Analytic Number Theory

Lectures

1. Arithmetic functions

e Arithmetic function: A function f: N — R. (N={1,2,3,...,})

f is multiplicative if f(mn) = f(m)f(n) for all (m,n) = 1. f is completely multi-
plicative if f(mn) = f(m)f(n) for all m, n.

e Convolution: Let f, g be arithmetic functions. The convolution is:

Frgn) =" fla)g(b)

ab=n

Fact:  Convolution is commutative and associative. If f, g multiplicative, then f x g
multiplicative. If 1 x f = g, then y* g = f. The identity is 6 = 1% u

e Mobius inversion: Let f, g be arithmetic functions such that 1 * f = g:

g(n) =Y _f(d) foralln>1

din

Then we have that u* g = f:

f(n) = Zu(d)g (%) for all n > 1

din

e Von Mangoldt function: Defined as

1 if n = pk
Mmz{%pln p

0 otherwise

lxA=log = ZA(a)zlogn
aln

Partial summation: If a, € C and f: R, — R s.t. f’is continuous then

> anf(m) = A @)~ [ A @i

where A(x) =)

Lemma 2:

1 1
Z—zlogm—l—’y—i—@(—)
n x

n<x

where v = 0.577... is Euler’s constant



Lemma 3
Zlogn =zxlogx —x + O(log z)

n<x

Let 7(n) denote the divisors function, 7(n) =1 1(n) = >_,, 1. Then

Z 7(n) = zlogx 4+ O(x)
Z 7(n) = zlogx + (2y — D + O(z/?)

n<x

Prime number theorem: Let 7(z)=> _ 1 be the number of primes < z. Then

p<z

T

m(w) ~ log x

This is equivalent to ¥(x) ~ x by Lemma 5.

Chebyshev, 1850 We have ¢(x) < z. Le. there exists constants ¢, ¢o such that, for all
large z:
cx < Y(z) < e

We can explicitly show ¢; = log2 — € and ¢y = 2log 2 + € works.

Lemma 5: Relation between 7(x) and ¢ (z):

0= fr (1)

In particular, 7(z) < 5 and 7(z) ~ o iff ¥(z) ~ .

Lemma 6: (Merten’s first theorem)

Z logp _ logz 4+ O(1)

p<w

Lemma 7: (Merten’s second theorem)

1 1
Z—zloglogz—i—b—l—(’)( )
P log x

p<z

where b is some constant.
Lemma 8: (Merten’s third theorem)
1\
H (1 — —) = clogz + O(1)
p<z p

where ¢ > 1 is some constant.

Fact: The constant cis c =¢7 ~ 1.78...

Chebyshev, 1850s: If limit for 7(z) exists, it must be 1.

Ifﬂ(:C)Nclx , then c=1

0ogx



. Dirichlet series and the Rimenann zeta function
e Complex exponentiation: Let n € N and s € C, then we define

ns = eslogn

e Dirichlet series: Let a, : N — C be a complex sequence. The Dirichlet series is:

F(s) :Z% where a,, € C
n=1

e Riemann Zeta function:

which converges for o > 1.

e There is an abscissa of convergence o, s.t. F(s) converges for all ¢ > o, and diverges for
all 0 < 0., and if o > o, there is a neighbourhood of s in which F(s) converges uniformly
In particular, f is holomorphic at s.

o If ) dn =7%" Z_Z for all s in some half-place 0 > o( (where both converge), then a,, = b,
for all n.

e If 'y and F, are both absolutely convergent at s, then so is Fiy-F, and F¢($)Fy(s) = Fug(s)
e For o > 1,
1 <t
((s)=14+ ———s th

s—1 1 ts—i—l

e Product Convergence: If a, € C, then we say that [[, a, converges if the partial
products [[2, converge to a non-zero value s € C\{0}.

e [[°2, a, converges if and only if for any € > 0, there is N such that

n=1
ﬁak —1

k=n

<e forallm>n>N

In particular, lim a, = 1.
n—oo

e We say that [[(1 + a,) converges absolutely if [[(1 + |a,|) converges.
o If [J(1 + a,) converges abosllutely, then it converges.

