
Elliptic Curves

Lectures

1. Fermat’s method infinite descent

• Let ∆ be a right triangle with side lengths a, b, c. We say ∆ is rational if side lengths
are rational, and we say ∆ is primitive if side lengths integers and gcd(a, b, c) = 1.

• Every primitive triangle has side lengths u2 − v2, 2uv, and u2 + v2 for some integers
u, v ∈ Z, u > v > 0.

• Congruent number: Let D be a positive rational. D is congruent number if there
exists rational right-angled triangle with area D.
(equivalently, there exists a rational solution to y2 = x3 −D2x s.t. y 6= 0) (or to Dy2 =
x3 − x) (or the elliptic curve has positive rank)

• 1 is not a congruent number. Equivalently, there are no integer solutions to w2 = uv(u+
v)(u− v) where w 6= 0.

• In general, if u, v, w ∈ Z, w 6= 0 such that Dw2 = uv(u − v)(u + v), then there exists
right-angled triangle with area D with side lengths:

u2 − v2

w
,

2uv

w
, and

u2 + v2

w

• Let K be a field with char(K) 6= 2. Let u, v ∈ K[t] be coprime polynomials. If αu + βv
is a square for 4 distinct pairs (α, β) ∈ P1, then u, v ∈ K.

• Elliptic curve: An elliptic curve E/K is the projective closure of a plane affine curve
y2 = f(x) where f ∈ K[x] is a monic cubic polnomial with distinct roots in K̄.
or An elliptic curve E/K is a smooth projective curve of genus 1 with a specified K-
rational point OE.

• Weierstrass equation: The equation y2 = f(x) is called Weierstrass equation.
Fact: Let L/K be field extension Then E(L) = {(x, y) ∈ L2 : y2 = f(x)} ∪ {OE}. E(L)
is an abelian group.
Let E/K be elliptic curve. Then E(K(t)) = E(K).

• Isomorphism: Let E and E ′ be elliptic curves. Then E and E ′ are isomorphic if there
exists a morphism φ : E → E ′ and a morphism χ : E ′ → E s.t. χ ◦ φ = idE and
φ ◦ χ = idE′ .

Some results on congruent numbers: Let p be a prime number. Then:

– If p ≡ 3 (mod 8), then p is not congruent, but 2p is congruent.
– If p ≡ 5 (mod 8), then p is congruent.
– If p ≡ 7 (mod 8), then p and 2p is congruent.

List of congruent numbers: 5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, . . . .
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2. Remarks on algebraic curves

• Rational: A plane algebraic curve C = {f(x, y) = 0} ⊂ A2 (where f irreducible) is
rational if it has a rational parameterisation

I.e. there exists φ, χ ∈ K(t) s.t.

– The map t 7→ (φ(t), χ(t)) is injective for all but finitely many points in A1.

– f(φ(t), χ(t)) = 0

Any non-singular plane conic is rational. (e.g. x2 + y2 = 1)
Any singular plane curve is rational (not elliptic curves) (e.g. y2 = x3 or y2 = x2(x+ 1)).

• Genus: Let C be smooth projective curve. Genus g(C) ∈ Z≥0 is invariant of C.

• A smooth projective curve C ⊂ P2 of degree d has genus

g(C) =
(d− 1)(d− 2)

2

(so if d = 1, 2, then genus is 0)

Let C be smooth projective curve.

– C is rational ⇐⇒ g(C) = 0.

– C is elliptic curve ⇐⇒ g(C) = 1.

• Order of vanishing: Let C algebraic curve, function field K(C). P ∈ C a smooth
point. Write ordp(f) as the order of vanishing of f ∈ K(C) at P

ordp(f) : K(C)∗ → Z is a discrete valuation

– ordp(f1f2) = ordp(f1) + ordp(f2)

– ordp(f1 + f2) ≥ min(ordp(f1), ordp(f2))

E.g. If y2 = x(x− 1)(x−λ), then ordP (x) = −2 and ordP (y) = −3 where P = (0 : 1 : 0).

• Uniformiser: An element t ∈ K(C)∗ is a uniformiser at P if ordp(t) = 1.

• Let C be an affine curve, defined by C = {g(x, y) = 0} ∈ A2 where g ∈ K[X, Y ] is
irreducible. Express g(x, y) as

g(x, y) = g0 + g1(x, y) + g2(x, y) + g3(x, y) + . . .

where each gi is homogenoues of degree i.

Suppose P = (0, 0) ∈ C is a smooth point on C, so we have g0 = 0 and g1 = αx + βy
where α, β not both zero. (g1 is tangent to C at P )

Then, for any γ, δ ∈ K, we have that γx+ δy ∈ K(C) is a uniformiser at P if and only
if αδ − βγ 6= 0 (i.e. γx+ δy not some multiple of g1, so not tangent)

• Divisor: A formal sum of points on C. Can be expressed in the form:∑
p∈C

np P with np ∈ Z

and np = 0 for all but finitely many p ∈ C.
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• Degree of divisor: deg(D) =
∑
np

• Divisor of function: If f ∈ K(C)∗, then

div(f) =
∑
P∈C

ordP (f)P

This is called a principal divisor.

• Effective divisor: Let D be divisor. D is effective if np ≥ 0 for all P . Notation: D ≥ 0

• Riemann Roch space: The Riemann Roch space of D ∈ Div(C) is

L(D) = {f ∈ K(C)? : div(f) +D ≥ 0} ∪ {0}

(i.e. theK-vector space of rational functions on C with poles no worise than that specified
by D)

Remark: L(D) is a finite-dimensional K̄-vector space

• Riemann Roch for genus 1: Let D =
∑
npP , degD =

∑
np:

dimL(D) =


degD if degD > 0

0 or 1 if degD = 0

0 if degD < 0

• Let C ⊂ P2 be a smooth plane cubic and P ∈ C a point of inflection. Then one can
change coordinates such that

C : Y 2Z = X(X − Z)(X − λZ)

where P = (0 : 1 : 0) and λ 6= 0, 1. This is called Legendre form.

• Degree of a morphism Let φ : C1 → C2 be non-constant morphism of smooth projective
curve. Let φ∗ : K(C2)→ K(C1) be pullback given by f 7→ f ◦ φ.
The degree of φ is [K(C1) : φ∗K(C2)] (we define φ is separable iff extensionK(C1)/φ∗K(C2)
is separable)

Fact: deg φ = 1 if and only if φ is an isomorphism. deg φ = 0 if and only if φ is a
constant map.

• Ramification index: Let P ∈ C1 and Q ∈ C2 such that φ(P ) = Q. Let t ∈ K(C2) be
a uniformizer at Q (i.e. ordQ(t) = 1) Then the ramification index eφ(P ) is

eφ(P ) = ordP (φ∗t) (note eφ(P ) ≥ 1)

This is independent of choice of t.

• Let φ : C1 → C2 be non-constant morphism of smooth projective curves. Then∑
P∈φ−1(Q)

eφ(P ) = deg(φ) for all Q ∈ C2

If φ is separable, then eφ(P ) = 1 for all but finitely many P ∈ C1.
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– φ is surjective

– |φ−1(Q)| ≤ deg(φ) with equalty for all but finitely many Q ∈ C2.

• Rational map: Let C be an algebraic curve. A rational map φ : C → Pn is given by

P 7→ (f0(P ) : f1(P ) : · · · : fn(P ))

where f0, f1, . . . , fn ∈ K(C) are not all zero.

Fact: If C is smooth, then φ is a morphism.
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3. Weierstrass Equations

• Elliptic curve: An ellipttic curve E over K is a smooth projective curve of genus 1
defined over K with a specified K-rational point OE.

• Weierstrass form: A Weierstrass equation, over a field K, is an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with coefficients a1, a2, a3, a4, a6 in K.

• Weierstrass isomorphism: Every elliptic curve E is isomorphic over K to a curve in
Weierstrass form via an isomorphism, taking OE to (0 : 1 : 0).

