Elliptic Curves

Lectures

1.

Fermat’s method infinite descent

Let A be a right triangle with side lengths a,b,c. We say A is rational if side lengths
are rational, and we say A is primitive if side lengths integers and ged(a, b, c) = 1.

Every primitive triangle has side lengths u? — v%, 2uv, and u? + v? for some integers
u,v € Z, u>v > 0.

Congruent number: Let D be a positive rational. D is congruent number if there
exists rational right-angled triangle with area D.

equivalently, ere existsS a rational solution to =T — T S.T. or to =
ivalently, th ist tional solution to y? = 2% — D%z s.t. y # 0 to Dy?

23 — x) (or the elliptic curve has positive rank)

1 is not a congruent number. Equivalently, there are no integer solutions to w? = wv(u +
v)(u — v) where w # 0.

In general, if u,v,w € Z,w # 0 such that Dw? = uv(u — v)(u + v), then there exists
right-angled triangle with area D with side lengths:
u? —v? 2uw u? + v?
, , and
w w w

Let K be a field with char(K) # 2. Let u,v € K[t] be coprime polynomials. If au + fv
is a square for 4 distinct pairs (o, ) € P!, then u,v € K.

Elliptic curve: An elliptic curve E/K is the projective closure of a plane affine curve
y*> = f(x) where f € K|[z] is a monic cubic polnomial with distinct roots in K.

or An elliptic curve E//K is a smooth projective curve of genus 1 with a specified K-
rational point Og.

Weierstrass equation: The equation y? = f(x) is called Weierstrass equation.

Fact: Let L/K be field extension Then E(L) = {(z,y) € L*: y* = f(z)} U{Og}. E(L)

is an abelian group.
Let E/K be elliptic curve. Then E(K(t)) = E(K).

Isomorphism: Let F and E’ be elliptic curves. Then F and E’ are isomorphic if there
exists a morphism ¢ : £ — E’ and a morphism y : ' — E s.t. y o ¢ = idg and
pox =idp.

Some results on congruent numbers: Let p be a prime number. Then:

— If p =3 (mod 8), then p is not congruent, but 2p is congruent.
— If p =5 (mod 8), then p is congruent.
— If p =7 (mod 8), then p and 2p is congruent.

List of congruent numbers: 5,6, 7,13, 14, 15,20, 21, 22, 23, 24, 28,29, 30, 31, . . ..



. Remarks on algebraic curves

Rational: A plane algebraic curve C' = {f(z,y) = 0} C A? (where f irreducible) is
rational if it has a rational parameterisation

Le. there exists ¢, x € K(t) s.t.

— The map t — (¢(t), x(¢)) is injective for all but finitely many points in Al.
— J(é(t),x(t)) =0

Any non-singular plane conic is rational. (e.g. x* +y* = 1)
Any singular plane curve is rational (not elliptic curves) (e.g. y* = 2% or y* = 2?(z +1)).

Genus: Let C be smooth projective curve. Genus ¢g(C) € Z>g is invariant of C.

A smooth projective curve C' C P? of degree d has genus

d—1)(d—2
40 - €= 1d=2)
(soif d = 1,2, then genus is 0)
Let C' be smooth projective curve.
— (' is rational <~ ¢g(C)=0.

— C is elliptic curve < ¢(C) = 1.

Order of vanishing: Let C algebraic curve, function field K(C). P € C a smooth
point. Write ord,(f) as the order of vanishing of f € K(C) at P

ord,(f) : K(C)* — Z is a discrete valuation

— ordy(f1fz) = ord,(f1) + ordy(f2)

— ordy(fi + f2) = min(ord,(f1), ord,(f2))
E.g. If y*> = (x — 1)(z — \), then ordp(z) = —2 and ordp(y) = —3 where P = (0: 1:0).
Uniformiser: An element t € K(C)* is a uniformiser at P if ord,(¢) = 1.

Let C be an affine curve, defined by C' = {g(z,y) = 0} € A? where g € K[X,Y] is
irreducible. Express g(x,y) as

9(x,y) = go + g1(x,y) + g2(2,y) + gs(x,y) + . ..

where each g; is homogenoues of degree 7.

Suppose P = (0,0) € C is a smooth point on C, so we have gy = 0 and ¢; = ax + By
where «, § not both zero. (g; is tangent to C' at P)

Then, for any 7,6 € K, we have that yz 4 0y € K(C) is a uniformiser at P if and only
if ad — By #0 (i.e. yx + dy not some multiple of g;, so not tangent)

Divisor: A formal sum of points on C. Can be expressed in the form:

anP with n, € Z

peC

and n, = 0 for all but finitely many p € C.



Degree of divisor: deg(D) = > n,

Divisor of function: If f € K(C)*, then

div(f) =) ordp(f)P

peC
This is called a principal divisor.

Effective divisor: Let D be divisor. D is effective if n, > 0 for all P. Notation: D > 0

Riemann Roch space: The Riemann Roch space of D € Div(C) is
L(D)={fe K(C) :div(f)+ D >0} uU{0}

(i.e. the K-vector space of rational functions on C' with poles no worise than that specified
by D)

Remark: L(D) is a finite-dimensional K-vector space
Riemann Roch for genus 1: Let D = ) n,P, degD = > n,:
degD  if degD > 0

dimf(D)=¢0or1 ifdegD =0
0 if degD < 0

Let C C P? be a smooth plane cubic and P € C a point of inflection. Then one can
change coordinates such that

C:YZ=X(X—-2)(X-)\2)
where P = (0:1:0) and A # 0,1. This is called Legendre form.

Degree of a morphism Let ¢ : ¢, — C5 be non-constant morphism of smooth projective
curve. Let ¢* : K(Cy) — K(C}) be pullback given by f +— f o ¢.

The degree of ¢ is [K(C}) : ¢*K(C2)] (we define ¢ is separable iff extension K (C})/¢* K (Cs)

is separable)

Fact: deg¢ = 1 if and only if ¢ is an isomorphism. deg¢ = 0 if and only if ¢ is a
constant map.

Ramification index: Let P € C; and @ € C, such that ¢(P) = Q. Let t € K(Cy) be
a uniformizer at () (i.e. ordg(¢) = 1) Then the ramification index e,(P) is

es(P) = ordp(¢*t) (note eys(P) > 1)
This is independent of choice of t.

Let ¢ : C; — (5 be non-constant morphism of smooth projective curves. Then

Z ey(P) = deg(¢) for all Q € Cy
Pes=HQ)

If ¢ is separable, then e4(P) =1 for all but finitely many P € (.



— ¢ is surjective

— |71 Q)| < deg(¢) with equalty for all but finitely many Q € Cs.
e Rational map: Let C be an algebraic curve. A rational map ¢ : C' — P" is given by
P (fo(P): fi(P):---: fu(P))

where fo, f1,..., fn € K(C) are not all zero.
Fact: If C is smooth, then ¢ is a morphism.



. Weierstrass Equations

Elliptic curve: An ellipttic curve E over K is a smooth projective curve of genus 1
defined over K with a specified K-rational point Op.

Weierstrass form: A Weierstrass equation, over a field K, is an equation of the form
2 _ .3 2
Y + a1y + asy = 7 + asx” + a4 + ag
with coefficients aq, as, as, ay, ag in K.

