Analytic Number Theory

Lectures

1. Arithmetic functions

- Arithmetic function: A function $f: \mathbb{N} \rightarrow \mathbb{R} . \quad(\mathbb{N}=\{1,2,3, \ldots\}$,
f is multiplicative if $f(m n)=f(m) f(n)$ for all $(m, n)=1 . f$ is completely multiplicative if $f(m n)=f(m) f(n)$ for all m, n.
- Convolution: Let f, g be arithmetic functions. The convolution is:

$$
f * g(n)=\sum_{a b=n} f(a) g(b)
$$

Fact: Convolution is commutative and associative. If f, g multiplicative, then $f * g$ multiplicative. If $1 * f=g$, then $\mu * g=f$. The identity is $\delta=1 * \mu$

- Mobius inversion: Let f, g be arithmetic functions such that $1 * f=g$:

$$
g(n)=\sum_{d \mid n} f(d) \quad \text { for all } n \geq 1
$$

Then we have that $\mu * g=f$:

$$
f(n)=\sum_{d \mid n} \mu(d) g\left(\frac{n}{d}\right) \quad \text { for all } n \geq 1
$$

- Von Mangoldt function: Defined as

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{k} \\ 0 & \text { otherwise }\end{cases}
$$

$$
1 * \Lambda=\log \quad \Longrightarrow \quad \sum_{a \mid n} \Lambda(a)=\log n
$$

- Partial summation: If $a_{n} \in \mathbb{C}$ and $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ s.t. f^{\prime} is continuous then

$$
\sum_{n \leq x} a_{n} f(n)=A(x) f(x)-\int_{1}^{x} A(t) f^{\prime}(t) d t
$$

where $A(x)=\sum_{n \leq x} a_{n}$.

- Lemma 2:

$$
\sum_{n \leq x} \frac{1}{n}=\log x+\gamma+\mathcal{O}\left(\frac{1}{x}\right)
$$

where $\gamma=0.577 \ldots$ is Euler's constant

- Lemma 3

$$
\sum_{n \leq x} \log n=x \log x-x+\mathcal{O}(\log x)
$$

- Let $\tau(n)$ denote the divisors function, $\tau(n)=1 * 1(n)=\sum_{d \mid n} 1$. Then

$$
\begin{aligned}
& \sum_{n \leq x} \tau(n)=x \log x+\mathcal{O}(x) \\
& \sum_{n \leq x} \tau(n)=x \log x+(2 \gamma-1) x+\mathcal{O}\left(x^{1 / 2}\right)
\end{aligned}
$$

- Prime number theorem: Let $\pi(x)=\sum_{p \leq x} 1$ be the number of primes $\leq x$. Then

$$
\pi(x) \sim \frac{x}{\log x}
$$

This is equivalent to $\psi(x) \sim x$ by Lemma 5 .

- Chebyshev, 1850 We have $\psi(x) \asymp x$. I.e. there exists constants c_{1}, c_{2} such that, for all large x :

$$
c_{1} x \leq \psi(x) \leq c_{2} x
$$

We can explicitly show $c_{1}=\log 2-\epsilon$ and $c_{2}=2 \log 2+\epsilon$ works.

- Lemma 5: Relation between $\pi(x)$ and $\psi(x)$:

$$
\pi(x)=\frac{\psi(x)}{\log x}+\mathcal{O}\left(\frac{x}{\log ^{2} x}\right)
$$

In particular, $\pi(x) \asymp \frac{x}{\log x}$ and $\pi(x) \sim \frac{x}{\log x}$ iff $\psi(x) \sim x$.

- Lemma 6: (Merten's first theorem)

$$
\sum_{p \leq x} \frac{\log p}{p}=\log x+\mathcal{O}(1)
$$

- Lemma 7: (Merten's second theorem)

$$
\sum_{p \leq x} \frac{1}{p}=\log \log x+b+\mathcal{O}\left(\frac{1}{\log x}\right)
$$

where b is some constant.

