Algebraic Number Theory

Basics

- Integral domain: $r s=0 \Longrightarrow r=0$ or $s=0$.
- Ideal: A subset I of R such that
- $(I,+)$ subgroup of $(R,+)$.
- For any $r \in R, x \in I$, we have $r x \in I$.
- Principal ideal: Generated by on element $I=(x)$. i.e. $I=\{r x: r \in R\}$.
- Quotient: Let I be ideal of R. The quotient ring R / I is $\{r+I: r \in R\}$, where $r_{1}+I=r_{2}+I$ iff $r_{1}-r_{2} \in I$. Zero element is I and multiplicative identty is $1+I$.
- Maximal: an ideal $I \neq R$ such that, if $I \subseteq J \subseteq R$, then $I=J$ or $J=R$ (i.e. no ideals bigger than I)
- Prime: An ideal $I \neq R$ s.t. $a b \in I \Longrightarrow a \in I$ or $b \in I$
- Let I be an ideal of R
- I is a prime ideal if and only if R / I is an integral domain.
- I is a maximal ideal if and only if R / I is a field.

Corollary: Every maximal ideal is prime

Galois Theory

- Degree: L / K has degree $[L: K]=\operatorname{dim}_{K}(L)$.
- Tower law: $[M: K]=[M: L][L: K]$
- Automorphism group: $\operatorname{Aut}(L / K):=\left\{\sigma: L \rightarrow L: \sigma\right.$ field automorphism s.t. $\left.\sigma\right|_{K}=$ $\left.\mathrm{Id}_{K}\right\}$
Examples:
$-\operatorname{Aut}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q}) \cong \mathbb{Z} / 2 \quad$ (the identity, and $\sqrt{2} \mapsto-\sqrt{2})$
$-\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})=\{\mathrm{id}\}$
- Galois extension: For L / K finite, TFAE
$-L^{\operatorname{Aut}(L / K)}:=\{x \in L: \sigma(x)=x \forall \sigma \in \operatorname{Aut}(L / K)\}=K$
- \#Aut $(L / K)=[L: K]$
- L / K is normal $(\forall \alpha \in L$, the min poly of α has roots in L) and separable $(\forall \alpha \in L$, the min poly of α has distinct roots in \bar{K})
$-L / K$ is the splitting field of a separable polynomial $f \in K[T]$
- Main Theorem: Let L / K be Galois, then we have order-reversing mutually inverse bijections

$$
\begin{aligned}
&\{\text { subextensions } K \subseteq M \subseteq L\} \longrightarrow\{\text { subgroups } H \leq \operatorname{Gal}(L / K)\} \\
& M \longmapsto \operatorname{Gal}(L / M) \\
&\{x \in L: \sigma(x)=x \forall \sigma \in H\} \longleftrightarrow H
\end{aligned}
$$

- Finite fields: If K finite field, then $K \cong \mathbb{F}_{q}$ where $q=p^{r}$ prime power. Moreover $\mathbb{F}_{p^{n}} \subseteq \mathbb{F}_{p^{m}} \Longleftrightarrow n \mid m$
- $\mathbb{F}_{q^{n}} / \mathbb{F}_{q}$ is Galois (is the splitting field of $\left.X^{q}-X\right)$ and $\operatorname{Gal}\left(\mathbb{F}_{q^{n}} / \mathbb{F}_{q}\right)$ is cyclic, generated by the Frobenius, denoted $\operatorname{Frob}_{q}: x \mapsto x^{q}$.

Number Fields

- Number field: A finite extension of $\mathbb{Q}($ e.g. $\mathbb{Q}(i), \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt[3]{2})$.
- Ring of integers: Let L be number field. THe ring of integers θ_{L} is the integral closure of \mathbb{Z} in L.

$$
\theta_{L}=\{\alpha \in L: \exists f \in \mathbb{Z}[T] \text { monic s.t. } f(\alpha)=0\}
$$

- θ is Dedekind domain.
- All ideals have unique factorisation into prime ideals.
- Class group: We define the class group of θ_{L} as:

$$
\mathrm{Cl}\left(\theta_{L}\right)=\left\{\text { non-zero ideals } I \unlhd \theta_{L}\right\} / \sim
$$

where ideals $A \sim B$ if there exists $x, y \in \theta_{L}$ s.t. $(x) I=(y) J$

- Class number: $h_{L}=\# \mathrm{Cl}\left(\theta_{L}\right)$
$-\mathrm{Cl}\left(\theta_{L}\right)$ is a finite abelian group.
$-h_{L}=1$ if and only if θ_{L} is a princiapl ideal domain.
- I.e. If θ_{L} Dededekind domain, then $h_{L}=1$ iff θ_{L} is unique factorisation domain.

Lectures

1. Dedekind domains

- Principal ideal domain: An integral domain in which every ideal is principal (i.e. generated by a single element)
- Discrete Valuation Ring: A ring A which is
- A principal ideal domain
- Has a unique non-zero prime ideal m_{A}

Note: $\quad m_{a}$ is maximal ideal , and A is local ring.
Fact: Every non-zero $x \in A$ can be expressed uniquely as $x=\alpha \pi^{k}$ where α is unit, π is uniformizer, and $k \in \mathbb{Z}_{\geq 0}$.

- Uniformizer: A generator π of the unique maximal ideal in a DVR is called a uniformizer.
- Local ring: Has a unique maximal ideal
- Nakayama's lemma: Let R be local ring, $P \subset R$ the unique maximal ideal, M a fin. gen. R-module. THen
- If $M=P M$, then $M=0$ (i.e. $M / P M=0 \Longrightarrow M=0$)
- If $N \leq M$ is an R-submodule s.t. $N+P M=M$, then $N=M$
- Valuation: Let K be a field. A valuation is a function $\nu: K^{\times} \rightarrow \mathbb{Z}$ such that
$-\nu$ is surjective homomorphism
$-\nu(x+y) \geq \min (\nu(x), \nu(y))$ for all $x, y, \in K^{\times}$with equality if $\nu(x) \neq \nu(y)$.

Examples:

- Let $K=\mathbb{Q}$. We can define a valuation $\nu: \mathbb{Q}^{\times} \rightarrow \mathbb{Z}$ defined by $\nu\left(p^{n} \frac{r}{s}\right)$ if $r, s \in \mathbb{Z}$ and p coprime to r and s.
- Let K be the field of meromorphic functions on \mathbb{C}. Can define $\nu: K^{\times} \rightarrow \mathbb{Z}$ by $\nu(f)=\operatorname{ord}_{z=0} f(z)$.
- Valuation of DVR: Let A be a DVR with uniformiser π, and let $K=\operatorname{Frac}(A)$. Then can define a valuation $\nu(x)=n$, where $x=\pi^{n} u$ for some $n \in \mathbb{Z}$ and $u \in A^{\times}$.
- For any field K, there is a bijection between the valuations $\nu: K^{\times} \rightarrow \mathbb{Z}$ and the subrings $A \subset K$ s.t. A is a DVR and $\operatorname{Frac} A=K$.
- Noetherian ring: A ring where, if $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \ldots$ is an ascending chain of ideals, then there exists N such that $I_{N}=I_{N+1}=\ldots$. Equivalently, a ring where every ideal is finitely generated (i.e there exist $a_{1}, \ldots, a_{n} \in I$ s.t. $I=R a_{1}+\ldots R a_{n}$)
- Integrally closed: Let A, B be rings where $A \subseteq B$. B is integrally closed over A if, for all $b \in B$, there exist $a_{1}, \ldots, a_{n} \in A$ such that

$$
b^{n}+a_{1} b^{n-1}+\ldots a_{n}=0
$$

(i.e. b root of monic polnomial in A)