Weierstrass isomorphism: Every elliptic curve F is isomorphic over K to a curve in
Weierstrass form via an isomorphism, taking Og to (0:1:0).

If D € Div(E) is defined over K (i.e. fixed by Gal(K/K), then £(D) has a basis in K (E)
(not just in K(FE))

Points of inflection: Let C' = {F = 0} C P? be algebraic curve. THe points of inflection

are given by
0*F
det | ——— | =
¢ (aXian) !

(i.e. where the Hessian determinant of F' is zero)

Let E and E’ be elliptic curves over K in Weierstrass form. Then E = E’ over K iff the
equations are related by a change of variables:
r=u’r +r
y=udy +ulsax’ +t
where u,r,s,t € K, u # 0.
Note: This changes the discriminant by u!2A’ = A.
Discriminant: A Weierstrass equation for a curve E:
y2 + a1y + azy = >+ a2332 + asx + ag
defines an elliptic curve if and only if the discriminant A(ay,...,as) # 0 where A €
Zlay, ..., ag) is the polynomial
A = —b3bg — 8b; — 27b3 + babybs
where by = a% + 4ao,
b4 = 2&4 + aasg,
bﬁ = CL% + 4&6,
by = a%ag + daqag — a1a3a4 + a2a§ — ai.
If charK # 2,3, then can reduce to E : y* = 23 + ax + b defines elliptic curve, iff the
discriminant A = —16(4a® + 27b?) is non-zero, where
a=—2T7cy where c4= bg — 24b,
b= —5406 where Cg = —bg + 36b2b4 — 216b6
If charK # 2,3, then E:y*> = 23+ az +band E : y* = 23 + a/z + ' are isomorphic over
K iff there exists u € K* s.t. ' = u*a and b’ = u®b.
_ 1728(4a%)
 da® + 2702
E~FE = j(E)=j(E') and converse holds if K = K

j-invariant: j(F)



. Group Law
e Group law Let E be elliptic curve with specified point Oy € F(K). Set of points on E

form an abelian group (E,®).
— Identity is specified point Op
— Group operation P @ @ is as follows:

x Let S be 3rd point of intersection of line P() and curve F
(if P = @, then let S be intersection between T,F (tangent line at P) and E)

x Let R be 3rd point of intersection fo line OgS and curve F.
x* Then P& Q =R

— Inverse of P:

x Let S be 3rd point of intersection of the tangent line at O with the curve E.
x Let () be 3rd point of intersection of line PS and F.
x Then P& @ = Og

e Linearly equivalent D, D, € Div(E) are linearly equivalent if 3f € K (E)*s.t. div(f) =
Dl - DQ. (Written Dl ~ Dg)

e Picard group: Pic(E) = Div(E)/ ~
Div?(E) is the degree 0 divisors (i.e. Div?(E) = ker(Div(E) — Z))
Pic’(E) = Div'(E)/ ~

e Let ¢ : E — Pic’(E) be given by P+ [P — Og]. Then ¢(P @ Q) = ¢(P) + ¢(Q) and ¢
is a bijection.

Remark: ¢ identifies (E, @) with (Pic’(E), 4+) which proves associaitvity!
e Explicit formula: Let P, = (x1,y;) and P, = (3, 92) be points on E.

— Inverse: The inverse of P, is 6P, = (z1, —(a121 + as + 11)).
— Sum:

x Case It w1 = 29,91 Fyo: P, B P, =0p.

x Case II: 21 # x9: P ® Py = (x3,y3) where

x3:A2+a1)\—a2—x1—x2

ys = —(A+a1)rs — v —as

where

Y2 — U1 Ta2Y1 — T1Y2
A= and v = "2 7%
To — T To —T1

x Case III: x1 = x9, y1 = yo: So P = P, where we instead use the tangent
slope

 3af 4+ 3asxy + ag — ayyn

A\ =

—(L’? -+ a4 -+ 2@6 — asyi
and v =
2y1 + a1x1 + as 2y1 + a1xq + ag

e Explicit formula for the case y? = 23 + az + b:

— Inverse: The inverse of P, is ©P; = (x1, —1)
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— Sum:

« If x1 # xq, then P, @ Py = (9, ys) where

<?JQ - y1)
T3 = —T1— T2
To — 1
Y2 — 1 Tay1 — T1Y2
e (22 (22)
To2 — 7 T2 — X7

« If 21 = 29 and y; = yo, Then 2P, = (x3,y3) where

x* — 2ax% — 8bx + a? 322 +a)’ 5
Ta = = — 2z
’ (2y)? 2y
28 + baz* + 20023 — ba?x? — dabxr — a® — 8b? 322 +a ( )
= - — r3 — X -
Y3 (2y)? 2% 3 1) =%

e F(K) is an abelian group.

e Elliptic curves are group varieties. l.e. The inverse map [—1] : E — E given by
P — —P and the addition map A : £ x E — FE given by (P,Q) — P + @ are both
morphisms of algebraic varieties.

e n-torsion Define [n| : E — E as the n-torsion map given by
P—P+P+---+P ntimes forn>0.
The n-torsion subgroup of FE is
En]=ker(n|: FE - E)={P€FE:P+P+...P=0 n times }
Eg If E:y?>=(z —e1)(x — e3)(x — e3), then E[2] = {Og, (e1,0), (e2,0), (e3,0)}
e 3-torsion: If0# P = (z,y) € E(K), then

3P=0p <= 3z'+6az®+12bx—a®>=0



Elliptic curves over C

Lattice: Let wy,wsy be basis for C as R vector space. Then a lattice A can be given as
A = {aw, + bws : a,b € Z}.

Weierstrass p-function: Let A be a lattice. Then the Weierstrass p-function is:

This satisfies /(2)? = 4p(2) — gog(2) — g3 where go, g3 € C depend on the lattice:

1 1
92:6OZF and 93:14OZF
0#AEA 0#AEA

Fact: C/A = E(C) where FE is the elliptic curve y*> = 42® — gox — g3. This is isomorphic
both as Riemann surfaces and abelian groups.

Uniformisation theorem: Every elliptic curve over C is isomorphic to C/A for some
lattice A.

Summary of results:

For K = C, then F(C) = C/A = R/Z x R/Z (isomorphic to complex torus)
For K =R, then
(R) = Z]2Z x R/Z if A >0
| R/Z if A <0

For K =F,, then E(F,) is approzimately ¢ + 1. We have Hasse’s Theorem:
[E(Fy) — (¢ +1)] < 2v/4q

For local fields, [K : Q,] < oo, let Ok be the ring of integers. Then E(K) has a subgroup
of finite index isomorphic to (O, +).

E.g. If K =Q,, then E(K) contains subgroup of finite index isomorphic to (Z,, +). Note
that (Z,,+) is not finitely generated (contains all rationals without p in denominator),
so E(K) is not finitely generated.

For number fields [K : Q] < oo, we have that F(K) is a finitely generated abelian
group (Mordell-Weil Theorem)



. Isogenies

e Isogeny Let Fi, Fy be elliptic curves. An isogeny ¢ : E; — FE5 is a nonconstant
morphism with ¢(Og,) = Op,. We say E; and E, are isogenous.

e Every morphism ¢ : Cy — Cy of curves is either constant or surjective.

