
Analytic Number Theory

Lectures

1. Arithmetic functions

• Arithmetic function: A function f : N→ R. (N = {1, 2, 3, . . . , })
f is multiplicative if f(mn) = f(m)f(n) for all (m,n) = 1. f is completely multi-
plicative if f(mn) = f(m)f(n) for all m,n.

• Convolution: Let f, g be arithmetic functions. The convolution is:

f ∗ g(n) =
∑
ab=n

f(a)g(b)

Fact: Convolution is commutative and associative. If f, g multiplicative, then f ∗ g
multiplicative. If 1 ∗ f = g, then µ ∗ g = f . The identity is δ = 1 ∗ µ

• Mobius inversion: Let f, g be arithmetic functions such that 1 ∗ f = g:

g(n) =
∑
d|n

f(d) for all n ≥ 1

Then we have that µ ∗ g = f :

f(n) =
∑
d|n

µ(d)g
(n
d

)
for all n ≥ 1

• Von Mangoldt function: Defined as

Λ(n) =

{
log p if n = pk

0 otherwise

•
1 ∗ Λ = log =⇒

∑
a|n

Λ(a) = log n

• Partial summation: If an ∈ C and f : R+ → R s.t. f ′ is continuous then∑
n≤x

anf(n) = A(x)f(x)−
∫ x

1

A(t)f ′(t)dt

where A(x) =
∑

n≤x an.

• Lemma 2: ∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
where γ = 0.577 . . . is Euler’s constant
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• Lemma 3 ∑
n≤x

log n = x log x− x+O(log x)

• Let τ(n) denote the divisors function, τ(n) = 1 ∗ 1(n) =
∑

d|n 1. Then∑
n≤x

τ(n) = x log x+O(x)∑
n≤x

τ(n) = x log x+ (2γ − 1)x+O(x1/2)

• Prime number theorem: Let π(x) =
∑

p≤x 1 be the number of primes ≤ x. Then

π(x) ∼ x

log x

This is equivalent to ψ(x) ∼ x by Lemma 5.

• Chebyshev, 1850 We have ψ(x) � x. I.e. there exists constants c1, c2 such that, for all
large x:

c1x ≤ ψ(x) ≤ c2x

We can explicitly show c1 = log 2− ε and c2 = 2 log 2 + ε works.

• Lemma 5: Relation between π(x) and ψ(x):

π(x) =
ψ(x)

log x
+O

(
x

log2 x

)
In particular, π(x) � x

log x
and π(x) ∼ x

log x
iff ψ(x) ∼ x.

• Lemma 6: (Merten’s first theorem)∑
p≤x

log p

p
= log x+O(1)

• Lemma 7: (Merten’s second theorem)∑
p≤x

1

p
= log log x+ b+O

(
1

log x

)
where b is some constant.

• Lemma 8: (Merten’s third theorem)∏
p≤x

(
1− 1

p

)−1
= c log x+O(1)

where c > 1 is some constant.

Fact: The constant c is c = eγ ≈ 1.78...

• Chebyshev, 1850s: If limit for π(x) exists, it must be 1.

If π(x) ∼ c
x

log x
, then c = 1
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2. Dirichlet series and the Rimenann zeta function

• Complex exponentiation: Let n ∈ N and s ∈ C, then we define

ns = es logn

• Dirichlet series: Let an : N→ C be a complex sequence. The Dirichlet series is:

F (s) =
∞∑
n=1

an
ns

where an ∈ C

• Riemann Zeta function:

ζ(s) =
∞∑
n=1

1

ns

which converges for σ > 1.

• There is an abscissa of convergence σc s.t. F (s) converges for all σ > σc and diverges for
all σ < σc, and if σ > σc there is a neighbourhood of s in which F (s) converges uniformly
In particular, f is holomorphic at s.

• If
∑

an
ns

=
∑

bn
ns

for all s in some half-place σ > σ0 (where both converge), then an = bn
for all n.

• If Ff and Fg are both absolutely convergent at s, then so is Ff ·Fg and Ff (s)Fg(s) = Ff∗g(s)

• For σ > 1,

ζ(s) = 1 +
1

s− 1
− s

∫ ∞
1

{t}
ts+1

dt

• Product Convergence: If an ∈ C, then we say that
∏∞

n=1 an converges if the partial
products

∏∞
n=1 converge to a non-zero value s ∈ C\{0}.