• If D ∈ Div(E) is defined over K (i.e. fixed by Gal(K̄/K), then L(D) has a basis in K(E)
(not just in K̄(E))

• Points of inflection: Let C = {F = 0} ⊂ P2 be algebraic curve. THe points of inflection
are given by

det
(

∂2F

∂Xi∂Xj

)
= 0

(i.e. where the Hessian determinant of F is zero)

• Let E and E ′ be elliptic curves over K in Weierstrass form. Then E ∼= E ′ over K iff the
equations are related by a change of variables:

x = u2x′ + r

y = u3y′ + u2sx′ + t

where u, r, s, t ∈ K, u 6= 0.
Note: This changes the discriminant by u12∆′ = ∆.

• Discriminant: A Weierstrass equation for a curve E:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

defines an elliptic curve if and only if the discriminant ∆(a1, . . . , a6) 6= 0 where ∆ ∈
Z[a1, . . . , a6] is the polynomial

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6

where b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4.

If charK 6= 2, 3, then can reduce to E : y2 = x3 + ax + b defines elliptic curve, iff the
discriminant ∆ = −16(4a3 + 27b2) is non-zero, where

a = −27c4 where c4 = b2
2 − 24b4

b = −54c6 where c6 = −b3
2 + 36b2b4 − 216b6

• If charK 6= 2, 3, then E : y2 = x3 + ax+ b and E : y2 = x3 + a′x+ b′ are isomorphic over
K iff there exists u ∈ K∗ s.t. a′ = u4a and b′ = u6b.

• j-invariant: j(E) =
1728(4a3)

4a3 + 27b2

E ∼= E ′ =⇒ j(E) = j(E ′) and converse holds if K = K̄
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4. Group Law

• Group law Let E be elliptic curve with specified point OK ∈ E(K). Set of points on E
form an abelian group (E,⊕).

– Identity is specified point OE

– Group operation P ⊕Q is as follows:

∗ Let S be 3rd point of intersection of line PQ and curve E
(if P = Q, then let S be intersection between TpE (tangent line at P ) and E)

∗ Let R be 3rd point of intersection fo line OES and curve E.
∗ Then P ⊕Q = R

– Inverse of P :

∗ Let S be 3rd point of intersection of the tangent line at OE with the curve E.
∗ Let Q be 3rd point of intersection of line PS and E.
∗ Then P ⊕Q = OE

• Linearly equivalentD1, D2 ∈ Div(E) are linearly equivalent if ∃f ∈ K̄(E)∗ s.t. div(f) =
D1 −D2. (written D1 ∼ D2).

• Picard group: Pic(E) = Div(E)/ ∼
Div0(E) is the degree 0 divisors (i.e. Div0(E) = ker(Div(E)→ Z))

Pic0(E) = Div0(E)/ ∼

• Let φ : E → Pic0(E) be given by P 7→ [P − OE]. Then φ(P ⊕Q) = φ(P ) + φ(Q) and φ
is a bijection.

Remark: φ identifies (E,⊕) with (Pic0(E),+) which proves associaitvity!

• Explicit formula: Let P1 = (x1, y1) and P2 = (x2, y2) be points on E.

– Inverse: The inverse of P1 is 	P1 = (x1,−(a1x1 + a3 + y1)).

– Sum:

∗ Case I: x1 = x2, y1 6= y2: P1 ⊕ P2 = OE.
∗ Case II: x1 6= x2: P1 ⊕ P2 = (x3, y3) where

x3 = λ2 + a1λ− a2 − x1 − x2

y3 = −(λ+ a1)x3 − ν − a3

where

λ =
y2 − y1

x2 − x1

and ν =
x2y1 − x1y2

x2 − x1

∗ Case III: x1 = x2, y1 = y2: So P1 = P2, where we instead use the tangent
slope

λ =
3x2

1 + 3a2x1 + a4 − a1y1

2y1 + a1x1 + a3

and ν =
−x3

1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3

• Explicit formula for the case y2 = x3 + ax+ b:

– Inverse: The inverse of P1 is 	P1 = (x1,−y1)

6



– Sum:

∗ If x1 6= x2, then P1 ⊕ P2 = (x2, y2) where

x3 =

(
y2 − y1

x2 − x1

)
− x1 − x2

y3 = −
(
y2 − y1

x2 − x1

)
x3 −

(
x2y1 − x1y2

x2 − x1

)
∗ If x1 = x2 and y1 = y2, Then 2P1 = (x3, y3) where

x3 =
x4 − 2ax2 − 8bx+ a2

(2y)2
=

(
3x2 + a

2y

)2

− 2x

y3 =
x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− a3 − 8b2

(2y)3
= −

(
3x2 + a

2y

)
(x3 − x1)− y1

• E(K) is an abelian group.

• Elliptic curves are group varieties. I.e. The inverse map [−1] : E → E given by
P 7→ −P and the addition map A : E × E → E given by (P,Q) 7→ P + Q are both
morphisms of algebraic varieties.

• n-torsion Define [n] : E → E as the n-torsion map given by

P 7→ P + P + · · ·+ P n times for n > 0.

The n-torsion subgroup of E is

E[n] = ker([n] : E → E) = {P ∈ E : P + P + . . . P = 0 n times }

E.g. If E : y2 = (x− e1)(x− e2)(x− e3), then E[2] = {OE, (e1, 0), (e2, 0), (e3, 0)}

• 3-torsion: If 0 6= P = (x, y) ∈ E(K), then

3P = OE ⇐⇒ 3x4 + 6ax2 + 12bx− a2 = 0
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Elliptic curves over C
• Lattice: Let w1, w2 be basis for C as R vector space. Then a lattice Λ can be given as

Λ = {aw1 + bw2 : a, b ∈ Z}.

• Weierstrass p-function: Let Λ be a lattice. Then the Weierstrass p-function is:

℘(z) =
1

z2
+
∑

06=λ∈Λ

(
1

(z − λ)2
− 1

λ

)

This satisfies ℘′(z)2 = 4℘(z)− g2℘(z)− g3 where g2, g3 ∈ C depend on the lattice:

g2 = 60
∑

06=λ∈Λ

1

λ4
and g3 = 140

∑
06=λ∈Λ

1

λ6

Fact: C/Λ ∼= E(C) where E is the elliptic curve y2 = 4x3− g2x− g3. This is isomorphic
both as Riemann surfaces and abelian groups.

• Uniformisation theorem: Every elliptic curve over C is isomorphic to C/Λ for some
lattice Λ.

Summary of results:

• For K = C, then E(C) ∼= C/Λ ∼= R/Z× R/Z (isomorphic to complex torus)

• For K = R, then

E(R) =

{
Z/2Z× R/Z if ∆ > 0

R/Z if ∆ < 0

• For K = Fq, then E(Fq) is approximately q + 1. We have Hasse’s Theorem:

|E(Fq)− (q + 1)| ≤ 2
√
q

• For local fields, [K : Qp] <∞, let OK be the ring of integers. Then E(K) has a subgroup
of finite index isomorphic to (OK ,+).

E.g. If K = Qp, then E(K) contains subgroup of finite index isomorphic to (Zp,+). Note
that (Zp,+) is not finitely generated (contains all rationals without p in denominator),
so E(K) is not finitely generated.

• For number fields [K : Q] < ∞, we have that E(K) is a finitely generated abelian
group (Mordell-Weil Theorem)
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5. Isogenies

• Isogeny Let E1, E2 be elliptic curves. An isogeny φ : E1 → E2 is a nonconstant
morphism with φ(OE1) = OE2 . We say E1 and E2 are isogenous.

• Every morphism φ : C1 → C2 of curves is either constant or surjective.

Fact: Two elliptic curves E1 and E2 are isogenuous over Fq if and only if #E1(Fq) =
#E2(Fq).

• Hom(E1, E2) = {isogenies E1 → E2} ∪ {0}. This is a group under (φ + ψ)(P ) = φ(P ) +
ψ(P )

If φ : E1 → E2 is isogeny and ψ : E2 → E3 is isogeny, then ψφ is isogeny.

• Let n ∈ Z with n 6= 0. Then [n] : E → E is an isogeny.

Corollary: Hom(E1, E2) is torision-free as a Z-module.