Fact:  Two elliptic curves E) and E, are isogenuous over F, if and only if #FE;(F,) =
#Ex(Fy).

e Hom(FE, Ey) = {isogenies E; — FE»} U {0}. This is a group under (¢ + ¢)(P) = ¢(P) +
»(P)
If ¢ : Fy — FE5 is isogeny and v : Fs — FEj3 is isogeny, then ¢ ¢ is isogeny.

e Let n € Z with n # 0. Then [n] : E — E is an isogeny.

Corollary: Hom(FE,, Es) is torision-free as a Z-module.

e (homomorphisms): Let ¢ : £} — FE5 be isogeny. Then ¢(P + Q) = ¢(P) + ¢(Q) for all
P.Q € E;.

e Degree 2 isogeny: Let F, E’ be two elliptic curves over K, defined by

E:y*=x(z® + ax +b)

By =x(2* +dz+ 1)
where a,b € K such that b(a? — 4b) # 0, and where o’ = —2a and O = a? — 4b.
Then, there is a degree 2 isogeny ¢ : E — E’ where

(x,y) — <<%>2 : &Q_b) : 1) and ¢(Og) = Op

X

o Let ¢ : By — F5 be an isogeny. Then there exists a morphism ¢ : P! — P! making the
following diagram commute:

ElL)EQ

lxl lm

Pl P!

where x; denote the x-coordinates on a Weierstrass equation for FE;.

Moreover, if £(t) = % where r, s € Kt] coprime, then deg(¢) = deg(§) = max (deg(r), deg(s)).
o deg[2] =4.
e Quadratic form Let A abelian group. ¢ : A — Z is a quadratic form if

— q(nx) =n’q(z) foralln e Z, z € A
— (z,y) = q(x +y) — q(x) — q(y) is Z-bilinear.

A map q : A — 7Z is a quadratic form iff it satisfies the parallelogram law: q(z + y) +
q(x —y) = 2q(z) + 2q(y) for all z,y € A.

e deg : Hom(Fy, Fy) — Z is a quadratic form.
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e Let PQQ € E, and let P.Q,P+ Q,P — @ # 0, and let x1, zo, x3, x4 be the x-coordinates
of these 4 points respectively. Then, there exist polynomials Wy, Wy, Wy € Z[a, b][x1, 2]
of degree < 2 in z; and of degree < 2 in x5 such that

(1 T3+ 2y .T}3LU4> = (Wg . W1 . Wg)

These polynomials can explicitly be given as

Wo = (21 — $2)2
W1 = Q(Ill’g + CL)(JZl + ZL‘Q) + 4b

Wy = zia5 — 2ax109 — 4b(z1 + 22) + @

e Corollary: deg(ng) = n?deg(¢). In particular, deg[n] = n?.
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6. Invariant differential

Invariant differential Let C algebraic curve. The space of differentials ()¢ is the
K (C)-vector space generated by df for f € K(C') subject to the relations

—d(f+g)=df +dg
— d(fg) = fd(g) + gd(f)
—da=0forallae K

Fact: Q¢ is 1-dimensional K(C') vector space (for curves C')

(In general, if V' is an algebraic variety of dimension d, then 2y is d-dimensional K (V)
vector space)

Order of differential: Let 0 # w € Q¢. Let P € C be a smooth point and ¢ € K(C)
be a uniformiser at P. Then w = fdt for some f € K(C)*.

We define
ordp(w) = ordp(f)

which is independent of choice of uniformiser .
Let f € K(C)* such that ordp(f) =n # 0. If char(K) fn, then ord,(df) =n — 1.

Let C' be smooth projective curve, and let 0 # w € Q¢ Then ord,(w) = 0 for all but
finitely many P € C.

Divisor of differential: Let C' be smooth projective curve, and let 0 # w € Q¢. We
define the divisor of w:

div(w) := Z ordp(w)P € Div(C)

Genus: Define the genus as

g(C) = dimg{w € Q¢ : div(w) > 0}

The set {w € Q¢ : div(w) > 0} is the space of regular differentials

Riemann-Roch states that: If 0 # w € Q¢, then deg(div(w)) = 2¢(C) — 2.

Assume char(K) # 2. Given elliptic curve E : y* = f(x). THen w = d?” is a differential
on E with no zeros/poles. (i.e. ordp(w) =0 for all P € E)

In particular, the K-vector space of regular differentials on E is spanned by w. w is called

the invariant differential.

Pullback differential: Let ¢ : ¢}, — C5 be nonconstant morphism. Then ¢* : Q¢, —
Q¢, is given by
fdg— (¢"f)d(¢7g)  (recall $*(f) = fo¢)

Let P € E. Let 7p : E — E be the translation map given by X — P + X. Then if
__ dz
w = F, then
W = W

Thus, w is called the invariant differential.
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o Let ¢,9 € Hom(FEy, Es), and let w be invariant differential on Es. Then
(¢ +¢)w=¢"w+ ¢ w
e Let ¢ : C1 — (5 be a nonconstant morphism. Then

¢ separable <= ¢": Qg — (¢, is non-zero

e N-torsion group: If char(K) fn, then E[n] = (Z/nZ)* (note: this is over algebraically
closed field!)

Remark: 1f char(K') = p, then [p] is inseperable. We have

Elp] Z/p"Z for all » > 1 (ordinary), or
o for all » > 1 (supersingular)
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7. Elliptic curves over finite fields

e Let A be abelian group, and ¢ : A — Z a positive definite quadratic form. If x,y € A,

then

gz +y) — q(z) — q(y)| < 2/q(

e Let IF, be the unique finite field with ¢ elements, where ¢ = p™ for some prime p. THe

extension F,/F, is always Galois.

Gal(F,/F,) is cyclic of order r, generated by the Frobenius map = — x9.

e Hasse’s theorem Let E/F, be elliptic curve. Then
[#E[F,) — (¢ + 1) <2V

Note: #E(F,) = #ker(l — ¢) = deg(1 — ¢) where ¢(z,y) = (2%,y?) is Frobenius map.

(since 1 — ¢ is separable)
e Zeta functions: For k£ a number field

Ciels) = ) (Nla)s =11 (1_ (Nllﬂ)s)1

acOy peO0x

where Na is the norm of the ideal a.
For K a function field (i.e. K =F,(C) where C'/F, a smooth projective curve)

i =T1 (1- <N1x>s)_1

z€|C|

where |C| is the closed points of C (orbits for action Gal(F,/F,) on C(F,). and Nz =

q9°#®) where deg(x) is the size of the orbit.
We have that (x(s) = F(q™*) for some F € Q|[[T]], where

F(T) = H (1- T9e@) " = exp (Z #OF )
z€|C|

e Zeta function of variety: The zeta function of a variety V is

T) = exp (Z —#qun)T">

Let E/F, elliptic curve, with #E(F,) = ¢+ 1 — a. Then

1 —aTl + qT?
(1-=T)(1—qT)

Zp(T) =

o Let #E(F,) = ¢+ 1 —a. Then
#EFp)=q¢"+1—a" - p"
where o, 3 € C are roots of X2 —aX + ¢ = 0.
If #E(F,) =q+1— a, then

(Fg2) = (¢+1—-a)(g+1+a),
H#E[Fp)=¢"+3ag—a*+1=(¢+1—a)l+a+a®—q+aq+q¢°),
#EFp) = —a* +4a’¢+ (¢ — 1) =(g+1—a)(g+1+a) (1 +a®>—2¢+ %)
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Trace: Define tr : End(E) — Z given by
¢ = (9,1) = deg(¢ +1) — deg(p) — 1

E.g. If ¢ : E — E is ¢-power Frobenius, then tr(¢) = #E(F,) — ¢ — 1.
Fact: For any ¢ € End(E), we have ¢* — [tr¢]¢ + [degp] = 0

Let ¢ € End(E) with n € Z. Then tr(¢) = 2n and deg(¢) = n? if and only if ¢ = [n].