- Lemma 8: (Merten's third theorem)

$$
\prod_{p \leq x}\left(1-\frac{1}{p}\right)^{-1}=c \log x+\mathcal{O}(1)
$$

where $c>1$ is some constant.
Fact: The constant c is $c=e^{\gamma} \approx 1.78 \ldots$

- Chebyshev, 1850s: If limit for $\pi(x)$ exists, it must be 1 .

$$
\text { If } \pi(x) \sim c \frac{x}{\log x}, \text { then } c=1
$$

2. Dirichlet series and the Rimenann zeta function

- Complex exponentiation: Let $n \in \mathbb{N}$ and $s \in \mathbb{C}$, then we define

$$
n^{s}=e^{s \log n}
$$

- Dirichlet series: Let $a_{n}: \mathbb{N} \rightarrow \mathbb{C}$ be a complex sequence. The Dirichlet series is:

$$
F(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}} \quad \text { where } a_{n} \in \mathbb{C}
$$

- Riemann Zeta function:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

which converges for $\sigma>1$.

- There is an abscissa of convergence σ_{c} s.t. $F(s)$ converges for all $\sigma>\sigma_{c}$ and diverges for all $\sigma<\sigma_{c}$, and if $\sigma>\sigma_{c}$ there is a neighbourhood of s in which $F(s)$ converges uniformly In particular, f is holomorphic at s.
- If $\sum \frac{a_{n}}{n^{s}}=\sum \frac{b_{n}}{n^{s}}$ for all s in some half-place $\sigma>\sigma_{0}$ (where both converge), then $a_{n}=b_{n}$ for all n.
- If F_{f} and F_{g} are both absolutely convergent at s, then so is $F_{f} \cdot F_{g}$ and $F_{f}(s) F_{g}(s)=F_{f * g}(s)$
- For $\sigma>1$,

$$
\zeta(s)=1+\frac{1}{s-1}-s \int_{1}^{\infty} \frac{\{t\}}{t^{s+1}} d t
$$

- Product Convergence: If $a_{n} \in \mathbb{C}$, then we say that $\prod_{n=1}^{\infty} a_{n}$ converges if the partial products $\prod_{n=1}^{\infty}$ converge to a non-zero value $s \in \mathbb{C} \backslash\{0\}$.
- $\prod_{n=1}^{\infty} a_{n}$ converges if and only if for any $\epsilon>0$, there is N such that

$$
\left|\prod_{k=n}^{m} a_{k}-1\right|<\epsilon \quad \text { for all } m>n \geq N
$$

In particular, $\lim _{n \rightarrow \infty} a_{n}=1$.

- We say that $\Pi\left(1+a_{n}\right)$ converges absolutely if $\Pi\left(1+\left|a_{n}\right|\right)$ converges.
- If $\Pi\left(1+a_{n}\right)$ converges abosllutely, then it converges.
- If $a_{n}>0$ for all $n \geq 1$, then

$$
\prod\left(1+a_{n}\right) \text { converges } \Longleftrightarrow \sum a_{n} \text { converges }
$$

- Euler product: If f is multiplicative and $\sum \frac{|f(n)|}{n^{\sigma}}$ converges, then

$$
F_{f}(s)=\sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}=\prod_{p}\left(1+\frac{f(p)}{p^{s}}+\frac{f\left(p^{2}\right)}{p^{2 s}}+\ldots\right)
$$