e Ifa, >0 for all n > 1, then

H(l + a,) converges <= Z a, converges

e Euler product: If f is multiplicative and ) %—Z)l converges, then

B =310 ] (1+ o) | I +)

S
» p p




If f is completely multiplicative, then f(p*) = f(p)¥, so

ST ey

= o) _ ((s—1)
2w T

> 2 ceets -1

> 20 _ et - b)
g (s

—~ n’ ©((29)

Z lorin _ _¢(s)

> i~ g (s

Z A(n) = —i((s)) NB! Gives relation between ¢ and A, and thus v

Gamma function: Define
= l.IIl E —1 — 10 N == 0 51 [

and define the gamma function as:

o0

1 s
I vs 1 _) —s/n
Ts) ¢ [I(+;)e

n=1
This gives entire function (analytic for all s € C)

(=1)"
n!

['(s) has no zeros, and has poles at s =0, —1,—2,.... The residue at s = —n is

4



Euler definition:

®» |

_ﬁl <1+ >5(1+§)_1

and rewriting, we get

o (N —1)!
[(s) = lim N s(s+1)...(s+N—-1)

We have I'(s + 1) = sI'(s). In particular, for positive integers n, we have I'(n) = (n — 1)!

Reflection formula: -

Pl =) = sin(7s)

In particular, T'(1/2) = /7.

Duplication formula:

D(s)0(s + 1/2) = 2" /7T (2)

Integral formula: If ¢ > 0, then

['(s) = / tte tdt
0

Particular values of I' function:

r2) =1, r(3):2 Fd)=6, T(n)=(m—1) forneN
()i 1)1 1) £
<2+n> (2"2 DR~ for n € {0,1,2,...}
(1) = —

Functional equation: ((s) can be extended to a meromorphic function on C, and for
all s

((s) = 2°7* 'sin <%S>T(1 —5)C(1—s)

or equivalently

(%)
T(s/2)

Bernoulli numbers: We define the Bernoulli numbers by the generating function
z = B
e —1 Z nl
n=0
We have the recursive formula By = 1, and for £ > 2

5 (o

0<n<k—1

C(s) = x(s)¢(1 —s) where x(s)= s1/2

FExamples:

1 1 1 1
0 ) 1 ) 2 67 3 ) 4 307



e Particular values of (:

C(O):Blz—% C(—n):(—l)”frll forn=20,1,2,...
1 1 1
C(Zn) _ (_1)n+122n—1ﬂ_2n%
2 4 6
(@=7 @W=g <6)=gz
¢'(0) = —=log (27) gég)) = log (27)
e Integral representations of ¢
((s)=1+ ot 1 is—l—}l du  for o > 1 (but also valid for o > 0)
C(s):%—i-s_%jts 1 £§+3du for 0 > —1 (where f(x):%—{x})
((s) = % + é +s(s—1) /100 %du for o > —1 (where F(x) = Ox f(u)du)
= flu
C(s)zs/o u(+3du for —1<o0<0
1 [ 25!
C(S):F(s)/o ex_lda: foro > 1
~ra PR 1 where C is Hankel cont
C(s)—2m, ( _S)/Cez—lz or 0 > 1 where C is Hankel contour

1 o 1 1
C(S):m/; (efp——l_;) .Ts_ldl' fOI'0<O'<1

1o/ 1 11 L,
= — _—— —_ S f —1
¢(s) F(s)/o (em—l x—l—z):v dx or <o<0

Expansion of ((s) around s = 0:

Expansion of ((s) around s = 1:

((5) = —== +7+0((s 1)

Values of ¢ along the real line between ¢ = —15 and o = 10:

e Jensen’s inequality: Suppose f(z) is analytic in a disc with radius R, centre a, and

that | f(z)] < M in this disc, and f(a) # 0. Then

log
|# zeros of f in disc centre a, radius r < R| < 1 ‘fl(%a)
og -



e When 0 < § <o <2, and |t| > 1,

1C(s)] < (14 [¢/7) - min ( og (I + 4))

1
o —1f
e Let N(T) be the number of zeros of ((s) in 0 <o <1,0<t<T. THen for any 7' > 4