14



8. Formal groups

e [-adic topology Let R ring, I C R an ideal. The [-adic topology is the topology on
R with basis {r + 1" : 7 € R,n > 1}.

e Cauchy A sequence (z,,) in R is Cauchy if Vk, IN s.t. Vm,n > N, z,, — x,, € I*.

e Complete: R is complete if

- (N I"={0}

n>0

— Every Cauchy sequence converges

Note: If x € I, then 1 — z is unit

FExamples:

— The p-adic integers Z,, is completion of Z w.r.t the ideal pZ.
— The power series in ¢, Z[[t]] is completion of Z[t] w.r.t the ideal ().

e Hensel’s Lemma: Let R be integral domain, and complete w.r.t ideal I C R. Let
F € R[X] and s > 1.

Supose a € R satisifes

— F(a) =0 (mod I°)
— F'(a) € R

Then, there exists a unique b € R s.t.

- F()=0
— b=a (mod I?)

Setup: Consider the elliptic curve E : Y2Z +a, XY Z +a3Y 7% = X3 +ax X?Z +a, X 7? +
agZ3. Usually we take affine piece where Z # 0, but intead we now take affine piece
where Y # 0. Let t = —=X/Y and w = —Z/Y . Define

f(t,w) =t + artw + ast*w + asw® + agtw?® + agw®

Thus E :w = f(t,w)

Applying Hensel’s Lemma with R = Zay, ..., ag][[t]], I = (t), and F(X) = X — f(¢, X)
with s = 3, a = 0, we get there exists a unique w(t) € Zlay, . .., ag][[t]] such that

— w(t) = f(t,w(t)), and
— w(t) =0 (mod t3)

The function w(t) can be given as w(t) = lim,,_,o, w,(t) where

w()(t) =0 and wn+1(t) = f(t> wn(t))
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The approximations are:

wo(t) =0

w (t) =t°

wy(t) = 3 (1 + art + ast? + ast® + agt* + agt®)

ws(t) = t3(1 + ayt + (a2 + a)t* + (2a1a2 + az)t® + (a3 + 3araz + ag)t* +...)

w(t) =71+ At + At + At + .. ) = Ay ot™"!
n=2
where A; =a;, Ay = a% + ay, Az = a:{’ + 2aqa9 + as, . ..
e Let R be integral domain, complete w.r.t. ideal I, and ay, ..., as € R, and K = Frac(R).
THen E(I) = {(t,w) € E(K) : t,w € I} is a subgroup of E(K).

Remark: By uniqueness in Hensel’s Lemma (using s = 1), we have

~

B(I) = {(t,w(t)) € E(K) :t e I}

e By Hensel’s lemma, there exists i(t) € Z[ay, . .., ag][[t]] with ¢(0) = 0 such that

(=1 w(t) = (i), w(i(t)))

where

i(X) =X —a1 X? — ap X® — (a} +a3) X* + ...

Also by Hensel’s lemma, there exists F'(t1,ts) € Z[ay, . .., ag)[[t1, t2]] with F'(0,0) = 0 such
that

(tr,w(t)) + (t2, w(tz)) = (F(t1, t2), w(F (t1,t2)))

where

FX,2Y)=X+Y —a; XY — ay(X?Y + XY?)
+ (2a3X°Y + (a1as — 3a3) X?Y? +2a3XY?) + . ..

e Formal group: Let R be a ring. A formal group over R is a power series F(X,Y) €
R[[X,Y]] satisfying:

1. F(X,Y) = F(Y, X)
2. F(X,0) =X and F(0,Y) =Y. (one implies the other)
3. F(F(X,Y),Z) = F(X,F(Y, 2))

Furthermore, one automatically gets that there exists a unique i(7) = =T+ --- € R[[T]]
such that F(T,i(T)) = 0.

Construction of inverse: We define a sequence of power series (g,(7))52,. Let g1(T) =
—T. For n > 2, set

9n(T) = gn_1(T) — bT™ where b is such that F(T, g, 1(T)) = —bT™ (mod T"*)

Then take the limit g(7") = lim, 00 gn(7"). The inverse is i(T) = g(T')

Examples:
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— Additive formal group: G,. Power series is F (X, Y)=X+Y
(with inverse i(X) = —X)

— Multiplicative formal group: G.,. Power series is F (X,)Y)=X+Y + XY
(with inverse (X)) = - X(1 - X + X? - X?+ X* - X° +...))

~ F(X,Y) = X S X 4V 4 (XY2 4 X2Y) 4 (X2V3 + Y3X2) i

— Sumon E(I): F(X,Y)=X+4Y —a, XY —a3(X?Y + XY?) + (203 X3Y + (ayay —
3@3)X2Y2 + 2&3XY3) + ...

e Morphism of formal groups: Let F and G be formal groups over R given by power
series F' and G.

— A morphism f : F — G is a power series f(7') € R|[[T]] such that f(0) = 0 and
fF(X,Y)) = G(f(X), f(Y)).

— F is isomorphic to G if there exist morphisms f : F — G and g : G — F such that
f(g(X)) = X and g(f(X)) = X.

e Let R be ring with char(R) = 0. Then every formal group F over R is isomorphic to Gy
over R® Q (i.e. R with denominators)

More precisely

— There is unique power series

log(T) = T + %TQ + %T3 +

with a; € R such that log(F(X,Y)) = log(X) + log(Y).

— There is unique power series

by bs
exp(T) = T—i——i—2'T2 §T3

with b; € R such that exp(log(7)) = log(exp(T)) =T.
Note: Let F1(X,Y) = 2£(X,Y). Define log by using

p(T) - Fl(O,T)_l =1+ GQT + (I3T2 + CL4T3 +

e Multiplicative Inverse: Let f € R[[T]] be given as

f= i a,T"
n=0

Then f has a multiplicative inverse g in R[[T]] (fg = 1) if and only if a¢ is a unit in R.
If so, then g is

= 1
g:anT" where by = — and bn———Zalnl forn>1

a
0 =1

17



e Composition Inverse: Let f = aT +--- € R[[T]] with a« € R*. THen there exists
unique g = a T + --- € R[[T]] such that f(g(t)) = g(f(T)) = T (i.e. power series has
inverse)

Construction: Let g;(T) = a 'T. Set
b
gn(T) = g 1(T) — aT" where b is such that f(g,_1(T)) =T +bT™ (mod T"")

Then take the limit g(7') = lim g, (7).
n—oo

Ideal into group: Let R be ring complete w.r.t. ideal I. Let F be a formal group
given by F' € R[[X,Y]]. For z,y € I, define

r@ry=F(z,y) el
This turns [ into a group!. F(I) := (I,®x) is an abelian group.
Examples:

— Additive group: G,(I) = (I,+).