- Integrally closed domain: An integral domain R such that integral closure of R over $\operatorname{Frac}(R)$ is itself.
- Let A be a Noetherian domain. Then TFAE:
- A is a DVR
- A is integrally closed in $K=\operatorname{Frac} A$ and A has a unique non-zero prime ideal.
- Mutiplicative subset: A subset $S \subseteq A$ s.t. $1 \in S$ and $\forall x, y \in S, x y \in S$.
- Fraction ring: Let $S \subseteq A$ be multiplicative subset. Define $S^{-1} A$ as $A \times S / \sim$ where $(a, s) \sim\left(a^{\prime}, s^{\prime}\right)$ if there exists $t \in S$ s.t. $t\left(s^{\prime} a-s a^{\prime}\right)=0$. Notation: $\frac{a}{s} \in S^{-1} A$.
- Zero element is $\frac{0}{1}$. Multiplicative identty is $\frac{1}{1}$.
- Adddition: $\frac{a}{s}+\frac{a^{\prime}}{s^{\prime}}=\frac{a s^{\prime}+a^{\prime} s}{s s^{\prime}}$
- Multiplication: $\frac{a}{s} \cdot \frac{a^{\prime}}{s^{\prime}}=\frac{a a^{\prime}}{s s^{\prime}}$
(Note: If $0 \in S$, then $S^{-1} A$ is just the trivial zero ring.)
The map $A \rightarrow S^{-1} A$ given by $a \mapsto \frac{a}{1}$ is ring homomorphism with kernel $\{a \in A: \exists s \in$ $S, s a=0\}$
- Fraction ring for modules: Let $S \subseteq A$ be multiplicative subset. Let M be A-module. Define $S^{-1} M$ to be $M \times S / \sim$ where $(m, s) \sim\left(m^{\prime}, s^{\prime}\right)$ if there exists $t \in S$ s.t. $t\left(m s^{\prime}-\right.$ $\left.m^{\prime} s\right)=0$.
$S^{-1} M$ is a $S^{-1} A$-module via
- Additive identity: $\frac{0}{1}$
- Multiplication: $\frac{a}{s} \cdot \frac{m}{s^{\prime}}=\frac{a m}{s s^{\prime}}$
- Addition: $\frac{m}{s}+\frac{m^{\prime}}{s^{\prime}}=\frac{m s^{\prime}+m^{\prime} s}{s s^{\prime}}$
- If $f: M \rightarrow N$ is an A-module homomorphism, then there is a homomoprhism $S^{-1} f$: $S^{-1} M \rightarrow S^{-1} N$ given by $\frac{m}{s} \mapsto \frac{f(m)}{s}$.
- S^{-1} functor: Given the homoprhisms $f: M^{\prime} \rightarrow M$ and $f^{\prime}: M \rightarrow M^{\prime \prime}$, then $S^{-1}\left(f^{\prime} \circ f\right)=$ $S^{-1} f^{\prime} \circ S^{-1} f$ (i.e. S^{-1} is a functor in the category of A-modules)
- Exactness: Let $M^{\prime} \rightarrow M \rightarrow M^{\prime \prime}$ be an exact sequence of A-modules. Then $S^{-1} M^{\prime} \rightarrow$ $S^{-1} M \rightarrow S^{-1} M^{\prime \prime}$ is also exact.
- If f is surjective, then so is $S^{-1} f$.
- If f^{\prime} is injective then so is $S^{-1} f^{\prime}$
- Ideal of fraction ring: Let A be a ring with ideal $I \triangleleft A$. Since $I \rightarrow A$ is injective homorphism of A-modules, we have $S^{-1} I \rightarrow S^{-1} A$ injective homomorphism of A-modules. Therefore, $S^{-1} I$ is an ideal of $S^{-1} A$, which is the ideal:

$$
S^{-1} I=\left\{\frac{x}{s}: x \in I s \in S\right\}
$$

- There is a bijection:

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { prime ideals } P \subset A \\
\text { such that } P \cap S=\emptyset
\end{array}\right\} & \longleftrightarrow\left\{\begin{array}{c}
\text { prime ideals } \\
Q \subset S^{-1} A
\end{array}\right\} \\
P & \longmapsto S^{-1} P \\
f^{-1}(Q) & \longleftrightarrow Q
\end{aligned}
$$

where $f: A \rightarrow S^{-1} A$ is the natural ring homomorphism $a \mapsto \frac{a}{1}$

- Let A be a ring, with prime ideal $P \triangleleft A$. Then $S=A-P$ is a mulitplicative subset of A, and $S^{-1} A$ is a local ring with unique maximal ideal $S^{-1} P$.
Notation: We write $A_{p}=(A-P)^{-1} A$
- Dedekind domain: A ring R where
$-R$ is Noetherian domain.
- R is integrally closed (domain).
- R has (Krull) dimension 1 (i.e. every nonzero prime ideal is maximal).
- Let A be a ring. TFAE:
- A is a Dedekind domain.
- A is Noetherian domain, and for every non-zero prime ideal $P \subset A$, the localisation A_{p} is a DVR.
- Fractional ideal: Let A be domain, $K=\operatorname{Frac}(A)$. A fractional ideal of A is a finitely generated A-submodule of K.

Equivalently, a fractional ideal I of A is an A-submodule of K, such that there exists $r \in A$ such that $r I \subset A$ (element which 'clears out denominators')

Examples:

- If $A=\mathbb{Z}$, then all ideals are principal (i.e. of the form $n \mathbb{Z}$ for some $n \in \mathbb{Z}$). All fractional ideals are of the form $\frac{n}{m} \mathbb{Z}$ for some $n, m \in \mathbb{Z}$

If $I, J \subset K$ are freactional ideals, then
$-I+J=\{x+y: x \in I, y \in J\}$ is also fractional ideal.
$-I J=(x y: x \in I, y \in J)$ is also fractional ideal.

- $(I: J)=\{x \in K: x J \subset I\}$ is A-submodule of K (If J non-zero, then is also fractional ideal)
- Let A be a Noetherian domain, and $S \subset A$ a multiplicative subset. Then
- IF I, J fractional ideals, then $S^{-1} I$ is a fractional ideal of $S^{-1} A$ and:

$$
\begin{aligned}
& * S^{-1}(I+J)=S^{-1} I+S^{-1} J \\
& * S^{-1}(I J)=S^{-1} I \cdot S^{-1} J
\end{aligned}
$$

- If I, J are fractional ideals, and J is non-zero, then $(I: J)$ is a fractional ideal of A and $S^{-1}(I: J)=\left(S^{-1} I: S^{-1} J\right)$.
- Let A Dedekind domain. Let $\operatorname{Div} A$ be set of non-zero fractional ideals. $\operatorname{Div} A$ forms a group under the operation of multiplication of fractional ideals. (Inverse of I is $(A: I)$)
- Valuation for fractional ideals: Let A be Dedekind domain, let $P \subset A$ be prime ideal, and let $\nu_{p}: K^{\times} \rightarrow \mathbb{Z}$ be the valuation corresponding to A_{p}.
THen for any $I \in \operatorname{Div} A$, we have $I A_{p}=(x)$ for some $x \in K^{\times}$. We define the valuation of I as the surjective homorphism $\nu_{p}(I):=\nu_{p}(x)$.
- Let A be Dedekind domain. Then for non-zero ideal $I \subset A$, there are only finitely many non-zero prime ideals $P \subset A$ such that $I \subset P$ (i.e. finitely many primes lying above I).
Also, for any $I \in \operatorname{Div} A$, there are only finitely many non-zero priem ideals P such that $v_{p}(I)$ is finite.
- The map $\operatorname{Div} A \longrightarrow \oplus_{p} \mathbb{Z}$ is an isomorphism.
- For any $I \in \operatorname{Div} A$, we have $I=\prod_{p} p^{\nu_{p}(I)}$
- Unique factorisation of ideals: Let A be a Dedekind domain, and let $I \subset A$ be a non-zero ideal. Then I admits a unique expression:

$$
I=\prod_{i=1}^{n} P_{i}^{a_{i}}
$$

where the P_{i} are distinct prime ideals of A. This expression is uniquely determined upto re-ordering of terms.

Fact: For every number field, the ring of integers is always a Dedekind domain! (but not necessarily a PID)

2. Complete DVRs

- Inverse System: Given groups $A_{i}(i \in \mathbb{N})$ and homomorphisms $f_{i}: A_{i+1} \rightarrow A_{i}(i \in \mathbb{N})$

$$
A_{1} \stackrel{f_{1}}{\leftarrow} A_{2} \stackrel{f_{2}}{\leftrightarrows} A_{3} \stackrel{f_{3}}{\leftrightarrows} A_{4} \stackrel{f_{4}}{\leftarrow} \ldots
$$

- Inverse limit:

$$
{\underset{\overleftarrow{l}}{i}}^{\lim _{i}} A_{i}=\left\{\left(a_{i}\right) \in \prod_{i=1}^{\infty} A_{i}: \forall i \geq 1, f_{i}\left(a_{i+1}\right)=a_{i}\right\} \leq \prod_{i=1}^{\infty} A_{i}
$$

Fact: Inverse limit of groups/abelian groups/rings is a group/abelian group/ring.

- Completion of DVR: Let A be a DVR, with uniformiser π. Then we can consider the inverse system:

$$
A /(\pi) \longleftarrow A /\left(\pi^{2}\right) \longleftarrow A /\left(\pi^{3}\right) \longleftarrow A /\left(\pi^{4}\right) \longleftarrow \ldots
$$

with maps the natural quotient maps. We define the inverse limit to be $\hat{A}:=\underset{i}{\underset{i}{\lim }} A /\left(\pi^{i}\right)$. There is a natural homomorphism $A \longrightarrow \underset{i}{\lim _{i}} A /\left(\pi^{i}\right)$.

- Complete: We say A is complete if $A \rightarrow \underset{i}{\underset{\gtrless}{i}} A /\left(\pi^{i}\right)$ is an isomorphism. (A complete \Longleftrightarrow map is surjective)
Note: The kernel of above map is $\bigcap_{i \geq 1}\left(\pi^{i}\right)=0$. Therefore map is always an injective homomorphism.
- Let A be DVR with fraction field K and valuation $\nu: K^{\times} \rightarrow \mathbb{Z}$. Then TFAE:
- A is complete.
- A is complete as metric space w.r.t the metric

$$
d(x, y)= \begin{cases}0 & \text { if } x=y \\ 2^{-\nu(x-y)} & \text { if } x \neq y\end{cases}
$$

- K is complete as metric space w.r.t. metric given above
- Ultrametric: A metric d satisfying $d(x, z) \leq \max (d(x, y), d(y, z))$

Useful facts:

- Sequences $\left(x_{i}\right)$ s.t. $\left|x_{n+1}-x_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$ are Cauchy
- All open balls (with positive radius) are closed, and all closed balls are open.
- Totally disconnected: A topological space is totally disconnected if the only connected subsets are the singletons (i.e. no non-trivial connected subsets)
- Let A be a DVR, with $\pi \in A$ a uniformizer. THen:
- THe map $A \rightarrow \hat{A}$ is injective. \hat{A} is a complete DVR, and π is a uniformizer of \hat{A}.
- FOr all $i \geq 1$, the map $A / \pi^{i} A \rightarrow \hat{A} / \pi^{i} \hat{A}$ is an isomorphism.
- Let $X \subset A$ be a subset of representatives for the residue classes of $A /(\pi)$ with $0 \in X$. Then for all $a \in \hat{A}$, there exists a unique expression of the form

$$
a=\sum_{i=0}^{\infty} a_{i} \pi^{i}
$$

with $a_{i} \in X$ for all $i \geq 0$.