N(T +1) — N(T) < log T

Corollary: N(T) < TlogT



3. Explicit formula

¢ Riemann—von Mangoldt explicit formula:
x? 1 1
where p is over all zeros of ((s) in the critical strip 0 < o <1

e Borel-Carathéodory: Let f be a holomorphic on |z| < R s.t. f(0) =0 and Ref(z) <
M for all |z] < R. Then for any r < R

sup |f(2)| <rr M

|z]<r
We also get sup, <, |f'(2)] <nr M

e If 0y > 0, then

1 ooty 1 ify>1 %
e Las=4 197 4 O( 1 )
21 Joo T S 0 ify<1 T'logy

e Perron’s formula: If F(s) = % is absolutely convergent for ¢ > o, and oy >
max(0, o, ), then for any 7" > 1

1 o+iT

n<x

8 x || 270 |ay|
F(s)—ds+ O [ 270 — z Znl
o (s) . 5+ T Z In — x| * T Z noo
x/2<n<2z n

This gives a type of converse to Dirichlet series (given F'(s), determine > __a,)

e Suppose f(z) is analytic in a domain containing |z| < 1, where | f(2)| < M and f(0) # 0.
Let 0 <r < R < 1. Then for |2| <r

i/(Z) =3 L Or.r <log l)

z— 2 |£(0)]
where the sum is over zj, zeros of f where |z;| < R

e For |t| > 2

g/

s0)= 3 5=, Ollgll)

[t—vI<1
uniformly for —1 < ¢ < 2. (i.e. the sum is over all zeros of ¢ in the critical strip with

imaginary part between Im(s) — 1 and Im(s) + 1)

e For any T' > 4, there is some T' < T7 < T + 1 such that

/

%(0 +411)| < (log T)?

uniformly for —1 < o < 2.



e Stirling’s formula: For |s| > § and |arg(s)| <7 — ¢

1%(5) =logs+ O(1) and logI'(s) = slogs+ O(s).

Note: For real values: n! ~ v/2mn (%)n, and thus logn! = nlogn —n + O(logn).

o If o < —1and |s+2k| > i, then get

/

()

c < log (|s|+ 1)

e Explicit formula: If z is not an integer, then, fpr any 7' > 1

()= An)=z—>_ %—log@w) —%log (1 - %) Lo (% (log(xT)Q N 1(25;))

n<x P
I<T

where (x) denotes the distance from x to the nearest prime power.

Corollary: If z is not an integer, then

Corollary 2: Assuming the Riemann Hypothesis, then

() =z + O(a"*(logz)?)

e (Generalised explicit formula:) If s # 1, {(s) # 0, and z is not an integer, then
> .—2k—s

Aln)  al=s _ xr—s ( x
e S S | _ 2
Z ns 1—5 7o —~ p—5 g(s)—i_;%—l—s

n<x

[vI<T

e Littlewood has shown error term of ¢(z) at least 2'/2logloglogz. That is, if ¢ (z) =
z + E(z), then:

E E
lim sup (z) >0 and liminf (z)
oo T2logloglog x z—oo 11/2]ogloglog @

<0




. Zeros of ((s)

o If 0 > 3(1+t?), then ((s) #0
In particular, {(s) #0if 8/9 <o <1 and |t| < 7/8.

e de la Vallée Poussin 1899: There is ¢ > 0 such that ((s) # 0 for ¢ > 1 — P (GE)

Conjecture: Does there exist € > 0 such that ((s) # 0 for o > 1 — €7

e There is ¢ > 0 such that
Y(x) =z + O(zeVIoer)

o If |t| > I and 2 < o <2, then

¢

C@):2;§%;+beyﬂ+4)

where p is over all zeros in [p — (3 +it)] < 2

e Korobov-Vinogradov-Richert: There exists ¢ > 0 such that

C

fi 1—
((s) 70 for o> (log t)?/3(loglog t)1/3

e Asymptotic formula for N(7T'):

In particular, N(T') ~ =TlogT
e Normlized zeta function:
1
£(s) = 5C(s)(s = 1)sm~*/*T'(s/2)

Functional equation states £(s) = (1 —s). & is entire function and only has zeros at zeros
of ((s)in0 <o <1.

e Landau: Let A(x) be integrable, bounded in any finite interval, and A(x) > 0 for large

x> X. Let
ac:inf{a:/ A(x)dx<oo}
x 7

Then the function

is analytic for ¢ > ¢, but not at s = o..
Corollary: If F(s) can be defined in some half-plane o > o1 where

ﬂgzlwﬁﬂm

.CCS

such that F'(s) can be meromorphically continued to the half-plane o > o (possibly with
poles) and such that there are no poles on the real line s = o > 0, then F(s) has no
poles in the entire half-plane o > o!

