Elliptic Curves

Lectures

1. Fermat's method infinite descent

- Let Δ be a right triangle with side lengths a, b, c. We say Δ is **rational** if side lengths are rational, and we say Δ is **primitive** if side lengths integers and gcd(a, b, c) = 1.
- Every primitive triangle has side lengths $u^2 v^2$, 2uv, and $u^2 + v^2$ for some integers $u, v \in \mathbb{Z}, u > v > 0$.
- Congruent number: Let D be a positive rational. D is congruent number if there exists rational right-angled triangle with area D.

(equivalently, there exists a rational solution to $y^2 = x^3 - D^2 x$ s.t. $y \neq 0$) (or to $Dy^2 = x^3 - x$) (or the elliptic curve has *positive* rank)

- 1 is not a congruent number. Equivalently, there are no integer solutions to $w^2 = uv(u + v)(u v)$ where $w \neq 0$.
- In general, if $u, v, w \in \mathbb{Z}, w \neq 0$ such that $Dw^2 = uv(u-v)(u+v)$, then there exists right-angled triangle with area D with side lengths:

$$\frac{u^2-v^2}{w}, \quad \frac{2uv}{w}, \quad \text{and} \quad \frac{u^2+v^2}{w}$$

- Let K be a field with $\operatorname{char}(K) \neq 2$. Let $u, v \in K[t]$ be coprime polynomials. If $\alpha u + \beta v$ is a square for 4 distinct pairs $(\alpha, \beta) \in \mathbb{P}^1$, then $u, v \in K$.
- Elliptic curve: An elliptic curve E/K is the projective closure of a plane affine curve $y^2 = f(x)$ where $f \in K[x]$ is a monic cubic polnomial with distinct roots in \overline{K} . or An elliptic curve E/K is a smooth projective curve of genus 1 with a specified K-rational point O_E .
- Weierstrass equation: The equation $y^2 = f(x)$ is called Weierstrass equation. Fact: Let L/K be field extension Then $E(L) = \{(x, y) \in L^2 : y^2 = f(x)\} \cup \{O_E\}$. E(L) is an abelian group.

Let E/K be elliptic curve. Then E(K(t)) = E(K).

• Isomorphism: Let E and E' be elliptic curves. Then E and E' are isomorphic if there exists a morphism $\phi : E \to E'$ and a morphism $\chi : E' \to E$ s.t. $\chi \circ \phi = \mathrm{id}_E$ and $\phi \circ \chi = \mathrm{id}_{E'}$.

Some results on congruent numbers: Let p be a prime number. Then:

- If $p \equiv 3 \pmod{8}$, then p is not congruent, but 2p is congruent.
- If $p \equiv 5 \pmod{8}$, then p is congruent.
- If $p \equiv 7 \pmod{8}$, then p and 2p is congruent.

List of congruent numbers: $5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, \ldots$

2. Remarks on algebraic curves

• Rational: A plane algebraic curve $C = \{f(x, y) = 0\} \subset \mathbb{A}^2$ (where f irreducible) is rational if it has a rational parameterisation

I.e. there exists $\phi, \chi \in K(t)$ s.t.

- The map $t \mapsto (\phi(t), \chi(t))$ is injective for all but finitely many points in \mathbb{A}^1 .

$$- f(\phi(t), \chi(t)) = 0$$

Any non-singular plane conic is rational. (e.g. $x^2 + y^2 = 1$) Any singular plane curve is rational (**not** elliptic curves) (e.g. $y^2 = x^3$ or $y^2 = x^2(x+1)$).

- Genus: Let C be smooth projective curve. Genus $g(C) \in \mathbb{Z}_{>0}$ is invariant of C.
- A smooth projective curve $C \subset \mathbb{P}^2$ of degree d has genus

$$g(C) = \frac{(d-1)(d-2)}{2}$$

(so if d = 1, 2, then genus is 0)

Let C be smooth projective curve.

