Algebraic Number Theory

Basics

- Integral domain: $rs = 0 \implies r = 0$ or s = 0.
- Ideal: A subset I of R such that
 - -(I, +) subgroup of (R, +).
 - For any $r \in R$, $x \in I$, we have $rx \in I$.
- Principal ideal: Generated by on element I = (x). i.e. $I = \{rx : r \in R\}$.
- Quotient: Let I be ideal of R. The quotient ring R/I is $\{r + I : r \in R\}$, where $r_1 + I = r_2 + I$ iff $r_1 r_2 \in I$. Zero element is I and multiplicative identity is 1 + I.
- Maximal: an ideal $I \neq R$ such that, if $I \subseteq J \subseteq R$, then I = J or J = R (i.e. no ideals bigger than I)
- **Prime:** An ideal $I \neq R$ s.t. $ab \in I \implies a \in I$ or $b \in I$
- Let I be an ideal of R
 - -I is a prime ideal if and only if R/I is an integral domain.
 - -I is a maximal ideal if and only if R/I is a field.

Corollary: Every maximal ideal is prime

Galois Theory

- **Degree:** L/K has degree $[L:K] = \dim_K(L)$.
- Tower law: [M:K] = [M:L][L:K]
- Automorphism group: Aut $(L/K) := \{ \sigma : L \to L : \sigma \text{ field automorphism s.t. } \sigma|_K = \text{Id}_K \}$

Examples:

- $\operatorname{Aut}(\mathbb{Q}(\sqrt{2})/\mathbb{Q}) \cong \mathbb{Z}/2$ (the identity, and $\sqrt{2} \mapsto -\sqrt{2}$)
- $-\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) = \{\operatorname{id}\}$
- Galois extension: For L/K finite, TFAE
 - $L^{\operatorname{Aut}(L/K)} := \{ x \in L : \sigma(x) = x \, \forall \sigma \in \operatorname{Aut}(L/K) \} = K$
 - $#\operatorname{Aut}(L/K) = [L:K]$
 - -L/K is normal ($\forall \alpha \in L$, the min poly of α has roots in L) and separable ($\forall \alpha \in L$, the min poly of α has distinct roots in \overline{K})
 - -L/K is the splitting field of a separable polynomial $f \in K[T]$

• Main Theorem: Let L/K be Galois, then we have order-reversing mutually inverse bijections

$$\begin{split} \{ \mathrm{subextensions} K \subseteq M \subseteq L \} & \longrightarrow \{ \text{ subgroups } H \leq \mathrm{Gal}(L/K) \} \\ M & \longmapsto \mathrm{Gal}(L/M) \\ \{ x \in L : \sigma(x) = x \; \forall \sigma \in H \} \longleftrightarrow H \end{split}$$

- Finite fields: If K finite field, then $K \cong \mathbb{F}_q$ where $q = p^r$ prime power. Moreover $\mathbb{F}_{p^n} \subseteq \mathbb{F}_{p^m} \iff n|m$
- $\mathbb{F}_{q^n}/\mathbb{F}_q$ is Galois (is the splitting field of $X^q X$) and $\operatorname{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q)$ is cyclic, generated by the **Frobenius**, denoted $\operatorname{Frob}_q : x \mapsto x^q$.

Number Fields

- Number field: A finite extension of \mathbb{Q} (e.g. $\mathbb{Q}(i), \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{2})$).
- Ring of integers: Let L be number field. THe ring of integers θ_L is the integral closure of \mathbb{Z} in L.

$$\theta_L = \{ \alpha \in L : \exists f \in \mathbb{Z}[T] \text{ monic s.t.} f(\alpha) = 0 \}$$

- θ is Dedekind domain.
- All ideals have unique factorisation into prime ideals.
- Class group: We define the class group of θ_L as:

 $\operatorname{Cl}(\theta_L) = \{ \text{ non-zero ideals } I \trianglelefteq \theta_L \} / \sim$

where ideals $A \sim B$ if there exists $x, y \in \theta_L$ s.t. (x)I = (y)J

- Class number: $h_L = \# Cl(\theta_L)$
 - $\operatorname{Cl}(\theta_L)$ is a **finite** abelian group.
 - $-h_L = 1$ if and only if θ_L is a principal ideal domain.
 - I.e. If θ_L Dededekind domain, then $h_L = 1$ iff θ_L is unique factorisation domain.

Lectures

1. Dedekind domains

- **Principal ideal domain:** An integral domain in which every ideal is principal (i.e. generated by a single element)
- Discrete Valuation Ring: A ring A which is
 - A principal ideal domain
 - Has a **unique** non-zero prime ideal m_A

Note: m_a is maximal ideal ,and A is local ring.

Fact: Every non-zero $x \in A$ can be expressed *uniquely* as $x = \alpha \pi^k$ where α is unit, π is uniformizer, and $k \in \mathbb{Z}_{\geq 0}$.

- Uniformizer: A generator π of the unique maximal ideal in a DVR is called a uniformizer.
- Local ring: Has a unique maximal ideal
- Nakayama's lemma: Let R be local ring, $P \subset R$ the unique maximal ideal, M a fin. gen. R-module. THen
 - If M = PM, then M = 0 (i.e. $M/PM = 0 \implies M = 0$)
 - If $N \leq M$ is an *R*-submodule s.t. N + PM = M, then N = M
- Valuation: Let K be a field. A valuation is a function $\nu: K^{\times} \to \mathbb{Z}$ such that
 - $-\nu$ is surjective homomorphism
 - $-\nu(x+y) \ge \min(\nu(x), \nu(y))$ for all $x, y \in K^{\times}$ with equality if $\nu(x) \ne \nu(y)$.

Examples:

- Let $K = \mathbb{Q}$. We can define a valuation $\nu : \mathbb{Q}^{\times} \to \mathbb{Z}$ defined by $\nu(p^n \frac{r}{s})$ if $r, s \in \mathbb{Z}$ and p coprime to r and s.
- Let K be the field of meromorphic functions on \mathbb{C} . Can define $\nu : K^{\times} \to \mathbb{Z}$ by $\nu(f) = \operatorname{ord}_{z=0} f(z)$.
- Valuation of DVR: Let A be a DVR with uniformiser π , and let K = Frac(A). Then can define a valuation $\nu(x) = n$, where $x = \pi^n u$ for some $n \in \mathbb{Z}$ and $u \in A^{\times}$.
- For any field K, there is a bijection between the valuations $\nu : K^{\times} \to \mathbb{Z}$ and the subrings $A \subset K$ s.t. A is a DVR and $\operatorname{Frac} A = K$.
- Noetherian ring: A ring where, if $I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots$ is an ascending chain of ideals, then there exists N such that $I_N = I_{N+1} = \ldots$ Equivalently, a ring where every ideal is finitely generated (i.e there exist $a_1, \ldots, a_n \in I$ s.t. $I = Ra_1 + \ldots Ra_n$)
- Integrally closed: Let A, B be rings where $A \subseteq B$. B is integrally closed over A if, for all $b \in B$, there exist $a_1, \ldots, a_n \in A$ such that

$$b^n + a_1 b^{n-1} + \dots a_n = 0$$

(i.e. b root of monic polnomial in A)

- Integrally closed domain: An integral domain R such that integral closure of R over Frac(R) is itself.
- Let A be a Noetherian domain. Then TFAE:
 - -A is a DVR
 - -A is integrally closed in K = FracA and A has a unique non-zero prime ideal.
- Mutiplicative subset: A subset $S \subseteq A$ s.t. $1 \in S$ and $\forall x, y \in S, xy \in S$.
- Fraction ring: Let $S \subseteq A$ be multiplicative subset. Define $S^{-1}A$ as $A \times S / \sim$ where $(a, s) \sim (a', s')$ if there exists $t \in S$ s.t. t(s'a sa') = 0. Notation: $\frac{a}{s} \in S^{-1}A$.
 - Zero element is $\frac{0}{1}$. Multiplicative identity is $\frac{1}{1}$.
 - Adddition: $\frac{a}{s} + \frac{a'}{s'} = \frac{as' + a's}{ss'}$
 - Multiplication: $\frac{a}{s} \cdot \frac{a'}{s'} = \frac{aa'}{ss'}$

(*Note:* If $0 \in S$, then $S^{-1}A$ is just the trivial zero ring.)