•
∏∞

n=1 an converges if and only if for any ε > 0, there is N such that∣∣∣∣∣
m∏
k=n

ak − 1

∣∣∣∣∣ < ε for all m > n ≥ N

In particular, lim
n→∞

an = 1.

• We say that
∏

(1 + an) converges absolutely if
∏

(1 + |an|) converges.

• If
∏

(1 + an) converges abosllutely, then it converges.

• If an > 0 for all n ≥ 1, then∏
(1 + an) converges ⇐⇒

∑
an converges

• Euler product: If f is multiplicative and
∑ |f(n)|

nσ
converges, then

Ff (s) =
∞∑
n=1

f(n)

ns
=
∏
p

(
1 +

f(p)

ps
+
f(p2)

p2s
+ . . .

)
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If f is completely multiplicative, then f(pk) = f(p)k, so

Ff (s) =
∏
p

(
1− f(p)

ps

)−1

Examples of Euler products:

∞∑
n=1

1

ns
= ζ(s) =

∏
p

(
1− 1

ps

)−1
∞∑
n=1

µ(n)

ns
=

1

ζ(s)
=
∏
p

(
1− 1

ps

)
∞∑
n=1

|µ(n)|
ns

=
ζ(s)

ζ(2s)
=
∏
p

(
1 +

1

ps

)
∞∑
n=1

τ(n)

ns
= ζ(s)2

∞∑
n=1

φ(n)

ns
=
ζ(s− 1)

ζ(s)

∞∑
n=1

σ(n)

ns
= ζ(s)ζ(s− 1)

∞∑
n=1

σk(n)

ns
= ζ(s)ζ(s− k)

∞∑
n=1

2ω(n)

ns
=
ζ(s)2

ζ(2s)

∞∑
n=1

log n

ns
= −ζ ′(s)

∞∑
n=1

Λ(n)

log n
n−s = log ζ(s)

∞∑
n=1

Λ(n)

ns
= −ζ

′(s)

ζ(s)
NB! Gives relation between ζ and Λ, and thus ψ

• Gamma function: Define

γ = lim
N→∞

(∑
n≤N

1

n
− logN

)
= 0.577

and define the gamma function as:

1

Γ(s)
= seγs

∞∏
n=1

(
1 +

s

n

)
e−s/n

This gives entire function (analytic for all s ∈ C)

• Γ(s) has no zeros, and has poles at s = 0,−1,−2, . . . . The residue at s = −n is
(−1)n

n!
.
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• Euler definition:

Γ(s) =
1

s

∞∏
n=1

(
1 +

1

n

)s (
1 +

s

n

)−1
and rewriting, we get

Γ(s) = lim
N→∞

N s (N − 1)!

s(s+ 1) . . . (s+N − 1)

• We have Γ(s+ 1) = sΓ(s). In particular, for positive integers n, we have Γ(n) = (n− 1)!

• Reflection formula:
Γ(s)Γ(1− s) =

π

sin(πs)

In particular, Γ(1/2) =
√
π.

• Duplication formula:
Γ(s)Γ(s+ 1/2) = 21−2s√πΓ(2s)

• Integral formula: If σ > 0, then

Γ(s) =

∫ ∞
0

ts−1e−tdt

• Particular values of Γ function:

Γ(1) = 1, Γ(2) = 1, Γ(3) = 2, Γ(4) = 6, Γ(n) = (n− 1)! for n ∈ N

Γ

(
1

2

)
=
√
π, Γ

(
3

2

)
=

1

2

√
π, Γ

(
5

2

)
=

3

4

√
π, Γ

(
7

2

)
=

15

8

√
π,

Γ

(
1

2
+ n

)
=

(2n− 1)!!

2n
√
π for n ∈ {0, 1, 2, . . . }

Γ′(1) = −γ

• Functional equation: ζ(s) can be extended to a meromorphic function on C, and for
all s

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s)

or equivalently

ζ(s) = χ(s)ζ(1− s) where χ(s) = πs−1/2
Γ
(
1−s
2

)
Γ(s/2)

• Bernoulli numbers: We define the Bernoulli numbers by the generating function

z

ez − 1
=
∞∑
n=0

Bn

n!
zn

We have the recursive formula B0 = 1, and for k ≥ 2∑
0≤n≤k−1

(
k

n

)
Bn = 0

Examples:

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 =

1

42
. . .
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• Particular values of ζ:

ζ(0) = B1 = −1

2
ζ(−n) = (−1)n

Bn+1

n+ 1
for n = 0, 1, 2, . . .

