b ∈ I

• Let I be an ideal of R

– I is a prime ideal if and only if R/I is an integral domain.

– I is a maximal ideal if and only if R/I is a field.

Corollary: Every maximal ideal is prime

Galois Theory

• Degree: L/K has degree [L : K] = dimK(L).

• Tower law: [M : K] = [M : L][L : K]

• Automorphism group: Aut(L/K) := {σ : L → L : σ field automorphism s.t. σ|K =
IdK}
Examples:

– Aut(Q(
√

2)/Q) ∼= Z/2 (the identity, and
√

2 7→ −
√

2)

– Aut(Q( 3
√

2)/Q) = {id}

• Galois extension: For L/K finite, TFAE

– LAut(L/K) := {x ∈ L : σ(x) = x ∀σ ∈ Aut(L/K)} = K

– #Aut(L/K) = [L : K]

– L/K is normal (∀α ∈ L, the min poly of α has roots in L) and separable (∀α ∈ L,
the min poly of α has distinct roots in K̄)

– L/K is the splitting field of a separable polynomial f ∈ K[T ]
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• Main Theorem: Let L/K be Galois, then we have order-reversing mutually inverse
bijections

{subextensionsK ⊆M ⊆ L} −→ { subgroups H ≤ Gal(L/K)}
M 7−→ Gal(L/M)

{x ∈ L : σ(x) = x ∀σ ∈ H} ←− [ H

• Finite fields: If K finite field, then K ∼= Fq where q = pr prime power. Moreover
Fpn ⊆ Fpm ⇐⇒ n|m

• Fqn/Fq is Galois (is the splitting field of Xq −X) and Gal(Fqn/Fq) is cyclic, generated by
the Frobenius, denoted Frobq : x 7→ xq.

Number Fields

• Number field: A finite extension of Q (e.g. Q(i),Q(
√

2),Q( 3
√

2).

• Ring of integers: Let L be number field. THe ring of integers θL is the integral closure
of Z in L.

θL = {α ∈ L : ∃f ∈ Z[T ] monic s.t.f(α) = 0}

– θ is Dedekind domain.

– All ideals have unique factorisation into prime ideals.

• Class group: We define the class group of θL as:

Cl(θL) = { non-zero ideals I E θL}/ ∼

where ideals A ∼ B if there exists x, y ∈ θL s.t. (x)I = (y)J

• Class number: hL = #Cl(θL)

– Cl(θL) is a finite abelian group.

– hL = 1 if and only if θL is a princiapl ideal domain.

– I.e. If θL Dededekind domain, then hL = 1 iff θL is unique factorisation domain.
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Lectures

1. Dedekind domains

• Principal ideal domain: An integral domain in which every ideal is principal (i.e.
generated by a single element)

• Discrete Valuation Ring: A ring A which is

– A principal ideal domain

– Has a unique non-zero prime ideal mA

Note: ma is maximal ideal ,and A is local ring.

Fact: Every non-zero x ∈ A can be expressed uniquely as x = απk where α is unit, π is
uniformizer, and k ∈ Z≥0.

• Uniformizer: A generator π of the unique maximal ideal in a DVR is called a uni-
formizer.

• Local ring: Has a unique maximal ideal

• Nakayama’s lemma: Let R be local ring, P ⊂ R the unique maximal ideal, M a fin.
gen. R-module. THen

– If M = PM , then M = 0 (i.e. M/PM = 0 =⇒ M = 0)

– If N ≤M is an R-submodule s.t. N + PM = M , then N = M

• Valuation: Let K be a field. A valuation is a function ν : K× → Z such that

– ν is surjective homomorphism

– ν(x+ y) ≥ min(ν(x), ν(y)) for all x, y,∈ K× with equality if ν(x) 6= ν(y).

Examples:

– Let K = Q. We can define a valuation ν : Q× → Z defined by ν(pn r
s
) if r, s ∈ Z and

p coprime to r and s.

– Let K be the field of meromorphic functions on C. Can define ν : K× → Z by
ν(f) = ordz=0f(z).

• Valuation of DVR: Let A be a DVR with uniformiser π, and let K = Frac(A). Then
can define a valuation ν(x) = n, where x = πnu for some n ∈ Z and u ∈ A×.

• For any field K, there is a bijection between the valuations ν : K× → Z and the subrings
A ⊂ K s.t. A is a DVR and FracA = K.

• Noetherian ring: A ring where, if I1 ⊆ I2 ⊆ I3 ⊆ . . . is an ascending chain of ideals,
then there exists N such that IN = IN+1 = . . . . Equivalently, a ring where every ideal is
finitely generated (i.e there exist a1, . . . , an ∈ I s.t. I = Ra1 + . . . Ran)

• Integrally closed: Let A,B be rings where A ⊆ B. B is integrally closed over A if,
for all b ∈ B, there exist a1, . . . , an ∈ A such that

bn + a1b
n−1 + . . . an = 0

(i.e. b root of monic polnomial in A)
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• Integrally closed domain: An integral domain R such that integral closure of R over
Frac(R) is itself.

• Let A be a Noetherian domain. Then TFAE:

– A is a DVR

– A is integrally closed in K = FracA and A has a unique non-zero prime ideal.

• Mutiplicative subset: A subset S ⊆ A s.t. 1 ∈ S and ∀x, y ∈ S, xy ∈ S.

• Fraction ring: Let S ⊆ A be multiplicative subset. Define S−1A as A × S/ ∼ where
(a, s) ∼ (a′, s′) if there exists t ∈ S s.t. t(s′a− sa′) = 0. Notation: a

s
∈ S−1A.

– Zero element is 0
1
. Multiplicative identty is 1

1
.

– Adddition: a
s

+ a′

s′
= as′+a′s

ss′

– Multiplication: a
s
· a′
s′

= aa′

ss′

(Note: If 0 ∈ S, then S−1A is just the trivial zero ring.)

The map A→ S−1A given by a 7→ a
1

is ring homomorphism with kernel {a ∈ A : ∃s ∈
S, sa = 0}

• Fraction ring for modules: Let S ⊆ A be multiplicative subset. Let M be A-module.
Define S−1M to be M × S/ ∼ where (m, s) ∼ (m′, s′) if there exists t ∈ S s.t. t(ms′ −
m′s) = 0.