The map $A \to S^{-1}A$ given by $a \mapsto \frac{a}{1}$ is **ring homomorphism** with kernel $\{a \in A : \exists s \in S, sa = 0\}$

- Fraction ring for modules: Let $S \subseteq A$ be multiplicative subset. Let M be A-module. Define $S^{-1}M$ to be $M \times S / \sim$ where $(m, s) \sim (m', s')$ if there exists $t \in S$ s.t. t(ms' - m's) = 0.
 - $S^{-1}M$ is a $S^{-1}A$ -module via
 - Additive identity: $\frac{0}{1}$
 - Multiplication: $\frac{a}{s} \cdot \frac{m}{s'} = \frac{am}{ss'}$
 - Addition: $\frac{m}{s} + \frac{m'}{s'} = \frac{ms' + m's}{ss'}$
- If $f: M \to N$ is an A-module homomorphism, then there is a homomorphism $S^{-1}f: S^{-1}M \to S^{-1}N$ given by $\frac{m}{s} \mapsto \frac{f(m)}{s}$.
- S^{-1} functor: Given the homoprhisms $f: M' \to M$ and $f': M \to M''$, then $S^{-1}(f' \circ f) = S^{-1}f' \circ S^{-1}f$ (i.e. S^{-1} is a functor in the category of A-modules)
- Exactness: Let $M' \to M \to M''$ be an exact sequence of A-modules. Then $S^{-1}M' \to S^{-1}M \to S^{-1}M''$ is also exact.
 - If f is surjective, then so is $S^{-1}f$.
 - If f' is **injective** then so is $S^{-1}f'$
- Ideal of fraction ring: Let A be a ring with ideal $I \triangleleft A$. Since $I \rightarrow A$ is injective homorphism of A-modules, we have $S^{-1}I \rightarrow S^{-1}A$ injective homomorphism of A-modules. Therefore, $S^{-1}I$ is an ideal of $S^{-1}A$, which is the ideal:

$$S^{-1}I = \left\{\frac{x}{s} : x \in I \ s \in S\right\}$$

• There is a bijection:

$$\left\{\begin{array}{l} \text{prime ideals } P \subset A\\ \text{such that } P \cap S = \emptyset \end{array}\right\} \longleftrightarrow \left\{\begin{array}{l} \text{prime ideals}\\ Q \subset S^{-1}A \end{array}\right\}$$
$$P \longmapsto S^{-1}P\\f^{-1}(Q) \longleftrightarrow Q$$

where $f: A \to S^{-1}A$ is the natural ring homomorphism $a \mapsto \frac{a}{1}$

- Let A be a ring, with prime ideal P ⊲ A. Then S = A − P is a multiplicative subset of A, and S⁻¹A is a local ring with unique maximal ideal S⁻¹P.
 Notation: We write A_p = (A − P)⁻¹A
- **Dedekind domain:** A ring *R* where
 - -R is Noetherian domain.
 - -R is integrally closed (domain).
 - R has (Krull) dimension 1 (i.e. every nonzero prime ideal is maximal).
- Let A be a ring. TFAE:
 - -A is a Dedekind domain.
 - A is Noetherian domain, and for every non-zero prime ideal $P \subset A$, the localisation A_p is a DVR.
- Fractional ideal: Let A be domain, K = Frac(A). A fractional ideal of A is a finitely generated A-submodule of K.

Equivalently, a fractional ideal I of A is an A-submodule of K, such that there exists $r \in A$ such that $rI \subset A$ (element which 'clears out denominators')

Examples:

- If $A = \mathbb{Z}$, then all ideals are principal (i.e. of the form $n\mathbb{Z}$ for some $n \in \mathbb{Z}$). All fractional ideals are of the form $\frac{n}{m}\mathbb{Z}$ for some $n, m \in \mathbb{Z}$

If $I, J \subset K$ are freactional ideals, then

- $-I + J = \{x + y : x \in I, y \in J\}$ is also fractional ideal.
- $-IJ = (xy : x \in I, y \in J)$ is also fractional ideal.
- $-(I:J)=\{x\in K:xJ\subset I\}$ is A-submodule of K (If J non-zero, then is also fractional ideal)
- Let A be a Noetherian domain, and $S \subset A$ a multiplicative subset. Then
 - IF I, J fractional ideals, then $S^{-1}I$ is a fractional ideal of $S^{-1}A$ and: * $S^{-1}(I+J) = S^{-1}I + S^{-1}J$ * $S^{-1}(IJ) = S^{-1}I \cdot S^{-1}J$
 - If I, J are fractional ideals, and J is non-zero, then (I : J) is a fractional ideal of A and $S^{-1}(I : J) = (S^{-1}I : S^{-1}J)$.
- Let A Dedekind domain. Let DivA be set of non-zero fractional ideals. DivA forms a **group** under the operation of multiplication of fractional ideals. (Inverse of I is (A : I))

• Valuation for fractional ideals: Let A be Dedekind domain, let $P \subset A$ be prime ideal, and let $\nu_p : K^{\times} \to \mathbb{Z}$ be the valuation corresponding to A_p .

Then for any $I \in \text{Div}A$, we have $IA_p = (x)$ for some $x \in K^{\times}$. We define the valuation of I as the surjective homorphism $\nu_p(I) := \nu_p(x)$.

• Let A be Dedekind domain. Then for non-zero ideal $I \subset A$, there are only finitely many non-zero prime ideals $P \subset A$ such that $I \subset P$ (i.e. finitely many primes lying above I).

Also, for any $I \in \text{Div}A$, there are only finitely many non-zero priem ideals P such that $v_p(I)$ is finite.

- The map $\operatorname{Div} A \longrightarrow \bigoplus_p \mathbb{Z}$ is an isomorphism.
- For any $I \in \text{Div}A$, we have $I = \prod_{p} p^{\nu_p(I)}$
- Unique factorisation of ideals: Let A be a Dedekind domain, and let $I \subset A$ be a non-zero ideal. Then I admits a unique expression:

$$I = \prod_{i=1}^{n} P_i^{a_i}$$

where the P_i are distinct prime ideals of A. This expression is *uniquely* determined upto re-ordering of terms.

Fact: For every number field, the ring of integers is always a Dedekind domain! (but not necessarily a PID)

2. Complete DVRs

• Inverse System: Given groups $A_i (i \in \mathbb{N})$ and homomorphisms $f_i : A_{i+1} \to A_i \ (i \in \mathbb{N})$

$$A_1 \xleftarrow{f_1} A_2 \xleftarrow{f_2} A_3 \xleftarrow{f_3} A_4 \xleftarrow{f_4} \dots$$

• Inverse limit:

$$\varprojlim_{i} A_{i} = \left\{ (a_{i}) \in \prod_{i=1}^{\infty} A_{i} : \forall i \ge 1, f_{i}(a_{i+1}) = a_{i} \right\} \le \prod_{i=1}^{\infty} A_{i}$$

Fact: Inverse limit of groups/abelian groups/rings is a group/abelian group/ring.

• Completion of DVR: Let A be a DVR, with uniformiser π . Then we can consider the inverse system:

$$A/(\pi) \longleftarrow A/(\pi^2) \longleftarrow A/(\pi^3) \longleftarrow A/(\pi^4) \longleftarrow \dots$$

with maps the natural quotient maps. We define the inverse limit to be $\hat{A} := \varprojlim_{i} A/(\pi^{i})$. There is a natural homomorphism $A \longrightarrow \varprojlim_{i} A/(\pi^{i})$.

• Complete: We say A is complete if $A \to \varprojlim_i A/(\pi^i)$ is an *isomorphism*. (A complete \iff map is surjective)

Note: The kernel of above map is $\bigcap_{i\geq 1}(\pi^i) = 0$. Therefore map is always an injective homomorphism.

- Let A be DVR with fraction field K and valuation $\nu: K^{\times} \to \mathbb{Z}$. Then TFAE:
 - -A is complete.
 - -A is complete as metric space w.r.t the metric

$$d(x,y) = \begin{cases} 0 & \text{if } x = y\\ 2^{-\nu(x-y)} & \text{if } x \neq y \end{cases}$$

- -K is complete as metric space w.r.t. metric given above
- Ultrametric: A metric d satisfying $d(x, z) \le \max(d(x, y), d(y, z))$ Useful facts:
 - Sequences (x_i) s.t. $|x_{n+1} x_n| \to 0$ as $n \to \infty$ are Cauchy
 - All open balls (with positive radius) are closed, and all closed balls are open.
- Totally disconnected: A topological space is totally disconnected if the only connected subsets are the singletons (i.e. no non-trivial connected subsets)
- Let A be a DVR, with $\pi \in A$ a uniformizer. Then:
 - THe map $A \to \hat{A}$ is **injective**. \hat{A} is a complete DVR, and π is a uniformizer of \hat{A} .
 - FOr all $i \ge 1$, the map $A/\pi^i A \to \hat{A}/\pi^i \hat{A}$ is an isomorphism.