E.g. ζ(−1) = − 1

12
, ζ(−2) = 0, ζ(−3) =

1

120
, ζ(−4) = 0, ζ(−5) = − 1

252
, . . .

ζ(2n) = (−1)n+122n−1π2n B2n

(2n)!

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
,

ζ ′(0) = −1

2
log (2π),

ζ ′(0)

ζ(0)
= log (2π)

• Integral representations of ζ:

ζ(s) = 1 +
1

s− 1
− s

∫ ∞
1

{u}
us+1

du for σ > 1 (but also valid for σ > 0)

ζ(s) =
1

2
+

1

s− 1
+ s

∫ ∞
1

f(u)

us+1
du for σ > −1 (where f(x) =

1

2
− {x})

ζ(s) =
1

2
+

1

s− 1
+ s(s− 1)

∫ ∞
1

F (u)

us+2
du for σ > −1 (where F (x) =

∫ x

0

f(u)du)

ζ(s) = s

∫ ∞
0

f(u)

us+1
du for − 1 < σ < 0

ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1

ex − 1
dx for σ > 1

ζ(s) =
e−iπs

2πi
Γ(1− s)

∫
C

zs−1

ez − 1
dz for σ > 1 where C is Hankel contour

ζ(s) =
1

Γ(s)

∫ ∞
0

(
1

ex − 1
− 1

x

)
xs−1dx for 0 < σ < 1

ζ(s) =
1

Γ(s)

∫ ∞
0

(
1

ex − 1
− 1

x
+

1

2

)
xs−1dx for − 1 < σ < 0

• Expansion of ζ(s) around s = 0:

ζ(s) = −1

2
− 1

2
log (2π)s+O(s2)

• Expansion of ζ(s) around s = 1:

ζ(s) =
1

s− 1
+ γ +O((s− 1))

• Values of ζ along the real line between σ = −15 and σ = 10:

• Jensen’s inequality: Suppose f(z) is analytic in a disc with radius R, centre a, and
that |f(z)| ≤M in this disc, and f(a) 6= 0. Then

|# zeros of f in disc centre a, radius r < R| ≤
log M

|f(a)

log R
r
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• When 0 < δ ≤ σ ≤ 2, and |t| ≥ 1,

|ζ(s)| � (1 + |t|1−σ) ·min
(

1

|σ − 1|
, log (|t|+ 4)

)
• Let N(T ) be the number of zeros of ζ(s) in 0 ≤ σ ≤ 1, 0 ≤ t ≤ T . THen for any T ≥ 4

N(T + 1)−N(T )� log T

Corollary: N(T )� T log T
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3. Explicit formula

• Riemann–von Mangoldt explicit formula:

ψ(x) =
∑
n≤x

Λ(n) = x−
∑
ρ

xρ

ρ
− log(2π)− 1

2
log

(
1− 1

x2

)
where ρ is over all zeros of ζ(s) in the critical strip 0 ≤ σ ≤ 1

• Borel–Carathéodory: Let f be a holomorphic on |z| ≤ R s.t. f(0) = 0 and Ref(z) ≤
M for all |z| ≤ R. Then for any r < R

sup
|z|≤r
|f(z)| �r,R M

We also get sup|z|≤r |f ′(z)| �r,R M

• If σ0 > 0, then

1

2πi

∫ σ0+iT

σ0−iT

ys

s
ds =

{
1 if y > 1

0 if y < 1
+O

(
yσ0

T log y

)

• Perron’s formula: If F (s) =
∑

an
ns

is absolutely convergent for σ > σa and σ0 >
max(0, σa), then for any T ≥ 1

∑
n≤x

an =
1

2πi

∫ σ+iT

σ0−iT
F (s)

xs

s
ds+O

2σ0
x

T

∑
x/2<n<2x

|an|
|n− x|

+
xσ0

T

∑
n

|an|
nσ0


This gives a type of converse to Dirichlet series (given F (s), determine

∑
n≤x an)

• Suppose f(z) is analytic in a domain containing |z| ≤ 1, where |f(z)| ≤M and f(0) 6= 0.
Let 0 < r < R < 1. Then for |z| ≤ r

f ′

f
(z) =

∑
k

1

z − zk
+Or,R

(
log

M

|f(0)|

)
where the sum is over zk, zeros of f where |zk| ≤ R

• For |t| ≥ 2
ζ ′

ζ
(s) =

∑
ρ

|t−γ|≤1

1

s− ρ
+O(log |t|)

uniformly for −1 ≤ σ ≤ 2. (i.e. the sum is over all zeros of ζ in the critical strip with
imaginary part between Im(s)− 1 and Im(s) + 1)

• For any T ≥ 4, there is some T ≤ T1 ≤ T + 1 such that∣∣∣∣ζ ′ζ (σ + iT1)

∣∣∣∣� (log T )2

uniformly for −1 ≤ σ ≤ 2.