- -C is rational $\iff g(C) = 0.$
- -C is elliptic curve $\iff g(C) = 1.$
- Order of vanishing: Let C algebraic curve, function field K(C). $P \in C$ a smooth point. Write $\operatorname{ord}_p(f)$ as the order of vanishing of $f \in K(C)$ at P

 $\operatorname{ord}_p(f): K(C)^* \to \mathbb{Z}$ is a discrete valuation

- $-\operatorname{ord}_p(f_1f_2) = \operatorname{ord}_p(f_1) + \operatorname{ord}_p(f_2)$
- $-\operatorname{ord}_p(f_1+f_2) \ge \min(\operatorname{ord}_p(f_1), \operatorname{ord}_p(f_2))$

E.g. If $y^2 = x(x-1)(x-\lambda)$, then $\operatorname{ord}_P(x) = -2$ and $\operatorname{ord}_P(y) = -3$ where P = (0:1:0).

- Uniformiser: An element $t \in K(C)^*$ is a uniformiser at P if $\operatorname{ord}_p(t) = 1$.
- Let C be an affine curve, defined by $C = \{g(x, y) = 0\} \in \mathbb{A}^2$ where $g \in K[X, Y]$ is irreducible. Express g(x, y) as

$$g(x,y) = g_0 + g_1(x,y) + g_2(x,y) + g_3(x,y) + \dots$$

where each g_i is homogenoues of degree i.

Suppose $P = (0,0) \in C$ is a smooth point on C, so we have $g_0 = 0$ and $g_1 = \alpha x + \beta y$ where α, β not both zero. $(g_1 \text{ is tangent to } C \text{ at } P)$

Then, for any $\gamma, \delta \in K$, we have that $\gamma x + \delta y \in K(C)$ is a **uniformiser** at P if and only if $\alpha \delta - \beta \gamma \neq 0$ (i.e. $\gamma x + \delta y$ not some multiple of g_1 , so not tangent)

• Divisor: A formal sum of points on C. Can be expressed in the form:

$$\sum_{p \in C} n_p P \quad \text{with } n_p \in \mathbb{Z}$$

and $n_p = 0$ for all but finitely many $p \in C$.

- Degree of divisor: $deg(D) = \sum n_p$
- Divisor of function: If $f \in K(C)^*$, then

$$\operatorname{div}(f) = \sum_{P \in C} \operatorname{ord}_P(f) P$$

This is called a **principal divisor**.

- Effective divisor: Let D be divisor. D is effective if $n_p \ge 0$ for all P. Notation: $D \ge 0$
- **Riemann Roch space**: The Riemann Roch space of $D \in Div(C)$ is

$$\mathcal{L}(D) = \{ f \in K(C)^* : \operatorname{div}(f) + D \ge 0 \} \cup \{ 0 \}$$

(i.e. the K-vector space of rational functions on C with poles no workse than that specified by D)

Remark: $\mathcal{L}(D)$ is a finite-dimensional \bar{K} -vector space

• Riemann Roch for genus 1: Let $D = \sum n_p P$, deg $D = \sum n_p$:

$$\mathrm{dim}\mathcal{L}(D) = \begin{cases} \mathrm{deg}D & \text{ if } \mathrm{deg}D > 0\\ 0 \text{ or } 1 & \text{ if } \mathrm{deg}D = 0\\ 0 & \text{ if } \mathrm{deg}D < 0 \end{cases}$$

• Let $C \subset \mathbb{P}^2$ be a smooth plane cubic and $P \in C$ a point of inflection. Then one can change coordinates such that

$$C: Y^2 Z = X(X - Z)(X - \lambda Z)$$

where P = (0:1:0) and $\lambda \neq 0, 1$. This is called **Legendre form**.

• Degree of a morphism Let $\phi : C_1 \to C_2$ be non-constant morphism of smooth projective curve. Let $\phi^* : K(C_2) \to K(C_1)$ be pullback given by $f \mapsto f \circ \phi$.

The **degree** of ϕ is $[K(C_1) : \phi^* K(C_2)]$ (we define ϕ is **separable** iff extension $K(C_1)/\phi^* K(C_2)$ is separable)

Fact: deg $\phi = 1$ if and only if ϕ is an isomorphism. deg $\phi = 0$ if and only if ϕ is a constant map.

• Ramification index: Let $P \in C_1$ and $Q \in C_2$ such that $\phi(P) = Q$. Let $t \in K(C_2)$ be a uniformizer at Q (i.e. $\operatorname{ord}_Q(t) = 1$) Then the ramification index $e_{\phi}(P)$ is

$$e_{\phi}(P) = \operatorname{ord}_{P}(\phi^{*}t) \qquad (\text{note } e_{\phi}(P) \ge 1)$$

This is independent of choice of t.