If f is completely multiplicative, then $f\left(p^{k}\right)=f(p)^{k}$, so

$$
F_{f}(s)=\prod_{p}\left(1-\frac{f(p)}{p^{s}}\right)^{-1}
$$

Examples of Euler products:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n^{s}} & =\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1} \\
\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}} & =\frac{1}{\zeta(s)}=\prod_{p}\left(1-\frac{1}{p^{s}}\right) \\
\sum_{n=1}^{\infty} \frac{|\mu(n)|}{n^{s}} & =\frac{\zeta(s)}{\zeta(2 s)}=\prod_{p}\left(1+\frac{1}{p^{s}}\right) \\
\sum_{n=1}^{\infty} \frac{\tau(n)}{n^{s}} & =\zeta(s)^{2} \\
\sum_{n=1}^{\infty} \frac{\phi(n)}{n^{s}} & =\frac{\zeta(s-1)}{\zeta(s)} \\
\sum_{n=1}^{\infty} \frac{\sigma(n)}{n^{s}} & =\zeta(s) \zeta(s-1) \\
\sum_{n=1}^{\infty} \frac{\sigma_{k}(n)}{n^{s}} & =\zeta(s) \zeta(s-k) \\
\sum_{n=1}^{\infty} \frac{2^{\omega(n)}}{n^{s}} & =\frac{\zeta(s)^{2}}{\zeta(2 s)} \\
\sum_{n=1}^{\infty} \frac{\log n}{n^{s}} & =-\zeta^{\prime}(s) \\
\sum_{n=1}^{\infty} \frac{\Lambda(n)}{\log n} n^{-s} & =\log \zeta(s) \\
\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{s}} & =-\frac{\zeta^{\prime}(s)}{\zeta(s)} \text { NB! Gives relation between } \zeta \text { and } \Lambda, \text { and thus } \psi
\end{aligned}
$$

- Gamma function: Define

$$
\gamma=\lim _{N \rightarrow \infty}\left(\sum_{n \leq N} \frac{1}{n}-\log N\right)=0.577
$$

and define the gamma function as:

$$
\frac{1}{\Gamma(s)}=s e^{\gamma s} \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right) e^{-s / n}
$$

This gives entire function (analytic for all $s \in \mathbb{C}$)

- $\Gamma(s)$ has no zeros, and has poles at $s=0,-1,-2, \ldots$. The residue at $s=-n$ is $\frac{(-1)^{n}}{n!}$.

- Euler definition:

$$
\Gamma(s)=\frac{1}{s} \prod_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{s}\left(1+\frac{s}{n}\right)^{-1}
$$

and rewriting, we get

$$
\Gamma(s)=\lim _{N \rightarrow \infty} N^{s} \frac{(N-1)!}{s(s+1) \ldots(s+N-1)}
$$

- We have $\Gamma(s+1)=s \Gamma(s)$. In particular, for positive integers n, we have $\Gamma(n)=(n-1)$!

- Reflection formula:

$$
\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin (\pi s)}
$$

In particular, $\Gamma(1 / 2)=\sqrt{\pi}$.

- Duplication formula:

$$
\Gamma(s) \Gamma(s+1 / 2)=2^{1-2 s} \sqrt{\pi} \Gamma(2 s)
$$

- Integral formula: If $\sigma>0$, then

$$
\Gamma(s)=\int_{0}^{\infty} t^{s-1} e^{-t} d t
$$

- Particular values of Γ function:

$$
\begin{aligned}
\Gamma(1) & =1, \quad \Gamma(2)=1, \quad \Gamma(3)=2, \quad \Gamma(4)=6, \quad \Gamma(n)=(n-1)!\quad \text { for } n \in \mathbb{N} \\
\Gamma\left(\frac{1}{2}\right) & =\sqrt{\pi}, \quad \Gamma\left(\frac{3}{2}\right)=\frac{1}{2} \sqrt{\pi}, \quad \Gamma\left(\frac{5}{2}\right)=\frac{3}{4} \sqrt{\pi}, \quad \Gamma\left(\frac{7}{2}\right)=\frac{15}{8} \sqrt{\pi}, \\
\Gamma\left(\frac{1}{2}+n\right) & =\frac{(2 n-1)!!}{2^{n}} \sqrt{\pi} \quad \text { for } n \in\{0,1,2, \ldots\} \\
\Gamma^{\prime}(1) & =-\gamma
\end{aligned}
$$

- Functional equation: $\zeta(s)$ can be extended to a meromorphic function on \mathbb{C}, and for all s

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

or equivalently

$$
\zeta(s)=\chi(s) \zeta(1-s) \quad \text { where } \quad \chi(s)=\pi^{s-1 / 2} \frac{\Gamma\left(\frac{1-s}{2}\right)}{\Gamma(s / 2)}
$$