S−1M is a S−1A-module via

– Additive identity: 0
1

– Multiplication: a
s
· m
s′

= am
ss′

– Addition: m
s

+ m′

s′
= ms′+m′s

ss′

• If f : M → N is an A-module homomorphism, then there is a homomoprhism S−1f :
S−1M → S−1N given by m

s
7→ f(m)

s
.

• S−1 functor: Given the homoprhisms f : M ′ →M and f ′ : M →M ′′, then S−1(f ′◦f) =
S−1f ′ ◦ S−1f (i.e. S−1 is a functor in the category of A-modules)

• Exactness: Let M ′ → M → M ′′ be an exact sequence of A-modules. Then S−1M ′ →
S−1M → S−1M ′′ is also exact.

– If f is surjective, then so is S−1f .

– If f ′ is injective then so is S−1f ′

• Ideal of fraction ring: Let A be a ring with ideal I C A. Since I → A is injective
homorphism of A-modules, we have S−1I → S−1A injective homomorphism of A-modules.
Therefore, S−1I is an ideal of S−1A, which is the ideal:

S−1I = {x
s

: x ∈ I s ∈ S}
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• There is a bijection:{
prime ideals P ⊂ A
such that P ∩ S = ∅

}
←→

{
prime ideals
Q ⊂ S−1A

}
P 7−→ S−1P

f−1(Q)←− [ Q

where f : A→ S−1A is the natural ring homomorphism a 7→ a
1

• Let A be a ring, with prime ideal P C A. Then S = A− P is a mulitplicative subset of
A, and S−1A is a local ring with unique maximal ideal S−1P .

Notation: We write Ap = (A− P )−1A

• Dedekind domain: A ring R where

– R is Noetherian domain.

– R is integrally closed (domain).

– R has (Krull) dimension 1 (i.e. every nonzero prime ideal is maximal).

• Let A be a ring. TFAE:

– A is a Dedekind domain.

– A is Noetherian domain, and for every non-zero prime ideal P ⊂ A, the localisation
Ap is a DVR.

• Fractional ideal: Let A be domain, K = Frac(A). A fractional ideal of A is a finitely
generated A-submodule of K.

Equivalently, a fractional ideal I of A is an A-submodule of K, such that there exists
r ∈ A such that rI ⊂ A (element which ’clears out denominators’)

Examples:

– If A = Z, then all ideals are principal (i.e. of the form nZ for some n ∈ Z). All
fractional ideals are of the form n

m
Z for some n,m ∈ Z

If I, J ⊂ K are freactional ideals, then

– I + J = {x+ y : x ∈ I, y ∈ J} is also fractional ideal.

– IJ = (xy : x ∈ I, y ∈ J) is also fractional ideal.

– (I : J) = {x ∈ K : xJ ⊂ I} is A-submodule of K (If J non-zero, then is also
fractional ideal)

• Let A be a Noetherian domain, and S ⊂ A a multiplicative subset. Then

– IF I, J fractional ideals, then S−1I is a fractional ideal of S−1A and:

∗ S−1(I + J) = S−1I + S−1J

∗ S−1(IJ) = S−1I · S−1J

– If I, J are fractional ideals, and J is non-zero, then (I : J) is a fractional ideal of A
and S−1(I : J) = (S−1I : S−1J).

• Let A Dedekind domain. Let DivA be set of non-zero fractional ideals. DivA forms a
group under the operation of multiplication of fractional ideals. (Inverse of I is (A : I))
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• Valuation for fractional ideals: Let A be Dedekind domain, let P ⊂ A be prime
ideal, and let νp : K× → Z be the valuation corresponding to Ap.

THen for any I ∈ DivA, we have IAp = (x) for some x ∈ K×. We define the valuation
of I as the surjective homorphism νp(I) := νp(x).

• Let A be Dedekind domain. Then for non-zero ideal I ⊂ A, there are only finitely many
non-zero prime ideals P ⊂ A such that I ⊂ P (i.e. finitely many primes lying above I).

Also, for any I ∈ DivA, there are only finitely many non-zero priem ideals P such that
vp(I) is finite.

• The map DivA −→ ⊕pZ is an isomorphism.

• For any I ∈ DivA, we have I =
∏

p p
νp(I)

• Unique factorisation of ideals: Let A be a Dedekind domain, and let I ⊂ A be a
non-zero ideal. Then I admits a unique expression:

I =
n∏
i=1

P ai
i

where the Pi are distinct prime ideals of A. This expression is uniquely determined upto
re-ordering of terms.

Fact: For every number field, the ring of integers is always a Dedekind domain! (but
not necessarily a PID)
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2. Complete DVRs

• Inverse System: Given groups Ai(i ∈ N) and homomorphisms fi : Ai+1 → Ai (i ∈ N)

A1
f1←−− A2

f2←−− A3
f3←−− A4

f4←−− . . .

• Inverse limit:

lim←−
i

Ai =

{
(ai) ∈

∞∏
i=1

Ai : ∀i ≥ 1, fi(ai+1) = ai

}
≤
∞∏
i=1

Ai

Fact: Inverse limit of groups/abelian groups/rings is a group/abelian group/ring.

• Completion of DVR: Let A be a DVR, with uniformiser π. Then we can consider the
inverse system:

A/(π)←− A/(π2)←− A/(π3)←− A/(π4)←− . . .

with maps the natural quotient maps. We define the inverse limit to be Â := lim←−
i

A/(πi).

There is a natural homomorphism A −→ lim←−
i

A/(πi).

• Complete: We say A is complete if A→ lim←−
i

A/(πi) is an isomorphism. (A complete

⇐⇒ map is surjective)

Note: The kernel of above map is
⋂
i≥1(πi) = 0. Therefore map is always an injective

homomorphism.

• Let A be DVR with fraction field K and valuation ν : K× → Z. Then TFAE:

– A is complete.

– A is complete as metric space w.r.t the metric

d(x, y) =

{
0 if x = y

2−ν(x−y) if x 6= y

– K is complete as metric space w.r.t. metric given above

• Ultrametric: A metric d satisfying d(x, z) ≤ max(d(x, y), d(y, z))

Useful facts:

– Sequences (xi) s.t. |xn+1 − xn| → 0 as n→∞ are Cauchy

– All open balls (with positive radius) are closed, and all closed balls are open.