— Multiplicative group: G,,(I) = (1+ 1, ).

Multiplication-by-m: Let F be a formal group with power series F' € R[[X,Y]]. For
any n € Z, we define the map [n| recursively as:

0](T) =0, and [n)(T) = F([n— 1T, T)

Let F be a formal group over R and n € Z. Suppose n € R* (wheren=1+1+...1n
times). Then

— [n] : F — F is an isomorphism.

— IF R complete w.r.t. ideal I, then [n] : F(I) — F(I) is an isomorphism. In
particularm F(I) has no n-torsion.

18



9. Elliptic Curves over Local Fields

Setup: K is field, complete w.r.t. discrete valuation v : K* — Z.
Valuation ring is O = {x € K* 1 v(z) > 0} U {0}.

The unit group O = {z € K* : v(z) =0}

Maximal ideal is 7Ok, where 7 € K is chosen such that v(7) = 1.
Residue field is k = Ok /7Ok.

Example: K =Q,, Ox = Z,, 10Ok = pZ,, k=T,

e Integral: A Weierstrass equation for E with coefficients aq,...,a¢ € K is integral if
ai,...0ag € Ok
Note: Substituting a; = u’al proves that integral Weierstrass equations always exist for
any EC.

e Minimal: Let A be discriminant of elliptic curve. Equation is minimal if v(A) minimal
among all integral Weierstrass equations for E

Fact: 1If E integral then A € Oy and thus v(A) > 0. Thus, by well-ordering, minimal
Weierstrass equations always exist. If char(k) # 2,3 then there exist minimal Weierstrass
equations of the form y? = 2 + ax + b.

Fact: 1If char(k) # 2,3, then y* = 2 + az + b is minimal if and only if v,(a) < 4 or
v,(b) < 6.

e Let E/K have integral Weierstrass equation: y* + ayzy + azy = 23 + asz® + asz + ag. Let
0# P e E(K),say P = (x,y). Then either x,y € O, or v(z) = —2s and v(y) = —3s
for some s > 1

We define:

E.(K):=E(x"Ok) ={(t,w) € E(K) : t,w € 7" Ok}
= {(2,y) € E(K) : v(z) < =2r and v(y) < =3r} U {0}

Obtain a sequence of subgroups:
<o C Ey(K) C E3(K) C Ey(K) C Ei(K)
More generally, for any formal group F over Ok:

- C F(m'Og) C F(m0k) Cc F(r*0k) C F(rOk)

e Let F be a formal group over Ok. Let e = v(p) where p = char(k). If r > -5, then
log : F(1"Ok) — Gu(n"Ok)
is an isomorphism with inverse exp : G, (7" Ox) — F(1"Ok) .

e Forr > 1,
f(ﬂ'rOK)
A TR o~ (k
.7:<7TT+IOK) ( ’+)

If |k| < oo, then F(mOf) contains a subgroup of finite index = (O, +)

e Reduction mod 7: Reduction mod 7 is the natural quotient map Oy — Ok /1Ox =k
given by x +— I
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e Reduction of curve: The reduction E/k of E/k is defined to be the reduction of a
minimal Weierstrass equation. Let F/K have minimal Weierstrass equation

E: oy +aizy + asy = 2° + asx® + asx + ag
We then reduce each coefficient modulo 7 to obtain a (possibly singular) curve over k:
E: Y2+ a1y + dsy = 2 + agr? + aux + ag

e Let F/K elliptic curve. The reduction mod m, of two minimal Weierstrass equations for
FE define isomorphic curves over k.

E has good reduction if E is non-singular (and thus elliptic curve), otherwise has bad
reduction.

Fact: E has good reduction at p if and only if v(A) = 0 for minimal v(A).

e Let /K be an elliptic curve with integral Weierstrass equation. Let discriminant tbe A.
Then

v(A) = —>  good reduction
0<v(A)<12 = bad reduction
v(A)>12 =  equation may not be minimal

If Tk 2,3, ...

e Reduction map: Let E/K be elliptic curve over K. Let P € E with homoge-
nous projective coordinates P = (z : y : 2) € P?(K). Choose representative such that
min(v(z),v(y),v(z)) =0 (i.e. all z,y,z € Ok and ged(z,y, z) = 1).

Then we define the reduction map

Restricting the above map to the curve E(K) gives
E(K) — E(k)
P~ P
e Let E(K) be given by minimal Weierstrass equation. Then if P = (z,y) € E(K), then

— Ifz,y € Ok, then P = (Z,7).
— Otherwise, P = (0:1:0) = Og.

e Let E/k elliptic curve. We define

= E if £ has good reduction
" | E\{singular point} if £ has bad reduction

E\s is a group.

If bad reduction, then Fi is isomorphic to either G, (if cusp) or G,, (if node).
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Define Eo(K) = {P € E(K) : P € E,,(k)} (ie. all points on F(K) which don’t get
reduced to the singular point. Good reduction implies Ey(K) = E(K))

Ey(K) is a subgroup of E(K) and reduction mod 7 is a surjective group homomorphism

Eo(K) — Ens(k')
We have the following filtration:

E(m0k) E(m?0k) E(nOk)
I | I

E.(K) Cc ... C E3K) C E)K) C E(K) C E(K) Cc ENK)
T T T T T
(kv +) (kv +> <k7 +) Ens<k) CK(E)

If |k| < oo, then P™(k) is compact (w.r.t m-adic topology)

If |k| < oo, then Ey(k) C E(K) has finite index.

Tamagawa number: Define the Tamagawa number cx(F) = [E(K) : Ey(K)] < oo.
Note that good reduction implies cx (E) = 1.

Fact: ¢,(E) =v(A) or ¢ (F) < 4.

If [K :Q,] < oo, then E(k) contains a subgroup E,(K) of finite index with E,(K) =
(Ok7 +>

E(K)
E,(K)

Corollary:  E(K)iorsion injects into and therefore E(K )iosion 1S finite!.

Unramified extension: Let [K : Q)] < oo be local field, and let L/K be a finite
extension. Let L and K have residue fields £ and k. Let f be the residue degree f = [¢ : k],
and let [L: K] =ef.

L/K is unramified if e =1 (i.e. [L: K| =[(: k] and Gal(L/K) = Gal({/k))

K 47

N lxe

L7

For each integer m > 1

— k has unique extension of degree m (say k,,)

— K has unique unramified extension of degree m (say K,,)

Note: Can be found by adjoining the (p™ — 1)-th roots of unity to Q,

Maximal unramified extension: K" = U K, (inside K)
m>1

Notation: Let P € E(K). Then [n]'P ={Q € E(K) : nQ = P}. We define the field
extension K({Py,...,P}) = K(z1,...,2,y1,...,y,) where P; = (x;,y;).