- Bernoulli numbers: We define the Bernoulli numbers by the generating function

$$
\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n}
$$

We have the recursive formula $B_{0}=1$, and for $k \geq 2$

$$
\sum_{0 \leq n \leq k-1}\binom{k}{n} B_{n}=0
$$

Examples:

$$
B_{0}=1, \quad B_{1}=-\frac{1}{2}, \quad B_{2}=\frac{1}{6}, \quad B_{3}=0, \quad B_{4}=-\frac{1}{30}, \quad B_{5}=0, \quad B_{6}=\frac{1}{42} \ldots
$$

- Particular values of ζ :

$$
\zeta(0)=B_{1}=-\frac{1}{2} \quad \zeta(-n)=(-1)^{n} \frac{B_{n+1}}{n+1} \text { for } n=0,1,2, \ldots
$$

E.g. $\zeta(-1)=-\frac{1}{12}, \quad \zeta(-2)=0, \quad \zeta(-3)=\frac{1}{120}, \quad \zeta(-4)=0, \quad \zeta(-5)=-\frac{1}{252}, \ldots$

$$
\begin{aligned}
\zeta(2 n) & =(-1)^{n+1} 2^{2 n-1} \pi^{2 n} \frac{B_{2 n}}{(2 n)!} \\
\zeta(2) & =\frac{\pi^{2}}{6}, \quad \zeta(4)=\frac{\pi^{4}}{90}, \quad \zeta(6)=\frac{\pi^{6}}{945}, \\
\zeta^{\prime}(0) & =-\frac{1}{2} \log (2 \pi), \quad \frac{\zeta^{\prime}(0)}{\zeta(0)}=\log (2 \pi)
\end{aligned}
$$

- Integral representations of ζ :

$$
\begin{aligned}
& \zeta(s)=1+\frac{1}{s-1}-s \int_{1}^{\infty} \frac{\{u\}}{u^{s+1}} d u \quad \text { for } \sigma>1 \text { (but also valid for } \sigma>0 \text {) } \\
& \left.\zeta(s)=\frac{1}{2}+\frac{1}{s-1}+s \int_{1}^{\infty} \frac{f(u)}{u^{s+1}} d u \quad \text { for } \sigma>-1 \quad \text { (where } f(x)=\frac{1}{2}-\{x\}\right) \\
& \left.\zeta(s)=\frac{1}{2}+\frac{1}{s-1}+s(s-1) \int_{1}^{\infty} \frac{F(u)}{u^{s+2}} d u \quad \text { for } \sigma>-1 \quad \text { (where } F(x)=\int_{0}^{x} f(u) d u\right) \\
& \zeta(s)=s \int_{0}^{\infty} \frac{f(u)}{u^{s+1}} d u \quad \text { for }-1<\sigma<0 \\
& \zeta(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{x^{s-1}}{e^{x}-1} d x \quad \text { for } \sigma>1 \\
& \zeta(s)=\frac{e^{-i \pi s}}{2 \pi i} \Gamma(1-s) \int_{\mathcal{C}} \frac{z^{s-1}}{e^{z}-1} d z \quad \text { for } \sigma>1 \quad \text { where } \mathcal{C} \text { is Hankel contour } \\
& \zeta(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\frac{1}{e^{x}-1}-\frac{1}{x}\right) x^{s-1} d x \quad \text { for } 0<\sigma<1 \\
& \zeta(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\frac{1}{e^{x}-1}-\frac{1}{x}+\frac{1}{2}\right) x^{s-1} d x \quad \text { for }-1<\sigma<0
\end{aligned}
$$

- Expansion of $\zeta(s)$ around $s=0$:

$$
\zeta(s)=-\frac{1}{2}-\frac{1}{2} \log (2 \pi) s+O\left(s^{2}\right)
$$

- Expansion of $\zeta(s)$ around $s=1$:

$$
\zeta(s)=\frac{1}{s-1}+\gamma+O((s-1))
$$

- Values of ζ along the real line between $\sigma=-15$ and $\sigma=10$:
- Jensen's inequality: Suppose $f(z)$ is analytic in a disc with radius R, centre a, and that $|f(z)| \leq M$ in this disc, and $f(a) \neq 0$. Then

$$
\mid \# \text { zeros of } f \text { in disc centre } a \text {, radius } r<R \left\lvert\, \leq \frac{\log \frac{M}{f(a)}}{\log \frac{R}{r}}\right.
$$