• Totally disconnected: A topological space is totally disconnected if the only connected
subsets are the singletons (i.e. no non-trivial connected subsets)

• Let A be a DVR, with π ∈ A a uniformizer. THen:

– THe map A→ Â is injective. Â is a complete DVR, and π is a uniformizer of Â.

– FOr all i ≥ 1, the map A/πiA→ Â/πiÂ is an isomorphism.
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– Let X ⊂ A be a subset of representatives for the residue classes of A/(π) with 0 ∈ X.
Then for all a ∈ Â, there exists a unique expression of the form

a =
∞∑
i=0

aiπ
i

with ai ∈ X for all i ≥ 0.

• p-adic numbers: Let p be a prime. We define the p adic integers Zp = Ẑ(p) where
Z(p) = (Z− (p))−1Z and the p-adic rationals Qp = FracZp
Fact: p ∈ Zp is a uniformizer and the residue field Zp/(p) ∼= Z/pZ
Each element of Zp has a unique expression:

∑∞
i=0 aip

i, where ai ∈ {0, 1, . . . , p− 1}
Each element of Qp has a unique expression:

∑
i∈Z aip

i, where ai ∈ {0, 1, . . . , p− 1} with
the set {i < 0 : ai 6= 0} finite.

Multiplication and addition is done in the same way as for formal power series, except we
now need to ‘carry’ digits

• Hensel’s lemma: Let A be complete DVR. Let f(x) ∈ A[x] be monic polynomial.
Suppose there exists α ∈ A such that v(f(α)) > 2v(f ′(α)). Then, there exists unique
a ∈ A such that f(a) = 0 and v(a− α) > v(f ′(α)).

Construction: Define a sequence of numners a1, a2, . . . , where a1 = α and

an+1 = an −
f(an)

f ′(an)

Then (an)n≥1 is a Cauchy seuqnece, and thus we have the limit a := lim
n→∞

an.

• Hensel’s corollary: Let A complete DVR. Let f(x) ∈ A[x] be monic, Let k = A/(π)
and f̄(x) = f(x) mod (π) ∈ k[x]. Suppose there exists ᾱ ∈ K a simle root of f̄(X).
Then, there exists a unique a ∈ A s.t. f(a) = 0 and a ≡ ᾱ mod (π)

(this is specific case where v(f ′(α)) = 0)

• Squares in Z×p :

– If p is odd, then u ∈ Z×p is a square if and only if u mod p ∈ F×p is a square.

– If p = 2, then u ∈ Z×p is a square if and only if u ≡ 1 mod 8. (i.e. if u mod 8 is a
square in (Z/8Z)×.

• Cubes in Z×p :

– If p 6= 3, then u ∈ Z×p is a cube if and only if u mod p ∈ F×p is a cube.

– If p = 3, then u ∈ Z×p is a cube if and only if if u mod 9 is a cube in (Z/9Z)×.

• n-th powers in Z×p :

– If p 6 |n, then u ∈ Z×p is an n-th power if and only if u mod p ∈ F×p is an n-th power.

– If p = n, then then u ∈ Z×p is an n-th power if and only if u mod p2 ∈ F×p2 is an n-th
power.
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• Teichmuller lift: There’s a surjective homomorphism Z×p → F×p given by
∑∞

i=0 aip
i 7→

a0 mod p.

There’s exists a unique homomorphism τ : F×p → Z×p s.t. for all ᾱ ∈ F×p , τ(ᾱ) mod p = ᾱ.
This is called the Teichmuller lift.

(i.e. τ sends every ᾱ ∈ F×p to the unique (p− 1)-st root of unity in Z×p that reduces to it,
or in other words the unique root α of Xp −X such that α mod p = ᾱ)

Examples:

– p = 2, then τ(1) = 1.

– p = 3, then τ(1) = 1, and

τ(2) = 2 + 2p+ 2p2 + 2p3 + 2p4 + 2p5 + 2p6 + 2p7 + 2p8 + 2p9 + · · · = −1

– p = 5, then τ(1) = 1, and

τ(2) = 2 + 1p+ 2p2 + 1p3 + 3p4 + 4p5 + 2p6 + 3p7 + 0p8 + 3p9 + . . .

τ(3) = 3 + 3p+ 2p2 + 3p3 + 1p4 + 0p5 + 2p6 + 1p7 + 4p8 + 1p9 + . . .

τ(4) = 4 + 4p+ 4p2 + 4p3 + 4p4 + 4p5 + 4p6 + 4p7 + 4p8 + 4p9 + · · · = −1

– p = 7, then τ(1) = 1, and

τ(2) = 2 + 4p+ 6p2 + 3p3 + 0p4 + 2p5 + 6p6 + 2p7 + 4p8 + 3p9 + . . .

τ(3) = 3 + 4p+ 6p2 + 3p3 + 0p4 + 2p5 + 6p6 + 2p7 + 4p8 + 3p9 + . . .

τ(4) = 4 + 2p+ 0p2 + 3p3 + 6p4 + 4p5 + 0p6 + 4p7 + 2p8 + 3p9 + . . .

τ(5) = 5 + 2p+ 0p2 + 3p3 + 6p4 + 4p5 + 0p6 + 4p7 + 2p8 + 3p9 + . . .

τ(6) = 6 + 6p+ 6p2 + 6p3 + 6p4 + 6p5 + 6p6 + 6p7 + 6p8 + 6p9 + · · · = −1

• We have the following isomorphism:

Q×p ∼= Z× (1 + pZp)× F×p
pn · u · τ(ᾱ) 7−→ (n, u, ᾱ)

• We also have the isomorphism:

Q×p /(Q×p )n ∼= Z/nZ× F×p /(F×p )n

• Let q be a prime that divides p − 1. Then Qp has exactly q + 1 isomorphism classes of
Galois extensions of degree q.

Corollary: Let p be an odd prime. Then Qp has exactly 3 isomorphism classes of
quadratic extensions.

Let n ∈ {1, 2, . . . , p − 1} be a quadratic nonresidue mod p. Then the three distinct
quadratic extension of Qp can be given as Qp(

√
n), Qp(

√
p), Qp(

√
np)
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3. Extensions of Dedekind domains

• Integral: Let A be Dedekind domain, K = Frac(A). Let E/K be finite separable
extension. We say γ ∈ E is integral over A if ∃n ≥ 1, a1, . . . , an ∈ A s.t.