...
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• Stirling’s formula: For |s| ≥ δ and |arg(s)| < π − δ

Γ′

Γ
(s) = log s+O(1) and log Γ(s) = s log s+O(s).

Note: For real values: n! ∼
√

2πn
(
n
e

)n, and thus log n! = n log n− n+O(log n).

• If σ ≤ −1 and |s+ 2k| ≥ 1
4
, then get∣∣∣∣ζ ′ζ (s)

∣∣∣∣� log (|s|+ 1)

• Explicit formula: If x is not an integer, then, fpr any T ≥ 1

ψ(x) =
∑
n≤x

Λ(n) = x−
∑
ρ

|γ|≤T

xρ

ρ
− log(2π)− 1

2
log

(
1− 1

x2

)
+O

(
x

T

(
log(xT )2 +

log x

〈x〉

))

where 〈x〉 denotes the distance from x to the nearest prime power.

Corollary: If x is not an integer, then

ψ(x) =
∑
n≤x

Λ(n) = x− lim
T→∞

∑
ρ

|γ|≤T

xρ

ρ
− log(2π)− 1

2
log

(
1− 1

x2

)

Corollary 2: Assuming the Riemann Hypothesis, then

ψ(x) = x+O(x1/2(log x)2)

• (Generalised explicit formula:) If s 6= 1, ζ(s) 6= 0, and x is not an integer, then

∑
n≤x

Λ(n)

ns
=

x1−s

1− s
− lim

T→∞

∑
ρ

|γ|≤T

xρ−s

ρ− s
− ζ ′

ζ
(s) +

∞∑
k=1

x−2k−s

2k + s

• Littlewood has shown error term of ψ(x) at least x1/2 log log log x. That is, if ψ(x) =
x+ E(x), then:

lim sup
x→∞

E(x)

x1/2 log log log x
> 0 and lim inf

x→∞

E(x)

x1/2 log log log x
< 0
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4. Zeros of ζ(s)

• If σ > 1
2
(1 + t2), then ζ(s) 6= 0

In particular, ζ(s) 6= 0 if 8/9 ≤ σ ≤ 1 and |t| ≤ 7/8.

• de la Vallée Poussin 1899: There is c > 0 such that ζ(s) 6= 0 for σ > 1− c
log (|t|+4)

Conjecture: Does there exist ε > 0 such that ζ(s) 6= 0 for σ > 1− ε?

• There is c > 0 such that
ψ(x) = x+O(xe−c

√
log x)

• If |t| ≥ 7
8
and 5

6
≤ σ ≤ 2, then

ζ ′

ζ
(s) =

∑
ρ

1

s− ρ
+O(log |t|+ 4)

where ρ is over all zeros in |ρ− (3
2

+ it)| ≤ 5
6

• Korobov-Vinogradov-Richert: There exists c > 0 such that

ζ(s) 6= 0 for σ > 1− c

(log t)2/3(log log t)1/3

• Asymptotic formula for N(T ):

N(T ) =
T

2π
log

(
T

2π

)
− T

2π
+O(log T )

In particular, N(T ) ∼ 1
2π
T log T

• Normlized zeta function:

ξ(s) =
1

2
ζ(s)(s− 1)sπ−s/2Γ(s/2)

Functional equation states ξ(s) = ξ(1−s). ξ is entire function and only has zeros at zeros
of ζ(s) in 0 < σ < 1.

• Landau: Let A(x) be integrable, bounded in any finite interval, and A(x) ≥ 0 for large
x ≥ X. Let

σc = inf

{
σ :

∫ ∞
X

A(x)

xσ
dx <∞

}
Then the function

F (s) =

∫ ∞
1

A(x)

xs
dx

is analytic for σ > σc but not at s = σc.