- Let $X \subset A$ be a subset of representatives for the residue classes of $A/(\pi)$ with $0 \in X$. Then for all $a \in \hat{A}$, there exists a unique expression of the form

$$a = \sum_{i=0}^{\infty} a_i \pi^i$$

with $a_i \in X$ for all $i \ge 0$.

• *p*-adic numbers: Let *p* be a prime. We define the *p* adic integers $\mathbb{Z}_p = \hat{\mathbb{Z}}_{(p)}$ where $\mathbb{Z}_{(p)} = (\mathbb{Z} - (p))^{-1}\mathbb{Z}$ and the *p*-adic rationals $\mathbb{Q}_p = \operatorname{Frac} \mathbb{Z}_p$ Fact: $p \in \mathbb{Z}_p$ is a uniformizer and the residue field $\mathbb{Z}_p/(p) \cong \mathbb{Z}/p\mathbb{Z}$ Each element of \mathbb{Z}_p has a unique expression: $\sum_{i=0}^{\infty} a_i p^i$, where $a_i \in \{0, 1, \dots, p-1\}$ Each element of \mathbb{Q}_p has a unique expression: $\sum_{i \in \mathbb{Z}} a_i p^i$, where $a_i \in \{0, 1, \dots, p-1\}$ with the set $\{i < 0 : a_i \neq 0\}$ finite.

Multiplication and addition is done in the same way as for formal power series, except we now need to 'carry' digits

• Hensel's lemma: Let A be complete DVR. Let $f(x) \in A[x]$ be monic polynomial. Suppose there exists $\alpha \in A$ such that $v(f(\alpha)) > 2v(f'(\alpha))$. Then, there exists unique $a \in A$ such that f(a) = 0 and $v(a - \alpha) > v(f'(\alpha))$.

Construction: Define a sequence of numbers a_1, a_2, \ldots , where $a_1 = \alpha$ and

$$a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}$$

Then $(a_n)_{n\geq 1}$ is a Cauchy sequence, and thus we have the limit $a:=\lim_{n\to\infty}a_n$.

• Hensel's corollary: Let A complete DVR. Let $f(x) \in A[x]$ be monic, Let $k = A/(\pi)$ and $\bar{f}(x) = f(x) \mod (\pi) \in k[x]$. Suppose there exists $\bar{\alpha} \in K$ a simle root of $\bar{f}(X)$. Then, there exists a unique $a \in A$ s.t. f(a) = 0 and $a \equiv \bar{\alpha} \mod (\pi)$

(this is specific case where $v(f'(\alpha)) = 0$)

- Squares in \mathbb{Z}_p^{\times} :
 - If p is odd, then $u \in \mathbb{Z}_p^{\times}$ is a square if and only if $u \mod p \in \mathbb{F}_p^{\times}$ is a square.
 - If p = 2, then $u \in \mathbb{Z}_p^{\times}$ is a square if and only if $u \equiv 1 \mod 8$. (i.e. if $u \mod 8$ is a square in $(\mathbb{Z}/8\mathbb{Z})^{\times}$.
- Cubes in \mathbb{Z}_p^{\times} :

- If $p \neq 3$, then $u \in \mathbb{Z}_p^{\times}$ is a cube if and only if $u \mod p \in \mathbb{F}_p^{\times}$ is a cube.

- If p = 3, then $u \in \mathbb{Z}_p^{\times}$ is a cube if and only if if $u \mod 9$ is a cube in $(\mathbb{Z}/9\mathbb{Z})^{\times}$.
- *n*-th powers in \mathbb{Z}_p^{\times} :
 - If $p \not| n$, then $u \in \mathbb{Z}_p^{\times}$ is an *n*-th power if and only if $u \mod p \in \mathbb{F}_p^{\times}$ is an *n*-th power.
 - − If p = n, then then $u \in \mathbb{Z}_p^{\times}$ is an *n*-th power if and only if $u \mod p^2 \in \mathbb{F}_{p^2}^{\times}$ is an *n*-th power.

• Teichmuller lift: There's a surjective homomorphism $\mathbb{Z}_p^{\times} \to \mathbb{F}_p^{\times}$ given by $\sum_{i=0}^{\infty} a_i p^i \mapsto a_0 \mod p$.

There's exists a unique homomorphism $\tau : \mathbb{F}_p^{\times} \to \mathbb{Z}_p^{\times}$ s.t. for all $\bar{\alpha} \in \mathbb{F}_p^{\times}$, $\tau(\bar{\alpha}) \mod p = \bar{\alpha}$. This is called the **Teichmuller lift**.

(i.e. τ sends every $\bar{\alpha} \in \mathbb{F}_p^{\times}$ to the unique (p-1)-st root of unity in \mathbb{Z}_p^{\times} that reduces to it, or in other words the unique root α of $X^p - X$ such that $\alpha \mod p = \bar{\alpha}$)

Examples:

$$\begin{aligned} -p &= 2, \text{ then } \tau(1) = 1, \\ -p &= 3, \text{ then } \tau(1) = 1, \text{ and} \\ \tau(2) &= 2 + 2p + 2p^2 + 2p^3 + 2p^4 + 2p^5 + 2p^6 + 2p^7 + 2p^8 + 2p^9 + \dots = -1 \\ -p &= 5, \text{ then } \tau(1) = 1, \text{ and} \\ \tau(2) &= 2 + 1p + 2p^2 + 1p^3 + 3p^4 + 4p^5 + 2p^6 + 3p^7 + 0p^8 + 3p^9 + \dots \\ \tau(3) &= 3 + 3p + 2p^2 + 3p^3 + 1p^4 + 0p^5 + 2p^6 + 1p^7 + 4p^8 + 1p^9 + \dots \\ \tau(4) &= 4 + 4p + 4p^2 + 4p^3 + 4p^4 + 4p^5 + 4p^6 + 4p^7 + 4p^8 + 4p^9 + \dots = -1 \\ -p &= 7, \text{ then } \tau(1) = 1, \text{ and} \end{aligned}$$

$$\begin{aligned} \tau(2) &= 2 + 4p + 6p^2 + 3p^3 + 0p^4 + 2p^5 + 6p^6 + 2p^7 + 4p^8 + 3p^9 + \dots \\ \tau(3) &= 3 + 4p + 6p^2 + 3p^3 + 0p^4 + 2p^5 + 6p^6 + 2p^7 + 4p^8 + 3p^9 + \dots \\ \tau(4) &= 4 + 2p + 0p^2 + 3p^3 + 6p^4 + 4p^5 + 0p^6 + 4p^7 + 2p^8 + 3p^9 + \dots \\ \tau(5) &= 5 + 2p + 0p^2 + 3p^3 + 6p^4 + 4p^5 + 0p^6 + 4p^7 + 2p^8 + 3p^9 + \dots \\ \tau(6) &= 6 + 6p + 6p^2 + 6p^3 + 6p^4 + 6p^5 + 6p^6 + 6p^7 + 6p^8 + 6p^9 + \dots = -1 \end{aligned}$$

• We have the following isomorphism:

$$\begin{array}{cccc}
\mathbb{Q}_p^{\times} &\cong & \mathbb{Z} \times (1 + p\mathbb{Z}_p) \times \mathbb{F}_p^{\times} \\
p^n \cdot u \cdot \tau(\bar{\alpha}) &\longmapsto & (n, u, \bar{\alpha})
\end{array}$$

• We also have the isomorphism:

$$\mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^n \cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{F}_p^{\times}/(\mathbb{F}_p^{\times})^n$$

• Let q be a prime that divides p-1. Then \mathbb{Q}_p has exactly q+1 isomorphism classes of Galois extensions of degree q.

Corollary: Let p be an odd prime. Then \mathbb{Q}_p has exactly 3 isomorphism classes of quadratic extensions.

Let $n \in \{1, 2, ..., p-1\}$ be a **quadratic nonresidue** mod p. Then the three distinct quadratic extension of \mathbb{Q}_p can be given as $\mathbb{Q}_p(\sqrt{n}), \mathbb{Q}_p(\sqrt{p}), \mathbb{Q}_p(\sqrt{np})$

3. Extensions of Dedekind domains

• Integral: Let A be Dedekind domain, K = Frac(A). Let E/K be finite separable extension. We say $\gamma \in E$ is integral over A if $\exists n \geq 1, a_1, \ldots, a_n \in A$ s.t.

$$\gamma^n + a_1 \gamma^{n-1} + \dots + a_n = 0$$

- Let A be Dedekind domain, K = Frac(A) and E finite separable extension of K. The following are equivalent:
 - $-\gamma$ integral over A
 - $-A[\gamma]$ is a finitely generated A-module
 - There exists a non-zero $A[\gamma]$ -submodule $M \subseteq E$ which is a finitely generated A-module.
- Integral closure: The integral closure of A in E is the set B consisting of all elements in E which are integral over A.