γn + a1γ
n−1 + · · ·+ an = 0

• Let A be Dedekind domain, K = Frac(A) and E finite separable extension of K. The
following are equivalent:

– γ integral over A

– A[γ] is a finitely generated A-module

– There exists a non-zero A[γ]-submodule M ⊆ E which is a finitely generated A-
module.

• Integral closure: The integral closure of A in E is the set B consisting of all elements
in E which are integral over A.

Example: Let A = Z, then Frac(A) = Q.

– If E = Q(
√

2), then B = Z(
√

2).

– If E = Q(
√

5), then B = Z(1+
√

5
2

).

– Let ζ be any root of unity. If E = Q(ζ), then B = Z(ζ).

• B is a subring of E, and B is integrally closed in E.

• Let E/K be finite separable extension. Let T : E × E → K be the symmetric bilinear
form defined by T (x, y) = trE/K(xy). Then T is non-degenerate. (i.e. for all non-zero
x ∈ E, there exists y ∈ E such that T (x, y) 6= 0)

Localisation fact: Let S ⊆ A be multiplicative subset, with 0 6∈ S. Then S−1A is Dedekind
domain with Frac(S−1A) = K. Integral closure S−1A in E is S−1B.

• Fact: B is finitely generated A-module and B is Dedekind domain

• Setup: A is Dedekind domain with K = Frac(A). E is finite sepearable extesnion of A.
B is integral closure of A in E. Q is some non-zero prime ideal in B. Then P = A ∩ Q
is non-zero prime ideal. We say Q lies above P .

E B {Qi}

K A P

• Let Q ⊂ B and P ⊂ A be non-zero prime ideals. Then the following are equivalent:

– Q lies above P . (i.e. P = Q ∩ A)

– Q ⊃ PB.

– Q appears in the prime factorisation of PB (i.e. vQ(PB) > 0 where vQ : E× → Z is
the valuation corresponding to Q)

Fact: B/Q and A/P are fields and (B/Q)/(A/P ) is a finite extension.
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• If Q lies above P , we define

– Residue degree: fQ/P := [B/Q : A/P ] ≥ 1

– Ramification index: eQ/P := vQ(PB) ≥ 1, where vQ : E× → Z is valuation
corresponding to Q.

• Prime factorisation of ideals: PB = Q
eQ1/P

1 . . . Q
eQr/P
r

• Let P ⊂ A be a non-zero prime ideal. Then∑
Q : vQ(PB)>0

eQ/PfQ/P = [E : K]

(the sum running over all primes ideals Q of B lying over P .)

• Let P be non-zero prime ideal of A, and let Q1, Q2, . . . , Qr be all the prime ideals of B
lying above P .

– Unramified: If for all i = 1, 2, . . . , r, we have B/Qi a seprable extension, and
eQi/P = 1, then we say P is unramified in B.

– Splits completely: If for all i = 1, 2 . . . , r, we have ei = fi = 1, then we say P
splits completely in B. (i.e. r = [E : K])

– Ramified: If ei > 1 for some i = 1, . . . , r, then we say P is ramified in B.

– Ramifies completely: If r = 1 and f1 = 1 (and thus e1 = [E : K]), we say that
P ramifies completely in B.

– Inert: If r = 1 and e1 = 1 (and thus f1 = [E : K]), we say that P is inert.

• Ring of integers: If E/Q is a number field, then we denote OE as the integral closure
of Z in E, called the ring of integers of E.

If K = Q(
√
d), where d ∈ Z squarefree, then

OK =

{
Z[
√
d] if d ≡ 2, 3 (mod 4)

Z[1+
√
d

2
] if d ≡ 1 (mod 4)

Q(
√
d) OQ(

√
d) {Qi}

Q Z (p) p prime

To factorise (p), we ...

• Prime factorisation for E = Q(
√
d): For p odd, then:

p


splits completely if

(
d
p

)
= 1

is unramified (and not split) if
(
d
p

)
= −1

is ramified if p|d

where
(
d
p

)
is the Legendre symbol which is 1 iff d is square mod p
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(Euler’s criterion states
(
d
p

)
≡p d(p−1)/2)

For p = 2:

2


splits completely if d ≡ 1 (mod 4) and 1−d

4
even (d ≡8 1)

is unramified (and not split) if d ≡ 1 (mod 4) and 1−d
4

odd (d ≡8 5)

is ramified if d ≡ 2, 3 (mod 4)

• Factorisation of pOE for quadratic extensions: If p is odd, then:

pOE =


(pOE + (..)OE)(pOE + (..)OE) if

(
d
p

)
= 1

pOE if
(
d
p

)
= −1

(pOE + (..)OE)2 if p|d

• Let A,K,E,B given in setup. Suppose E/K is Galois, and let G = Gal(E/k). Then for
all σ ∈ G, σ(B) = B. (i.e. the action of G on E leaves B invariant)

• Let E/K be Galois, and let Q ⊂ B be non-zero prime ideal, with P = Q ∩ A. Then

1. G acts transitively on prime ideals of B lying above P .

(i.e. only one orbit. ∀Q1, Q2 ⊇ P, ∃σ ∈ G s.t. σ(Q1) = Q2)

2. For all σ ∈ G, fσ(Q)/P = fQ/P and eσ(Q)/P = eQ/P .

(i.e. e and f depend only on P , and not Q)

3. Let gQ/P be the number of prime ideals lying above P . Then eQ/PfQ/PgQ/P = [E :
K] = |G|

• Decomposition group: Setup above, Q lies above P . The decomposition group DQ/P =
StabG(Q) = {σ ∈ G : σ(Q) = Q}.

• Let E/K Galois. Suppose Q ⊂ B lies above P ⊂ A, and suppose that (B/Q)/(A/P ) is
separable. Then

– (B/Q)/(A/P ) is a Galois field extension.

– The map

DQ/P −→ Gal((B/Q)/(A/P ))

σ 7−→ σ|B mod Q

is a surjective group homomorphism.

• Inertia group: Define the inertia group at Q as IQ/P = ker(DQ/P → Gal(kQ/kP )) =
{automorphisms of E/K that induce the identity on B/Q}
Fact: |IQ/P | = eQ/P , and thus IQ/P is trivial (and thus DQ/P → Gal(kQ/kP ) an isomor-
phism) iff Q is unramified over P .