Let [K : Q] < 0o, E/K elliptic curve with good reduction, and p fn. If P € E(K) then
K([n]7'P)/K is unramified.
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10. Elliptic Curves over Number Fields (Torsion Subgroup)

Notation: K is number field, [K : Q] < co. E/K is elliptic curve.
p is a prime of K (i.e. of Ok). K, is the p-adic completion of K.
ky is the residue field Ok /p

Example: K =Q, Ox =Z,p =pZ, K, =Q,, k, =F, ~ Z/pZ.

Good reduction: p is a prime of good reduction for E/K, if E/K, has good reduction.

E/K has only finitely many primes of bad reduction. Indeed, any primes of bad reduction
must divide A.

Remark: 1If K has class number 1 (e.g. K = Q), then can always find Weierstrass
equation for E with aq,...,as € Ok minimal at all primes p.

E<K)torsion is finite.

Let p be a prime with good reduction, with p n, THen reduction mod p gives an injection
E(K)[n] = E(kp)[n]

Let E/Q be elliptic curve. Let p be a prime for which F has good reduction (e.g. any
p fA will have good reduction) We have

#E(@)tors | #Ean) . pa fOI" some a Z O
Furthermore, if working in K = @Q,, then e = 1, and thus

#E(Q)tors | #E(Fp) if P odd
#E(Q)tors | 2. #E(]Fp) if p= 2

Let E : y* = f(z) be an elliptic curve over F,. Let (%) be the Legendre symbol for
f(x) mod p. In other words

1 if f(z) is a square mod p, and p [f(x)
f@)\ _ . .
——= ] =4 -1 if f(x) is not a square mod p
P 0 if p divides f(z)

HEF,) =1+ ) ((%) + 1)

Let £/Q be given by Weierstrass equation ay,...,ag € Z. Suppose 0 # T = (z,y) €
E(Q)tors- THen

Then we have

— 4z, 8y € Z
— If 2|a; or 2T # 0, then z,y € Z

Nagell-Lutz Let £/Q be given with equation y? = 23 + ax + b with a,b € Z. Suppose
04T = (x,y) € E(Q)tors- THen x,y € Z and either y = 0 or y?|(4a® + 270?)

(Mazur): Let E/Q elliptic curve. Then

Z/nZ where 1 <n <12,n # 11

E ors g
@k {2/22 x Z/2nZ where 1 <n < 4

Furthermore, all 15 possibilities occur infinitely often over Q.

22



11. Kummer theory

Setup: Fix n > 1. Let K be field, charK fn. Denote u, as the multiplicative group of nth
roots of unity (in K). Assuming p, C K

o Let A € K*/(K*)" be a finite subgroup. Define VA = {{/a:a € K*,a - (K*)" € A}
Let L = K({/A). Then L/K is Galois and Gal(L/K) = Hom(A, p1,,).

e Kummer pairing: Define the map (, ) : Gal(L/K) x A — p, given by

o(/7)
Uz

(0,2) —

Fact: This map is well-defined and bilinear.

e We have the two group isomorphisms:

2
)

8

Gal(L/K) — Hom(A, ) o~ (z+—

2
3
Z

A — Hom(Gal(L/K), un) z > (0 —

%

e Exponent: Let G be a finite group. the exponent of G is the lowest common multiple
of the orders of the elements of G. Note that the exponent divides |G]|.

Fact: Gal(K({/A)/K) is an abelian group of exponent dividing n.
e There is a bijection

finite subgroups finite abelian extensions
ACKX/(K*)" L/K of exponent dividing n
A — K(VA)

(k) +—— L

e Let K number field, p, C K. Let S be a finite set of primes of K. There are only finitely
many extensions L/K such that

— L/K is abelian of exponent dividing n.
— L/K is unramified at all primes p € S

o Let
K(S,n)={xe K*/(K*)":vy(x) =0 (mod n) Vp & S}

Then K(S,n) is finite.

o If K =Q, then
Q(S,2)| = 21+
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12. Elliptic curves over number fields (Mordell-Weil)
e Let /K elliptic curve, with L/K a finite Galois extension. Then the map

E(K) E(L)
nE(K)  nE(L)

has finite kernel.

e Weak Mordell Weil: Let K number field, E/K elliptic curve. Let n > 2 integer.
Then

E(K)

nE(K)

< 00

Remark: 1If K =R or Cor [K : Q) < oo, then ’%‘ < o0, however F(K) is not

finitely generated.

e Mordell-Weil:  Let K number field, £/K elliptic curve. Then E(K) is a finitely
generated abelian group.
Specifically, fix an integer n > 2. Let Py, Ps,..., P, be set of coset representatives for

E(K)/nE(K). Then

S ={Pec B(K): h(P) < max h(P)}

1<i<m

generates F(K).
This proves E(K) = E(K)ios X Z" where r is the rank of the curve.

(Curve with rank at least 28 are known. Conjectured that rank is unbounded. Conjectured
that average rank is 1/2, current upper bound is 1.5)
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13. Heights

Height of a point: Let K = Q. Let P € P"(Q) be P =(ap:ay : -+ : a,) where a; € Z
and ged(ag, aq, ..., a,) =1 The height of P is

H(P) = max |a;|

0<i<n

Height of rational: Equivalently, if z = € Q, with u,v € Z coprime, then height of x
is H(z) = max(Jul, [v]

Let fi, f» € Q[X1, X3] be coprime homogenuous polynomials of degree d. Let F : P! — P!
be (x1 : 3) — (fi(x1,x2), fo(x1,22)) Then there exists ¢p,co > 0 s.t.

cH(P)! < H(F(P)) < c,H(P)* for all P € PY(Q)

Logarithmic height: The logarithmic height is a function h : F(Q) — Rs( defined by
h(P) = log(H(P)) (and h(Og) = 0).

Let E, E' be elliptic curves over Q. Let ¢ : ' — E’ be isogeny over Q. There exists ¢ > 0
such that
Ih(6(P)) — deg(¢)h(P)| < ¢ for all P € E(Q)

Note: ¢ depends on E, E’ and ¢, but not on P.
Example: 1f ¢ = [2] : E — E, then there exists ¢ > 0 such that

(h(2P) — 4h(P)| < ¢ for all P € E(Q)
Canonical height: For P € E(Q), we define

B(P) = Tim —h(2"P)

n—oo 4M
This converges for all P € E(Q) and does not depend on Weierstrass equation.
|h(P) — h(P)] is bounded for P € E(Q)

For any B > 0 R
#{P e EQ):h(P)< B} <o

Let ¢ : E — FE' be isogeny over Q. Then
h(¢pP) = (degp)h(P) for all P € E(Q)
Let E/Q be elliptic curve. There exists ¢ > 0 such that

HP+Q)-HP—-Q)<c-H(P)? -H(Q)* foral P,Qc E(Q)

h: E(Q) — Rs is a quadratic form.

Let P € E(Q). Then P is a torsion point if and only if A(P) = 0.
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o Absolute values: Let Mg denote the set of standard absolute values on Q, which
consists of:

— One archimedean absolute value |z|, = max (—x,x).