• Let $\phi: C_1 \to C_2$ be non-constant morphism of smooth projective curves. Then

$$\sum_{P \in \phi^{-1}(Q)} e_{\phi}(P) = \deg(\phi) \quad \text{ for all } Q \in C_2$$

If ϕ is separable, then $e_{\phi}(P) = 1$ for all but finitely many $P \in C_1$.

- $-\phi$ is surjective
- $|\phi^{-1}(Q)| \leq \deg(\phi)$ with equality for all but finitely many $Q \in C_2$.
- Rational map: Let C be an algebraic curve. A rational map $\phi: C \to \mathbb{P}^n$ is given by

$$P \mapsto (f_0(P) : f_1(P) : \cdots : f_n(P))$$

where $f_0, f_1, \ldots, f_n \in K(C)$ are not all zero.

Fact: If C is smooth, then ϕ is a morphism.

3. Weierstrass Equations

- Elliptic curve: An elliptic curve E over K is a smooth projective curve of genus 1 defined over K with a specified K-rational point O_E .
- Weierstrass form: A Weierstrass equation, over a field K, is an equation of the form

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

with coefficients a_1, a_2, a_3, a_4, a_6 in K.

- Weierstrass isomorphism: Every elliptic curve E is isomorphic over K to a curve in Weierstrass form via an isomorphism, taking O_E to (0:1:0).
- If $D \in \text{Div}(E)$ is defined over K (i.e. fixed by $\text{Gal}(\overline{K}/K)$, then $\mathcal{L}(D)$ has a basis in K(E) (not just in $\overline{K}(E)$)
- Points of inflection: Let $C = \{F = 0\} \subset \mathbb{P}^2$ be algebraic curve. The points of inflection are given by

$$\det\left(\frac{\partial^2 F}{\partial X_i \partial X_j}\right) = 0$$

(i.e. where the **Hessian determinant** of F is zero)

• Let E and E' be elliptic curves over K in Weierstrass form. Then $E \cong E'$ over K iff the equations are related by a change of variables:

$$x = u^{2}x' + r$$
$$y = u^{3}y' + u^{2}sx' + t$$

where $u, r, s, t \in K, u \neq 0$.

Note: This changes the discriminant by $u^{12}\Delta' = \Delta$.

• **Discriminant:** A Weierstrass equation for a curve *E*:

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

defines an elliptic curve if and only if the **discriminant** $\Delta(a_1, \ldots, a_6) \neq 0$ where $\Delta \in \mathbb{Z}[a_1, \ldots, a_6]$ is the polynomial

$$\Delta = -b_2^2 b_8 - 8b_4^3 - 27b_6^2 + 9b_2 b_4 b_6$$

where $b_2 = a_1^2 + 4a_2$,
 $b_4 = 2a_4 + a_1 a_3$,
 $b_6 = a_3^2 + 4a_6$,
 $b_8 = a_1^2 a_6 + 4a_2 a_6 - a_1 a_3 a_4 + a_2 a_3^2 - a_4^2$.

If char $K \neq 2, 3$, then can reduce to $E: y^2 = x^3 + ax + b$ defines elliptic curve, iff the **discriminant** $\Delta = -16(4a^3 + 27b^2)$ is non-zero, where

$$a = -27c_4 \quad \text{where} \quad c_4 = b_2^2 - 24b_4$$

$$b = -54c_6 \quad \text{where} \quad c_6 = -b_2^3 + 36b_2b_4 - 216b_6$$

- If char $K \neq 2, 3$, then $E: y^2 = x^3 + ax + b$ and $E: y^2 = x^3 + a'x + b'$ are isomorphic over K iff there exists $u \in K^*$ s.t. $a' = u^4 a$ and $b' = u^6 b$.
- *j*-invariant: $j(E) = \frac{1728(4a^3)}{4a^3 + 27b^2}$ $E \cong E' \implies j(E) = j(E')$ and converse holds if $K = \overline{K}$