- When $0<\delta \leq \sigma \leq 2$, and $|t| \geq 1$,

$$
|\zeta(s)| \ll\left(1+|t|^{1-\sigma}\right) \cdot \min \left(\frac{1}{|\sigma-1|}, \log (|t|+4)\right)
$$

- Let $N(T)$ be the number of zeros of $\zeta(s)$ in $0 \leq \sigma \leq 1,0 \leq t \leq T$. THen for any $T \geq 4$

$$
N(T+1)-N(T) \ll \log T
$$

Corollary: $\quad N(T) \ll T \log T$

3. Explicit formula

- Riemann-von Mangoldt explicit formula:

$$
\psi(x)=\sum_{n \leq x} \Lambda(n)=x-\sum_{\rho} \frac{x^{\rho}}{\rho}-\log (2 \pi)-\frac{1}{2} \log \left(1-\frac{1}{x^{2}}\right)
$$

where ρ is over all zeros of $\zeta(s)$ in the critical strip $0 \leq \sigma \leq 1$

- Borel-Carathéodory: Let f be a holomorphic on $|z| \leq R$ s.t. $f(0)=0$ and $\operatorname{Re} f(z) \leq$ M for all $|z| \leq R$. Then for any $r<R$

$$
\sup _{|z| \leq r}|f(z)|<_{r, R} M
$$

We also get $\sup _{|z| \leq r}\left|f^{\prime}(z)\right|<_{r, R} M$

- If $\sigma_{0}>0$, then

$$
\frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{y^{s}}{s} d s=\left\{\begin{array}{ll}
1 & \text { if } y>1 \\
0 & \text { if } y<1
\end{array} \quad+\mathcal{O}\left(\frac{y^{\sigma_{0}}}{T \log y}\right)\right.
$$

- Perron's formula: If $F(s)=\sum \frac{a_{n}}{n^{s}}$ is absolutely convergent for $\sigma>\sigma_{a}$ and $\sigma_{0}>$ $\max \left(0, \sigma_{a}\right)$, then for any $T \geq 1$

$$
\sum_{n \leq x} a_{n}=\frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma+i T} F(s) \frac{x^{s}}{s} d s+\mathcal{O}\left(2^{\sigma_{0}} \frac{x}{T} \sum_{x / 2<n<2 x} \frac{\left|a_{n}\right|}{|n-x|}+\frac{x^{\sigma_{0}}}{T} \sum_{n} \frac{\left|a_{n}\right|}{n^{\sigma_{0}}}\right)
$$

This gives a type of converse to Dirichlet series (given $F(s)$, determine $\sum_{n \leq x} a_{n}$)

- Suppose $f(z)$ is analytic in a domain containing $|z| \leq 1$, where $|f(z)| \leq M$ and $f(0) \neq 0$. Let $0<r<R<1$. Then for $|z| \leq r$

$$
\frac{f^{\prime}}{f}(z)=\sum_{k} \frac{1}{z-z_{k}}+\mathcal{O}_{r, R}\left(\log \frac{M}{|f(0)|}\right)
$$

where the sum is over z_{k}, zeros of f where $\left|z_{k}\right| \leq R$

- For $|t| \geq 2$

$$
\frac{\zeta^{\prime}}{\zeta}(s)=\sum_{\substack{\rho \\|t-\gamma| \leq 1}} \frac{1}{s-\rho}+\mathcal{O}(\log |t|)
$$

uniformly for $-1 \leq \sigma \leq 2$. (i.e. the sum is over all zeros of ζ in the critical strip with imaginary part between $\operatorname{Im}(s)-1$ and $\operatorname{Im}(s)+1)$

- For any $T \geq 4$, there is some $T \leq T_{1} \leq T+1$ such that

$$
\left|\frac{\zeta^{\prime}}{\zeta}\left(\sigma+i T_{1}\right)\right| \ll(\log T)^{2}
$$

uniformly for $-1 \leq \sigma \leq 2$.