Example: Let $A = \mathbb{Z}$, then $\operatorname{Frac}(A) = \mathbb{Q}$.

- If $E = \mathbb{Q}(\sqrt{2})$, then $B = \mathbb{Z}(\sqrt{2})$.
- If $E = \mathbb{Q}(\sqrt{5})$, then $B = \mathbb{Z}(\frac{1+\sqrt{5}}{2})$.
- Let ζ be any root of unity. If $E = \mathbb{Q}(\zeta)$, then $B = \mathbb{Z}(\zeta)$.
- B is a subring of E, and B is integrally closed in E.
- Let E/K be finite separable extension. Let $T : E \times E \to K$ be the symmetric bilinear form defined by $T(x, y) = \operatorname{tr}_{E/K}(xy)$. Then T is **non-degenerate**. (i.e. for all non-zero $x \in E$, there exists $y \in E$ such that $T(x, y) \neq 0$)

Localisation fact: Let $S \subseteq A$ be multiplicative subset, with $0 \notin S$. Then $S^{-1}A$ is Dedekind domain with $\operatorname{Frac}(S^{-1}A) = K$. Integral closure $S^{-1}A$ in E is $S^{-1}B$.

- Fact: B is finitely generated A-module and B is Dedekind domain
- Setup: A is Dedekind domain with K = Frac(A). E is finite sepearable extession of A. B is integral closure of A in E. Q is some non-zero prime ideal in B. Then $P = A \cap Q$ is non-zero prime ideal. We say Q lies above P.

- Let $Q \subset B$ and $P \subset A$ be non-zero prime ideals. Then the following are equivalent:
 - Q lies above P. (i.e. $P = Q \cap A$)
 - $Q \supset PB.$
 - Q appears in the prime factorisation of PB (i.e. $v_Q(PB) > 0$ where $v_Q : E^{\times} \to \mathbb{Z}$ is the valuation corresponding to Q)

Fact: B/Q and A/P are fields and (B/Q)/(A/P) is a **finite** extension.

- If Q lies above P, we define
 - Residue degree: $f_{Q/P} := [B/Q : A/P] \ge 1$
 - Ramification index: $e_{Q/P} := v_Q(PB) \ge 1$, where $v_Q : E^{\times} \to \mathbb{Z}$ is valuation corresponding to Q.
- Prime factorisation of ideals: $PB = Q_1^{e_{Q_1/P}} \dots Q_r^{e_{Q_r/P}}$
- Let $P \subset A$ be a non-zero prime ideal. Then

$$\sum_{Q:v_Q(PB)>0} e_{Q/P} f_{Q/P} = [E:K]$$

(the sum running over all primes ideals Q of B lying over P.)

- Let P be non-zero prime ideal of A, and let Q_1, Q_2, \ldots, Q_r be all the prime ideals of B lying above P.
 - Unramified: If for all i = 1, 2, ..., r, we have B/Q_i a seprable extension, and $e_{Q_i/P} = 1$, then we say P is unramified in B.
 - Splits completely: If for all i = 1, 2..., r, we have $e_i = f_i = 1$, then we say P splits completely in B. (i.e. r = [E : K])
 - Ramified: If $e_i > 1$ for some i = 1, ..., r, then we say P is ramified in B.
 - Ramifies completely: If r = 1 and $f_1 = 1$ (and thus $e_1 = [E : K]$), we say that P ramifies completely in B.
 - Inert: If r = 1 and $e_1 = 1$ (and thus $f_1 = [E : K]$), we say that P is inert.
- Ring of integers: If E/\mathbb{Q} is a number field, then we denote \mathcal{O}_E as the integral closure of \mathbb{Z} in E, called the *ring of integers* of E.

If $K = \mathbb{Q}(\sqrt{d})$, where $d \in \mathbb{Z}$ squarefree, then

$$\mathcal{O}_K = \begin{cases} \mathbb{Z}[\sqrt{d}] & \text{if } d \equiv 2,3 \pmod{4} \\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

To factorise (p), we ...

• Prime factorisation for $E = \mathbb{Q}(\sqrt{d})$: For p odd, then:

$$p \quad \begin{cases} \text{splits completely} & \text{if } \left(\frac{d}{p}\right) = 1\\ \text{is unramified (and not split)} & \text{if } \left(\frac{d}{p}\right) = -1\\ \text{is ramified} & \text{if } p|d \end{cases}$$

where $\left(\frac{d}{p}\right)$ is the Legendre symbol which is 1 iff d is square mod p

(Euler's criterion states $\left(\frac{d}{p}\right) \equiv_p d^{(p-1)/2}$) For p = 2:

- $2 \quad \begin{cases} \text{splits completely} & \text{if } d \equiv 1 \pmod{4} \text{ and } \frac{1-d}{4} \text{ even } (d \equiv_8 1) \\ \text{is unramified (and not split)} & \text{if } d \equiv 1 \pmod{4} \text{ and } \frac{1-d}{4} \text{ odd } (d \equiv_8 5) \\ \text{is ramified} & \text{if } d \equiv 2, 3 \pmod{4} \end{cases}$
- Factorisation of pO_E for quadratic extensions: If p is odd, then:

$$pO_E = \begin{cases} (pO_E + (..)O_E)(pO_E + (..)O_E) & \text{if } \left(\frac{d}{p}\right) = 1\\ pO_E & \text{if } \left(\frac{d}{p}\right) = -1\\ (pO_E + (..)O_E)^2 & \text{if } p|d \end{cases}$$

- Let A, K, E, B given in setup. Suppose E/K is Galois, and let G = Gal(E/k). Then for all $\sigma \in G$, $\sigma(B) = B$. (i.e. the action of G on E leaves B invariant)
- Let E/K be Galois, and let $Q \subset B$ be non-zero prime ideal, with $P = Q \cap A$. Then
 - 1. G acts transitively on prime ideals of B lying above P. (i.e. only one orbit. $\forall Q_1, Q_2 \supseteq P, \exists \sigma \in G \text{ s.t. } \sigma(Q_1) = Q_2$)
 - 2. For all $\sigma \in G$, $f_{\sigma(Q)/P} = f_{Q/P}$ and $e_{\sigma(Q)/P} = e_{Q/P}$. (i.e. *e* and *f* depend only on *P*, and not *Q*)
 - 3. Let $g_{Q/P}$ be the number of prime ideals lying above P. Then $e_{Q/P}f_{Q/P}g_{Q/P} = [E:K] = |G|$
- Decomposition group: Setup above, Q lies above P. The decomposition group $D_{Q/P} =$ Stab_G $(Q) = \{ \sigma \in G : \sigma(Q) = Q \}.$
- Let E/K Galois. Suppose $Q \subset B$ lies above $P \subset A$, and suppose that (B/Q)/(A/P) is separable. Then
 - -(B/Q)/(A/P) is a **Galois** field extension.
 - The map

$$D_{Q/P} \longrightarrow \operatorname{Gal}((B/Q)/(A/P))$$
$$\sigma \longmapsto \sigma|_B \mod Q$$

is a **surjective** group homomorphism.

• Inertia group: Define the inertia group at Q as $I_{Q/P} = \ker(D_{Q/P} \to \operatorname{Gal}(k_Q/k_P)) = \{ \text{automorphisms of } E/K \text{ that induce the identity on } B/Q \}$

Fact: $|I_{Q/P}| = e_{Q/P}$, and thus $I_{Q/P}$ is trivial (and thus $D_{Q/P} \to \text{Gal}(k_Q/k_P)$ an isomorphism) iff Q is unramified over P.

• Frobenius automorphism at Q: If P is unramified in E, then we have an element

$$\operatorname{Frob}_{Q/P} \in D_{Q/P} \subset G$$

defined as the unique element in $D_{Q/P}$ which induces the Frobenius automorphism on the residue field extension k_Q/k_P .

• Let $f(X) = X^n + a_1 X^{n-1} + a_2 X^{n-2} + a_n \in \mathbb{Z}[X]$ be irreducible. Let E be the splitting field of f(X) over \mathbb{Q} , and let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be the roots of f(X).