Corollary: If F (s) can be defined in some half-plane σ > σ1 where

F (s) =

∫ ∞
1

A(x)

xs
dx

such that F (s) can be meromorphically continued to the half-plane σ > σ0 (possibly with
poles) and such that there are no poles on the real line s = σ > σ0, then F (s) has no
poles in the entire half-plane σ > σ0!
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• We say that f = Ω±(g) if

lim sup
x→∞

f(x)

g(x)
≥ c > 0 and lim inf

x→∞

f(x)

g(x)
≤ −c < 0

I.e. ∃c > 0 s.t. f(x) ≥ cg(x) infinitely often, and f(x) ≤ −cg(x) infinitely often.

• If σ0 is the supremum of the real parts of the zeros of ζ(s), then for any σ < σ0

ψ(x) = x+ Ω±(xσ)

Corollary: The Riemann Hypothesis is equivalent to: for every ε > 0, ψ(x) = x +
Oε(x1/2+ε).

• If there is a zero of ζ(s) at ρ = σ0 + it, then

ψ(x) = x+ Ω±(xσ0)
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5. Zero density results

• Define N(σ, T ) as the number of zeros of ζ(s) with real part ≥ σ and imaginary part ≤ T .

• Ingham: Let 1/2 < σ0 < 1. THe number of zeros with σ > σ0 is O(T 3(1−σ0)(log T )O(1)).

This implies, for all ε > 0, there exists a prime number in the interval [x, x+ x2/3+ε].

• Approximate Functional Equation: When 0 ≤ σ ≤ 1

ζ(s) =
∑
n≤x

1

ns
+ χ(s)

∑
n≤y

1

n1−s +O
(
x−σ + |t|−1/2x1−σ

)
where x, y ≥ 1

2
such that xy = |t|

2π
.

(in particular, can take x ≈ y ≈ t1/2)

• For any an ∈ C, ∫ T

0

∣∣∣∣∣∑
n≤x

ann
it

∣∣∣∣∣
2

dt = (T +O(x))
∑
n≤x

|an|2

• 2nd moment of ζ: ∫ T

T/2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 dt ∼ T

2
log T

• Corollary: ∫ T

0

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 dt ∼ T log T

• For any an ∈ C, ∫ T

0

∣∣∣∣∣∑
n≤x

ann
it

∣∣∣∣∣
4

dt� (T + x2)

(∑
n≤x

|an|2τ(n)

)2

• 4th moment of ζ: ∫ T

0

|ζ(
1

2
+ it)|4dt� T (log T )4

(In fact, Ingham showed ∼ 1
2π2T (log T )4)

Open conjecture: For all k ≥ 0,∫ T

0

|ζ(
1

2
+ it)|2kdt ∼ ckT (log T )k

2

for some ck > 0. Only known for k = 1, 2. Ramachandra has showed � T (log T )k
2

• If 1/2 < σ < 1 ∫ T

0

|ζ(σ + it)|2dt�σ T
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• Logarithm: Let f(s) be a function on a rectangular contour C, which is non-zero on C.
Then define

log f(s) = log |f(s)|+ i · arg(f(s))

where the argument varies continuously anti-clockwise around C. (just pick a point for
arg, then vary continuously)

• Littlewood: Let f(s) be analytic on and inside C, and non-zero on C, where C is a
rectangle with vertices at:

Then ∑
ρ

D(ρ) = − 1

2πi

∫
C

log f(s)ds

where the sum is over all zeros ρ of f inside C, and D(ρ) denotes the horizontal distance
from ρ to the left edge of the rectangle

In particular,

2π
∑
ρ

D(ρ) =

∫ T

0

log |f(σ0 + it)|dt−
∫ T

0

log |f(σ1 + it)|dt

+

∫ σ1

σ0

argf(σ + it)dσ −
∫ σ1

σ0

argf(σ)dσ

• Bohr-Landau: For any 1/2 < σ < 1

N(σ, T )�σ T

(almost all zeros of ζ(s) arbitrarily close to σ = 1
2
)

• Zero density: A zero density of strength A is the statement:

N(σ, T )�σ T
A(1−σ)(log T )O(1) for all

1

2
≤ σ ≤ 1

Density Hypothesis conjecture: We can take A = 2.
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• Riemann hypothesis =⇒ Lindelhof hypotehsis =⇒ Density hypothesis =⇒ prime
between x and x+ x1/2+ε.

• If we have a zero density result of strength A, then for all ε > 0, for all x large enough,
there is a prime between x and x

A−1
A

+ε

• For 1/2 ≤ σ ≤ 1, we have

N(σ, T )� T (1+2σ)(1−σ)(log T )O(1)

In particular,
N(σ, T )� T 3(1−σ)(log T )O(1)

therefore proving zero density of strength A = 3.
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