- p-adic numbers: Let p be a prime. We define the p adic integers $\mathbb{Z}_{p}=\hat{\mathbb{Z}}_{(p)}$ where $\mathbb{Z}_{(p)}=(\mathbb{Z}-(p))^{-1} \mathbb{Z}$ and the p-adic rationals $\mathbb{Q}_{p}=\operatorname{Frac} \mathbb{Z}_{p}$
Fact: $p \in \mathbb{Z}_{p}$ is a uniformizer and the residue field $\mathbb{Z}_{p} /(p) \cong \mathbb{Z} / p \mathbb{Z}$
Each element of \mathbb{Z}_{p} has a unique expression: $\sum_{i=0}^{\infty} a_{i} p^{i}$, where $a_{i} \in\{0,1, \ldots, p-1\}$
Each element of \mathbb{Q}_{p} has a unique expression: $\sum_{i \in \mathbb{Z}} a_{i} p^{i}$, where $a_{i} \in\{0,1, \ldots, p-1\}$ with the set $\left\{i<0: a_{i} \neq 0\right\}$ finite.
Multiplication and addition is done in the same way as for formal power series, except we now need to 'carry' digits
- Hensel's lemma: Let A be complete DVR. Let $f(x) \in A[x]$ be monic polynomial. Suppose there exists $\alpha \in A$ such that $v(f(\alpha))>2 v\left(f^{\prime}(\alpha)\right)$. Then, there exists unique $a \in A$ such that $f(a)=0$ and $v(a-\alpha)>v\left(f^{\prime}(\alpha)\right)$.
Construction: Define a sequence of numners a_{1}, a_{2}, \ldots, where $a_{1}=\alpha$ and

$$
a_{n+1}=a_{n}-\frac{f\left(a_{n}\right)}{f^{\prime}\left(a_{n}\right)}
$$

Then $\left(a_{n}\right)_{n \geq 1}$ is a Cauchy seuqnece, and thus we have the limit $a:=\lim _{n \rightarrow \infty} a_{n}$.

- Hensel's corollary: Let A complete DVR. Let $f(x) \in A[x]$ be monic, Let $k=A /(\pi)$ and $\bar{f}(x)=f(x) \bmod (\pi) \in k[x]$. Suppose there exists $\bar{\alpha} \in K$ a simle root of $\bar{f}(X)$. Then, there exists a unique $a \in A$ s.t. $f(a)=0$ and $a \equiv \bar{\alpha} \bmod (\pi)$
(this is specific case where $v\left(f^{\prime}(\alpha)\right)=0$)
- Squares in \mathbb{Z}_{p}^{\times}:
- If p is odd, then $u \in \mathbb{Z}_{p}^{\times}$is a square if and only if $u \bmod p \in \mathbb{F}_{p}^{\times}$is a square.
- If $p=2$, then $u \in \mathbb{Z}_{p}^{\times}$is a square if and only if $u \equiv 1 \bmod 8$. (i.e. if $u \bmod 8$ is a square in $(\mathbb{Z} / 8 \mathbb{Z})^{\times}$.
- Cubes in \mathbb{Z}_{p}^{\times}:
- If $p \neq 3$, then $u \in \mathbb{Z}_{p}^{\times}$is a cube if and only if $u \bmod p \in \mathbb{F}_{p}^{\times}$is a cube.
- If $p=3$, then $u \in \mathbb{Z}_{p}^{\times}$is a cube if and only if if $u \bmod 9$ is a cube in $(\mathbb{Z} / 9 \mathbb{Z})^{\times}$.
- n-th powers in \mathbb{Z}_{p}^{\times}:
- If $p \nmid n$, then $u \in \mathbb{Z}_{p}^{\times}$is an n-th power if and only if $u \bmod p \in \mathbb{F}_{p}^{\times}$is an n-th power.
- If $p=n$, then then $u \in \mathbb{Z}_{p}^{\times}$is an n-th power if and only if $u \bmod p^{2} \in \mathbb{F}_{p^{2}}^{\times}$is an n-th power.
- Teichmuller lift: There's a surjective homomorphism $\mathbb{Z}_{p}^{\times} \rightarrow \mathbb{F}_{p}^{\times}$given by $\sum_{i=0}^{\infty} a_{i} p^{i} \mapsto$ $a_{0} \bmod p$.
There's exists a unique homomorphism $\tau: \mathbb{F}_{p}^{\times} \rightarrow \mathbb{Z}_{p}^{\times}$s.t. for all $\bar{\alpha} \in \mathbb{F}_{p}^{\times}, \tau(\bar{\alpha}) \bmod p=\bar{\alpha}$. This is called the Teichmuller lift.
(i.e. τ sends every $\bar{\alpha} \in \mathbb{F}_{p}^{\times}$to the unique ($p-1$)-st root of unity in \mathbb{Z}_{p}^{\times}that reduces to it, or in other words the unique root α of $X^{p}-X$ such that $\alpha \bmod p=\bar{\alpha}$)
Examples:
- $p=2$, then $\tau(1)=1$.
- $p=3$, then $\tau(1)=1$, and

$$
\tau(2)=2+2 p+2 p^{2}+2 p^{3}+2 p^{4}+2 p^{5}+2 p^{6}+2 p^{7}+2 p^{8}+2 p^{9}+\cdots=-1
$$

- $p=5$, then $\tau(1)=1$, and

$$
\begin{aligned}
& \tau(2)=2+1 p+2 p^{2}+1 p^{3}+3 p^{4}+4 p^{5}+2 p^{6}+3 p^{7}+0 p^{8}+3 p^{9}+\ldots \\
& \tau(3)=3+3 p+2 p^{2}+3 p^{3}+1 p^{4}+0 p^{5}+2 p^{6}+1 p^{7}+4 p^{8}+1 p^{9}+\ldots \\
& \tau(4)=4+4 p+4 p^{2}+4 p^{3}+4 p^{4}+4 p^{5}+4 p^{6}+4 p^{7}+4 p^{8}+4 p^{9}+\cdots=-1
\end{aligned}
$$

$-p=7$, then $\tau(1)=1$, and

$$
\begin{aligned}
& \tau(2)=2+4 p+6 p^{2}+3 p^{3}+0 p^{4}+2 p^{5}+6 p^{6}+2 p^{7}+4 p^{8}+3 p^{9}+\ldots \\
& \tau(3)=3+4 p+6 p^{2}+3 p^{3}+0 p^{4}+2 p^{5}+6 p^{6}+2 p^{7}+4 p^{8}+3 p^{9}+\ldots \\
& \tau(4)=4+2 p+0 p^{2}+3 p^{3}+6 p^{4}+4 p^{5}+0 p^{6}+4 p^{7}+2 p^{8}+3 p^{9}+\ldots \\
& \tau(5)=5+2 p+0 p^{2}+3 p^{3}+6 p^{4}+4 p^{5}+0 p^{6}+4 p^{7}+2 p^{8}+3 p^{9}+\ldots \\
& \tau(6)=6+6 p+6 p^{2}+6 p^{3}+6 p^{4}+6 p^{5}+6 p^{6}+6 p^{7}+6 p^{8}+6 p^{9}+\cdots=-1
\end{aligned}
$$

- We have the following isomorphism:

$$
\begin{array}{clc}
\mathbb{Q}_{p}^{\times} & \cong & \mathbb{Z} \times\left(1+p \mathbb{Z}_{p}\right) \times \mathbb{F}_{p}^{\times} \\
p^{n} \cdot u \cdot \tau(\bar{\alpha}) & \longmapsto & (n, u, \bar{\alpha})
\end{array}
$$

- We also have the isomorphism:

$$
\mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{n} \cong \mathbb{Z} / n \mathbb{Z} \times \mathbb{F}_{p}^{\times} /\left(\mathbb{F}_{p}^{\times}\right)^{n}
$$

- Let q be a prime that divides $p-1$. Then \mathbb{Q}_{p} has exactly $q+1$ isomorphism classes of Galois extensions of degree q.

Corollary: Let p be an odd prime. Then \mathbb{Q}_{p} has exactly 3 isomorphism classes of quadratic extensions.