(note that $\operatorname{Gal}(E/\mathbb{Q})$ can be identified as a subgroup of the symmetric group on $\alpha_1, \alpha_2, \ldots, \alpha_n$), i.e. we have

$$\operatorname{Gal}(E/\mathbb{Q}) \hookrightarrow S_n = \operatorname{Sym}(\alpha_1, \alpha_2, \dots, \alpha_n)$$

Now suppose p is a prime number such that $\bar{f}(X) = f(X) = \mod p \in \mathbb{F}_p[X]$ factors as

$$\bar{f}(X) = \prod_{i=1}^{r} \bar{f}_i(X),$$

where $\bar{f}_1(X), \bar{f}_2(X), \ldots, \bar{f}_r(X)$ are distinct monic irreducible polynomials in $\mathbb{F}_p[x]$.

Then $\operatorname{Gal}(E/\mathbb{Q})$ contains a permutation of cycle type $(d_1)(d_2) \dots (d_r)$ where $d_i = \operatorname{deg} \overline{f}_i(X)$ (i.e. there's a permutation which has a cycle of length d_1 , a cycle of length d_2 , ..., and a cycle of length d_r)

- Passage to completion: Let A be Dedekind domain, with K = Frac(A). Let E/K be finite separable extension, and B the integral closure of A in E. Let $P \subset A$ be a non-zero prime ideal, and let $Q \subset B$ be a prime ideal lying above P. Then we have
 - 1. There's a natural homomorphism $\hat{A}_P \to \hat{B}_Q$ extending the map $A \to B$.
 - 2. Let $K_p = \operatorname{Frac} \hat{A}_p$, and $E_Q = \operatorname{Frac} \hat{B}_Q$. Then E_Q/K_p is finite separable extension, \hat{B}_Q is integral closure of \hat{A}_P in E_Q and $E_Q = K_p \cdot E$.
 - 3. We have $e_{Q/P} = e_{Q\hat{B}_{O}/P\hat{A}_{P}}$ and $f_{Q/P} = f_{Q\hat{B}_{O}/P\hat{A}_{p}}$ and $[E_{Q}: K_{P}] = e_{Q/P}f_{Q/P}$.
 - 4. If E/K Galois, then E_Q/K_P also Galois, and there's a natural isomorphism $D_{Q/P} \rightarrow \text{Gal}(E_Q/K_P)$
- Bijection between prime ideals and irreducible factors: Let A be Dedekind domain, with $K = \operatorname{Frac}(A)$. Let E/K be finite separable extension, and B the integral closure of A in E. Let $E = K(\alpha)$ and let $f(X) \in K[X]$ be minimal polynomial of α . Then there's a bijection for any non-zero prime ideal $P \subset A$:

$$\left\{\begin{array}{l} \text{Prime ideals } Q \subset B\\ \text{lying above } P\end{array}\right\} \longleftrightarrow \left\{\begin{array}{l} \text{Irreducible factors}\\ g(X) \text{ of } f(X) \text{ in } K_p[X]\end{array}\right\}$$
$$Unique \text{ irreducible factor}\\ Q \longmapsto \begin{array}{l} \text{Unique irreducible factor}\\ g(X) \text{ of } f(X) \text{ in } K_p[X]\\ \text{ such that } g(\alpha) = 0 \text{ in } E_Q\end{array}\right\}$$

Example: Let $A = \mathbb{Z}$, then $K = \mathbb{Q}$ and let $E = \mathbb{Q}(\sqrt{d})$, and then $B = O_E$. Let (p) be a prime in \mathbb{Z} . Thus, the prime ideals of pO_E are in bijection with irreducible factors of $X^2 - d$ in $\mathbb{Q}_p[X]$.

4. Extensions of complete DVRs

• Complete discrete valuation field. We call a pair (K, v_k) a CDVF if K is a field and $v_K : K^{\times} \to \mathbb{Z}$ is a valuation and the corresponding DVR $A_K = \{x \in K^{\times} : v_K(x) \ge 0\} \cup \{0\}$ is complete.

Examples:

- $-K = \mathbb{Q}_p$ (completion of \mathbb{Q} w.r.t v_p). Corresponding DVR is \mathbb{Z}_p , and residue field is \mathbb{F}_p .
- K((X)) (formal power series over field K, completion of K(X) w.r.t v_X) i.e. element of the form

$$\sum_{n\in\mathbb{Z}}a_nX^n$$

where $a_n \in K$ and $a_n = 0$ for all but finitely many negative *n*. Corresponding DVR is K[[X]] (no negative terms) and residue field is K.

Notation: Uniformizer is $\pi_K \in A_K$. Residue field is $k_K = A_K/(\pi_K)$.

- Let K be a CDVF, and let E/K be a finite separable extension, Then E has a natural structure of CDVF.
- Extension of CDVFs: An extension E/K such that K is a CDVF, E/K is finite separable extension, and E has the natural structure of CDVF, with the valuation v_E given by the above lemma.

Setup:

- $-A_E$ and A_K are DVRs.
- Residue degree: $f_{E/K} := f_{(\pi_E)/(\pi_K)} = [k_E : k_K]$
- Ramification index: $e_{E/K} := e_{(\pi_E)/(\pi_K)} = v_E(\pi_K)$
- If v_E is restricted to K^{\times} , then we have $v_E|_{K^{\times}} = e_{E/K}v_K$
- $[E:K] = e_{E/K} \cdot f_{E/K}$
- Let E/K be an extension of CDVFs. Then:
 - If E/K is Galois, then for all $\sigma \in \text{Gal}(E/K), x \in E, v_E(\sigma(x)) = v_E(x)$
 - In general (not assuming Galois), for all $x \in E^{\times}$, we have

$$v_E(x) = \frac{1}{f_{E/K}} v_K(N_{E/K}(x))$$

• Newton polygon: Let A be a DVR, K = Frac(A), and let

$$f(X) = X^{n} + a_1 X^{n-1} + a_2 X^{n-2} \dots + a_n$$

be a polynomial in K[X] with $a_n \neq 0$. Then the **Newton polygon** $N_K(f)$ is the graph of the largest piecewise linear continuous function $N : [0, n] \to \mathbb{R}$ s.t.

- N(0) = 0 and $N(n) = v(a_n)$
- For all j = 1, 2, ..., n 1, $N(j) \le v(a_j)$ if $a_j \ne 0$.
- N is convex (i.e. the sequence of slopes of line segments of $N_K(f)$ is increasing).

Equivalently, N is the lower convex hull of the points $(j, v(a_j))$, for j = 0, 1, ..., n.

- Slopes: The slopes of $N_k(f)$ are the slopes/derivatives of the line segments.
- Multiplicity: The multiplicity of a slope is the length of the projection of the corresponding line segment to the x-axis.

Example: Let $K = \mathbb{Q}_5$, and let $f(X) = X^3 + 25X^2 + 5X + 125$. Then the Newton polygon $N_{\mathbb{Q}_5}(f)$ looks like:

The slopes are $\frac{1}{2}$ (with multiplicity 2) and 2 (with multiplicity 1).

• Let A be DVR, K = Frac(A), and let $\alpha_1, \ldots, \alpha_n \in K^{\times}$ be such that f(X) factors as

$$f(X) = \prod_{i=1}^{n} (X - \alpha_i) = X^n + a_1 X^{n-1} + a_2 X^{n-2} + \dots + a_n \in K[x]$$

Let $\lambda_i = v(\alpha_i)$, i = 1, ..., n. Then $\lambda_1, \lambda_2, ..., \lambda_n$ are the slopes of $N_k(f)$ counted with multiplicity.

In particular, the slopes of $N_K(f)$ are all integers.

• Let K be a CDVF, and let $f(X) \in K[x]$, $a_n \neq 0$ be separable. Let $\lambda_1 < \lambda_2 < \cdots < \lambda_r$, be the slopes of $N_K(f)$, where λ_i occurs with multiplicity $m_i \geq 1$.

Then there exists a unique factorisation $f(X) = \prod_{i=1}^{r} g_i(X)$ in K[x] where for all $i = 1, \ldots, r, g_i(X)$ is a monic polynomial with degree $\deg(g_i) = m_i$ and $N_K(g_i)$ has a single slope λ_i .