4. Group Law

- Group law Let E be elliptic curve with specified point $O_K \in E(K)$. Set of points on E form an abelian group (E, \oplus) .
 - Identity is specified point O_E
 - Group operation $P \oplus Q$ is as follows:
 - * Let S be 3rd point of intersection of line PQ and curve E
 - (if P = Q, then let S be intersection between T_pE (tangent line at P) and E)
 - * Let R be 3rd point of intersection fo line $O_E S$ and curve E.
 - * Then $P \oplus Q = R$
 - Inverse of P:
 - * Let S be 3rd point of intersection of the tangent line at O_E with the curve E.
 - * Let Q be 3rd point of intersection of line PS and E.
 - * Then $P \oplus Q = O_E$
- Linearly equivalent $D_1, D_2 \in \text{Div}(E)$ are linearly equivalent if $\exists f \in \bar{K}(E)^*$ s.t. $\operatorname{div}(f) = D_1 D_2$. (written $D_1 \sim D_2$).
- Picard group: Pic(E) = Div(E)/ ~
 Div⁰(E) is the degree 0 divisors (i.e. Div⁰(E) = ker(Div(E) → Z))
 Pic⁰(E) = Div⁰(E)/ ~
- Let $\phi : E \to \operatorname{Pic}^{0}(E)$ be given by $P \mapsto [P O_{E}]$. Then $\phi(P \oplus Q) = \phi(P) + \phi(Q)$ and ϕ is a bijection.

Remark: ϕ identifies (E, \oplus) with $(\operatorname{Pic}^{0}(E), +)$ which proves associativity!

- Explicit formula: Let $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ be points on E.
 - **Inverse:** The inverse of P_1 is $\ominus P_1 = (x_1, -(a_1x_1 + a_3 + y_1)).$
 - Sum:
 - * Case I: $x_1 = x_2, y_1 \neq y_2$: $P_1 \oplus P_2 = O_E$.
 - * **Case II:** $x_1 \neq x_2$: $P_1 \oplus P_2 = (x_3, y_3)$ where

$$x_3 = \lambda^2 + a_1 \lambda - a_2 - x_1 - x_2$$

$$y_3 = -(\lambda + a_1)x_3 - \nu - a_3$$

where

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}$$
 and $\nu = \frac{x_2 y_1 - x_1 y_2}{x_2 - x_1}$

* Case III: $x_1 = x_2$, $y_1 = y_2$: So $P_1 = P_2$, where we instead use the tangent slope

$$\lambda = \frac{3x_1^2 + 3a_2x_1 + a_4 - a_1y_1}{2y_1 + a_1x_1 + a_3} \quad \text{and} \quad \nu = \frac{-x_1^3 + a_4x_1 + 2a_6 - a_3y_1}{2y_1 + a_1x_1 + a_3}$$

- Explicit formula for the case $y^2 = x^3 + ax + b$:
 - **Inverse:** The inverse of P_1 is $\ominus P_1 = (x_1, -y_1)$

– Sum:

* If $x_1 \neq x_2$, then $P_1 \oplus P_2 = (x_2, y_2)$ where

$$x_{3} = \left(\frac{y_{2} - y_{1}}{x_{2} - x_{1}}\right) - x_{1} - x_{2}$$
$$y_{3} = -\left(\frac{y_{2} - y_{1}}{x_{2} - x_{1}}\right)x_{3} - \left(\frac{x_{2}y_{1} - x_{1}y_{2}}{x_{2} - x_{1}}\right)$$

* If $x_1 = x_2$ and $y_1 = y_2$, Then $2P_1 = (x_3, y_3)$ where

$$x_{3} = \frac{x^{4} - 2ax^{2} - 8bx + a^{2}}{(2y)^{2}} = \left(\frac{3x^{2} + a}{2y}\right)^{2} - 2x$$
$$y_{3} = \frac{x^{6} + 5ax^{4} + 20bx^{3} - 5a^{2}x^{2} - 4abx - a^{3} - 8b^{2}}{(2y)^{3}} = -\left(\frac{3x^{2} + a}{2y}\right)(x_{3} - x_{1}) - y_{1}$$

- E(K) is an abelian group.
- Elliptic curves are **group varieties**. I.e. The inverse map $[-1] : E \to E$ given by $P \mapsto -P$ and the addition map $A : E \times E \to E$ given by $(P,Q) \mapsto P + Q$ are both morphisms of algebraic varieties.
- *n*-torsion Define $[n]: E \to E$ as the *n*-torsion map given by

$$P \mapsto P + P + \dots + P$$
 n times for $n > 0$.