Let $n \in\{1,2, \ldots, p-1\}$ be a quadratic nonresidue $\bmod p$. Then the three distinct quadratic extension of \mathbb{Q}_{p} can be given as $\mathbb{Q}_{p}(\sqrt{n}), \mathbb{Q}_{p}(\sqrt{p}), \mathbb{Q}_{p}(\sqrt{n p})$

3. Extensions of Dedekind domains

- Integral: Let A be Dedekind domain, $K=\operatorname{Frac}(A)$. Let E / K be finite separable extension. We say $\gamma \in E$ is integral over A if $\exists n \geq 1, a_{1}, \ldots, a_{n} \in A$ s.t.

$$
\gamma^{n}+a_{1} \gamma^{n-1}+\cdots+a_{n}=0
$$

- Let A be Dedekind domain, $K=\operatorname{Frac}(A)$ and E finite separable extension of K. The following are equivalent:
- γ integral over A
- $A[\gamma]$ is a finitely generated A-module
- There exists a non-zero $A[\gamma]$-submodule $M \subseteq E$ which is a finitely generated A module.
- Integral closure: The integral closure of A in E is the set B consisting of all elements in E which are integral over A.
Example: Let $A=\mathbb{Z}$, then $\operatorname{Frac}(A)=\mathbb{Q}$.
- If $E=\mathbb{Q}(\sqrt{2})$, then $B=\mathbb{Z}(\sqrt{2})$.
- If $E=\mathbb{Q}(\sqrt{5})$, then $B=\mathbb{Z}\left(\frac{1+\sqrt{5}}{2}\right)$.
- Let ζ be any root of unity. If $E=\mathbb{Q}(\zeta)$, then $B=\mathbb{Z}(\zeta)$.
- B is a subring of E, and B is integrally closed in E.
- Let E / K be finite separable extension. Let $T: E \times E \rightarrow K$ be the symmetric bilinear form defined by $T(x, y)=\operatorname{tr}_{E / K}(x y)$. Then T is non-degenerate. (i.e. for all non-zero $x \in E$, there exists $y \in E$ such that $T(x, y) \neq 0$)
Localisation fact: Let $S \subseteq A$ be multiplicative subset, with $0 \notin S$. Then $S^{-1} A$ is Dedekind domain with $\operatorname{Frac}\left(S^{-1} A\right)=K$. Integral closure $S^{-1} A$ in E is $S^{-1} B$.
- Fact: B is finitely generated A-module and B is Dedekind domain
- Setup: A is Dedekind domain with $K=\operatorname{Frac}(A)$. E is finite sepearable extesnion of A. B is integral closure of A in $E . Q$ is some non-zero prime ideal in B. Then $P=A \cap Q$ is non-zero prime ideal. We say Q lies above P.

- Let $Q \subset B$ and $P \subset A$ be non-zero prime ideals. Then the following are equivalent:
- Q lies above P. (i.e. $P=Q \cap A$)
$-Q \supset P B$.
- Q appears in the prime factorisation of $P B$ (i.e. $v_{Q}(P B)>0$ where $v_{Q}: E^{\times} \rightarrow \mathbb{Z}$ is the valuation corresponding to Q)

Fact: B / Q and A / P are fields and $(B / Q) /(A / P)$ is a finite extension.

- If Q lies above P, we define
- Residue degree: $f_{Q / P}:=[B / Q: A / P] \geq 1$
- Ramification index: $e_{Q / P}:=v_{Q}(P B) \geq 1$, where $v_{Q}: E^{\times} \rightarrow \mathbb{Z}$ is valuation corresponding to Q.
- Prime factorisation of ideals: $P B=Q_{1}^{e_{Q_{1} / P}} \ldots Q_{r}^{e_{Q_{r} / P}}$
- Let $P \subset A$ be a non-zero prime ideal. Then

$$
\sum_{Q: v_{Q}(P B)>0} e_{Q / P} f_{Q / P}=[E: K]
$$

(the sum running over all primes ideals Q of B lying over P.)

- Let P be non-zero prime ideal of A, and let $Q_{1}, Q_{2}, \ldots, Q_{r}$ be all the prime ideals of B lying above P.
- Unramified: If for all $i=1,2, \ldots, r$, we have B / Q_{i} a seprable extension, and $e_{Q_{i} / P}=1$, then we say P is unramified in B.
- Splits completely: If for all $i=1,2 \ldots, r$, we have $e_{i}=f_{i}=1$, then we say P splits completely in B. (i.e. $r=[E: K]$)
- Ramified: If $e_{i}>1$ for some $i=1, \ldots, r$, then we say P is ramified in B.
- Ramifies completely: If $r=1$ and $f_{1}=1$ (and thus $e_{1}=[E: K]$), we say that P ramifies completely in B.
- Inert: If $r=1$ and $e_{1}=1$ (and thus $f_{1}=[E: K]$), we say that P is inert.
- Ring of integers: If E / \mathbb{Q} is a number field, then we denote \mathcal{O}_{E} as the integral closure of \mathbb{Z} in E, called the ring of integers of E.
If $K=\mathbb{Q}(\sqrt{d})$, where $d \in \mathbb{Z}$ squarefree, then

$$
\mathcal{O}_{K}= \begin{cases}\mathbb{Z}[\sqrt{d}] & \text { if } d \equiv 2,3 \quad(\bmod 4) \\ \mathbb{Z}\left[\frac{1+\sqrt{d} d}{2}\right] & \text { if } d \equiv 1 \quad(\bmod 4)\end{cases}
$$

To factorise (p), we ...

- Prime factorisation for $E=\mathbb{Q}(\sqrt{d})$: For p odd, then:

$$
p \begin{cases}\text { splits completely } & \text { if }\left(\frac{d}{p}\right)=1 \\ \text { is unramified (and not split) } & \text { if }\left(\frac{d}{p}\right)=-1 \\ \text { is ramified } & \text { if } p \mid d\end{cases}
$$

where $\left(\frac{d}{p}\right)$ is the Legendre symbol which is 1 iff d is square $\bmod p$
(Euler's criterion states $\left(\frac{d}{p}\right) \equiv_{p} d^{(p-1) / 2}$)
For $p=2$:

$$
2 \begin{cases}\text { splits completely } & \text { if } d \equiv 1(\bmod 4) \text { and } \frac{1-d}{4} \text { even }\left(d \equiv_{8} 1\right) \\ \text { is unramified (and not split) } & \text { if } d \equiv 1(\bmod 4) \text { and } \frac{1-d}{4} \text { odd }\left(d \equiv_{8} 5\right) \\ \text { is ramified } & \text { if } d \equiv 2,3(\bmod 4)\end{cases}
$$

- Factorisation of $p O_{E}$ for quadratic extensions: If p is odd, then:

$$
p O_{E}= \begin{cases}\left(p O_{E}+(. .) O_{E}\right)\left(p O_{E}+(. .) O_{E}\right) & \text { if }\left(\frac{d}{p}\right)=1 \\ p O_{E} & \text { if }\left(\frac{d}{p}\right)=-1 \\ \left(p O_{E}+(. .) O_{E}\right)^{2} & \text { if } p \mid d\end{cases}
$$

- Let A, K, E, B given in setup. Suppose E / K is Galois, and let $G=\operatorname{Gal}(E / k)$. Then for all $\sigma \in G, \sigma(B)=B$. (i.e. the action of G on E leaves B invariant)
- Let E / K be Galois, and let $Q \subset B$ be non-zero prime ideal, with $P=Q \cap A$. Then

1. G acts transitively on prime ideals of B lying above P.
(i.e. only one orbit. $\forall Q_{1}, Q_{2} \supseteq P, \exists \sigma \in G$ s.t. $\left.\sigma\left(Q_{1}\right)=Q_{2}\right)$
2. For all $\sigma \in G, f_{\sigma(Q) / P}=f_{Q / P}$ and $e_{\sigma(Q) / P}=e_{Q / P}$.
(i.e. e and f depend only on P, and not Q)
3. Let $g_{Q / P}$ be the number of prime ideals lying above P. Then $e_{Q / P} f_{Q / P} g_{Q / P}=[E$: $K]=|G|$

- Decomposition group: Setup above, Q lies above P. The decomposition group $D_{Q / P}=$ $\operatorname{Stab}_{G}(Q)=\{\sigma \in G: \sigma(Q)=Q\}$.
- Let E / K Galois. Suppose $Q \subset B$ lies above $P \subset A$, and suppose that $(B / Q) /(A / P)$ is separable. Then
$-(B / Q) /(A / P)$ is a Galois field extension.
- The map

$$
\begin{aligned}
D_{Q / P} & \longrightarrow \operatorname{Gal}((B / Q) /(A / P)) \\
\sigma & \left.\longmapsto \sigma\right|_{B} \bmod Q
\end{aligned}
$$

is a surjective group homomorphism.

- Inertia group: Define the inertia group at Q as $I_{Q / P}=\operatorname{ker}\left(D_{Q / P} \rightarrow \operatorname{Gal}\left(k_{Q} / k_{P}\right)\right)=$ \{automorphisms of E / K that induce the identity on B / Q \}
Fact: $\quad\left|I_{Q / P}\right|=e_{Q / P}$, and thus $I_{Q / P}$ is trivial (and thus $D_{Q / P} \rightarrow \operatorname{Gal}\left(k_{Q} / k_{P}\right)$ an isomorphism) iff Q is unramified over P.
- Frobenius automorphism at Q : If P is unramified in E, then we have an element

$$
\operatorname{Frob}_{Q / P} \in D_{Q / P} \subset G
$$

defined as the unique element in $D_{Q / P}$ which induces the Frobenius automorphism on the residue field extension k_{Q} / k_{P}.