• (homomorphisms): Let φ : E1 → E2 be isogeny. Then φ(P +Q) = φ(P ) + φ(Q) for all
P,Q ∈ E1.

• Degree 2 isogeny: Let E,E ′ be two elliptic curves over K, defined by

E : y2 = x(x2 + ax+ b)

E ′ : y2 = x(x2 + a′x+ b′)

where a, b ∈ K such that b(a2 − 4b) 6= 0, and where a′ = −2a and b′ = a2 − 4b.

Then, there is a degree 2 isogeny φ : E → E ′ where

(x, y) 7→
((y

x

)2

:
y(x2 − b)

x2
: 1

)
and φ(OE) = OE′

• Let φ : E1 → E2 be an isogeny. Then there exists a morphism ξ : P1 → P1 making the
following diagram commute:

E1 E2

P1 P1

φ

x1 x2

ξ

where xi denote the x-coordinates on a Weierstrass equation for Ei.

Moreover, if ξ(t) = r(t)
s(t)

where r, s ∈ K[t] coprime, then deg(φ) = deg(ξ) = max (deg(r), deg(s)).

• deg[2] = 4.

• Quadratic form Let A abelian group. q : A→ Z is a quadratic form if

– q(nx) = n2q(x) for all n ∈ Z, x ∈ A
– (x, y) 7→ q(x+ y)− q(x)− q(y) is Z-bilinear.

A map q : A → Z is a quadratic form iff it satisfies the parallelogram law: q(x + y) +
q(x− y) = 2q(x) + 2q(y) for all x, y ∈ A.

• deg : Hom(E1, E2)→ Z is a quadratic form.
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• Let P,Q ∈ E, and let P,Q, P +Q,P −Q 6= 0, and let x1, x2, x3, x4 be the x-coordinates
of these 4 points respectively. Then, there exist polynomials W0,W1,W2 ∈ Z[a, b][x1, x2]
of degree ≤ 2 in x1 and of degree ≤ 2 in x2 such that

(1 : x3 + x4 : x3x4) = (W0 : W1 : W2)

These polynomials can explicitly be given as

W0 = (x1 − x2)2

W1 = 2(x1x2 + a)(x1 + x2) + 4b

W2 = x2
1x

2
2 − 2ax1x2 − 4b(x1 + x2) + a2

• Corollary: deg(nφ) = n2deg(φ). In particular, deg[n] = n2.
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6. Invariant differential

• Invariant differential Let C algebraic curve. The space of differentials ΩC is the
K(C)-vector space generated by df for f ∈ K(C) subject to the relations

– d(f + g) = df + dg

– d(fg) = fd(g) + gd(f)

– da = 0 for all a ∈ K

Fact: ΩC is 1-dimensional K(C) vector space (for curves C)

(In general, if V is an algebraic variety of dimension d, then ΩV is d-dimensional K(V )
vector space)

• Order of differential: Let 0 6= w ∈ ΩC . Let P ∈ C be a smooth point and t ∈ K(C)
be a uniformiser at P . Then w = fdt for some f ∈ K(C)∗.

We define
ordP (w) := ordP (f)

which is independent of choice of uniformiser t.

• Let f ∈ K(C)∗ such that ordP (f) = n 6= 0. If char(K) 6 |n, then ordp(df) = n− 1.

• Let C be smooth projective curve, and let 0 6= w ∈ ΩC Then ordp(w) = 0 for all but
finitely many P ∈ C.

• Divisor of differential: Let C be smooth projective curve, and let 0 6= w ∈ ΩC . We
define the divisor of w:

div(w) :=
∑
P∈C

ordP (w)P ∈ Div(C)

• Genus: Define the genus as

g(C) := dimK{w ∈ ΩC : div(w) ≥ 0}

The set {w ∈ ΩC : div(w) ≥ 0} is the space of regular differentials

Riemann-Roch states that: If 0 6= w ∈ ΩC , then deg(div(w)) = 2g(C)− 2.

• Assume char(K) 6= 2. Given elliptic curve E : y2 = f(x). THen w = dx
y

is a differential
on E with no zeros/poles. (i.e. ordP (w) = 0 for all P ∈ E)

In particular, the K-vector space of regular differentials on E is spanned by w. w is called
the invariant differential.

• Pullback differential: Let φ : C1 → C2 be nonconstant morphism. Then φ∗ : ΩC1 →
ΩC2 is given by

fdg 7→ (φ∗f) d(φ∗g) (recall φ∗(f) = f ◦ φ)

• Let P ∈ E. Let τP : E → E be the translation map given by X 7→ P + X. Then if
w = dx

y
, then

τ ∗pw = w

Thus, w is called the invariant differential.
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• Let φ, ψ ∈ Hom(E1, E2), and let w be invariant differential on E2. Then

(φ+ ψ)∗w = φ∗w + ψ∗w

• Let φ : C1 → C2 be a nonconstant morphism. Then

φ separable ⇐⇒ φ∗ : ΩC1 → ΩC2 is non-zero

• N-torsion group: If char(K) 6 |n, then E[n] ∼= (Z/nZ)2 (note: this is over algebraically
closed field!)

Remark: If char(K) = p, then [p] is inseperable. We have

E[pr] ∼=

{
Z/prZ for all r ≥ 1 (ordinary), or
0 for all r ≥ 1 (supersingular)
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7. Elliptic curves over finite fields

• Let A be abelian group, and q : A → Z a positive definite quadratic form. If x, y ∈ A,
then

|q(x+ y)− q(x)− q(y)| ≤ 2
√
q(x)q(y)

• Let Fq be the unique finite field with q elements, where q = pm for some prime p. THe
extension Fqr/Fq is always Galois.
Gal(Fqr/Fq) is cyclic of order r, generated by the Frobenius map x 7→ xq.

• Hasse’s theorem Let E/Fq be elliptic curve. Then

|#E(Fq)− (q + 1)| ≤ 2
√
q

Note: #E(Fq) = #ker(1 − φ) = deg(1 − φ) where φ(x, y) = (xq, yq) is Frobenius map.
(since 1− φ is separable)

• Zeta functions: For k a number field

ζK(s) =
∑
a∈OK

1

(Na)s
=
∏

p∈OK

(
1− 1

(Np)s

)−1

where Na is the norm of the ideal a.
For K a function field (i.e. K = Fq(C) where C/Fq a smooth projective curve)

ζk(s) =
∏
x∈|C|

(
1− 1

(Nx)s

)−1

where |C| is the closed points of C (orbits for action Gal(F̄q/Fq) on C(F̄q). and Nx =
qdeg(x) where deg(x) is the size of the orbit.
We have that ζK(s) = F (q−s) for some F ∈ Q[[T ]], where

F (T ) =
∏
x∈|C|

(
1− T deg(x)

)−1
= exp

(
∞∑
n=1

#C(Fqn)

n
T n

)

• Zeta function of variety: The zeta function of a variety V is

ZV (T ) = exp

(
∞∑
n=1

#V (Fqn)

n
T n

)

Let E/Fq elliptic curve, with #E(Fq) = q + 1− a. Then

ZE(T ) =
1− aT + qT 2

(1− T )(1− qT )

• Let #E(Fq) = q + 1− a. Then

#E(Fqn) = qn + 1− αn − βn

where α, β ∈ C are roots of X2 − aX + q = 0.
If #E(Fq) = q + 1− a, then

#E(Fq2) = (q + 1− a)(q + 1 + a),

#E(Fq3) = q3 + 3aq − a3 + 1 = (q + 1− a)(1 + a+ a2 − q + aq + q2),

#E(Fq4) = −a4 + 4a2q + (q2 − 1)2 = (q + 1− a)(q + 1 + a)(1 + a2 − 2q + q2)
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• Trace: Define tr : End(E)→ Z given by

φ 7→ 〈φ, 1〉 = deg(φ+ 1)− deg(φ)− 1

E.g. If φ : E → E is q-power Frobenius, then tr(φ) = #E(Fq)− q − 1.