• Frobenius automorphism at Q: If P is unramified in E, then we have an element

FrobQ/P ∈ DQ/P ⊂ G

defined as the unique element in DQ/P which induces the Frobenius automorphism on the
residue field extension kQ/kP .
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• Let f(X) = Xn + a1X
n−1 + a2X

n−2 + an ∈ Z[X] be irreducible. Let E be the splitting
field of f(X) over Q, and let α1, α2, . . . , αn be the roots of f(X).

(note that Gal(E/Q) can be identified as a subgroup of the symmetric group on α1, α2, . . . , αn),
i.e. we have

Gal(E/Q) ↪−→ Sn = Sym(α1, α2, . . . αn)

Now suppose p is a prime number such that f̄(X) = f(X) = mod p ∈ Fp[X] factors as

f̄(X) =
r∏
i=1

f̄i(X),

where f̄1(X), f̄2(X), . . . , f̄r(X) are distinct monic irreducible polynomials in Fp[x].

Then Gal(E/Q) contains a permutation of cycle type (d1)(d2) . . . (dr) where di = degf̄i(X)
(i.e. there’s a permutation which has a cycle of length d1, a cycle of length d2, ..., and a
cycle of length dr)

• Passage to completion: Let A be Dedekind domain, with K = Frac(A). Let E/K be
finite separable extension, and B the integral closure of A in E. Let P ⊂ A be a non-zero
prime ideal, and let Q ⊂ B be a prime ideal lying above P . Then we have

1. There’s a natural homomorphism ÂP → B̂Q extending the map A→ B.

2. Let Kp = FracÂp, and EQ = FracB̂Q. Then EQ/Kp is finite separable extension, B̂Q

is integral closure of ÂP in EQ and EQ = Kp · E.

3. We have eQ/P = eQB̂Q/PÂP
and fQ/P = fQB̂Q/PÂp

and [EQ : KP ] = eQ/PfQ/P .

4. If E/K Galois, then EQ/KP also Galois, and there’s a natural isomorphism DQ/P →
Gal(EQ/KP )

• Bijection between prime ideals and irreducible factors: Let A be Dedekind
domain, with K = Frac(A). Let E/K be finite separable extension, and B the integral
closure of A in E. Let E = K(α) and let f(X) ∈ K[X] be minimal polynomial of α.
Then there’s a bijection for any non-zero prime ideal P ⊂ A:{

Prime ideals Q ⊂ B
lying above P

}
←→

{
Irreducible factors

g(X) of f(X) in Kp[X]

}

Q 7−→
Unique irreducible factor
g(X) of f(X) in Kp[X]
such that g(α) = 0 in EQ

Example: Let A = Z, then K = Q and let E = Q(
√
d), and then B = OE. Let (p) be

a prime in Z. Thus, the prime ideals of pOE are in bijection with irreducible factors of
X2 − d in Qp[X].
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4. Extensions of complete DVRs

• Complete discrete valuation field. We call a pair (K, vk) a CDVF if K is a field and
vK : K× → Z is a valuation and the corresponding DVR AK = {x ∈ K× : vK(x) ≥
0} ∪ {0} is complete.

Examples:

– K = Qp (completion of Q w.r.t vp). Coresponding DVR is Zp, and residue field is
Fp.

– K((X)) (formal power series over field K, completion of K(X) w.r.t vX) i.e. element
of the form ∑

n∈Z

anX
n

where an ∈ K and an = 0 for all but finitely many negative n. Corresponding DVR
is K[[X]] (no negative terms) and residue field is K.

Notation: Uniformizer is πK ∈ AK . Residue field is kK = AK/(πK).

• Let K be a CDVF, and let E/K be a finite separable extension, Then E has a natural
structure of CDVF.

• Extension of CDVFs: An extension E/K such that K is a CDVF, E/K is finite
separable extension, and E has the natural structure of CDVF, with the valuation vE
given by the above lemma.

Setup:

– AE and AK are DVRs.

– Residue degree: fE/K := f(πE)/(πK) = [kE : kK ]

– Ramification index: eE/K := e(πE)/(πK) = vE(πK)

– If vE is restricted to K×, then we have vE|K× = eE/KvK

– [E : K] = eE/K · fE/K

• Let E/K be an extension of CDVFs. Then:

– If E/K is Galois, then for all σ ∈ Gal(E/K), x ∈ E, vE(σ(x)) = vE(x)

– In general (not assuming Galois), for all x ∈ E×, we have

vE(x) =
1

fE/K
vK(NE/K(x))

• Newton polygon: Let A be a DVR, K = Frac(A), and let

f(X) = Xn + a1X
n−1 + a2X

n−2 · · ·+ an

be a polynomial in K[X] with an 6= 0. Then the Newton polygon NK(f) is the graph
of the largest piecewise linear continuous function N : [0, n]→ R s.t.

– N(0) = 0 and N(n) = v(an)

– For all j = 1, 2, . . . , n− 1, N(j) ≤ v(aj) if aj 6= 0.

– N is convex (i.e. the sequence of slopes of line segments of NK(f) is increasing).

14



Equivalently, N is the lower convex hull of the points (j, v(aj)), for j = 0, 1, . . . , n.

– Slopes: The slopes of Nk(f) are the slopes/derivatives of the line segments.

– Multiplicity: The multiplicity of a slope is the length of the projection of the
corresponding line segment to the x-axis.

Example: Let K = Q5, and let f(X) = X3 + 25X2 + 5X + 125. Then the Newton
polygon NQ5(f) looks like:

0 1 2 3
0

1

2

3

4

j

v
(a
j
)

The slopes are 1
2

(with multiplicity 2) and 2 (with multiplicity 1).

• Let A be DVR, K = Frac(A), and let α1, . . . , αn ∈ K× be such that f(X) factors as

f(X) =
n∏
i=1

(X − αi) = Xn + a1X
n−1 + a2X

n−2 + · · ·+ an ∈ K[x]

Let λi = v(αi), i = 1, . . . , n. Then λ1, λ2, . . . , λn are the slopes of Nk(f) counted with
multiplicity.

In particular, the slopes of NK(f) are all integers.

• Let K be a CDVF, and let f(X) ∈ K[x], an 6= 0 be separable. Let λ1 < λ2 < · · · < λr,
be the slopes of NK(f), where λi occurs with multiplicity mi ≥ 1.