10



e We say that f = Q4 (g) if
f(z) /(=)

limsup——=>¢>0 and liminf—= <-c<0
T—00 g(m) T—00 g(x)

Le. 3¢ > 0 s.t. f(x) > cg(x) infinitely often, and f(x) < —cg(x) infinitely often.

e If 0( is the supremum of the real parts of the zeros of ((s), then for any o < oy
U(x) =x + Qu(z9)

Corollary: ~ The Riemann Hypothesis is equivalent to: for every € > 0, ¢¥(x) = x +
(95(.T1/2+6).

e If there is a zero of ((s) at p = g + it, then

P(x) = 2+ Qs (™)

11



5. Zero density results

Define N (o, T) as the number of zeros of ((s) with real part > ¢ and imaginary part < 7.

Ingham: Let 1/2 < 0y < 1. THe number of zeros with o > g is O(T21=70) (log T)°M).

This implies, for all € > 0, there exists a prime number in the interval [z, z + 22/3%€].

Approximate Functional Equation: When 0 <o <1

OED JEESTO) pe

n<lx nly

(x—a + |t|—1/2x1—0)

1 _ 1
where x,y > 5 such that zy = 7.

(in particular, can take x ~ y ~ t/?)

i

For any a, € C,
2

dt = (T +0(x)) > |a|

n<x

§ annzt

n<zx

r 1 2 T
C(——i—it) dt ~ —logT
T 1 2
/ C<—+it) dt ~ TlogT
; 2

4

2nd moment of (:

Corollary:

For any a,, € C,

E : annzt

n<x

2
dt < (T + 2?%) <Z|an|2 )

n<x

r

4th moment of (:
T
1
/ |C(§ +it)|*dt < T(log T)*
0
(In fact, Ingham showed ~ 55T (log T')*)

Open conjecture: For all k > 0,

T
1
/ S(5 + it)[*dt ~ e, T(1og T)*
0

for some ¢; > 0. Only known for k = 1,2. Ramachandra has showed > T'(log T)*’
f1/2<0<1
T
/ (o + it)Pdt <, T
0

12



e Logarithm: Let f(s) be a function on a rectangular contour C, which is non-zero on C.
Then define

log f(s) = log|f(s)] + i - arg(f(s))

where the argument varies continuously anti-clockwise around C. (just pick a point for
arg, then vary continuously)

e Littlewood: Let f(s) be analytic on and inside C, and non-zero on C, where C is a
rectangle with vertices at:

gg+iT o +iT

D(p) e

Then

ZD . [ log f(s)ds

where the sum is over all zeros p of f inside C, and D(p) denotes the horizontal distance
from p to the left edge of the rectangle

In particular,
T T
QWZD(p):/ log|f(ao—|—z't)|dt—/ log |f (o1 + it) |t
P 0 0

+ /U1 arg f(o + it)do — /01 argf(o)do

oo g0
e Bohr-Landau: Forany 1/2 <o <1

N(o,T) <, T

(almost all zeros of ((s) arbitrarily close to o = 1)

e Zero density: A zero density of strength A is the statement:
1
N(o,T) <, T2 (log 7)Y  for all 5 <o<l1

Density Hypothesis conjecture: We can take A = 2.

13



e Riemann hypothesis = Lindelhof hypotehsis = Density hypothesis = prime
between x and x 4 x/>+<.

e If we have a zero density result 0£ strength A, then for all € > 0, for all z large enough,
—1
there is a prime between x and x™a ¢

e For 1/2 <o <1, we have
N(o,T) < TUH2)1=9) (Jog 7)0W)

In particular,
N(o,T) < T30~ (log T)°W

therefore proving zero density of strength A = 3.
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