Fact: For any φ ∈ End(E), we have φ2 − [trφ]φ+ [degφ] = 0

• Let φ ∈ End(E) with n ∈ Z. Then tr(φ) = 2n and deg(φ) = n2 if and only if φ = [n].
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8. Formal groups

• I-adic topology Let R ring, I ⊂ R an ideal. The I-adic topology is the topology on
R with basis {r + In : r ∈ R, n ≥ 1}.

• Cauchy A sequence (xn) in R is Cauchy if ∀k, ∃N s.t. ∀m,n ≥ N , xm − xn ∈ Ik.

• Complete: R is complete if

–
⋂
n≥0

In = {0}

– Every Cauchy sequence converges

Note: If x ∈ I, then 1− x is unit

Examples:

– The p-adic integers Zp is completion of Z w.r.t the ideal pZ.
– The power series in t, Z[[t]] is completion of Z[t] w.r.t the ideal (t).

• Hensel’s Lemma: Let R be integral domain, and complete w.r.t ideal I ⊂ R. Let
F ∈ R[X] and s ≥ 1.

Supose a ∈ R satisifes

– F (a) ≡ 0 (mod Is)

– F ′(a) ∈ R∗

Then, there exists a unique b ∈ R s.t.

– F (b) = 0

– b ≡ a (mod Is)

Setup: Consider the elliptic curve E : Y 2Z+a1XY Z+a3Y Z
2 = X3 +a2X

2Z+a4XZ
2 +

a6Z
3. Usually we take affine piece where Z 6= 0, but intead we now take affine piece

where Y 6= 0. Let t = −X/Y and w = −Z/Y . Define

f(t, w) = t3 + a1tw + a2t
2w + a3w

2 + a4tw
2 + a6w

3

Thus E : w = f(t, w)

Applying Hensel’s Lemma with R = Z[a1, . . . , a6][[t]], I = (t), and F (X) = X − f(t,X)
with s = 3, a = 0, we get there exists a unique w(t) ∈ Z[a1, . . . , a6][[t]] such that

– w(t) = f(t, w(t)), and

– w(t) ≡ 0 (mod t3)

The function w(t) can be given as w(t) = limn→∞wn(t) where

w0(t) = 0 and wn+1(t) = f(t, wn(t))

15



The approximations are:

w0(t) = 0

w1(t) = t3

w2(t) = t3(1 + a1t+ a2t
2 + a3t

3 + a4t
4 + a6t

6)

w3(t) = t3(1 + a1t+ (a2
1 + a2)t2 + (2a1a2 + a3)t3 + (a2

2 + 3a1a3 + a4)t4 + . . . )

...

w(t) = t3(1 + A1t+ A2t
2 + A3t

3 + . . . ) =
∞∑
n=2

An−2t
n+1

where A1 = a1, A2 = a2
1 + a2, A3 = a3

1 + 2a1a2 + a3, . . .

• Let R be integral domain, complete w.r.t. ideal I, and a1, . . . , a6 ∈ R, and K = Frac(R).
THen Ê(I) = {(t, w) ∈ E(K) : t, w ∈ I} is a subgroup of E(K).

Remark: By uniqueness in Hensel’s Lemma (using s = 1), we have

Ê(I) = {(t, w(t)) ∈ E(K) : t ∈ I}

• By Hensel’s lemma, there exists i(t) ∈ Z[a1, . . . , a6][[t]] with i(0) = 0 such that

[−1](t, w(t)) = (i(t), w(i(t)))

where
i(X) = −X − a1X

2 − a2X
3 − (a3

1 + a3)X4 + . . .

Also by Hensel’s lemma, there exists F (t1, t2) ∈ Z[a1, . . . , a6][[t1, t2]] with F (0, 0) = 0 such
that

(t1, w(t1)) + (t2, w(t2)) = (F (t1, t2), w(F (t1, t2)))

where

F (X, Y ) = X + Y − a1XY − a2(X2Y +XY 2)

+ (2a3X
3Y + (a1a2 − 3a3)X2Y 2 + 2a3XY

3) + . . .

• Formal group: Let R be a ring. A formal group over R is a power series F (X, Y ) ∈
R[[X, Y ]] satisfying:

1. F (X, Y ) = F (Y,X)

2. F (X, 0) = X and F (0, Y ) = Y . (one implies the other)

3. F (F (X, Y ), Z) = F (X,F (Y, Z))

Furthermore, one automatically gets that there exists a unique i(T ) = −T + · · · ∈ R[[T ]]
such that F (T, i(T )) = 0.

Construction of inverse: We define a sequence of power series (gn(T ))∞n=1. Let g1(T ) =
−T . For n ≥ 2, set

gn(T ) = gn−1(T )− bT n where b is such that F (T, gn−1(T )) = −bT n (mod T n+1)

Then take the limit g(T ) = limn→∞ gn(T ). The inverse is i(T ) = g(T )

Examples:

16



– Additive formal group: Ĝa. Power series is F (X, Y ) = X + Y

(with inverse i(X) = −X)

– Multiplicative formal group: Ĝm. Power series is F (X, Y ) = X + Y +XY

(with inverse i(X) = −X(1−X +X2 −X3 +X4 −X5 + . . . ))

– F (X, Y ) = X+Y
1−XY = X + Y + (XY 2 +X2Y ) + (X2Y 3 + Y 3X2) + . . .

– Sum on Ê(I): F (X, Y ) = X +Y −a1XY −a2(X2Y +XY 2) + (2a3X
3Y + (a1a2−

3a3)X2Y 2 + 2a3XY
3) + . . .

• Morphism of formal groups: Let F and G be formal groups over R given by power
series F and G.

– A morphism f : F → G is a power series f(T ) ∈ R[[T ]] such that f(0) = 0 and
f(F (X, Y )) = G(f(X), f(Y )).

– F is isomorphic to G if there exist morphisms f : F → G and g : G → F such that
f(g(X)) = X and g(f(X)) = X.

• Let R be ring with char(R) = 0. Then every formal group F over R is isomorphic to Ĝa

over R⊗Q (i.e. R with denominators)

More precisely

– There is unique power series

log(T ) = T +
a2

2
T 2 +

a3

3
T 3 + . . .

with ai ∈ R such that log(F (X, Y )) = log(X) + log(Y ).

– There is unique power series

exp(T ) = T + +
b2

2!
T 2 +

b3

3!
T 3 + . . .

with bi ∈ R such that exp(log(T )) = log(exp(T )) = T .

Note: Let F1(X, Y ) = ∂F
∂X

(X, Y ). Define log by using

p(T ) = F1(0, T )−1 = 1 + a2T + a3T
2 + a4T

3 + . . .

• Multiplicative Inverse: Let f ∈ R[[T ]] be given as

f =
∞∑
n=0

anT
n

Then f has a multiplicative inverse g in R[[T ]] (fg = 1) if and only if a0 is a unit in R.
If so, then g is

g =
∞∑
n=0

bnT
n where b0 =

1

a0

and bn = − 1

a0

n∑
i=1

aibn−i for n ≥ 1

17



• Composition Inverse: Let f = aT + · · · ∈ R[[T ]] with a ∈ R×. THen there exists
unique g = a−1T + · · · ∈ R[[T ]] such that f(g(t)) = g(f(T )) = T (i.e. power series has
inverse)

Construction: Let g1(T ) = a−1T . Set

gn(T ) = gn−1(T )− b

a
T n where b is such that f(gn−1(T )) = T + bT n (mod T n+1)

Then take the limit g(T ) = lim
n→∞

gn(T ).

• Ideal into group: Let R be ring complete w.r.t. ideal I. Let F be a formal group
given by F ∈ R[[X, Y ]]. For x, y ∈ I, define

x⊕F y = F (x, y) ∈ I

This turns I into a group!. F(I) := (I,⊕F) is an abelian group.

Examples:

– Additive group: Ĝa(I) = (I,+).

– Multiplicative group: Ĝm(I) = (1 + I,×).

• Multiplication-by-m: Let F be a formal group with power series F ∈ R[[X, Y ]]. For
any n ∈ Z, we define the map [n] recursively as:

[0](T ) = 0, and [n](T ) = F ([n− 1]T, T )

• Let F be a formal group over R and n ∈ Z. Suppose n ∈ R× (where n = 1 + 1 + . . . 1 n
times). Then

– [n] : F → F is an isomorphism.