(i.e. if $N_K(f)$ has r distinct slopes, then f can be factorised in to (at least) r factors)

- Let E/K extension of CDVFs, then
 - -E/K is **unramified** if k_E/k_K is separable and $e_{E/K} = 1$. (and thus $f_{E/K} = [E:K]$)
 - -E/K is totally unramified if $f_{E/K} = 1$. (and thus $e_{E/K} = [E:K]$)
- Eisenstein: Let A be DVR, with $K = \operatorname{Frac}(A)$. We say $f(X) = X^n + a_1 X^{n-1} + \cdots + a_n \in A[X]$ is Eisenstein if $v_k(a_i) \ge 1$ for each $i = 1, \ldots, n-1$ such that $a_i \ne 0$, and $v_k(a_n) = 1$. Fact: For any monic $f(X) \in K[X]$, f is Eisenstein if and only if $N_K(f)$ is a single line segment of slope $\frac{1}{n}$.

Example:

Constructing totally ramified extensions:

- Let E/K be totally ramified extension of CDVFs. Let $f(x) \in K[x]$ be the minimal polynomial of π_E . Then f(X) is Eisenstein and $E = K(\pi_E)$.
- Let K be a CDVF, and let $f(X) \in K[X]$ be a separable polynomial which is Eisenstein. Then f(X) is irreducible and if E = K[x]/(f(X)), then E/K is totally ramified and X mod (f(X)) is a uniformizer in A_E .

Constructing unramified extensions:

• Let K be a CDVF. Let ℓ/k_K be a finite separable extension. Then there exists an extension L/K of CDVFs and an isomorphism $i : \ell \to k_L$ with the following property: For any extension E/K of CDVFs and homomorphism $j : \ell \to k_E$ there exists a unique K-embedding $J : L \to E$ such that the diagram commutes:

(i.e. $J: L \to E$ induces $j \circ i^{-1}$ on residue fields)

Moreover, L/K is **unramified**.

• Let p be a prime. Then for any $n \ge 1$, there is a *unique* unramified extension of \mathbb{Q}_p of degree n (up to isomorphism).

Fact: For any $n \ge 1$, there is a unique extension $\mathbb{F}_{p^n}/\mathbb{F}_p$ of degree n up to isomorphism.

• Let E/K be an extension of CDVFs, with k_E/k_K separable. Then there exists a unique subextension E_0/K which is unramified and such that $k_{E_0} = k_E$.

Then $f_{E_0/K} = f_{E/K}$ and $e_{E/E_0} = e_{E/K}$. Thus we have

$$E \xrightarrow{\text{totally ramified}} E_0 \xrightarrow{\text{unramified}} K$$

If E_1/K is any subextension which is unramified, then E_0 contains E_1 . We therefore call E_0 the **maximal unramified subextension**.

• Let E/K be a Galois extension of CDVFs, with k_E/k_K separable. Then the maximal unramified subextension E_0 of E/K is $E^{I_{E/K}}$.

We always have a tower, with corresponding Galois groups:

$$E \xrightarrow[I_{E/K}]{G=\operatorname{Gal}(E/K)} K$$

• Lower ramification group: Let $i \ge 0$. We define the *i*-th lower ramification group of G = Gal(E/K) to be

$$G_i := \ker(G \to \operatorname{Aut}(A_E/(\pi_E^{i+1})))$$

or equivalently $G_i = \{\sigma \in G : \text{ for all } x \in A_E, \ \sigma(x) \equiv x \mod (\pi_E^{i+1})\}$

By convention $G_{-1} = G$.

- Informally, G_i is set of elements which fix the first i+1 digits of the π_E -adic expansion of elements of A_E .
- $-G_0 = \ker(G \to \operatorname{Aut}(A_E/(\pi_E))) = \ker(G \to \operatorname{Gal}(k_E/k_k)) = I_{E/K}$ is the usual inertia group.

$$-G_{-1} \ge G_0 \ge G_1 \ge G_2 \ge G_3 \ge \dots \text{ and } \bigcap_{i \ge 0} G_i = \{1\}.$$

- Each G_i is normal subgroup in G. If E/L/K is an intermediate extension and H = Gal(E/L), then $H_i = H \cap G_i$.
- Suppose $\sigma \in G_0$. Then for any $i \ge 0$, we have

$$\sigma \in G_i \iff v_E(\sigma(\pi_E) - \pi_E) \ge i + 1$$

Examples:

- Let E/K be $\mathbb{Q}_2(\sqrt{2})/\mathbb{Q}_2$. *E* is splitting field of $X^2 - 2$ which is Eisenstein. So this is **totally ramified extension**, can take $\pi_E = \sqrt{2}$. Let $G = \{1, s\}$ Thus

$$G = G_0 = G_1 = G_2$$

and $\{1\} = G_3 = G_4 = G_5 = \dots$

- Let E/K be $\mathbb{Q}_2(\sqrt{3})/\mathbb{Q}_2$. E is splitting field of $X^2 - 3$. Can take $\pi_E = 1 + \sqrt{3}$ (min polynomial of π_E is $X^2 - 2X - 2$). Let $G = \{1, t\}$ Note $v_E(t(\pi_E) - \pi_E) = v_E(-2\sqrt{3}) = 2$. Thus

$$G = G_0 = G_1$$

and $\{1\} = G_2 = G_3 = G_4 = ..$

- Let E/K be $\mathbb{Q}_2(i)/\mathbb{Q}_2$. E is splitting field of $X^2 + 1$. Can take $\pi_E = 1 + i$ (min polynomial of π_E is $X^2 - 2X + 2$). Let $G = \{1, t\}$. Thus

$$G = G_0 = G_1$$

and $\{1\} = G_2 = G_3 = G_4 = \dots$

- Let E/K be $\mathbb{Q}_2(\sqrt{5})/\mathbb{Q}_2$. *E* is splitting field of X^2-5 . This is **unramified** extension. Can take $\pi_E = 2$. Let $G = \{1, t\}$. Thus

$$\{1\} = G_0 = G_1 = G_2 = G_3 = \dots$$

- Let E/K be $\mathbb{Q}_2(\sqrt{2}, i)/\mathbb{Q}_2$. Can take $\pi_E = \zeta_8 - 1$. Let $G = \{1, s, t, st\}$. Thus

$$G = G_0 = G_1$$

and $\{1, s\} = G_2 = G_3$
and $\{1\} = G_4 = G_5 = G_6 \dots$

• Let $\pi \in A_E$ be a uniformizer, and let $s \in G_0$ and $i \ge 0$. Then

$$s \in G_i \iff s(\pi)/\pi \equiv 1 \mod (\pi^i)$$

- Let E/K be a Galois extension of CDVFs, with k_E/k_K separable. Let $\pi \in A_E$ be a uniformizer. Then
 - There exists an injective homomorphism $G_0/G_1 \to k_E^{\times}$, given by the formula

$$s \longmapsto s(\pi)/\pi \mod \mathfrak{m}_L$$

In particular, G_0/G_1 is cyclic of order prime to p if char $k_E = p > 0$. Note: Any finite subgroup of the multiplicative group of a field is cyclic of order prime to p if characteristic is p > 0.

- If $i \ge 1$, then there's an injective homomorphism $G_i/G_{i+1} \to (k_E, +)$. In particular, G_i/G_{i+1} is **abelian** and

$$G_i/G_{i+1} = \begin{cases} \text{trivial} & \text{if char } k_E = 0\\ \mathbb{F}_p \text{-vector space} & \text{if char } k_E = p > 0 \end{cases}$$

- The quotient G_0/G_1 is cyclic, and G_1 is:

$$G_1 = \begin{cases} \text{trivial} & \text{if char } k_E = 0\\ \text{the unique } p\text{-Sylow subgroup of } G_0 & \text{if char } k_E = p > 0 \end{cases}$$

• Soluble group: Let G be a group. G is soluble if there exist subgroups $G_0, G_1, G_2, \ldots, G_k$ such that

$$1 = G_0 < G_1 < G_2 < \dots < G_k = G$$

such that G_{j-1} is normal in G_j and such that G_j/G_{j-1} is an abelian group for all $j = 1, 2, \ldots, k$. (i.e. G can be constructed from abelian groups using extensions)

Examples: Any abelian group, any nilpotent group, any finite group of odd order (Feit-Thompson theorem), any finite group of order < 60

Non-examples: The groups A_n and S_n for n > 4 are **not** soluble (indeed, A_5 is the smallest non-soluble group). Any non-cyclic simple group is not soluble.

Orders of non-soluble groups: 60, 120, 168, 180, 240, 300, 336, 360, ...

• The group $I_{L/K} = G_0$ is soluble. If the residue field k_K is finite, then the group Gal(L/K) is soluble.

Corollary: There is no Galois extension E/\mathbb{Q}_p with Galois group A_5 .