Then there exists a unique factorisation f(X) =
∏r

i=1 gi(X) in K[x] where for all i =
1, . . . , r, gi(X) is a monic polynomial with degree deg(gi) = mi and NK(gi) has a single
slope λi.

(i.e. if NK(f) has r distinct slopes, then f can be factorised in to (at least) r factors)

• Let E/K extension of CDVFs, then

– E/K is unramified if kE/kK is separable and eE/K = 1. (and thus fE/K = [E : K])

– E/K is totally unramified if fE/K = 1. (and thus eE/K = [E : K])

• Eisenstein: Let A be DVR, with K = Frac(A). We say f(X) = Xn+a1X
n−1+· · ·+an ∈

A[X] is Eisenstein if vk(ai) ≥ 1 for each i = 1, . . . , n−1 such that ai 6= 0, and vk(an) = 1.

Fact: For any monic f(X) ∈ K[X], f is Eisenstein if and only if NK(f) is a single line
segment of slope 1

n
.

Example:
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Constructing totally ramified extensions:

• Let E/K be totally ramified extension of CDVFs. Let f(x) ∈ K[x] be the minimal
polynomial of πE. Then f(X) is Eisenstein and E = K(πE).

• Let K be a CDVF, and let f(X) ∈ K[X] be a separable polynomial which is Eisenstein.
Then f(X) is irreducible and if E = K[x]/(f(X)), then E/K is totally ramified and X
mod (f(X)) is a uniformizer in AE.

Constructing unramified extensions:

• Let K be a CDVF. Let `/kK be a finite separable extension. Then there exists an
extension L/K of CDVFs and an isomorphism i : ` → kL with the following property:
For any extension E/K of CDVFs and homomorphism j : ` → kE there exists a unique
K-embedding J : L→ E such that the diagram commutes:

`

kL kE

j

∃! J̄

i−1

(i.e. J : L→ E induces j ◦ i−1 on residue fields)

Moreover, L/K is unramified.

• Let p be a prime. Then for any n ≥ 1, there is a unique unramified extension of Qp of
degree n (up to isomorphism).

Fact: For any n ≥ 1, there is a unique extension Fpn/Fp of degree n up to isomorphism.

• Let E/K be an extension of CDVFs, with kE/kK separable. Then there exists a unique
subextension E0/K which is unramified and such that kE0 = kE.

Then fE0/K = fE/K and eE/E0 = eE/K . Thus we have

E
totally ramified−−−−−−−−−→ E0

unramified−−−−−−→ K

If E1/K is any subextension which is unramified, then E0 contains E1. We therefore call
E0 the maximal unramified subextension.

• Let E/K be a Galois extension of CDVFs, with kE/kK separable. Then the maximal
unramified subextension E0 of E/K is EIE/K .

We always have a tower, with corresponding Galois groups:
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E E0 K

G=Gal(E/K)

IE/K Gal(kE/kK)

• Lower ramification group: Let i ≥ 0. We define the i-th lower ramification group
of G = Gal(E/K) to be

Gi := ker(G→ Aut(AE/(π
i+1
E ))

or equivalently Gi = {σ ∈ G : for all x ∈ AE, σ(x) ≡ x mod (πi+1
E )}

By convention G−1 = G.

– Informally, Gi is set of elements which fix the first i+1 digits of the πE-adic expansion
of elements of AE.

– G0 = ker(G → Aut(AE/(πE)) = ker(G → Gal(kE/kk) = IE/K is the usual inertia
group.

– G−1 ≥ G0 ≥ G1 ≥ G2 ≥ G3 ≥ . . . and
⋂
i≥0

Gi = {1}.

– Each Gi is normal subgroup in G. If E/L/K is an intermediate extension and
H = Gal(E/L), then Hi = H ∩Gi.

• Suppose σ ∈ G0. Then for any i ≥ 0, we have

σ ∈ Gi ⇐⇒ vE(σ(πE)− πE) ≥ i+ 1

Examples:

– Let E/K be Q2(
√

2)/Q2. E is splitting field of X2 − 2 which is Eisenstein. So this
is totally ramified extension, can take πE =

√
2. Let G = {1, s} Thus

G = G0 = G1 = G2

and {1} = G3 = G4 = G5 = . . .

– Let E/K be Q2(
√

3)/Q2. E is splitting field of X2 − 3. Can take πE = 1 +
√

3
(min polynomial of πE is X2 − 2X − 2). Let G = {1, t} Note vE(t(πE) − πE) =
vE(−2

√
3) = 2. Thus

G = G0 = G1

and {1} = G2 = G3 = G4 = . . .

– Let E/K be Q2(i)/Q2. E is splitting field of X2 + 1. Can take πE = 1 + i (min
polynomial of πE is X2 − 2X + 2). Let G = {1, t}. Thus

G = G0 = G1

and {1} = G2 = G3 = G4 = . . . .

– Let E/K be Q2(
√

5)/Q2. E is splitting field of X2−5. This is unramified extension.
Can take πE = 2. Let G = {1, t}. Thus

{1} = G0 = G1 = G2 = G3 = . . . .
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– Let E/K be Q2(
√

2, i)/Q2. Can take πE = ζ8 − 1. Let G = {1, s, t, st}. Thus

G = G0 = G1

and {1, s} = G2 = G3

and {1} = G4 = G5 = G6 . . .

• Let π ∈ AE be a uniformizer, and let s ∈ G0 and i ≥ 0. Then

s ∈ Gi ⇐⇒ s(π)/π ≡ 1 mod (πi)

• Let E/K be a Galois extension of CDVFs, with kE/kK separable. Let π ∈ AE be a
uniformizer. Then

– There exists an injective homomorphism G0/G1 → k×E , given by the formula

s 7−→ s(π)/π mod mL

In particular, G0/G1 is cyclic of order prime to p if char kE = p > 0.

Note: Any finite subgroup of the multiplicative group of a field is cyclic of order
prime to p if characteristic is p > 0.