– IF R complete w.r.t. ideal I, then [n] : F(I) → F(I) is an isomorphism. In
particularm F(I) has no n-torsion.
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9. Elliptic Curves over Local Fields

Setup: K is field, complete w.r.t. discrete valuation v : K× → Z.
Valuation ring is OK = {x ∈ K× : v(x) ≥ 0} ∪ {0}.
The unit group O×K = {x ∈ K× : v(x) = 0}
Maximal ideal is πOK , where π ∈ K is chosen such that v(π) = 1.
Residue field is k = OK/πOK .
Example: K = Qp, OK = Zp, πOK = pZp, k = Fp

• Integral: A Weierstrass equation for E with coefficients a1, . . . , a6 ∈ K is integral if
a1, . . . a6 ∈ Ok.
Note: Substituting ai = uia′i proves that integral Weierstrass equations always exist for
any EC.

• Minimal: Let ∆ be discriminant of elliptic curve. Equation is minimal if v(∆) minimal
among all integral Weierstrass equations for E

Fact: If E integral then ∆ ∈ Ok and thus v(∆) ≥ 0. Thus, by well-ordering, minimal
Weierstrass equations always exist. If char(k) 6= 2, 3 then there exist minimal Weierstrass
equations of the form y2 = x3 + ax+ b.

Fact: If char(k) 6= 2, 3, then y2 = x3 + ax + b is minimal if and only if vp(a) < 4 or
vp(b) < 6.

• Let E/K have integral Weierstrass equation: y2 + a1xy+ a3y = x3 + a2x
2 + a4x+ a6. Let

0 6= P ∈ E(K), say P = (x, y). Then either x, y ∈ OK , or v(x) = −2s and v(y) = −3s
for some s ≥ 1

We define:

Er(K) := Ê(πrOK) = {(t, w) ∈ E(K) : t, w ∈ πrOK}
= {(x, y) ∈ E(K) : v(x) ≤ −2r and v(y) ≤ −3r} ∪ {0}

Obtain a sequence of subgroups:

· · · ⊂ E4(K) ⊂ E3(K) ⊂ E2(K) ⊂ E1(K)

More generally, for any formal group F over OK :

· · · ⊂ F(π4OK) ⊂ F(π3OK) ⊂ F(π2OK) ⊂ F(πOK)

• Let F be a formal group over OK . Let e = v(p) where p = char(k). If r > e
p−1

, then

log : F(πrOK) −→ Ĝa(π
rOK)

is an isomorphism with inverse exp : Ĝa(π
rOK)→ F(πrOK) .

• For r ≥ 1,
F(πrOK)

F(πr+1OK)
∼= (k,+)

If |k| <∞, then F(πOK) contains a subgroup of finite index ∼= (OK ,+)

• Reduction mod π: Reduction mod π is the natural quotient map Ok → OK/πOK = k
given by x 7→ x̃
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• Reduction of curve: The reduction Ẽ/k of E/k is defined to be the reduction of a
minimal Weierstrass equation. Let E/K have minimal Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

We then reduce each coefficient modulo π to obtain a (possibly singular) curve over k:

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6

• Let E/K elliptic curve. The reduction mod π, of two minimal Weierstrass equations for
E define isomorphic curves over k.

E has good reduction if Ẽ is non-singular (and thus elliptic curve), otherwise has bad
reduction.

Fact: E has good reduction at p if and only if v(∆) = 0 for minimal v(∆).

• Let E/K be an elliptic curve with integral Weierstrass equation. Let discriminant tbe ∆.
Then

v(∆) = 0 =⇒ good reduction
0 < v(∆) < 12 =⇒ bad reduction

v(∆) ≥ 12 =⇒ equation may not be minimal

If Γk 6= 2, 3, ...

• Reduction map: Let E/K be elliptic curve over K. Let P ∈ E with homoge-
nous projective coordinates P = (x : y : z) ∈ P2(K). Choose representative such that
min(v(x), v(y), v(z)) = 0 (i.e. all x, y, z ∈ OK and gcd(x, y, z) = 1).

Then we define the reduction map

P2(K) −→ P2(k)

(x : y : z) 7→ (x̃ : ỹ : z̃)

Restricting the above map to the curve E(K) gives

E(K) −→ Ẽ(k)

P 7→ P̃

• Let E(K) be given by minimal Weierstrass equation. Then if P = (x, y) ∈ E(K), then

– If x, y ∈ OK , then P̃ = (x̃, ỹ).

– Otherwise, P̃ = (0 : 1 : 0) = OE.

• Let E/k elliptic curve. We define

Ẽns =

{
Ẽ if E has good reduction
Ẽ\{singular point} if E has bad reduction

Ẽns is a group.

If bad reduction, then Ẽns is isomorphic to either Ga (if cusp) or Gm (if node).
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• Define E0(K) = {P ∈ E(K) : P̃ ∈ Ẽns(k)} (i.e. all points on E(K) which don’t get
reduced to the singular point. Good reduction implies E0(K) = E(K))

• E0(K) is a subgroup of E(K) and reduction mod π is a surjective group homomorphism
E0(K) −→ Ẽns(k)

• We have the following filtration:

Ê(π3OK) Ê(π2OK) Ê(πOK)

‖ ‖ ‖
Er(K) ⊂ . . . ⊂ E3(K) ⊂ E2(K) ⊂ E1(K) ⊂ E0(K) ⊂ E(K)

↑ ↑ ↑ ↑ ↑
(k,+) (k,+) (k,+) Êns(k) cK(E)

• If |k| <∞, then Pn(k) is compact (w.r.t π-adic topology)

• If |k| <∞, then E0(k) ⊂ E(K) has finite index.

• Tamagawa number: Define the Tamagawa number cK(E) = [E(K) : E0(K)] < ∞.
Note that good reduction implies cK(E) = 1.

Fact: ck(E) = v(∆) or ck(E) ≤ 4.

• If [K : Qp] < ∞, then E(k) contains a subgroup Er(K) of finite index with Er(K) ∼=
(Ok,+)

Corollary: E(K)torsion injects into
E(K)

Er(K)
and therefore E(K)torsion is finite!.

• Unramified extension: Let [K : Qp] < ∞ be local field, and let L/K be a finite
extension. Let L andK have residue fields ` and k. Let f be the residue degree f = [` : k],
and let [L : K] = ef .

L/K is unramified if e = 1 (i.e. [L : K] = [` : k] and Gal(L/K) = Gal(`/k))

K Z

L Z

VK

×e

VL

⊂

• For each integer m ≥ 1

– k has unique extension of degree m (say km)
– K has unique unramified extension of degree m (say Km)

Note: Can be found by adjoining the (pm − 1)-th roots of unity to Qp

• Maximal unramified extension: Kur =
⋃
m≥1

Km (inside K̄)

Notation: Let P ∈ E(K). Then [n]−1P = {Q ∈ E(K̄) : nQ = P}. We define the field
extension K({P1, . . . , P2}) = K(x1, . . . , xr, y1, . . . , yr) where Pi = (xi, yi).

• Let [K : Qp] <∞, E/K elliptic curve with good reduction, and p 6 |n. If P ∈ E(K) then
K([n]−1P )/K is unramified.
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10. Elliptic Curves over Number Fields (Torsion Subgroup)

Notation: K is number field, [K : Q] <∞. E/K is elliptic curve.
p is a prime of K (i.e. of OK). Kp is the p-adic completion of K.
kp is the residue field OK/p
Example: K = Q, OK = Z, p = pZ, Kp = Qp, kp = Fp ∼ Z/pZ.

• Good reduction: p is a prime of good reduction for E/K, if E/Kp has good reduction.

• E/K has only finitely many primes of bad reduction. Indeed, any primes of bad reduction
must divide ∆.
Remark: If K has class number 1 (e.g. K = Q), then can always find Weierstrass
equation for E with a1, . . . , a6 ∈ OK minimal at all primes p.

• E(K)torsion is finite.