Tamely/Wildly ramified: Let E/K be an extension of CDVFs. We say that the extension is tamely ramified if either char(k_E) = 0 or char(k_E) = p > 0 and p ∦e_{E/K}. Otherwise, if char(k_E) = p and p|e_{E/K}, then we say E/K is wildly ramified. Note: If E/K is Galois and k_E/k_K is separable, then

E/K is tamely ramified $\iff G_1 = \{1\}$

• Let E/K be a Galois extension of CDVFs, which is both **totally** and **tamely** ramified (i.e. $e_{E/K} = [E:K]$ and if char $k_E = p > 0$, then $p \not| e_{E/K}$)

Then if n = [E : K], then K contains all the *n n*-th roots of unity and there exists a uniformiser $\pi_K \in A_K$ such that $E = K(\sqrt[n]{\pi_K})$.

Constructing upper ramification groups:

• For any $u \in \mathbb{R}_{\geq 0}$, we define $G_u := G_{\lceil u \rceil}$. We now define the ramification function $\varphi_{E/K}(u)$ as

$$\varphi_{E/K}(u) = \int_{t=0}^{u} [G_0 : G_t]^{-1} dt$$

Note: $\varphi_{E/K}(u)$ is continuous, strictly increasing, piecewise linear function, with discontinues of $\varphi'_{E/K}(u)$ occuring only at integer values. Thus $\varphi_{E/K}$: $[0,\infty) \to [0,\infty)$ is a homeomorphism.

- We now define $\psi_{E/K} = \varphi_{E/K}^{-1} : [0, \infty) \to [0, \infty)$ (inverse function of $\varphi_{E/K}$).
- Upper ramification groups: Let $v \in \mathbb{R}_{\geq 0}$. We define the v-th upper ramification group as

$$G^v := G_{\psi_E/K}(v)$$

We say v is a **jump** in the upper ramification groups if $G^v \neq G^{v+\epsilon}$ for any $\epsilon > 0$.

Note: The jumps in the lower ramification groups G_n must be integer values, but the jumps in the upper ramification groups G^v can occur at rational values.

Example:

• Let E/K be a Galois extension of CDVFs, with k_E/k_K separable and G = Gal(E/K). We define $i_G : G \to \mathbb{Z}_{\geq 0} \cup \{\infty\}$ by

$$i_G(s) = \begin{cases} \infty & \text{if } s = \{1\}\\ 1 + \sup\{i : s \in G_i\} & \text{if } s \neq \{1\} \end{cases}$$

Therefore, we have

$$i_G(s) \ge i+1 \iff s \in G_i$$

• For any $u \in \mathbb{R}_{\geq 0}$, we have

$$\varphi_{E/K}(u) + 1 = \frac{1}{|G_0|} \sum_{s \in G} \min(i_G(s), u + 1)$$

- Suppose there exists $\alpha \in A_E$ such that $A_E = A_K[\alpha]$. Then $i_G(s) = v_E(s(\alpha) \alpha)$.
- There exists $\alpha \in A_E$ such that $A_E = A_K[\alpha]$.
- Let *H* be a normal subgroup of *G*, and let $L = E^H$, so we have $\operatorname{Gal}(L/K) = G/H$. Let $s \in G$. Then

$$i_{G/H}(sH) = \frac{1}{e_{E/L}} \sum_{t \in H} i_G(st)$$

• Let *H* be a normal subgroup of *G*, and let $L = E^H$. Define the function $j : G/H \to \mathbb{Z}_{\geq 0} \cup \{\infty\}$ by

$$j(sH) := \sup_{t \in H} i_G(st)$$

Then we have

$$i_{G/H}(sH) = 1 + \varphi_{E/L}(j(sH) - 1)$$

• Herbrand's theorem: Let H be a normal subgroup of G, and let $L = E^H$. If $u \in \mathbb{R}_{\geq 0}$ and $v = \varphi_{E/L}(u)$, then:

$$(G/H)_v = G_u H/H \quad (= \operatorname{Im}(G_u \to G/H))$$

• Let H be a normal subgroup of G, and let $L = E^{H}$. We have that

$$\varphi_{E/K} = \varphi_{L/K} \circ \varphi_{E/L}$$

• Let H be a normal subgroup of G, and let $L = E^{H}$. For any $v \ge 0$, we have

$$(G/H)^v = G^v H/H$$

• Let E/K be an extension of CDVFs (not necessarily Galois), with k_E/k_K separable. If $v \in \mathbb{R}_{\geq 0}$, then we define

$$E^v := E \cap L^G$$

where L/E is any extension of CDVFs with k_L/k_K separable such that L/K is Galois and G = Gal(L/K).

Note: E^v is an intermediate extension of E/K and is *independent* of the choice of L.

- Let E/K be an extension of CDVFs (not necessarily Galois), with k_E/k_K separable. We have
 - E^0 is the maximal unramified subextension.
 - If $v \leq v'$ then $E^v \subseteq E^{v'}$, and for sufficiently large $v, E^v = E$.
 - If E/M/K is an intermediate extension, then $M^v = M \cap E^v$.
 - If E/M and N/K are two intermediate extensions, then $M^v \cdot N^v \subset (M \cdot N)^v$. In particular, if $M^v = M$ and $N^v = N$, then $(M \cdot N)^v = M \cdot N$.
- Hasse-Arf Theorem: Let K/\mathbb{Q}_p be a finite extension, and let E/K be an abelain extension (i.e. E/K is a Galois extension and $\operatorname{Gal}(E/K)$ is abelian). Then all the jumps in the upper ramification groups are integers.
- Conductor ideal: Let K/\mathbb{Q}_p be a finite extension, and let E/K be an abelian extension. We define the conductor ideal $C_{E/K}$ of A_K to be (π_K^a) where

$$a := \inf\{n \in \mathbb{Z}_{>0} : G^n = \{1\}\} = 1 + \text{ highest jump}$$

Note: $C_{E/K} = A_K$ the unit ideal $\iff E/K$ is unramified.

• Let K/\mathbb{Q}_p be a finite extension, and let E/K be a Galois extension. Let $E_1, E_2/K$ be subextensions of E/K which are abelian over K. Then $E_1 \cdot E_2$ is abelian over K and

$$C_{E_1 \cdot E_2/K} = \operatorname{lcm}(C_{E_1/K}, C_{E_2/K}).$$

5. Global Class Field Theory

Fix a number field K. GCFT aims to describe all abelian extensions E/K.

• Conductor ideal: Let E/K be abelian extension of number fields. The conductor ideal is the unique ideal $C_{E/K} \subseteq \mathcal{O}_K$ s.t. for any non-zero prime ideal $P \subset \mathcal{O}_K$ and any prime ideal $Q \subseteq \mathcal{O}_E$ lying above P, we have $C_{E/K}A_{K_p} = C_{E_q/k_p}$.

Equivalently, $v_p(C_{E/k}) = v_p(C_{E_q/k_p})$, and thus

$$C_{E/K} = \prod_{P \subset \mathcal{O}_K} P^{v_P(C_{E_Q/K_P})}$$

- Let E/K be extension of number fields. Thus for all but finitely many prime ideals $P \subset \mathcal{O}_K$, non-zero, P is unramified in \mathcal{O}_E .
 - If $K = \mathbb{Q}(\alpha)$ for $\alpha \in \mathcal{O}_K$ and $f(X) \in \mathbb{Z}[X]$ is the minimal polynomial of α , then disc $\mathcal{O}_k | \operatorname{disc} f$.

- If p prime, then $p|\operatorname{disc}\mathcal{O}_K$ if and only if p is ramified in \mathcal{O}_K (i.e. $e_i > 1$ for some i).

• Kronecker-Weber theorem: Let L/\mathbb{Q} be an abelian extension. Then there exists $N \in \mathbb{Z}_{\geq 1}$ such that $L \subset \mathbb{Q}(\zeta_N)$. Moreover

$$L \subset \mathbb{Q}(\zeta_N) \iff C_{L/\mathbb{Q}} \mid (N)$$

• Let $N \ge 1$ be an integer, and let $\zeta_N = e^{2\pi i/N}$ be a primitive *n*-th root of unity. We have that the extension $\mathbb{Q}(\zeta_N)/\mathbb{Q}$ is **abelian**, and the isomorphism:

$$\operatorname{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q}) \longleftrightarrow (\mathbb{Z}/N\mathbb{Z})^{\times}$$

$$\sigma \text{ such that} \qquad \longmapsto a \pmod{N}$$

$$\sigma(\zeta_N) = \zeta_N^a \qquad \longmapsto a \pmod{N}$$

We have the following bijections:

$$\begin{cases} \text{Ab extns } K/\mathbb{Q} \\ \text{s.t. } C_{K/\mathbb{Q}} \mid (N) \end{cases} = \begin{cases} \text{Ab extns } K/\mathbb{Q} \\ \text{s.t. } K \subseteq \mathbb{Q}(\zeta_N) \end{cases} \leftrightarrow \begin{cases} \text{Quotients of} \\ \text{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q}) \end{cases} \leftrightarrow \begin{cases} \text{Quotients of} \\ (\mathbb{Z}/N\mathbb{Z})^{\times} \end{cases} \end{cases}$$

$$(\text{by KW Theorem}) \qquad K \longmapsto \text{Gal}(\mathbb{Q}(\zeta_N)/K)$$

• Artin symbol: If L/K is abelian extension of number fields, and $P \subset \mathcal{O}_K$ a non-zero prime ideal, and P unramified in \mathcal{O}_L , then we define the Artin symbol $(P, L/K) \in \text{Gal}(L/K)$ by

 $(P, L/K) := \operatorname{Frob}_{Q/P}$, for any prime ideal $Q \subset \mathcal{O}_L$ lying above P.