The *n*-torsion subgroup of E is

$$E[n] = \ker([n]: E \to E) = \{P \in E: P + P + \dots P = 0 \quad n \text{ times } \}$$

E.g. If $E: y^2 = (x - e_1)(x - e_2)(x - e_3)$, then $E[2] = \{O_E, (e_1, 0), (e_2, 0), (e_3, 0)\}$

• **3-torsion:** If $0 \neq P = (x, y) \in E(K)$, then

$$3P = O_E \quad \iff \quad 3x^4 + 6ax^2 + 12bx - a^2 = 0$$

Elliptic curves over \mathbb{C}

- Lattice: Let w_1, w_2 be basis for \mathbb{C} as \mathbb{R} vector space. Then a lattice Λ can be given as $\Lambda = \{aw_1 + bw_2 : a, b \in \mathbb{Z}\}.$
- Weierstrass p-function: Let Λ be a lattice. Then the Weierstrass p-function is:

$$\wp(z) = \frac{1}{z^2} + \sum_{0 \neq \lambda \in \Lambda} \left(\frac{1}{(z - \lambda)^2} - \frac{1}{\lambda} \right)$$

This satisfies $\wp'(z)^2 = 4\wp(z) - g_2\wp(z) - g_3$ where $g_2, g_3 \in \mathbb{C}$ depend on the lattice:

$$g_2 = 60 \sum_{0 \neq \lambda \in \Lambda} \frac{1}{\lambda^4}$$
 and $g_3 = 140 \sum_{0 \neq \lambda \in \Lambda} \frac{1}{\lambda^6}$

Fact: $\mathbb{C}/\Lambda \cong E(\mathbb{C})$ where *E* is the elliptic curve $y^2 = 4x^3 - g_2x - g_3$. This is isomorphic both as Riemann surfaces and abelian groups.

• Uniformisation theorem: Every elliptic curve over \mathbb{C} is isomorphic to \mathbb{C}/Λ for some lattice Λ .

Summary of results:

- For $K = \mathbb{C}$, then $E(\mathbb{C}) \cong \mathbb{C}/\Lambda \cong \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$ (isomorphic to complex torus)
- For $K = \mathbb{R}$, then

$$E(\mathbb{R}) = \begin{cases} \mathbb{Z}/2\mathbb{Z} \times \mathbb{R}/\mathbb{Z} & \text{if } \Delta > 0\\ \mathbb{R}/\mathbb{Z} & \text{if } \Delta < 0 \end{cases}$$

• For $K = \mathbb{F}_q$, then $E(\mathbb{F}_q)$ is approximately q + 1. We have Hasse's Theorem:

$$|E(\mathbb{F}_q) - (q+1)| \le 2\sqrt{q}$$

• For local fields, $[K : \mathbb{Q}_p] < \infty$, let \mathcal{O}_K be the ring of integers. Then E(K) has a subgroup of finite index isomorphic to $(\mathcal{O}_K, +)$.

E.g. If $K = \mathbb{Q}_p$, then E(K) contains subgroup of finite index isomorphic to $(\mathbb{Z}_p, +)$. Note that $(\mathbb{Z}_p, +)$ is **not** finitely generated (contains all rationals without p in denominator), so E(K) is not finitely generated.

For number fields [K : Q] < ∞, we have that E(K) is a finitely generated abelian group (Mordell-Weil Theorem)

5. Isogenies

- Isogeny Let E_1, E_2 be elliptic curves. An isogeny $\phi : E_1 \to E_2$ is a nonconstant morphism with $\phi(O_{E_1}) = O_{E_2}$. We say E_1 and E_2 are isogenous.
- Every morphism $\phi : C_1 \to C_2$ of curves is either *constant* or *surjective*. *Fact:* Two elliptic curves E_1 and E_2 are isogenuous over \mathbb{F}_q if and only if $\#E_1(\mathbb{F}_q) = \#E_2(\mathbb{F}_q)$.
- Hom $(E_1, E_2) = \{\text{isogenies } E_1 \to E_2\} \cup \{0\}$. This is a group under $(\phi + \psi)(P) = \phi(P) + \psi(P)$

If $\phi: E_1 \to E_2$ is isogeny and $\psi: E_2 \to E_3$ is isogeny, then $\psi \phi$ is isogeny.