• Let p be a prime with good reduction, with p 6 |n, THen reduction mod p gives an injection
E(K)[n] ↪→ Ẽ(kP )[n]

• Let E/Q be elliptic curve. Let p be a prime for which E has good reduction (e.g. any
p 6 |∆ will have good reduction) We have

#E(Q)tors |#Ẽ(Fp) · pa for some a ≥ 0

Furthermore, if working in K = Qp, then e = 1, and thus

#E(Q)tors |#Ẽ(Fp) if p odd

#E(Q)tors | 2 ·#Ẽ(Fp) if p = 2

• Let E : y2 = f(x) be an elliptic curve over Fp. Let
(
f(x)
p

)
be the Legendre symbol for

f(x) mod p. In other words

(
f(x)

p

)
=


1 if f(x) is a square mod p, and p 6 |f(x)

−1 if f(x) is not a square mod p
0 if p divides f(x)

Then we have
#E(Fp) = 1 +

∑
x∈FP

((
f(x)

p

)
+ 1

)
• Let E/Q be given by Weierstrass equation a1, . . . , a6 ∈ Z. Suppose 0 6= T = (x, y) ∈
E(Q)tors. THen

– 4x, 8y ∈ Z
– If 2|a1 or 2T 6= 0, then x, y ∈ Z

• Nagell–Lutz Let E/Q be given with equation y2 = x3 + ax + b with a, b ∈ Z. Suppose
0 6= T = (x, y) ∈ E(Q)tors. THen x, y ∈ Z and either y = 0 or y2|(4a3 + 27b2)

• (Mazur): Let E/Q elliptic curve. Then

E(Q)tors ∼=

{
Z/nZ where 1 ≤ n ≤ 12, n 6= 11

Z/2Z× Z/2nZ where 1 ≤ n ≤ 4

Furthermore, all 15 possibilities occur infinitely often over Q.
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11. Kummer theory

Setup: Fix n > 1. Let K be field, charK 6 |n. Denote µn as the multiplicative group of nth
roots of unity (in K). Assuming µn ⊂ K

• Let ∆ ⊂ K×/(K×)n be a finite subgroup. Define n
√

∆ = { n
√
a : a ∈ K×, a · (K×)n ∈ ∆}

Let L = K( n
√

∆). Then L/K is Galois and Gal(L/K) ∼= Hom(∆, µn).

• Kummer pairing: Define the map 〈 , 〉 : Gal(L/K)×∆→ µn given by

(σ, x) 7→ σ( n
√
x)

n
√
x

Fact: This map is well-defined and bilinear.

• We have the two group isomorphisms:

Gal(L/K) −→ Hom(∆, µn) σ 7→ (x 7→ σ( n
√
x)

n
√
x

)

∆ −→ Hom(Gal(L/K), µn) x 7→ (σ 7→ σ( n
√
x)

n
√
x

)

• Exponent: Let G be a finite group. the exponent of G is the lowest common multiple
of the orders of the elements of G. Note that the exponent divides |G|.
Fact: Gal(K( n

√
∆)/K) is an abelian group of exponent dividing n.

• There is a bijection{
finite subgroups
∆ ⊂ K×/(K×)n

}
←→

{
finite abelian extensions
L/K of exponent dividing n

}
∆ 7−→ K(

n
√

∆)

(L∗)n ∩K∗

(K∗)n
←− [ L

• Let K number field, µn ⊂ K. Let S be a finite set of primes of K. There are only finitely
many extensions L/K such that

– L/K is abelian of exponent dividing n.

– L/K is unramified at all primes p 6∈ S

• Let
K(S, n) := {x ∈ K×/(K×)n : vp(x) ≡ 0 (mod n) ∀p 6∈ S}

Then K(S, n) is finite.

• If K = Q, then
|Q(S, 2)| = 2|S|+1
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12. Elliptic curves over number fields (Mordell-Weil)

• Let E/K elliptic curve, with L/K a finite Galois extension. Then the map

E(K)

nE(K)
−→ E(L)

nE(L)

has finite kernel.

• Weak Mordell Weil: Let K number field, E/K elliptic curve. Let n ≥ 2 integer.
Then ∣∣∣∣ E(K)

nE(K)

∣∣∣∣ <∞
Remark: If K = R or C or [K : Qp] < ∞, then

∣∣∣ E(K)
nE(K)

∣∣∣ < ∞, however E(K) is not
finitely generated.

• Mordell-Weil: Let K number field, E/K elliptic curve. Then E(K) is a finitely
generated abelian group.

Specifically, fix an integer n ≥ 2. Let P1, P2, . . . , Pm be set of coset representatives for
E(K)/nE(K). Then

Σ = {P ∈ E(K) : ĥ(P ) ≤ max
1≤i≤m

ĥ(Pi)}

generates E(K).

This proves E(K) ∼= E(K)tors × Zr where r is the rank of the curve.

(Curve with rank at least 28 are known. Conjectured that rank is unbounded. Conjectured
that average rank is 1/2, current upper bound is 1.5)
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13. Heights

• Height of a point: Let K = Q. Let P ∈ Pn(Q) be P = (a0 : a1 : · · · : an) where ai ∈ Z
and gcd(a0, a1, . . . , an) = 1 The height of P is

H(P ) = max
0≤i≤n

|ai|

Height of rational: Equivalently, if x = u
v
∈ Q, with u, v ∈ Z coprime, then height of x

is H(x) = max(|u|, |v|)

• Let f1, f2 ∈ Q[X1, X2] be coprime homogenuous polynomials of degree d. Let F : P1 → P1

be (x1 : x2)→ (f1(x1, x2), f2(x1, x2)) Then there exists c1, c2 > 0 s.t.

c1H(P )d ≤ H(F (P )) ≤ c2H(P )d for all P ∈ P1(Q)

• Logarithmic height: The logarithmic height is a function h : E(Q)→ R≥0 defined by
h(P ) = log(H(P )) (and h(OE) = 0).

• Let E,E ′ be elliptic curves over Q. Let φ : E → E ′ be isogeny over Q. There exists c > 0
such that

|h(φ(P ))− deg(φ)h(P )| ≤ c for all P ∈ E(Q)

Note: c depends on E,E ′ and φ, but not on P .

Example: If φ = [2] : E → E, then there exists c > 0 such that

|h(2P )− 4h(P )| < c for all P ∈ E(Q)

• Canonical height: For P ∈ E(Q), we define

ĥ(P ) = lim
n→∞

1

4n
h(2nP )

This converges for all P ∈ E(Q) and does not depend on Weierstrass equation.

• |h(P )− ĥ(P )| is bounded for P ∈ E(Q)

• For any B > 0
#{P ∈ E(Q) : ĥ(P ) < B} <∞

• Let φ : E → E ′ be isogeny over Q. Then

ĥ(φP ) = (degφ)ĥ(P ) for all P ∈ E(Q)

• Let E/Q be elliptic curve. There exists c > 0 such that

H(P +Q) ·H(P −Q) ≤ c ·H(P )2 ·H(Q)2 for all P,Q ∈ E(Q)

• ĥ : E(Q)→ R≥0 is a quadratic form.

• Let P ∈ E(Q). Then P is a torsion point if and only if ĥ(P ) = 0.
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• Absolute values: Let MQ denote the set of standard absolute values on Q, which
consists of:

– One archimedean absolute value |x|∞ = max (−x, x).

– For each prime p ∈ Z, one nonarchimedean (p-adic) absolute value |x|p = p−vp(x).

• Height: For an arbitrary number field K, let P = (a0 : a1 : · · · : an) ∈ Pn(K), and
define the height

HK(P ) :=
∏
v∈MK

max{|a0|v, |a1|v, . . . , |an|v}[Kv :Qv ]

where MK denotes the set of standard absolute values on K (i.e. the absolute values in
K whose restriction to Q is in MQ)

Note the absolute values are normalised such that∏
v∈MK

|x|[Kv :Qv ]
v = 1
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14. Dual isogenies and the Weil pairing

• Let Φ ∈ E(K̄) be a finite Gal(K̄/K)-stable subgroup (i.e. for all T ∈ Φ, then T σ ∈ Φ for
all σ ∈ Gal(K̄/K)).