- Stirling's formula: For $|s| \geq \delta$ and $|\arg (s)|<\pi-\delta$

$$
\frac{\Gamma^{\prime}}{\Gamma}(s)=\log s+\mathcal{O}(1) \quad \text { and } \quad \log \Gamma(s)=s \log s+\mathcal{O}(s)
$$

Note: For real values: $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$, and thus $\log n!=n \log n-n+O(\log n)$.

- If $\sigma \leq-1$ and $|s+2 k| \geq \frac{1}{4}$, then get

$$
\left|\frac{\zeta^{\prime}}{\zeta}(s)\right| \ll \log (|s|+1)
$$

- Explicit formula: If x is not an integer, then, fpr any $T \geq 1$
$\psi(x)=\sum_{n \leq x} \Lambda(n)=x-\sum_{\substack{\rho \\|\gamma| \leq T}} \frac{x^{\rho}}{\rho}-\log (2 \pi)-\frac{1}{2} \log \left(1-\frac{1}{x^{2}}\right)+\mathcal{O}\left(\frac{x}{T}\left(\log (x T)^{2}+\frac{\log x}{\langle x\rangle}\right)\right)$
where $\langle x\rangle$ denotes the distance from x to the nearest prime power.
Corollary: If x is not an integer, then

$$
\psi(x)=\sum_{n \leq x} \Lambda(n)=x-\lim _{T \rightarrow \infty} \sum_{\substack{\rho \\|\gamma| \leq T}} \frac{x^{\rho}}{\rho}-\log (2 \pi)-\frac{1}{2} \log \left(1-\frac{1}{x^{2}}\right)
$$

Corollary 2: Assuming the Riemann Hypothesis, then

$$
\psi(x)=x+\mathcal{O}\left(x^{1 / 2}(\log x)^{2}\right)
$$

- (Generalised explicit formula:) If $s \neq 1, \zeta(s) \neq 0$, and x is not an integer, then

$$
\sum_{n \leq x} \frac{\Lambda(n)}{n^{s}}=\frac{x^{1-s}}{1-s}-\lim _{T \rightarrow \infty} \sum_{\substack{\rho \\|\gamma| \leq T}} \frac{x^{\rho-s}}{\rho-s}-\frac{\zeta^{\prime}}{\zeta}(s)+\sum_{k=1}^{\infty} \frac{x^{-2 k-s}}{2 k+s}
$$

- Littlewood has shown error term of $\psi(x)$ at least $x^{1 / 2} \log \log \log x$. That is, if $\psi(x)=$ $x+E(x)$, then:

$$
\limsup _{x \rightarrow \infty} \frac{E(x)}{x^{1 / 2} \log \log \log x}>0 \quad \text { and } \quad \liminf _{x \rightarrow \infty} \frac{E(x)}{x^{1 / 2} \log \log \log x}<0
$$

4. Zeros of $\zeta(s)$

- If $\sigma>\frac{1}{2}\left(1+t^{2}\right)$, then $\zeta(s) \neq 0$

In particular, $\zeta(s) \neq 0$ if $8 / 9 \leq \sigma \leq 1$ and $|t| \leq 7 / 8$.

- de la Vallée Poussin 1899: There is $c>0$ such that $\zeta(s) \neq 0$ for $\sigma>1-\frac{c}{\log (t \mid+4)}$

Conjecture: Does there exist $\epsilon>0$ such that $\zeta(s) \neq 0$ for $\sigma>1-\epsilon$?

- There is $c>0$ such that

$$
\psi(x)=x+\mathcal{O}\left(x e^{-c \sqrt{\log x}}\right)
$$

- If $|t| \geq \frac{7}{8}$ and $\frac{5}{6} \leq \sigma \leq 2$, then

$$
\frac{\zeta^{\prime}}{\zeta}(s)=\sum_{\rho} \frac{1}{s-\rho}+\mathcal{O}(\log |t|+4)
$$

where ρ is over all zeros in $\left|\rho-\left(\frac{3}{2}+i t\right)\right| \leq \frac{5}{6}$