– If i ≥ 1, then there’s an injective homomorphism Gi/Gi+1 → (kE,+). In particular,
Gi/Gi+1 is abelian and

Gi/Gi+1 =

{
trivial if char kE = 0

Fp-vector space if char kE = p > 0

– The quotient G0/G1 is cyclic, and G1 is:

G1 =

{
trivial if char kE = 0

the unique p-Sylow subgroup of G0 if char kE = p > 0

• Soluble group: LetG be a group. G is soluble if there exist subgroupsG0, G1, G2 . . . , Gk

such that
1 = G0 < G1 < G2 < · · · < Gk = G

such that Gj−1 is normal in Gj and such that Gj/Gj−1 is an abelian group for all j =
1, 2, . . . , k. (i.e. G can be constructed from abelian groups using extensions)

Examples: Any abelian group, any nilpotent group, any finite group of odd order (Feit-
Thompson theorem), any finite group of order < 60

Non-examples: The groups An and Sn for n > 4 are not soluble (indeed, A5 is the
smallest non-soluble group). Any non-cyclic simple group is not soluble.

Orders of non-soluble groups: 60, 120, 168, 180, 240, 300, 336, 360, . . .

• The group IL/K = G0 is soluble. If the residue field kK is finite, then the group Gal(L/K)
is soluble.

Corollary: There is no Galois extension E/Qp with Galois group A5.

• Tamely/Wildly ramified: Let E/K be an extension of CDVFs. We say that the
extension is tamely ramified if either char(kE) = 0 or char(kE) = p > 0 and p 6 |eE/K .

Otherwise, if char(kE) = p and p|eE/K , then we say E/K is wildly ramified.

Note: If E/K is Galois and kE/kK is separable, then

E/K is tamely ramified ⇐⇒ G1 = {1}
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• Let E/K be a Galois extension of CDVFs, which is both totally and tamely ramified
(i.e. eE/K = [E : K] and if charkE = p > 0, then p 6 |eE/K)

Then if n = [E : K], then K contains all the n n-th roots of unity and there exists a
uniformiser πK ∈ AK such that E = K( n

√
πK).

Constructing upper ramification groups:

• For any u ∈ R≥0, we define Gu := Gdue. We now define the ramification function ϕE/K(u)
as

ϕE/K(u) =

∫ u

t=0

[G0 : Gt]
−1dt

Note: ϕE/K(u) is continuous, strictly increasing, piecewise linear function, with discon-
tinies of ϕ′E/K(u) occuring only at integer values. Thus ϕE/K : [0,∞) → [0,∞) is a
homeomorphism.

• We now define ψE/K = ϕ−1
E/K : [0,∞)→ [0,∞) (inverse function of ϕE/K).

• Upper ramification groups: Let v ∈ R≥0. We define the v-th upper ramification
group as

Gv := GψE/K(v)

We say v is a jump in the upper ramification groups if Gv 6= Gv+ε for any ε > 0.

Note: The jumps in the lower ramification groups Gn must be integer values, but the
jumps in the upper ramification groups Gv can occur at rational values.

Example:

• Let E/K be a Galois extension of CDVFs, with kE/kK separable and G = Gal(E/K).
We define iG : G→ Z≥0 ∪ {∞} by

iG(s) =

{
∞ if s = {1}
1 + sup{i : s ∈ Gi} if s 6= {1}

Therefore, we have
iG(s) ≥ i+ 1 ⇐⇒ s ∈ Gi

• For any u ∈ R≥0, we have

ϕE/K(u) + 1 =
1

|G0|
∑
s∈G

min(iG(s), u+ 1)

• Suppose there exists α ∈ AE such that AE = AK [α]. Then iG(s) = vE(s(α)− α).

• THere exists α ∈ AE such that AE = AK [α].

• Let H be a normal subgroup of G, and let L = EH , so we have Gal(L/K) = G/H. Let
s ∈ G. Then

iG/H(sH) =
1

eE/L

∑
t∈H

iG(st)

• Let H be a normal subgroup of G, and let L = EH . Define the function j : G/H →
Z≥0 ∪ {∞} by

j(sH) := sup
t∈H

iG(st)

Then we have
iG/H(sH) = 1 + ϕE/L(j(sH)− 1)
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• Herbrand’s theorem: Let H be a normal subgroup of G, and let L = EH . If u ∈ R≥0

and v = ϕE/L(u), then:

(G/H)v = GuH/H (= Im(Gu → G/H))

• Let H be a normal subgroup of G, and let L = EH . We have that

ϕE/K = ϕL/K ◦ ϕE/L

• Let H be a normal subgroup of G, and let L = EH . For any v ≥ 0, we have

(G/H)v = GvH/H

• Let E/K be an extension of CDVFs (not necessarily Galois), with kE/kK separable. If
v ∈ R≥0, then we define

Ev := E ∩ LGv

where L/E is any extension of CDVFs with kL/kK seperable such that L/K is Galois
and G = Gal(L/K).

Note: Ev is an intermediate extension of E/K and is independent of the choice of L.

• Let E/K be an extension of CDVFs (not necessarily Galois), with kE/kK separable. We
have

– E0 is the maximal unramified subextension.

– If v ≤ v′ then Ev ⊆ Ev′ , and for sufficiently large v, Ev = E.

– If E/M/K is an intermediate extension, then M v = M ∩ Ev.

– If E/M and N/K are two intermediate extensions, then M v ·N v ⊂ (M ·N)v.

In particular, if M v = M and N v = N , then (M ·N)v = M ·N .

• Hasse-Arf Theorem: Let K/Qp be a finite extension, and let E/K be an abelain
extension (i.e. E/K is a Galois extension and Gal(E/K) is abelian). Then all the jumps
in the upper ramification groups are integers.

• Conductor ideal: Let K/Qp be a finite extension, and let E/K be an abelian extension.
We define the conductor ideal CE/K of AK to be (πaK) where

a := inf{n ∈ Z≥0 : Gn = {1}} = 1 + highest jump

Note: CE/K = AK the unit ideal ⇐⇒ E/K is unramified.

• Let K/Qp be a finite extension, and let E/K be a Galois extension. Let E1, E2/K be
subextensions of E/K which are abelian over K. Then E1 · E2 is abelian over K and

CE1·E2/K = lcm(CE1/K , CE2/K).
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5. Global Class Field Theory

Fix a number field K. GCFT aims to describe all abelian extensions E/K.

• Conductor ideal: Let E/K be abelian extension of number fields. The conductor
ideal is the unique ideal CE/K ⊆ OK s.t. for any non-zero prime ideal P ⊂ OK and any
prime ideal Q ⊆ OE lying above P , we have CE/KAKp = CEq/kp .