Then there exists an elliptic curve E ′/K and a separable isogeny φ : E → E ′ defined over
K with kernel Φ such that for every isogeny φ : E → E ′ with Φ ⊂ ker(φ) factors uniquely
via φ.

E E ′′

E ′

ψ

φ ∃!

• Dual isogeny: Let φ : E → E ′ be an isogeny of degree n. Then there exists unique
isogeny φ̂ : E ′ → E s.t. φ̂ ◦ φ = [n]. φ̂ is called the dual isogeny of φ.

– Elliptic curves being isogenous is equivalence relation.

– deg(φ̂) = deg(φ) and ˆ[n] = [n]

– ˆ̂
φ = φ

– If ψ : E → E ′ isogeny and φ : E ′ → E ′′ isogeny, then φ̂ψ = ψ̂φ̂

– If φ ∈ End(E), then tr(φ) = φ+ φ̂

• If φ, ψ ∈ Hom(E,E ′), then φ̂+ ψ = φ̂+ ψ̂.

• sum: Define sum : Div(E)→ E as
∑
np(P ) 7→

∑
npP (sum using group law)

Remark: Given the isomorphism φ : E → Pic0(E) given by P 7→ [P −OE], we have

sumD 7→ [D] for all D ∈ Div0(E)

• Let D ∈ Div(E). Then D ∼ 0 if and only if deg(D) = 0 and sumD = 0. (i.e. D is
principal iff both the sum and degree are 0)

• Weil pairing: Let φ : E → E ′ be isogeny of degree n, with char(K) 6 |n. Let E[φ] be
the kernel of φ. The Weil pairing:

eφ : E[φ]× E ′[φ̂]→ µn = {x ∈ K : xn = 1}

Definition of map: Let S ∈ E[φ], T ∈ E ′[φ̂]. As φ has degree n, this implies nT = 0.

– Choose f ∈ K̄(E ′) such that div(f) = n(T )− n(0).

– Choose g ∈ K̄(E) such that div(g) = φ∗(T )− φ∗(0)

– Thus φ∗f = cgn. Can assume wlog φ∗f = gn.

We define
eφ(S, T ) = ζ =

g(X + S)

g(X)
for any X ∈ E

• eφ is bilinear and non-degenerate (i.e. if eφ(S, T ) = 1 for all S ∈ E[φ], then T = OE′)

• If E,E ′, φ are defined over K, then eφ is Galois equivariant (i.e. eφ(σS, σT ) = σ(eφ(S, T ))
for all σ ∈ Gal(K̄/K)
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• Taking φ = [n] : E → E gives a pairing:

en : E[n] : E[n]→ µn

• If E[n] ⊂ E(K), then µn ⊂ K (can find S, T ∈ E[n] such that en(S, T ) is primitive n-th
root of unity)

– en is alternating. I.e. en(T, T ) = 1 for all T ∈ E[n].

– en(S, T ) = en(T, S)−1.
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15. Galois cohomology

Setup: G a group. A is a G-module (i.e. an abelian group A with a left group action G×A→ A
s.t. we have identity, compatibility, and g · (a+ b) = g · a+ g · b)

• H0(G,A) = AG = {a ∈ A : σ(a) = a for all σ ∈ G}

Cochain: C1(G,A) = {maps G→ A}
∪

Cocycle: Z1(G,A) = {(aσ)σ∈G : aστ = σ(aτ ) + aσ}
∪

Coboundary: B1(G,A) = {(σb− b)σ∈G : b ∈ A}

H1(G,A) =
Z ′(G,A)

B′(G,A)
=

cocycles
coboundaries

Remark: IfG acts trivially, then Z1(G,A) = {homogeneous mapsG→ A} andB1(G,A) =
{(0)} (the zero map). Thus H1(G,A) = Hom(G,A)

Examples: If G = Gal(C/R = {id, conj} and A = C, then

– C1(G,A) = {maps G→ A} ∼= C× C.
– Z1(G,A) = {(0, ix) : x ∈ R}
– B1(G,A) = {(0, ix) : x ∈ R}
– H1(G,A) is trivial.

• A short exact sequence of G-modules:

0 −→ A
φ−−→ B

ψ−−→ C −→ 0

gives rise to long exact sequence of abelian groups:

0 −→ AG
φ−−→ BG ψ−−→ CG δ−→ H1(G,A)

φ∗−−→ H1(G,B)
ψ∗−−→ H1(G,C)

Definition of δ: :

– Let c ∈ CG. THere exists b ∈ B s.t. ψ(b) = c.

– Note ψ(σb− b) = 0. For all σ ∈ G, there exists aσ ∈ A s.t. ψ(aσ) = σb− b.
– Can show (aσ)σ∈G ∈ Z ′(G,A).

– Define δ(C) = class of (aσ)σ∈G in H ′(G,A)

• Let A be a G-module, H C G a normal subgroup. THen there is an inflation and
restriction exact sequence:

0 −→ H1(G/H,AH)
inflation−−−−−→ H1(G,A)

restriction−−−−−−−→ H1(H,A)

• Hilbert’s Theorem 90: Let L/K be finite Galois extension. THenH1(Gal(L/K), L×) =
0 (i.e. Z1 ⊂ B1).

Corollary 1: H1(Gal(K̄/K), K̄×) = 0

Corollary 2: H1(Gal(K̄/K), µn) ∼= K∗/(K∗)n. If µn ∈ K, then Homcts(Gal(K̄/K), µn) ∼=
K∗/(K∗)n
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Setup: Let φ : E → E ′ be isogeny of elliptic curves over K. Notation: H ′(K,_) means
H ′(Gal(K̄/K),_).

There is short exact sequence of Gal(K̄/K)-modules:

0 −→ E[φ] −→ E
φ−−→ E ′ −→ 0

Get long exact sequence

E(K)
φ−−→ E ′(K)

δ−→ H1(K,E[φ]) −→ H1(K,E)
φ∗−−→ H1(K,E ′)

Get short exact sequence

0 E′(K)
φE(K)

H1(K,E[φ]) H ′(K,E)[φ∗] 0

0
∏

V
E′(KV )
φ(E(KV ))

∏
V H

1(KV , E[φ])
∏

vH
′(Kv, E)[φ∗] 0

δ

resV α resV

δv

• Selmer group: THe φ-Selmer group is

S(φ)(E/K) = ker α (the diagonal map above)

or alternatively

S(φ)(E/K) = Ker

(
H1(K,E[φ])→

∏
V

H1(KV , E)

)
= {α ∈ H1(K,E[φ]) : resv(α) ∈ im(δv) ∀v}

• Tate-Shaferavich group: X(E/K) = ker (H ′(K,E)→
∏

V H
′(Kv, E))

Get short exact sequence:

0→ E ′(K)

φE(K)
→ S(φ)(E/K)→X(E/K)[φ∗]→ 0

• Place: Let K be number field. A place of K is an equivalence class of absolute values
on K. Three types: Trivial, archimedan, and non-Archimedean.

• S(n)(E/K) is finite.

• Let S be finite set of places. THe subgroup of H1(K,A) unramified outside S is

H1(K,A;S) = ker

(
H1(K,A)→

∏
v 6∈S

H1(Knr
v , A)

)

Conjecture: X(E/k) is finite.
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16. Descent by cyclic isogeny

Setup: Let E,E ′ be elliptic curves over a number field K. Let φ : E → E ′ be an isogeny of
degree n.
Define the map α by the long exact sequence

E(K) E ′(K) H ′(K,µn) H ′(K,E)

K∗/(K∗)n

δ

α
∼= by Hilbert 90

• Let f ∈ K(E ′) and g ∈ K(E) with div(f) = n(T ) − n(0) and φ∗f = gn. THen α(P ) =
f(P ) mod (K∗)n for all P ∈ E ′(K)\{0, T}

• Setup of 2-isogeny: Let E and E ′ be elliptic curves:

E : y2 = x(x2 + ax+ b)

E ′ : y2 = x(x2 + a′x+ b′)

such that b 6= 0 and a2−4b 6= 0, and a′ = −2a and b′ = a2−4b. There then is a 2-isogeny
φ : E → E ′ which maps:

(x, y) 7→
((y

x

)2

,
y(x2 − b)

x2

)
and its dual isogeny φ̂ : E ′ → E which maps

(x, y) 7→
(

1

4

(y
x

)2

,
y(x2 − b′)

8x2

)
with kernels

E[φ] = {0E, T} T = (0, 0) ∈ E(K)

E ′[φ̂] = {0E′ , T ′} T ′ = (0, 0) ∈ E ′(K)

• There is a group homomorphism:

E ′(K) −→ K∗/(K∗)2

(x, y) 7−→

{
x mod (K∗)2 if x 6= 0

b′ mod (K∗)2 if x = 0

with kernel φ(E(K)).