- Korobov-Vinogradov-Richert: There exists $c>0$ such that

$$
\zeta(s) \neq 0 \quad \text { for } \sigma>1-\frac{c}{(\log t)^{2 / 3}(\log \log t)^{1 / 3}}
$$

- Asymptotic formula for $N(T)$:

$$
N(T)=\frac{T}{2 \pi} \log \left(\frac{T}{2 \pi}\right)-\frac{T}{2 \pi}+\mathcal{O}(\log T)
$$

In particular, $N(T) \sim \frac{1}{2 \pi} T \log T$

- Normlized zeta function:

$$
\xi(s)=\frac{1}{2} \zeta(s)(s-1) s \pi^{-s / 2} \Gamma(s / 2)
$$

Functional equation states $\xi(s)=\xi(1-s)$. ξ is entire function and only has zeros at zeros of $\zeta(s)$ in $0<\sigma<1$.

- Landau: Let $A(x)$ be integrable, bounded in any finite interval, and $A(x) \geq 0$ for large $x \geq X$. Let

$$
\sigma_{c}=\inf \left\{\sigma: \int_{X}^{\infty} \frac{A(x)}{x^{\sigma}} d x<\infty\right\}
$$

Then the function

$$
F(s)=\int_{1}^{\infty} \frac{A(x)}{x^{s}} d x
$$

is analytic for $\sigma>\sigma_{c}$ but not at $s=\sigma_{c}$.
Corollary: If $F(s)$ can be defined in some half-plane $\sigma>\sigma_{1}$ where

$$
F(s)=\int_{1}^{\infty} \frac{A(x)}{x^{s}} d x
$$

such that $F(s)$ can be meromorphically continued to the half-plane $\sigma>\sigma_{0}$ (possibly with poles) and such that there are no poles on the real line $s=\sigma>\sigma_{0}$, then $F(s)$ has no poles in the entire half-plane $\sigma>\sigma_{0}$!

- We say that $f=\Omega_{ \pm}(g)$ if

$$
\limsup _{x \rightarrow \infty} \frac{f(x)}{g(x)} \geq c>0 \quad \text { and } \quad \liminf _{x \rightarrow \infty} \frac{f(x)}{g(x)} \leq-c<0
$$

I.e. $\exists c>0$ s.t. $f(x) \geq c g(x)$ infinitely often, and $f(x) \leq-c g(x)$ infinitely often.

- If σ_{0} is the supremum of the real parts of the zeros of $\zeta(s)$, then for any $\sigma<\sigma_{0}$

$$
\psi(x)=x+\Omega_{ \pm}\left(x^{\sigma}\right)
$$

Corollary: The Riemann Hypothesis is equivalent to: for every $\epsilon>0, \psi(x)=x+$ $\mathcal{O}_{\epsilon}\left(x^{1 / 2+\epsilon}\right)$.

- If there is a zero of $\zeta(s)$ at $\rho=\sigma_{0}+i t$, then

$$
\psi(x)=x+\Omega_{ \pm}\left(x^{\sigma_{0}}\right)
$$

5. Zero density results

- Define $N(\sigma, T)$ as the number of zeros of $\zeta(s)$ with real part $\geq \sigma$ and imaginary part $\leq T$.
- Ingham: Let $1 / 2<\sigma_{0}<1$. THe number of zeros with $\sigma>\sigma_{0}$ is $\mathcal{O}\left(T^{3\left(1-\sigma_{0}\right)}(\log T)^{\mathcal{O}(1)}\right)$. This implies, for all $\epsilon>0$, there exists a prime number in the interval $\left[x, x+x^{2 / 3+\epsilon}\right]$.
- Approximate Functional Equation: When $0 \leq \sigma \leq 1$

$$
\zeta(s)=\sum_{n \leq x} \frac{1}{n^{s}}+\chi(s) \sum_{n \leq y} \frac{1}{n^{1-s}}+\mathcal{O}\left(x^{-\sigma}+|t|^{-1 / 2} x^{1-\sigma}\right)
$$

where $x, y \geq \frac{1}{2}$ such that $x y=\frac{|t|}{2 \pi}$.
(in particular, can take $x \approx y \approx t^{1 / 2}$)