Equivalently, vp(CE/k) = vp(CEq/kp), and thus

CE/K =
∏

P⊂OK

P
vP (CEQ/KP

)

• Let E/K be extension of number fields. Thus for all but finitely many prime ideals
P ⊂ OK , non-zero, P is unramified in OE.

– If K = Q(α) for α ∈ OK and f(X) ∈ Z[X] is the minimnal polynomial of α, then
disc Ok | discf .

– If p prime, then p|discOK if and only if p is ramified in OK (i.e. ei > 1 for some i).

–

• Kronecker-Weber theorem: Let L/Q be an abelian extension. Then there exists
N ∈ Z≥1 such that L ⊂ Q(ζN). Moreover

L ⊂ Q(ζN) ⇐⇒ CL/Q | (N)

• Let N ≥ 1 be an integer, and let ζN = e2πi/N be a primitive n-th root of unity. We have
that the extension Q(ζN)/Q is abelian, and the isomorphism:

Gal(Q(ζN)/Q) ←→ (Z/NZ)×

σ such that
σ(ζN) = ζaN

7−→ a (mod N)

We have the following bijections:{
Ab extns K/Q
s.t. CK/Q | (N)

}
=

{
Ab extns K/Q
s.t. K ⊆ Q(ζN)

}
↔
{

Quotients of
Gal(Q(ζN)/Q)

}
↔
{

Quotients of
(Z/NZ)×

}
(by KW Theorem) K 7−→ Gal(Q(ζN)/K)

• Artin symbol: If L/K is abelian extension of number fields, and P ⊂ OK a non-zero
prime ideal, and P unramified in OL, then we define the Artin symbol (P,L/K) ∈
Gal(L/K) by

(P,L/K) := FrobQ/P , for any prime ideal Q ⊂ OL lying above P.

• Class field theory over Q: Let N ≥ 1 be an integer, and let K/Q be an abelian exten-
sion such that CK/Q |N . In particular any prime p 6 |N is unramified, so the Artin symbol
((p), K/Q) ∈ Gal(K/Q) is defined. Then there is a unique surjective homomorphism
φK/Q : (Z/NZ)× → Gal(K/Q) given by, for all primes p 6 |N :

φK/Q : (Z/NZ)× −→ Gal(K/Q)

p mod N 7−→ ((p), K/Q)
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This therefore gives a bijection between the following two sets:{
Abelian extensions K/Q

such that CK/Q | (N)

}
←→

{
Quotients of

(Z/NZ)×

}
K 7−→ kerφK/Q

• Modulus: Let K be a number field. A modulus is a pair m = (m0,m∞) where

– m0 ⊂ OK is a non-zero ideal.

– m∞ ⊂ HomQ(K,R) is possibly empty subset.

Partial order: If m = (m0,m∞) and n = (n0, n∞) are moduli, we say m ≤ n if m0|n0

and m∞n∞.

Fact: Note that |HomQ(K,C)| = [K : Q] = r + 2s where

r = |HomQ(K,R)| and

s =
1

2
|{τ ∈ HomQ(K,C) : τ(K) 6⊆ R}|

• If E/K is any abelian extension, we can define its associated modulusmE/K = (mE/K,0,mE/K,∞)
where

mE/K,0 = CE/K

mE/K,∞ = {τ ∈ HomQ(K,R) :6 ∃τ̃ ∈ HomQ(E,R) s.t. τ̃ |K = τ}

(i.e. mE/K,∞ is the set of real embeddings of K which do not extend to real embeddings
of E)

• Ideal class group: Let K be number field. Define

I := DivOk = {non-zero fractional ideals of OK}
P := {I ∈ I : ∃α ∈ K∗ s.t. I = (α)}

(i.e. I is the fractional ideals, and P is the principal fractional ideals) The ideal class
group of OK is I/P .

• Ray class group: Let m = (m0,m∞) be a modulus. Define

k(m0) = {α ∈ K× : ∀P ⊂ OK , vp(m0) > 0 =⇒ vp(α) = 0}
I(m0) = {I ∈ I : ∀P ⊂ OK non-zero prime ideal , vp(m0) > 0 =⇒ vp(I) = 0}
P(m0) = P ∩ I(m0)

The ray class group of modulus M is H(m) = I(m0)/Pm.

Properties:

– H(m) is a finite abelian group.

– There are short exact sequences:

0 −→ P(m0)/Pm −→ H(m) −→ Hk −→ 0

and

0 −→ O×k /(O
×
k ∩ km) −→ (Ok/m0)× × {±1}m∞ −→ P(m0)/Pm −→ 0

In particular,

|H(m)| = |HK | · |(Ok/m0)×| · 2|m∞| · |O×k /O
×
k ∩ km|

−1
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Examples:

– If m = (Ok, ) is the trivial modulus, then H(m) == I/P is the usual class group.

– k = Q, then the modulus (m0,m∞) is such that m0 ⊂ OK = Z and m∞ ⊂ {id}
Case 1: If m0 = (N) and m∞ = {id}:

K(m0) = {α ∈ Q× : p|N =⇒ p 6 |α}
Km = {α ∈ K(m0) : pk||N =⇒ pk|(α− 1) and α > 0}

Thus

H(m) ∼=
(Z/NZ)× × {±1}

Z×
∼= (Z/NZ)×

Case 2: If m0 = (N) and m∞ =: Thus

H(m) ∼=
(Z/NZ)×

Z×

• GCFT: Let K be a number field, m a modulus of k.

..

• Binary quadratic form: A polynomial f(x, y) = ax2 + bxy + cy2 where a, b, c ∈ Z.

Equivalently, f(x, y) =
(
x y

)( a b/2
b/2 a

)(
x
y

)
We say an integer m is represented by f(x, y) if there exist x0, y0 ∈ Z such that f(x0, y0) =
m.
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Misc

• Trace: Let E be a finite extension of K. We have the k-linear map mx : E → E where
mx(y) = xy (multiplication by x). We define the trace TrE/K : E → K as TrE/K = tr(mx)
(usual trace of matrix)

Example: If k = Q, E = Q[
√
d], then {1,

√
d} is basis for E over K. If x = a + b

√
d,

then TrE/k(x) = 2a.

• We have trE/K(x) = σ1(x) + · · ·+ σn(x) where σ are all K-embeddings of E in K̄.

• Compositum: The compositum of two fields E,F is the smallest field containing both
E and F

24