— For each prime p € Z, one nonarchimedean (p-adic) absolute value |z, = p~*).

e Height: For an arbitrary number field K, let P = (ag : a3 : -+ : a,) € P*(K), and
define the height

Hi(P) = [ max{laol,lal,,.... lag],} "

veEMK

where My denotes the set of standard absolute values on K (i.e. the absolute values in
K whose restriction to Q is in Mg)

Note the absolute values are normalised such that

H |x’1[)Kv:@v} -1

vEME
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14. Dual isogenies and the Weil pairing

Let ® € E(K) be a finite Gal(K /K)-stable subgroup (i.e. for all T € ®, then 77 € ® for
all 0 € Gal(K/K)).

Then there exists an elliptic curve E’/K and a separable isogeny ¢ : E — E’ defined over
K with kernel ® such that for every isogeny ¢ : E — E’ with ® C ker(¢) factors uniquely
via .

Dual isogeny: Let ¢ : E — E' be an isogeny of degree n. Then there exists unique
isogeny ¢ : E' — E s.t. ¢po¢ = [n]. ¢ is called the dual isogeny of ¢.

— Elliptic curves being isogenous is equivalence relation.

— deg(¢) = deg(¢) and [n] = [n]

—0=9

— If ) : E — E' isogeny and ¢ : E/ — E” isogeny, then ¢t = ¢h¢

— If ¢ € End(E), then tr(¢) = ¢ + ¢
If ¢, € Hom(E, E'), then ¢ + ¥ = ¢ -+ 1).
sum: Define sum : Div(E) — E as > n,(P) — > n,P (sum using group law)
Remark: Given the isomorphism ¢ : £ — Pic’(E) given by P+ [P — O], we have

sumD +— [D] for all D € Div’(E)
Let D € Div(E). Then D ~ 0 if and only if deg(D) = 0 and sumD = 0. (i.e. D is
principal iff both the sum and degree are 0)

Weil pairing: Let ¢ : E— E’ be isogeny of degree n, with char(K) fn. Let E[¢p| be
the kernel of ¢. The Weil pairing:

ey E[¢] X E'[¢] = pin = {z € K : 2" =1}
Definition of map: Let S € E[¢],T € E'[¢]. As ¢ has degree n, this implies nT" = 0.
— Choose f € K(E') such that div(f) = n(T) — n(0).

— Choose g € K(E) such that div(g) = ¢*(T) — ¢*(0)
— Thus ¢*f = cg™. Can assume wlog ¢*f = g".

We define
g X +59)

9(X)
e, 1s bilinear and non-degenerate (i.e. if e4(S,7) = 1 for all S € E[¢], then T' = Op/)

eSS, T) =( = forany X € £

If B, E', ¢ are defined over K, then e, is Galois equivariant (i.e. e4(0S,0T) = a(ey(S,T))
for all o € Gal(K/K)
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e Taking ¢ = [n] : E — E gives a pairing:

en: E[n]: Eln] — py,

e If Fln] C E(K), then p, C K (can find S,T € E[n] such that e,(S,T) is primitive n-th
root of unity)

— e, is alternating. lLe. ¢,(T,7T) =1 for all T € Eln|.
— e (S, T) = e,(T,S)L.
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15. Galois cohomology

Setup: G agroup. Aisa G-module (i.e. an abelian group A with a left group action GXx A — A
s.t. we have identity, compatibility, and g - (a +b) =g-a+g-b)

e HY(G,A)=A“={a€ A:0(a)=aforall 0 € G}

Cochain: C1(G,A) = {maps G — A}

U
Cocycle: Z'(G,A) = {(ay)secq : Gor = 0(a;) + a,}
U
Coboundary: B'(G,A) = {(0b—b)yeq : b € A}

Z'(G,A)  cocycles
B'(G,A)  coboundaries

HY(G, A) =

Remark: If G acts trivially, then Z'(G, A) = {homogeneous mapsG — A} and B'(G, A) =
{(0)} (the zero map). Thus H'(G, A) = Hom(G, A)

Ezxamples: 1If G = Gal(C/R = {id, conj} and A = C, then

- (41(G,A) = {maps G - A} =2 C x C.
— ZYG, A) = {(0,iz) : z € R}
— BYG,A) ={(0,iz) : x € R}

(

— HY(G, A) is trivial.

e A short exact sequence of GG-modules:

O—>A—¢—>B—w—>0—>0

gives rise to long exact sequence of abelian groups:
0 — A9 25 BG 25 09 2, gY(G, A) -2 HY(G, B) 2 HY(G,0)
Definition of §: :

— Let ¢ € CY. THere exists b € B s.t. (b) =

— Note ¢(cb —b) = 0. For all o € G, there exists a, € A s.t. ¥(a,) = ob —b.
— Can show (a,)seq € Z'(G, A).

— Define 6(C) = class of (ay)secq in H'(G, A)

e Let A be a G-module, H << G a normal subgroup. THen there is an inflation and
restriction exact sequence:

0 —s Hl (G/H, AH) inflation Hl(G, A) restriction Hl (H, A)
e Hilbert’s Theorem 90: Let L/K be finite Galois extension. THen H'(Gal(L/K), L*) =
0 (i.e. Z' C BY).
Corollary 1: H*(Gal(K/K),K*) =0
Corollary 2: HY(Gal(K/K), u,) = K*/(K*)". If u,, € K, then Hom(Gal(K /K), 1) =
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Setup: Let ¢ : E'— E' be isogeny of elliptic curves over K. Notation: H'(K, _) means
H'(Gal(K/K), ).

There is short exact sequence of Gal(K /K )-modules:

0— El¢] — E 25 E' — 0

Get long exact sequence

)

B(K) 2 B'(K) 2 H\(K, E[¢)) — H'(K,E) -2 H'(K, E')

Get short exact sequence

0 ’ L/? : ’ HI(K’E[¢]) E— HI(KaE)[¢*] — 0
0 » Ty sz " TIy H'(Kv, E[¢]) — T1, H'(K., B)[¢.] — 0

e Selmer group: THe ¢-Selmer group is
SO(E/K) =ker a (the diagonal map above)
or alternatively
V(E/K) = Ker (Hl(K, Elo)) — [ H' (kv E))

= {a € H'(K, E[¢)]) : res,(a) € im(d,) Yo}

Tate-Shaferavich group: HI(E/K) =ker (H'(K,E) — [[, H(K,, E))
Get short exact sequence:
E'(K)

JE(E) SO(E/K) — II(E/K)[¢,] — 0

0—

Place: Let K be number field. A place of K is an equivalence class of absolute values
on K. Three types: Trivial, archimedan, and non-Archimedean.

SM(E/K) is finite.