- For any $a_{n} \in \mathbb{C}$,

$$
\int_{0}^{T}\left|\sum_{n \leq x} a_{n} n^{i t}\right|^{2} d t=(T+\mathcal{O}(x)) \sum_{n \leq x}\left|a_{n}\right|^{2}
$$

- 2nd moment of ζ :

$$
\int_{T / 2}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} d t \sim \frac{T}{2} \log T
$$

- Corollary:

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} d t \sim T \log T
$$

- For any $a_{n} \in \mathbb{C}$,

$$
\int_{0}^{T}\left|\sum_{n \leq x} a_{n} n^{i t}\right|^{4} d t \ll\left(T+x^{2}\right)\left(\sum_{n \leq x}\left|a_{n}\right|^{2} \tau(n)\right)^{2}
$$

- 4th moment of ζ :

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{4} d t \ll T(\log T)^{4}
$$

(In fact, Ingham showed $\sim \frac{1}{2 \pi^{2}} T(\log T)^{4}$)
Open conjecture: For all $k \geq 0$,

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \sim c_{k} T(\log T)^{k^{2}}
$$

for some $c_{k}>0$. Only known for $k=1,2$. Ramachandra has showed $\gg T(\log T)^{k^{2}}$

- If $1 / 2<\sigma<1$

$$
\int_{0}^{T}|\zeta(\sigma+i t)|^{2} d t<_{\sigma} T
$$

- Logarithm: Let $f(s)$ be a function on a rectangular contour \mathcal{C}, which is non-zero on \mathcal{C}. Then define

$$
\log f(s)=\log |f(s)|+i \cdot \arg (f(s))
$$

where the argument varies continuously anti-clockwise around \mathcal{C}. (just pick a point for arg, then vary continuously)

- Littlewood: Let $f(s)$ be analytic on and inside \mathcal{C}, and non-zero on \mathcal{C}, where \mathcal{C} is a rectangle with vertices at:

Then

$$
\sum_{\rho} D(\rho)=-\frac{1}{2 \pi i} \int_{\mathcal{C}} \log f(s) d s
$$

where the sum is over all zeros ρ of f inside \mathcal{C}, and $D(\rho)$ denotes the horizontal distance from ρ to the left edge of the rectangle
In particular,

$$
\begin{aligned}
2 \pi \sum_{\rho} D(\rho)= & \int_{0}^{T} \log \left|f\left(\sigma_{0}+i t\right)\right| d t-\int_{0}^{T} \log \left|f\left(\sigma_{1}+i t\right)\right| d t \\
& +\int_{\sigma_{0}}^{\sigma_{1}} \arg f(\sigma+i t) d \sigma-\int_{\sigma_{0}}^{\sigma_{1}} \arg f(\sigma) d \sigma
\end{aligned}
$$

- Bohr-Landau: For any $1 / 2<\sigma<1$

$$
N(\sigma, T) \ll_{\sigma} T
$$

(almost all zeros of $\zeta(s)$ arbitrarily close to $\sigma=\frac{1}{2}$)

- Zero density: A zero density of strength A is the statement:

$$
N(\sigma, T) \ll_{\sigma} T^{A(1-\sigma)}(\log T)^{\mathcal{O}(1)} \quad \text { for all } \frac{1}{2} \leq \sigma \leq 1
$$

Density Hypothesis conjecture: We can take $A=2$.

- Riemann hypothesis \Longrightarrow Lindelhof hypotehsis \Longrightarrow Density hypothesis \Longrightarrow prime between x and $x+x^{1 / 2+\epsilon}$.
- If we have a zero density result of strength A, then for all $\epsilon>0$, for all x large enough, there is a prime between x and $x^{\frac{A-1}{A}+\epsilon}$
- For $1 / 2 \leq \sigma \leq 1$, we have

$$
N(\sigma, T) \ll T^{(1+2 \sigma)(1-\sigma)}(\log T)^{O(1)}
$$

In particular,

$$
N(\sigma, T) \ll T^{3(1-\sigma)}(\log T)^{O(1)}
$$

therefore proving zero density of strength $A=3$.