- Let $f(X)=X^{n}+a_{1} X^{n-1}+a_{2} X^{n-2}+a_{n} \in \mathbb{Z}[X]$ be irreducible. Let E be the splitting field of $f(X)$ over \mathbb{Q}, and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be the roots of $f(X)$.
(note that $\operatorname{Gal}(E / \mathbb{Q})$ can be identified as a subgroup of the symmetric group on $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$), i.e. we have

$$
\operatorname{Gal}(E / \mathbb{Q}) \hookrightarrow S_{n}=\operatorname{Sym}\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right)
$$

Now suppose p is a prime number such that $\bar{f}(X)=f(X)=\bmod p \in \mathbb{F}_{p}[X]$ factors as

$$
\bar{f}(X)=\prod_{i=1}^{r} \bar{f}_{i}(X)
$$

where $\bar{f}_{1}(X), \bar{f}_{2}(X), \ldots, \bar{f}_{r}(X)$ are distinct monic irreducible polynomials in $\mathbb{F}_{p}[x]$.
Then $\operatorname{Gal}(E / \mathbb{Q})$ contains a permutation of cycle type $\left(d_{1}\right)\left(d_{2}\right) \ldots\left(d_{r}\right)$ where $d_{i}=\operatorname{deg} \bar{f}_{i}(X)$ (i.e. there's a permutation which has a cycle of length d_{1}, a cycle of length d_{2}, \ldots, and a cycle of length d_{r})

- Passage to completion: Let A be Dedekind domain, with $K=\operatorname{Frac}(A)$. Let E / K be finite separable extension, and B the integral closure of A in E. Let $P \subset A$ be a non-zero prime ideal, and let $Q \subset B$ be a prime ideal lying above P. Then we have

1. There's a natural homomorphism $\hat{A}_{P} \rightarrow \hat{B}_{Q}$ extending the map $A \rightarrow B$.
2. Let $K_{p}=\operatorname{Frac} \hat{A}_{p}$, and $E_{Q}=\operatorname{Frac} \hat{B}_{Q}$. Then E_{Q} / K_{p} is finite separable extension, \hat{B}_{Q} is integral closure of \hat{A}_{P} in E_{Q} and $E_{Q}=K_{p} \cdot E$.
3. We have $e_{Q / P}=e_{Q \hat{B}_{Q} / P \hat{A}_{P}}$ and $f_{Q / P}=f_{Q \hat{B}_{Q} / P \hat{A}_{p}}$ and $\left[E_{Q}: K_{P}\right]=e_{Q / P} f_{Q / P}$.
4. If E / K Galois, then E_{Q} / K_{P} also Galois, and there's a natural isomorphism $D_{Q / P} \rightarrow$ $\operatorname{Gal}\left(E_{Q} / K_{P}\right)$

- Bijection between prime ideals and irreducible factors: Let A be Dedekind domain, with $K=\operatorname{Frac}(A)$. Let E / K be finite separable extension, and B the integral closure of A in E. Let $E=K(\alpha)$ and let $f(X) \in K[X]$ be minimal polynomial of α. Then there's a bijection for any non-zero prime ideal $P \subset A$:

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { Prime ideals } Q \subset B \\
\text { lying above } P
\end{array}\right\} & \longleftrightarrow\left\{\begin{array}{c}
\text { Irreducible factors } \\
g(X) \text { of } f(X) \text { in } K_{p}[X]
\end{array}\right\} \\
Q & \begin{array}{c}
\text { Unique irreducible factor } \\
g(X) \text { of } f(X) \text { in } K_{p}[X] \\
\text { such that } g(\alpha)=0 \text { in } E_{Q}
\end{array}
\end{aligned}
$$

Example: Let $A=\mathbb{Z}$, then $K=\mathbb{Q}$ and let $E=\mathbb{Q}(\sqrt{d})$, and then $B=O_{E}$. Let (p) be a prime in \mathbb{Z}. Thus, the prime ideals of $p O_{E}$ are in bijection with irreducible factors of $X^{2}-d$ in $\mathbb{Q}_{p}[X]$.

4. Extensions of complete DVRs

- Complete discrete valuation field. We call a pair $\left(K, v_{k}\right)$ a CDVF if K is a field and $v_{K}: K^{\times} \rightarrow \mathbb{Z}$ is a valuation and the corresponding DVR $A_{K}=\left\{x \in K^{\times}: v_{K}(x) \geq\right.$ $0\} \cup\{0\}$ is complete.

Examples:

- $K=\mathbb{Q}_{p}$ (completion of \mathbb{Q} w.r.t v_{p}). Coresponding DVR is \mathbb{Z}_{p}, and residue field is \mathbb{F}_{p}.
- $K((X))$ (formal power series over field K, completion of $K(X)$ w.r.t v_{X}) i.e. element of the form

$$
\sum_{n \in \mathbb{Z}} a_{n} X^{n}
$$

where $a_{n} \in K$ and $a_{n}=0$ for all but finitely many negative n. Corresponding DVR is $K[[X]]$ (no negative terms) and residue field is K.

Notation: Uniformizer is $\pi_{K} \in A_{K}$. Residue field is $k_{K}=A_{K} /\left(\pi_{K}\right)$.

- Let K be a CDVF, and let E / K be a finite separable extension, Then E has a natural structure of CDVF.
- Extension of CDVFs: An extension E / K such that K is a CDVF, E / K is finite separable extension, and E has the natural structure of CDVF, with the valuation v_{E} given by the above lemma.
Setup:
- A_{E} and A_{K} are DVRs.
- Residue degree: $f_{E / K}:=f_{\left(\pi_{E}\right) /\left(\pi_{K}\right)}=\left[k_{E}: k_{K}\right]$
- Ramification index: $\quad e_{E / K}:=e_{\left(\pi_{E}\right) /\left(\pi_{K}\right)}=v_{E}\left(\pi_{K}\right)$
- If v_{E} is restricted to K^{\times}, then we have $\left.v_{E}\right|_{K^{\times}}=e_{E / K} v_{K}$
$-[E: K]=e_{E / K} \cdot f_{E / K}$
- Let E / K be an extension of CDVFs. Then:
- If E / K is Galois, then for all $\sigma \in \operatorname{Gal}(E / K), x \in E, v_{E}(\sigma(x))=v_{E}(x)$
- In general (not assuming Galois), for all $x \in E^{\times}$, we have

$$
v_{E}(x)=\frac{1}{f_{E / K}} v_{K}\left(N_{E / K}(x)\right)
$$

- Newton polygon: Let A be a $\operatorname{DVR}, K=\operatorname{Frac}(A)$, and let

$$
f(X)=X^{n}+a_{1} X^{n-1}+a_{2} X^{n-2} \cdots+a_{n}
$$

be a polynomial in $K[X]$ with $a_{n} \neq 0$. Then the Newton polygon $N_{K}(f)$ is the graph of the largest piecewise linear continuous function $N:[0, n] \rightarrow \mathbb{R}$ s.t.

- $N(0)=0$ and $N(n)=v\left(a_{n}\right)$
- For all $j=1,2, \ldots, n-1, N(j) \leq v\left(a_{j}\right)$ if $a_{j} \neq 0$.
- N is convex (i.e. the sequence of slopes of line segments of $N_{K}(f)$ is increasing).

Equivalently, N is the lower convex hull of the points $\left(j, v\left(a_{j}\right)\right)$, for $j=0,1, \ldots, n$.

- Slopes: The slopes of $N_{k}(f)$ are the slopes/derivatives of the line segments.
- Multiplicity: The multiplicity of a slope is the length of the projection of the corresponding line segment to the x-axis.

Example: Let $K=\mathbb{Q}_{5}$, and let $f(X)=X^{3}+25 X^{2}+5 X+125$. Then the Newton polygon $N_{\mathbb{Q}_{5}}(f)$ looks like:

The slopes are $\frac{1}{2}$ (with multiplicity 2) and 2 (with multiplicity 1).

- Let A be $\operatorname{DVR}, K=\operatorname{Frac}(A)$, and let $\alpha_{1}, \ldots, \alpha_{n} \in K^{\times}$be such that $f(X)$ factors as

$$
f(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)=X^{n}+a_{1} X^{n-1}+a_{2} X^{n-2}+\cdots+a_{n} \in K[x]
$$

Let $\lambda_{i}=v\left(\alpha_{i}\right), i=1, \ldots, n$. Then $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the slopes of $N_{k}(f)$ counted with multiplicity.
In particular, the slopes of $N_{K}(f)$ are all integers.

- Let K be a CDVF, and let $f(X) \in K[x], a_{n} \neq 0$ be separable. Let $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{r}$, be the slopes of $N_{K}(f)$, where λ_{i} occurs with multiplicity $m_{i} \geq 1$.
Then there exists a unique factorisation $f(X)=\prod_{i=1}^{r} g_{i}(X)$ in $K[x]$ where for all $i=$ $1, \ldots, r, g_{i}(X)$ is a monic polynomial with degree $\operatorname{deg}\left(g_{i}\right)=m_{i}$ and $N_{K}\left(g_{i}\right)$ has a single slope λ_{i}.
(i.e. if $N_{K}(f)$ has r distinct slopes, then f can be factorised in to (at least) r factors)
- Let E / K extension of CDVFs, then
- E / K is unramified if k_{E} / k_{K} is separable and $e_{E / K}=1$. (and thus $f_{E / K}=[E: K]$)
- E / K is totally unramified if $f_{E / K}=1$. (and thus $e_{E / K}=[E: K]$)
- Eisenstein: Let A be DVR, with $K=\operatorname{Frac}(A)$. We say $f(X)=X^{n}+a_{1} X^{n-1}+\cdots+a_{n} \in$ $A[X]$ is Eisenstein if $v_{k}\left(a_{i}\right) \geq 1$ for each $i=1, \ldots, n-1$ such that $a_{i} \neq 0$, and $v_{k}\left(a_{n}\right)=1$.
Fact: For any monic $f(X) \in K[X], f$ is Eisenstein if and only if $N_{K}(f)$ is a single line segment of slope $\frac{1}{n}$.
Example:

Constructing totally ramified extensions:

- Let E / K be totally ramified extension of CDVFs. Let $f(x) \in K[x]$ be the minimal polynomial of π_{E}. Then $f(X)$ is Eisenstein and $E=K\left(\pi_{E}\right)$.
- Let K be a CDVF, and let $f(X) \in K[X]$ be a separable polynomial which is Eisenstein. Then $f(X)$ is irreducible and if $E=K[x] /(f(X))$, then E / K is totally ramified and X $\bmod (f(X))$ is a uniformizer in A_{E}.