Remark: This gives two injective group homomorphisms:

αE :
E(K)

φ̂(E ′(K))
↪−→ K∗/(K∗)2

αE′ :
E ′(K)

φ(E(K))
↪−→ K∗/(K∗)2
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• We have
2rank E(K) =

|Im(αE)| · |Im(αE′)|
4

• If K is number field, and a, b ∈ OK , then

Im(αE) ⊂ K(S, 2)

where S = {primes dividing b}.
Notation: K(S, n) = {x ∈ K×/(K×)n : ordv(x) ≡ 0 (mod n) for all v ∈MK − S}
Example: Let S be finite set of primes. ThenQ(S, 2) is simply a finite set of squarefree in-
tegers containing only primes from S. E.g. if S = {2, 3, 5}, then Q(S, 2) = 〈−1, 2, 3, 5〉 =
{1,−1, 2,−2, 3,−3, 5,−5, 6,−6, 10,−10, 15,−15, 30,−30} (as cosets in Q×/(Q×)2)

• If b1b2 = b, then

b1(K∗)2 ∈ Im(αE) ⇐⇒ w2 = b1u
4 + au2v2 + b2v

4

is soluble for u, v, w ∈ K not all zero

Fact: If a, b1, b2 ∈ Z and p 6 |2b(a2− 4b), then w2 = b1u
4 + au2v2 + b2v

4 has solution over
Qp

• Calculating the rank of E : y2 = x(x2 + ax+ b):

– Setup the 2-isogeny by defining E ′ : y2 = x(x2 + a′x + b) where a′ = −2a and
b′ = a2 − 4b.

– We aim to calculate Im(αE) and Im(αE′).

– Obtain bounds on the size by using that Im(αE) ⊂ 〈−1, pb1 , pb2 , . . . , pbk〉 where pbi
are the primes dividing b′.
Similarly, use that Im(αE′) ⊂ 〈−1, pb′1 , pb′2 , . . . , pb′k〉 where pb′i are the primes dividing
b′.

– For each b1 dividing b, determine if b1 is in Im(αE) by determining if there exist
u, v, w ∈ K not all zero such that

w2 = b1u
4 + au2v2 + b2v

4

Tips :

∗ If b1, b2, a ≤ 0, then no solutions over R, hence no solutions in Q.
∗ Can multiply through to assume integer solutions with gcd(u, v) = 1.
∗ Use quadratic reciprocity.
∗ Use that Im(αE) is a group to eliminate checking every possible subset of
〈−1, pb1 , . . . , pbk〉.

– Finally, use
rank E(K) = log2 |Im(αE)|+ log2 |Im(αE′)| − 2

to compute the rank, given Im(αE) and Im(αE′).
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Birch Swinnerton-Dyer conjecture

• Let E/Q be elliptic curve. Define the associated L-fuction L(E, s) =
∏

p Lp(E, s) where

Lp(E, s) =


(1− app−s + p1−2s)−1 if good reduction
(1− p−s)−1 if split mult reduction
(1 + p−s)−1 if nonsplit mult reduction
1 if additive reduction

where #Ẽ(Fp) = p+1−ap, By Hasse’s bound, we know L(E, s) converges for Re(s) > 3/2.

• Analytic continuation: L(E, s) is the L-functio of a weight 2 modular form and hence
has an analytic continuation to all of C

• Weak BSD: ords=1L(E, s) = rankE(Q)

• Strong BSD:

lim
s→1

1

(s− 1)r
L(E, s) =

ΩE · |X(E/Q)| · RegE(Q) ·
∏

p cp

|E(Q)tors|2

where

– cp = [E(Qp) : E0(Qp)] = Tamagawa number of E/Qp .

– Let P1, . . . , Pr generate the non-torsion part of E(Q). SoE(Q)/E(Q)torsion = 〈P1, . . . , Pr〉.
Then the regulator of E(Q) is

RegE(Q) = det([Pi, Pj])i,j=1,...,r =

∣∣∣∣∣∣∣∣∣
[P1, P1] [P1, P2] . . . [P1, Pr]
[P2, P1] [P2, P2] . . . [P2, Pr]

...
... . . . ...

[Pr, P1] [Pr, P2] . . . [Pr, Pr]

∣∣∣∣∣∣∣∣∣
where [P,Q] = ĥ(P +Q)− ĥ(P )− ĥ(Q)

– ΩE is the integral

ΩE =

∫
E(R)

dx

|2y + a1x+ a3|
where ai are coefficients of globally minimal Weierstrass equation for E.

• Kolyvagin: If ords=1L(E, s) = 0 or 1 (i.e. analytic rank is 0 or 1), then weak BSD is
true and |X(E/Q)| <∞
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Misc

Automorphism group: Let E/k be elliptic curve. Then Aut(E) is finite, and its order is

• 2 if j(E) 6∈ {0, 1728}

• 4 if j(E) = 0 and char k 6∈ {2, 3}

• 6 if j(E) = 1728 and char k 6∈ {2, 3}

• 12 if j(E) = 0 = 1728 and char k = 3

• 24 if j(E) = 0 = 1728 and char k = 2

In the last two cases, E is always supersingular

Endomophisms: An endomorphism of E is an isogeny from E to E. Denoted, End(E), it
forms a ring

• Multiplication by n: [n] : E → E given by X 7→ X +X + · · ·+X n times.

• (For finite fields) Frobenius endomorphism: φ : E → E given by (x, y) 7→ (xq, yq)

• Translation: τP : E → E given by X 7→ P +X
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Some Geometric Notions

• Coordinate ring: Let V be a variety over K. The coordinate ring of V/K is defined
by

K[V ] =
K[X]

I(V/K)

Elements of K[V ] are the polynomial functions on V .

K(V ) is an integral domain. It’s quotient field is denoted by K(V ).

• Maximal ideal: Let V be variety, and P a point on V . The maximal ideal at P is

MP = {f ∈ K[V ] : f(P ) = 0}

• Local ring: Let V be variety, and P a point on V . The local ring of V at P is

K[V ]P = {F ∈ K(V ) : F =
f

g
for some f, g ∈ K[V ] with g(P ) 6= 0}

I.e. K[V ]P is the set of regular function at P (functions defined at P ).

• Rational map: Let V1, V2 ⊂ Pn projective varieties. A rational map from V1 to V2 is a
map of the form

φ : V1 → V2 φ = [f0, . . . , fn]

where f0, . . . , fn ∈ K̄(V1) are s.t., fr every point P ∈ V1 at which f0, . . . , fn are all defined:
φ(P ) = [f0(P ), . . . , fn(P )] ∈ V2.

Note: A rational map φ : V1 → V2 may not necessarily be well-defined at every point of
V1.

• Regular: A rational map φ = [f0, . . . , fn] : V1 → V2 is regular at P ∈ V1 if there is a
function g ∈ K̄(V1) such that

– For each i, gfi is regular at P .

– There exists an i for which gfi(P ) 6= 0

Note: We may have to take different g’s for different points.

• Morphism: A rational map that is regular at every point.

Curves

• Let C be a curve, and P ∈ C a smooth point. THen K[C]P is a discrete valuation ring.

• Order of vanishing: Let C be a curve with function field K(C). Let P ∈ C be a
smooth point. THe function ordP (f) : K(C) → Z ∪ ∞ is the order of vanishing of
f ∈ K(C) at P .

Defined as
ordP (f) = sup{d ∈ Z : f ∈Md

p }
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