Let S be finite set of places. THe subgroup of H'(K, A) unramified outside S is

HY(K, A;S) = ker (Hl(K, A) — H HY(K]", A))
vgS

Conjecture: TI(E/k) is finite.
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16. Descent by cyclic isogeny

Setup: Let E, E' be elliptic curves over a number field K. Let ¢ : E — E’ be an isogeny of
degree n.
Define the map a by the long exact sequence

E(K) — E'(K) —— H'(K,u,) — H'(K,E)

X lg by Hilbert 90

e Let f € K(E') and g € K(FE) with div(f) = n(T) — n(0) and ¢*f = ¢". THen o(P) =
f(P) mod (K*)" for all P € E'(K)\{0,T}
e Setup of 2-isogeny: Let E and E’ be elliptic curves:

E:y* =xz(2* +axr+ )
By =x(®+dz+ V)

such that b # 0 and a? —4b # 0, and @’ = —2a and b = a? — 4b. There then is a 2-isogeny

¢ : E — E' which maps:
y\? y(@®—b)
(Jf,y) = ((E) ) 22

and its dual isogeny ¢ : E' — E which maps

- (32 2527

with kernels

El¢] = {0p, T} T'=1(0,0) € E(K)
E'9]={0p,T"}  T'=(0,0) € E'(K)

e There is a group homomorphism:
E'(K) — K*/(K")*
9= e (e ot
with kernel ¢(E(K)).

Remark: This gives two injective group homomorphisms:

E(K)

ap = — K*/(K*)?
o(E'(K)) )
. _EK) R
W SRR — K*/(K")



e We have

2rank E(K) _ |Im(aE)| ) |Im(aE'>|
4

e If K is number field, and a,b € Ok, then
Im(ag) C K(S,2)

where S = {primes dividing b}.
Notation: K(S,n) ={z € K*/(K*)": ord,(x) =0 (mod n) for all v € My — S}

Ezample: Let S be finite set of primes. Then Q(.S, 2) is simply a finite set of squarefree in-
tegers containing only primes from S. E.g. if S = {2,3,5}, then Q(S,2) = (—1,2,3,5) =
{1,-1,2,-2,3,-3,5,—5,6,—6,10, —10, 15, —15, 30, —30} (as cosets in Q*/(Q*)?)

o If b1b2 = b, then

bi(K*)? € Im(ap) <<= w?=bu*+ au’v® + byv?

is soluble for u, v, w € K not all zero

Fact: 1f a,by,by € Z and p [2b(a® — 4b), then w? = bju' + au®v? + byv? has solution over
Q

e Calculating the rank of F : y? = x(2? 4+ ax + b):
— Setup the 2-isogeny by defining E’ : y*> = z(2*> + d/xz + b) where ' = —2a and
V = a® — 4b.
— We aim to calculate Im(ag) and Im(ag).

— Obtain bounds on the size by using that Im(ag) C (=1, po,. Dby, - - -, Pb,) Where py,
are the primes dividing 0.
Similarly, use that Im(ag) C (=1, py, prys - - - Py, ) where py, are the primes dividing
b.

— For each b; dividing b, determine if b; is in Im(ag) by determining if there exist
u,v,w € K not all zero such that

w? = bjut 4+ auv? + by

Tips:
x If by, b9, a < 0, then no solutions over R, hence no solutions in Q.
« Can multiply through to assume integer solutions with ged(u,v) = 1.
x Use quadratic reciprocity.
« Use that Im(ag) is a group to eliminate checking every possible subset of
(=1, Pbys -y Doy)-
— Finally, use
rank E(K) = log, [Im(ag)| + log, [Im(ag )| — 2

to compute the rank, given Im(ag) and Im(ag).
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Birch Swinnerton-Dyer conjecture
e Let £/Q be elliptic curve. Define the associated L-fuction L(E,s) =[], L,(F, s) where
1—ayp*+p'2)~1 if good reduction
—p)t if split mult reduction
+po)~1 if nonsplit mult reduction
if additive reduction
where #FE(F,) = p+1—a,, By Hasse’s bound, we know L(E, s) converges for Re(s) > 3/2.

e Analytic continuation: L(FE, s) is the L-functio of a weight 2 modular form and hence
has an analytic continuation to all of C

e Weak BSD: ord,_;L(E, s) = rankE(Q)
e Strong BSD:

g 0y II(B/Q)] - RegB(Q) T, ¢
lim —TL(E7 s) = Bl

s—1 (3 — 1)

where

— ¢, = [E(Qy) : Ey(Q,)] = Tamagawa number of E/Q, .

— Let Py, ..., P, generate the non-torsion part of £(Q). So E(Q)/E(Q)torsion = (P41, - - -
Then the regulator of E(Q) is

[P, P] [P,P] ... [P,P]

[P27P1] [PQaPQ] [P27P7‘]
RegE(Q) = det([F;, Pjl)ij=1,..r = : : :

[Prapl] [PT7P2] [PT‘7P’I’]

where [P, Q] = h(P + Q) — h(P) — h(Q)
— Qp is the integral

/ dx
Qp =
B®) 12y + a1 + as|

where a; are coefficients of globally minimal Weierstrass equation for F.

e Kolyvagin: If ord,_1L(E,s) =0 or 1 (i.e. analytic rank is 0 or 1), then weak BSD is
true and |III(E/Q)| < oo

33

7P’I“>‘



Misc
Automorphism group: Let E/k be elliptic curve. Then Aut(F) is finite, and its order is
o 2if j(E) & {0,1728}
e 4if j(E) =0 and char k ¢ {2,3}
o 6if j(E) = 1728 and char k ¢ {2,3}
e 12if j(E) =0=1728 and char k =3
o 24 if j(E) =0= 1728 and char k = 2

In the last two cases, E is always supersingular

Endomophisms: An endomorphism of E is an isogeny from E to E. Denoted, End(F), it
forms a ring

e Multiplication by n: [n]: E — E given by X — X 4+ X + -+ 4+ X n times.
e (For finite fields) Frobenius endomorphism: ¢ : E — E given by (z,y) — (z%,y9)

e Translation: 7p : E — E given by X — P+ X
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Some Geometric Notions

e Coordinate ring: Let V be a variety over K. The coordinate ring of V/K is defined
by

K[X]
M= 1w

Elements of K[V] are the polynomial functions on V.

K (V) is an integral domain. It’s quotient field is denoted by K (V).

e Maximal ideal: Let V be variety, and P a point on V. The maximal ideal at P is

Mp ={f e K[V]: f(P)=0}
e Local ring: Let V be variety, and P a point on V. The local ring of V at P is
K[Vlp={FeK{V): F= g for some f,g € K[V] with g(P) # 0}

Le. K[V]p is the set of regular function at P (functions defined at P).

e Rational map: Let Vj,V, C P™ projective varieties. A rational map from V; to V5 is a
map of the form

¢‘/1_>‘/2 qb:[anmfn]
where fy, ..., fn € K(V1) are s.t., fr every point P € V; at which f, ..., f, are all defined:
O(P) = [fo(P), .., fu(P)] € V.

Note: A rational map ¢ : V; — V5 may not necessarily be well-defined at every point of
Vi.

e Regular: A rational map ¢ = [fo,..., fu] : Vi — V4 is regular at P € V; if there is a
function g € K(V}) such that

— For each 7, ¢gf; is regular at P.
— There exists an i for which gf;(P) # 0

Note: We may have to take different g’s for different points.

e Morphism: A rational map that is regular at every point.

Curves

e Let C be a curve, and P € C' a smooth point. THen K[C]p is a discrete valuation ring.

e Order of vanishing: Let C' be a curve with function field K(C). Let P € C be a
smooth point. THe function ordp(f) : K(C) — Z U oo is the order of vanishing of
feK(C)at P.

Defined as
ordp(f) =sup{d € Z: f € M}
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