Constructing unramified extensions:

- Let K be a CDVF. Let ℓ / k_{K} be a finite separable extension. Then there exists an extension L / K of CDVFs and an isomorphism $i: \ell \rightarrow k_{L}$ with the following property: For any extension E / K of CDVFs and homomorphism $j: \ell \rightarrow k_{E}$ there exists a unique K-embedding $J: L \rightarrow E$ such that the diagram commutes:

(i.e. $J: L \rightarrow E$ induces $j \circ i^{-1}$ on residue fields)

Moreover, L / K is unramified.

- Let p be a prime. Then for any $n \geq 1$, there is a unique unramified extension of \mathbb{Q}_{p} of degree n (up to isomorphism).

Fact: For any $n \geq 1$, there is a unique extension $\mathbb{F}_{p^{n}} / \mathbb{F}_{p}$ of degree n up to isomorphism.

- Let E / K be an extension of CDVFs, with k_{E} / k_{K} separable. Then there exists a unique subextension E_{0} / K which is unramified and such that $k_{E_{0}}=k_{E}$.
Then $f_{E_{0} / K}=f_{E / K}$ and $e_{E / E_{0}}=e_{E / K}$. Thus we have

$$
E \xrightarrow{\text { totally ramified }} E_{0} \xrightarrow{\text { unramified }} K
$$

If E_{1} / K is any subextension which is unramified, then E_{0} contains E_{1}. We therefore call E_{0} the maximal unramified subextension.

- Let E / K be a Galois extension of CDVFs, with k_{E} / k_{K} separable. Then the maximal unramified subextension E_{0} of E / K is $E^{I_{E / K}}$.
We always have a tower, with corresponding Galois groups:

- Lower ramification group: Let $i \geq 0$. We define the i-th lower ramification group of $G=\operatorname{Gal}(E / K)$ to be

$$
\begin{array}{ll}
& G_{i}:=\operatorname{ker}\left(G \rightarrow \operatorname{Aut}\left(A_{E} /\left(\pi_{E}^{i+1}\right)\right)\right. \\
\text { or equivalently } & G_{i}=\left\{\sigma \in G: \text { for all } x \in A_{E}, \sigma(x) \equiv x \bmod \left(\pi_{E}^{i+1}\right)\right\}
\end{array}
$$

By convention $G_{-1}=G$.

- Informally, G_{i} is set of elements which fix the first $i+1$ digits of the π_{E}-adic expansion of elements of A_{E}.
- $G_{0}=\operatorname{ker}\left(G \rightarrow \operatorname{Aut}\left(A_{E} /\left(\pi_{E}\right)\right)=\operatorname{ker}\left(G \rightarrow \operatorname{Gal}\left(k_{E} / k_{k}\right)=I_{E / K}\right.\right.$ is the usual inertia group.
$-G_{-1} \geq G_{0} \geq G_{1} \geq G_{2} \geq G_{3} \geq \ldots$ and $\bigcap_{i \geq 0} G_{i}=\{1\}$.
- Each G_{i} is normal subgroup in G. If $E / L / K$ is an intermediate extension and $H=\operatorname{Gal}(E / L)$, then $H_{i}=H \cap G_{i}$.
- Suppose $\sigma \in G_{0}$. Then for any $i \geq 0$, we have

$$
\sigma \in G_{i} \Longleftrightarrow v_{E}\left(\sigma\left(\pi_{E}\right)-\pi_{E}\right) \geq i+1
$$

Examples:

- Let E / K be $\mathbb{Q}_{2}(\sqrt{2}) / \mathbb{Q}_{2}$. E is splitting field of $X^{2}-2$ which is Eisenstein. So this is totally ramified extension, can take $\pi_{E}=\sqrt{2}$. Let $G=\{1, s\}$ Thus

$$
\begin{aligned}
& G=G_{0} \\
&=G_{1}=G_{2} \\
& \text { and }\{1\}=G_{3}
\end{aligned}=G_{4}=G_{5}=\ldots .
$$

- Let E / K be $\mathbb{Q}_{2}(\sqrt{3}) / \mathbb{Q}_{2} . E$ is splitting field of $X^{2}-3$. Can take $\pi_{E}=1+\sqrt{3}$ (min polynomial of π_{E} is $\left.X^{2}-2 X-2\right)$. Let $G=\{1, t\}$ Note $v_{E}\left(t\left(\pi_{E}\right)-\pi_{E}\right)=$ $v_{E}(-2 \sqrt{3})=2$. Thus

$$
\begin{aligned}
G & =G_{0}
\end{aligned}=G_{1} \quad \text { and }\{1\}=G_{2}=G_{3}=G_{4}=\ldots .
$$

- Let E / K be $\mathbb{Q}_{2}(i) / \mathbb{Q}_{2} . E$ is splitting field of $X^{2}+1$. Can take $\pi_{E}=1+i(\min$ polynomial of π_{E} is $\left.X^{2}-2 X+2\right)$. Let $G=\{1, t\}$. Thus

$$
\begin{aligned}
& G=G_{0} \\
&=G_{1} \\
& \text { and } \quad\{1\}=G_{2}
\end{aligned}=G_{3}=G_{4}=\ldots .
$$

- Let E / K be $\mathbb{Q}_{2}(\sqrt{5}) / \mathbb{Q}_{2}$. E is splitting field of $X^{2}-5$. This is unramified extension. Can take $\pi_{E}=2$. Let $G=\{1, t\}$. Thus

$$
\{1\}=G_{0}=G_{1}=G_{2}=G_{3}=\ldots
$$

- Let E / K be $\mathbb{Q}_{2}(\sqrt{2}, i) / \mathbb{Q}_{2}$. Can take $\pi_{E}=\zeta_{8}-1$. Let $G=\{1, s, t, s t\}$. Thus

$$
\begin{aligned}
G & =G_{0}
\end{aligned}=G_{1}, ~ \begin{aligned}
& \text { and }\{1, s\}=G_{2} \\
&=G_{3} \\
& \text { and }\{1\}=G_{4}
\end{aligned}=G_{5}=G_{6} \ldots .
$$

- Let $\pi \in A_{E}$ be a uniformizer, and let $s \in G_{0}$ and $i \geq 0$. Then

$$
s \in G_{i} \Longleftrightarrow s(\pi) / \pi \equiv 1 \bmod \left(\pi^{i}\right)
$$

- Let E / K be a Galois extension of CDVFs, with k_{E} / k_{K} separable. Let $\pi \in A_{E}$ be a uniformizer. Then
- There exists an injective homomorphism $G_{0} / G_{1} \rightarrow k_{E}^{\times}$, given by the formula

$$
s \longmapsto s(\pi) / \pi \bmod \mathfrak{m}_{L}
$$

In particular, G_{0} / G_{1} is cyclic of order prime to p if char $k_{E}=p>0$.
Note: Any finite subgroup of the multiplicative group of a field is cyclic of order prime to p if characteristic is $p>0$.

- If $i \geq 1$, then there's an injective homomorphism $G_{i} / G_{i+1} \rightarrow\left(k_{E},+\right)$. In particular, G_{i} / G_{i+1} is abelian and

$$
G_{i} / G_{i+1}= \begin{cases}\text { trivial } & \text { if char } k_{E}=0 \\ \mathbb{F}_{p} \text {-vector space } & \text { if char } k_{E}=p>0\end{cases}
$$

- The quotient G_{0} / G_{1} is cyclic, and G_{1} is:

$$
G_{1}= \begin{cases}\text { trivial } & \text { if char } k_{E}=0 \\ \text { the unique } p \text {-Sylow subgroup of } G_{0} & \text { if char } k_{E}=p>0\end{cases}
$$

- Soluble group: Let G be a group. G is soluble if there exist subgroups $G_{0}, G_{1}, G_{2} \ldots, G_{k}$ such that

$$
1=G_{0}<G_{1}<G_{2}<\cdots<G_{k}=G
$$

such that G_{j-1} is normal in G_{j} and such that G_{j} / G_{j-1} is an abelian group for all $j=$ $1,2, \ldots, k$. (i.e. G can be constructed from abelian groups using extensions)
Examples: Any abelian group, any nilpotent group, any finite group of odd order (FeitThompson theorem), any finite group of order <60
Non-examples: The groups A_{n} and S_{n} for $n>4$ are not soluble (indeed, A_{5} is the smallest non-soluble group). Any non-cyclic simple group is not soluble.
Orders of non-soluble groups: $60,120,168,180,240,300,336,360, \ldots$

- The group $I_{L / K}=G_{0}$ is soluble. If the residue field k_{K} is finite, then the $\operatorname{group} \operatorname{Gal}(L / K)$ is soluble.
Corollary: There is no Galois extension E / \mathbb{Q}_{p} with Galois group A_{5}.
- Tamely/Wildly ramified: Let E / K be an extension of CDVFs. We say that the extension is tamely ramified if either $\operatorname{char}\left(k_{E}\right)=0$ or $\operatorname{char}\left(k_{E}\right)=p>0$ and $p \not \backslash e_{E / K}$.
Otherwise, if $\operatorname{char}\left(k_{E}\right)=p$ and $p \mid e_{E / K}$, then we say E / K is wildly ramified.
Note: If E / K is Galois and k_{E} / k_{K} is separable, then

$$
E / K \text { is tamely ramified } \Longleftrightarrow G_{1}=\{1\}
$$

- Let E / K be a Galois extension of CDVFs, which is both totally and tamely ramified (i.e. $e_{E / K}=[E: K]$ and if $\operatorname{char} k_{E}=p>0$, then $p \backslash e_{E / K}$)

Then if $n=[E: K]$, then K contains all the $n n$-th roots of unity and there exists a uniformiser $\pi_{K} \in A_{K}$ such that $E=K\left(\sqrt[n]{\pi_{K}}\right)$.