• Class field theory over \mathbb{Q} : Let $N \geq 1$ be an integer, and let K/\mathbb{Q} be an abelian extension such that $C_{K/\mathbb{Q}} \mid N$. In particular any prime $p \not| N$ is unramified, so the Artin symbol $((p), K/\mathbb{Q}) \in \operatorname{Gal}(K/\mathbb{Q})$ is defined. Then there is a unique surjective homomorphism $\phi_{K/\mathbb{Q}} : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \operatorname{Gal}(K/\mathbb{Q})$ given by, for all primes $p \not| N$:

$$\phi_{K/\mathbb{Q}} : (\mathbb{Z}/N\mathbb{Z})^{\times} \longrightarrow \operatorname{Gal}(K/\mathbb{Q})$$
$$p \mod N \longmapsto ((p), K/\mathbb{Q})$$

This therefore gives a bijection between the following two sets:

$$\left\{\begin{array}{l} \text{Abelian extensions } K/\mathbb{Q} \\ \text{such that } C_{K/\mathbb{Q}} \mid (N) \end{array}\right\} \longleftrightarrow \left\{\begin{array}{l} \text{Quotients of} \\ (\mathbb{Z}/N\mathbb{Z})^{\times} \end{array}\right\}$$
$$K \longmapsto \ker \phi_{K/\mathbb{Q}}$$

- Modulus: Let K be a number field. A modulus is a pair $m = (m_0, m_\infty)$ where
 - $-m_0 \subset \mathcal{O}_K$ is a non-zero ideal.
 - $-m_{\infty} \subset \operatorname{Hom}_{\mathbb{Q}}(K,\mathbb{R})$ is possibly empty subset.

Partial order: If $m = (m_0, m_\infty)$ and $n = (n_0, n_\infty)$ are moduli, we say $m \le n$ if $m_0|n_0$ and $m_\infty n_\infty$.

Fact: Note that $|\text{Hom}_{\mathbb{Q}}(K, \mathbb{C})| = [K : \mathbb{Q}] = r + 2s$ where

$$r = |\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{R})| \quad \text{and} \\ s = \frac{1}{2} |\{\tau \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C}) : \tau(K) \not\subseteq \mathbb{R}\}|$$

• If E/K is any abelian extension, we can define its associated modulus $m_{E/K} = (m_{E/K,0}, m_{E/K,\infty})$ where

$$m_{E/K,0} = C_{E/K}$$
$$m_{E/K,\infty} = \{ \tau \in \operatorname{Hom}_{\mathbb{Q}}(K,\mathbb{R}) : \not\exists \tilde{\tau} \in \operatorname{Hom}_{\mathbb{Q}}(E,\mathbb{R}) \text{ s.t. } \tilde{\tau}|_{K} = \tau \}$$

(i.e. $m_{E/K,\infty}$ is the set of real embeddings of K which do **not** extend to real embeddings of E)

• Ideal class group: Let K be number field. Define

$$\mathcal{I} := \text{Div}\mathcal{O}_k = \{\text{non-zero fractional ideals of } \mathcal{O}_K \}$$
$$\mathcal{P} := \{I \in \mathcal{I} : \exists \alpha \in K^* \text{ s.t. } I = (\alpha) \}$$

(i.e. \mathcal{I} is the fractional ideals, and \mathcal{P} is the principal fractional ideals) The ideal class group of \mathcal{O}_K is \mathcal{I}/\mathcal{P} .

- Ray class group: Let $m = (m_0, m_\infty)$ be a modulus. Define
 - $k(m_0) = \{ \alpha \in K^{\times} : \forall P \subset O_K, v_p(m_0) > 0 \implies v_p(\alpha) = 0 \}$ $\mathcal{I}(m_0) = \{ I \in \mathcal{I} : \forall P \subset O_K \text{ non-zero prime ideal }, v_p(m_0) > 0 \implies v_p(I) = 0 \}$ $\mathcal{P}(m_0) = \mathcal{P} \cap \mathcal{I}(m_0)$

The ray class group of modulus M is $H(m) = \mathcal{I}(m_0)/\mathcal{P}_m$. Properties:

- -H(m) is a finite abelian group.
- There are short exact sequences:

$$0 \longrightarrow \mathcal{P}(m_0)/\mathcal{P}_m \longrightarrow H(m) \longrightarrow H_k \longrightarrow 0$$

and

$$0 \longrightarrow \mathcal{O}_k^{\times} / (\mathcal{O}_k^{\times} \cap k_m) \longrightarrow (\mathcal{O}_k / m_0)^{\times} \times \{\pm 1\}^{m_{\infty}} \longrightarrow \mathcal{P}(m_0) / \mathcal{P}_m \longrightarrow 0$$

In particular,

$$|H(m)| = |H_K| \cdot |(\mathcal{O}_k/m_0)^{\times}| \cdot 2^{|m_{\infty}|} \cdot |\mathcal{O}_k^{\times}/\mathcal{O}_k^{\times} \cap k_m|^{-1}$$

Examples:

- If $m = (\mathcal{O}_k)$ is the trivial modulus, then $H(m) == \mathcal{I}/\mathcal{P}$ is the usual class group.
- $k = \mathcal{Q}$, then the modulus (m_0, m_∞) is such that $m_0 \subset \mathcal{O}_K = \mathbb{Z}$ and $m_\infty \subset \{\text{id}\}$ Case 1: If $m_0 = (N)$ and $m_\infty = \{id\}$:

$$K(m_0) = \{ \alpha \in \mathbb{Q}^{\times} : p | N \implies p \not| \alpha \}$$

$$K_m = \{ \alpha \in K(m_0) : p^k | | N \implies p^k | (\alpha - 1) \text{ and } \alpha > 0 \}$$

Thus

$$H(m) \cong \frac{(\mathbb{Z}/N\mathbb{Z})^{\times} \times \{\pm 1\}}{\mathbb{Z}^{\times}} \cong (\mathbb{Z}/N\mathbb{Z})^{\times}$$

Case 2: If $m_0 = (N)$ and $m_{\infty} =:$ Thus

$$H(m)\cong \frac{(\mathbb{Z}/N\mathbb{Z})^{\times}}{\mathbb{Z}^{\times}}$$

- **GCFT:** Let K be a number field, m a modulus of k.
- Binary quadratic form: A polynomial $f(x, y) = ax^2 + bxy + cy^2$ where $a, b, c \in \mathbb{Z}$.

Equivalently,
$$f(x,y) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & b/2 \\ b/2 & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

We say an integer m is represented by f(x, y) if there exist $x_0, y_0 \in \mathbb{Z}$ such that $f(x_0, y_0) = m$.

Misc

• **Trace:** Let *E* be a finite extension of *K*. We have the *k*-linear map $m_x : E \to E$ where $m_x(y) = xy$ (multiplication by *x*). We define the trace $\operatorname{Tr}_{E/K} : E \to K$ as $\operatorname{Tr}_{E/K} = \operatorname{tr}(m_x)$ (usual trace of matrix)

Example: If $k = \mathbb{Q}$, $E = \mathbb{Q}[\sqrt{d}]$, then $\{1, \sqrt{d}\}$ is basis for E over K. If $x = a + b\sqrt{d}$, then $\operatorname{Tr}_{E/k}(x) = 2a$.

- We have $\operatorname{tr}_{E/K}(x) = \sigma_1(x) + \cdots + \sigma_n(x)$ where σ are all K-embeddings of E in \overline{K} .
- **Compositum:** The compositum of two fields E, F is the smallest field containing both E and F