Constructing upper ramification groups:

- For any $u \in \mathbb{R}_{\geq 0}$, we define $G_{u}:=G_{\lceil u\rceil}$. We now define the ramification function $\varphi_{E / K}(u)$ as

$$
\varphi_{E / K}(u)=\int_{t=0}^{u}\left[G_{0}: G_{t}\right]^{-1} d t
$$

Note: $\varphi_{E / K}(u)$ is continuous, strictly increasing, piecewise linear function, with discontinies of $\varphi_{E / K}^{\prime}(u)$ occuring only at integer values. Thus $\varphi_{E / K}:[0, \infty) \rightarrow[0, \infty)$ is a homeomorphism.

- We now define $\psi_{E / K}=\varphi_{E / K}^{-1}:[0, \infty) \rightarrow[0, \infty)$ (inverse function of $\varphi_{E / K}$).
- Upper ramification groups: Let $v \in \mathbb{R}_{\geq 0}$. We define the v-th upper ramification group as

$$
G^{v}:=G_{\psi_{E / K}(v)}
$$

We say v is a jump in the upper ramification groups if $G^{v} \neq G^{v+\epsilon}$ for any $\epsilon>0$.
Note: The jumps in the lower ramification groups G_{n} must be integer values, but the jumps in the upper ramification groups G^{v} can occur at rational values.
Example:

- Let E / K be a Galois extension of CDVFs, with k_{E} / k_{K} separable and $G=\operatorname{Gal}(E / K)$.

We define $i_{G}: G \rightarrow \mathbb{Z}_{\geq 0} \cup\{\infty\}$ by

$$
i_{G}(s)= \begin{cases}\infty & \text { if } s=\{1\} \\ 1+\sup \left\{i: s \in G_{i}\right\} & \text { if } s \neq\{1\}\end{cases}
$$

Therefore, we have

$$
i_{G}(s) \geq i+1 \Longleftrightarrow s \in G_{i}
$$

- For any $u \in \mathbb{R}_{\geq 0}$, we have

$$
\varphi_{E / K}(u)+1=\frac{1}{\left|G_{0}\right|} \sum_{s \in G} \min \left(i_{G}(s), u+1\right)
$$

- Suppose there exists $\alpha \in A_{E}$ such that $A_{E}=A_{K}[\alpha]$. Then $i_{G}(s)=v_{E}(s(\alpha)-\alpha)$.
- THere exists $\alpha \in A_{E}$ such that $A_{E}=A_{K}[\alpha]$.
- Let H be a normal subgroup of G, and let $L=E^{H}$, so we have $\operatorname{Gal}(L / K)=G / H$. Let $s \in G$. Then

$$
i_{G / H}(s H)=\frac{1}{e_{E / L}} \sum_{t \in H} i_{G}(s t)
$$

- Let H be a normal subgroup of G, and let $L=E^{H}$. Define the function $j: G / H \rightarrow$ $\mathbb{Z}_{\geq 0} \cup\{\infty\}$ by

$$
j(s H):=\sup _{t \in H} i_{G}(s t)
$$

Then we have

$$
i_{G / H}(s H)=1+\varphi_{E / L}(j(s H)-1)
$$

- Herbrand's theorem: Let H be a normal subgroup of G, and let $L=E^{H}$. If $u \in \mathbb{R}_{\geq 0}$ and $v=\varphi_{E / L}(u)$, then:

$$
(G / H)_{v}=G_{u} H / H \quad\left(=\operatorname{Im}\left(G_{u} \rightarrow G / H\right)\right)
$$

- Let H be a normal subgroup of G, and let $L=E^{H}$. We have that

$$
\varphi_{E / K}=\varphi_{L / K} \circ \varphi_{E / L}
$$

- Let H be a normal subgroup of G, and let $L=E^{H}$. For any $v \geq 0$, we have

$$
(G / H)^{v}=G^{v} H / H
$$

- Let E / K be an extension of CDVFs (not necessarily Galois), with k_{E} / k_{K} separable. If $v \in \mathbb{R}_{\geq 0}$, then we define

$$
E^{v}:=E \cap L^{G^{v}}
$$

where L / E is any extension of CDVFs with k_{L} / k_{K} seperable such that L / K is Galois and $G=\operatorname{Gal}(L / K)$.
Note: E^{v} is an intermediate extension of E / K and is independent of the choice of L.

- Let E / K be an extension of CDVFs (not necessarily Galois), with k_{E} / k_{K} separable. We have
- E^{0} is the maximal unramified subextension.
- If $v \leq v^{\prime}$ then $E^{v} \subseteq E^{v^{\prime}}$, and for sufficiently large $v, E^{v}=E$.
- If $E / M / K$ is an intermediate extension, then $M^{v}=M \cap E^{v}$.
- If E / M and N / K are two intermediate extensions, then $M^{v} \cdot N^{v} \subset(M \cdot N)^{v}$. In particular, if $M^{v}=M$ and $N^{v}=N$, then $(M \cdot N)^{v}=M \cdot N$.
- Hasse-Arf Theorem: Let K / \mathbb{Q}_{p} be a finite extension, and let E / K be an abelain extension (i.e. E / K is a Galois extension and $\operatorname{Gal}(E / K)$ is abelian). Then all the jumps in the upper ramification groups are integers.
- Conductor ideal: Let K / \mathbb{Q}_{p} be a finite extension, and let E / K be an abelian extension.

We define the conductor ideal $C_{E / K}$ of A_{K} to be $\left(\pi_{K}^{a}\right)$ where

$$
a:=\inf \left\{n \in \mathbb{Z}_{\geq 0}: G^{n}=\{1\}\right\}=1+\text { highest jump }
$$

Note: $\quad C_{E / K}=A_{K}$ the unit ideal $\Longleftrightarrow E / K$ is unramified.

- Let K / \mathbb{Q}_{p} be a finite extension, and let E / K be a Galois extension. Let $E_{1}, E_{2} / K$ be subextensions of E / K which are abelian over K. Then $E_{1} \cdot E_{2}$ is abelian over K and

$$
C_{E_{1} \cdot E_{2} / K}=\operatorname{lcm}\left(C_{E_{1} / K}, C_{E_{2} / K}\right) .
$$

5. Global Class Field Theory

Fix a number field K. GCFT aims to describe all abelian extensions E / K.

- Conductor ideal: Let E / K be abelian extension of number fields. The conductor ideal is the unique ideal $C_{E / K} \subseteq \mathcal{O}_{K}$ s.t. for any non-zero prime ideal $P \subset \mathcal{O}_{K}$ and any prime ideal $Q \subseteq \mathcal{O}_{E}$ lying above P, we have $C_{E / K} A_{K_{p}}=C_{E_{q} / k_{p}}$.
Equivalently, $v_{p}\left(C_{E / k}\right)=v_{p}\left(C_{E_{q} / k_{p}}\right)$, and thus

$$
C_{E / K}=\prod_{P \subset \mathcal{O}_{K}} P^{v_{P}\left(C_{E_{Q} / K_{P}}\right)}
$$

- Let E / K be extension of number fields. Thus for all but finitely many prime ideals $P \subset \mathcal{O}_{K}$, non-zero, P is unramified in \mathcal{O}_{E}.
- If $K=\mathbb{Q}(\alpha)$ for $\alpha \in \mathcal{O}_{K}$ and $f(X) \in \mathbb{Z}[X]$ is the minimnal polynomial of α, then $\operatorname{disc} \mathcal{O}_{k} \mid \operatorname{disc} f$.
- If p prime, then $p \mid \operatorname{disc} \mathcal{O}_{K}$ if and only if p is ramified in \mathcal{O}_{K} (i.e. $e_{i}>1$ for some i).
-
- Kronecker-Weber theorem: Let L / \mathbb{Q} be an abelian extension. Then there exists $N \in \mathbb{Z}_{\geq 1}$ such that $L \subset \mathbb{Q}\left(\zeta_{N}\right)$. Moreover

$$
L \subset \mathbb{Q}\left(\zeta_{N}\right) \Longleftrightarrow C_{L / \mathbb{Q}} \mid(N)
$$

- Let $N \geq 1$ be an integer, and let $\zeta_{N}=e^{2 \pi i / N}$ be a primitive n-th root of unity. We have that the extension $\mathbb{Q}\left(\zeta_{N}\right) / \mathbb{Q}$ is abelian, and the isomorphism:

$$
\begin{aligned}
& \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{N}\right) / \mathbb{Q}\right) \longleftrightarrow(\mathbb{Z} / N \mathbb{Z})^{\times} \\
& \sigma \text { such that } \\
& \sigma\left(\zeta_{N}\right)=\zeta_{N}^{a} \longmapsto a \quad(\bmod N)
\end{aligned}
$$

We have the following bijections:

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { Ab extns } K / \mathbb{Q} \\
\text { s.t. } C_{K / \mathbb{Q}} \mid(N)
\end{array}\right\}=\left\{\begin{array}{c}
\text { Ab extns } K / \mathbb{Q} \\
\text { s.t. } K \subseteq \mathbb{Q}\left(\zeta_{N}\right)
\end{array}\right\} & \leftrightarrow\left\{\begin{array}{c}
\text { Quotients of } \\
\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{N}\right) / \mathbb{Q}\right)
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
\text { Quotients of } \\
(\mathbb{Z} / N \mathbb{Z})^{\times}
\end{array}\right\} \\
(\text {by KW Theorem }) \quad K & \longmapsto \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{N}\right) / K\right)
\end{aligned}
$$

- Artin symbol: If L / K is abelian extension of number fields, and $P \subset \mathcal{O}_{K}$ a non-zero prime ideal, and P unramified in \mathcal{O}_{L}, then we define the Artin symbol $(P, L / K) \in$ $\operatorname{Gal}(L / K)$ by

$$
(P, L / K):=\operatorname{Frob}_{Q / P}, \text { for any prime ideal } Q \subset \mathcal{O}_{L} \text { lying above } P .
$$

- Class field theory over \mathbb{Q} : Let $N \geq 1$ be an integer, and let K / \mathbb{Q} be an abelian extension such that $C_{K / \mathbb{Q}} \mid N$. In particular any prime $p \nmid N$ is unramified, so the Artin symbol $((p), K / \mathbb{Q}) \in \operatorname{Gal}(K / \mathbb{Q})$ is defined. Then there is a unique surjective homomorphism $\phi_{K / \mathbb{Q}}:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \operatorname{Gal}(K / \mathbb{Q})$ given by, for all primes $p \nmid N$:

$$
\begin{aligned}
\phi_{K / \mathbb{Q}}:(\mathbb{Z} / N \mathbb{Z})^{\times} & \longrightarrow \operatorname{Gal}(K / \mathbb{Q}) \\
p \bmod N & \longmapsto((p), K / \mathbb{Q})
\end{aligned}
$$

This therefore gives a bijection between the following two sets:

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { Abelian extensions } K / \mathbb{Q} \\
\text { such that } C_{K / \mathbb{Q}} \mid(N)
\end{array}\right\} & \longleftrightarrow\left\{\begin{array}{c}
\text { Quotients of } \\
(\mathbb{Z} / N \mathbb{Z})^{\times}
\end{array}\right\} \\
K & \longmapsto \operatorname{ker} \phi_{K / \mathbb{Q}}
\end{aligned}
$$

- Modulus: Let K be a number field. A modulus is a pair $m=\left(m_{0}, m_{\infty}\right)$ where
- $m_{0} \subset \mathcal{O}_{K}$ is a non-zero ideal.
$-m_{\infty} \subset \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{R})$ is possibly empty subset.
Partial order: If $m=\left(m_{0}, m_{\infty}\right)$ and $n=\left(n_{0}, n_{\infty}\right)$ are moduli, we say $m \leq n$ if $m_{0} \mid n_{0}$ and $m_{\infty} n_{\infty}$.
Fact: Note that $\left|\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})\right|=[K: \mathbb{Q}]=r+2 s$ where

$$
\begin{aligned}
r & =\left|\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{R})\right| \quad \text { and } \\
s & =\frac{1}{2}\left|\left\{\tau \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C}): \tau(K) \nsubseteq \mathbb{R}\right\}\right|
\end{aligned}
$$

- If E / K is any abelian extension, we can define its associated modulus $m_{E / K}=\left(m_{E / K, 0}, m_{E / K, \infty}\right)$ where

$$
\begin{aligned}
m_{E / K, 0} & =C_{E / K} \\
m_{E / K, \infty} & =\left\{\tau \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{R}): \nexists \tilde{\tau} \in \operatorname{Hom}_{\mathbb{Q}}(E, \mathbb{R}) \text { s.t. }\left.\tilde{\tau}\right|_{K}=\tau\right\}
\end{aligned}
$$

(i.e. $m_{E / K, \infty}$ is the set of real embeddings of K which do not extend to real embeddings of E)

- Ideal class group: Let K be number field. Define

$$
\begin{aligned}
& \mathcal{I}:=\operatorname{Div} \mathcal{O}_{k}=\left\{\text { non-zero fractional ideals of } \mathcal{O}_{K}\right\} \\
& \mathcal{P}:=\left\{I \in \mathcal{I}: \exists \alpha \in K^{*} \text { s.t. } I=(\alpha)\right\}
\end{aligned}
$$

(i.e. \mathcal{I} is the fractional ideals, and \mathcal{P} is the principal fractional ideals) The ideal class group of \mathcal{O}_{K} is $\mathcal{I} / \mathcal{P}$.

- Ray class group: Let $m=\left(m_{0}, m_{\infty}\right)$ be a modulus. Define

$$
\begin{aligned}
& k\left(m_{0}\right)=\left\{\alpha \in K^{\times}: \forall P \subset O_{K}, v_{p}\left(m_{0}\right)>0 \Longrightarrow v_{p}(\alpha)=0\right\} \\
& \mathcal{I}\left(m_{0}\right)=\left\{I \in \mathcal{I}: \forall P \subset O_{K} \text { non-zero prime ideal }, v_{p}\left(m_{0}\right)>0 \Longrightarrow v_{p}(I)=0\right\} \\
& \mathcal{P}\left(m_{0}\right)=\mathcal{P} \cap \mathcal{I}\left(m_{0}\right)
\end{aligned}
$$

The ray class group of modulus M is $H(m)=\mathcal{I}\left(m_{0}\right) / \mathcal{P}_{m}$.
Properties:

- $H(m)$ is a finite abelian group.
- There are short exact sequences:

$$
0 \longrightarrow \mathcal{P}\left(m_{0}\right) / \mathcal{P}_{m} \longrightarrow H(m) \longrightarrow H_{k} \longrightarrow 0
$$

and

$$
0 \longrightarrow \mathcal{O}_{k}^{\times} /\left(\mathcal{O}_{k}^{\times} \cap k_{m}\right) \longrightarrow\left(\mathcal{O}_{k} / m_{0}\right)^{\times} \times\{ \pm 1\}^{m_{\infty}} \longrightarrow \mathcal{P}\left(m_{0}\right) / \mathcal{P}_{m} \longrightarrow 0
$$

In particular,

$$
|H(m)|=\left|H_{K}\right| \cdot\left|\left(\mathcal{O}_{k} / m_{0}\right)^{\times}\right| \cdot 2^{\left|m_{\infty}\right|} \cdot\left|\mathcal{O}_{k}^{\times} / \mathcal{O}_{k}^{\times} \cap k_{m}\right|^{-1}
$$

Examples:

- If $m=\left(\mathcal{O}_{k},\right)$ is the trivial modulus, then $H(m)==\mathcal{I} / \mathcal{P}$ is the usual class group.
$-k=\mathcal{Q}$, then the modulus $\left(m_{0}, m_{\infty}\right)$ is such that $m_{0} \subset \mathcal{O}_{K}=\mathbb{Z}$ and $m_{\infty} \subset\{\mathrm{id}\}$
Case 1: If $m_{0}=(N)$ and $m_{\infty}=\{i d\}$:

$$
\begin{aligned}
K\left(m_{0}\right) & =\left\{\alpha \in \mathbb{Q}^{\times}: p \mid N \Longrightarrow p \nmid \alpha\right\} \\
K_{m} & =\left\{\alpha \in K\left(m_{0}\right): p^{k}| | N \Longrightarrow p^{k} \mid(\alpha-1) \text { and } \alpha>0\right\}
\end{aligned}
$$

Thus

$$
H(m) \cong \frac{(\mathbb{Z} / N \mathbb{Z})^{\times} \times\{ \pm 1\}}{\mathbb{Z}^{\times}} \cong(\mathbb{Z} / N \mathbb{Z})^{\times}
$$

Case 2: If $m_{0}=(N)$ and $m_{\infty}=$: Thus

$$
H(m) \cong \frac{(\mathbb{Z} / N \mathbb{Z})^{\times}}{\mathbb{Z}^{\times}}
$$

- GCFT: Let K be a number field, m a modulus of k.
- Binary quadratic form: A polynomial $f(x, y)=a x^{2}+b x y+c y^{2}$ where $a, b, c \in \mathbb{Z}$.

$$
\text { Equivalently, } \quad f(x, y)=\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
a & b / 2 \\
b / 2 & a
\end{array}\right)\binom{x}{y}
$$

We say an integer m is represented by $f(x, y)$ if there exist $x_{0}, y_{0} \in \mathbb{Z}$ such that $f\left(x_{0}, y_{0}\right)=$ m.

Misc

- Trace: Let E be a finite extension of K. We have the k-linear map $m_{x}: E \rightarrow E$ where $m_{x}(y)=x y$ (multiplication by x). We define the trace $\operatorname{Tr}_{E / K}: E \rightarrow K$ as $\operatorname{Tr}_{E / K}=\operatorname{tr}\left(m_{x}\right)$ (usual trace of matrix)
Example: If $k=\mathbb{Q}, E=\mathbb{Q}[\sqrt{d}]$, then $\{1, \sqrt{d}\}$ is basis for E over K. If $x=a+b \sqrt{d}$, then $\operatorname{Tr}_{E / k}(x)=2 a$.
- We have $\operatorname{tr}_{E / K}(x)=\sigma_{1}(x)+\cdots+\sigma_{n}(x)$ where σ are all K-embeddings of E in \bar{K}.
- Compositum: The compositum of two fields E, F is the smallest field containing both E and F