- Let n ∈ Z with n ≠ 0. Then [n] : E → E is an isogeny.
 Corollary: Hom(E₁, E₂) is torision-free as a Z-module.
- (homomorphisms): Let $\phi : E_1 \to E_2$ be isogeny. Then $\phi(P+Q) = \phi(P) + \phi(Q)$ for all $P, Q \in E_1$.
- **Degree 2 isogeny:** Let E, E' be two elliptic curves over K, defined by

$$E : y^{2} = x(x^{2} + ax + b)$$

$$E' : y^{2} = x(x^{2} + a'x + b')$$

where $a, b \in K$ such that $b(a^2 - 4b) \neq 0$, and where a' = -2a and $b' = a^2 - 4b$. Then, there is a degree 2 isogeny $\phi : E \to E'$ where

$$(x,y) \mapsto \left(\left(\frac{y}{x}\right)^2 : \frac{y(x^2-b)}{x^2} : 1 \right) \quad \text{and} \quad \phi(O_E) = O_{E'}$$

• Let $\phi: E_1 \to E_2$ be an isogeny. Then there exists a morphism $\xi: \mathbb{P}^1 \to \mathbb{P}^1$ making the following diagram commute:

$$E_1 \xrightarrow{\phi} E_2$$
$$\downarrow x_1 \qquad \qquad \downarrow x_2$$
$$\mathbb{P}^1 \xrightarrow{\xi} \mathbb{P}^1$$

where x_i denote the x-coordinates on a Weierstrass equation for E_i .

Moreover, if $\xi(t) = \frac{r(t)}{s(t)}$ where $r, s \in K[t]$ coprime, then $\deg(\phi) = \deg(\xi) = \max(\deg(r), \deg(s))$.

•
$$\deg[2] = 4.$$

• Quadratic form Let A abelian group. $q: A \to \mathbb{Z}$ is a quadratic form if

$$- q(nx) = n^2 q(x) \text{ for all } n \in \mathbb{Z}, x \in A$$
$$- (x, y) \mapsto q(x+y) - q(x) - q(y) \text{ is } \mathbb{Z}\text{-bilinear.}$$

A map $q: A \to \mathbb{Z}$ is a quadratic form iff it satisfies the parallelogram law: q(x+y) + q(x-y) = 2q(x) + 2q(y) for all $x, y \in A$.

• deg : Hom $(E_1, E_2) \to \mathbb{Z}$ is a quadratic form.

• Let $P, Q \in E$, and let $P, Q, P + Q, P - Q \neq 0$, and let x_1, x_2, x_3, x_4 be the x-coordinates of these 4 points respectively. Then, there exist polynomials $W_0, W_1, W_2 \in \mathbb{Z}[a, b][x_1, x_2]$ of degree ≤ 2 in x_1 and of degree ≤ 2 in x_2 such that

$$(1:x_3 + x_4: x_3x_4) = (W_0: W_1: W_2)$$

These polynomials can explicitly be given as

$$W_0 = (x_1 - x_2)^2$$

$$W_1 = 2(x_1x_2 + a)(x_1 + x_2) + 4b$$

$$W_2 = x_1^2 x_2^2 - 2ax_1 x_2 - 4b(x_1 + x_2) + a^2$$

• Corollary: $\deg(n\phi) = n^2 \deg(\phi)$. In particular, $\deg[n] = n^2$.

6. Invariant differential

• Invariant differential Let C algebraic curve. The space of differentials Ω_C is the K(C)-vector space generated by df for $f \in K(C)$ subject to the relations

$$- d(f+g) = df + dg$$

- $d(fg) = fd(g) + gd(f)$
- $da = 0$ for all $a \in K$

Fact: Ω_C is 1-dimensional K(C) vector space (for curves C)

(In general, if V is an algebraic variety of dimension d, then Ω_V is d-dimensional K(V) vector space)

• Order of differential: Let $0 \neq w \in \Omega_C$. Let $P \in C$ be a smooth point and $t \in K(C)$ be a uniformiser at P. Then w = fdt for some $f \in K(C)^*$.

We define

$$\operatorname{ord}_P(w) := \operatorname{ord}_P(f)$$

which is independent of choice of uniformiser t.

- Let $f \in K(C)^*$ such that $\operatorname{ord}_P(f) = n \neq 0$. If $\operatorname{char}(K) \not| n$, then $\operatorname{ord}_P(df) = n 1$.
- Let C be smooth projective curve, and let $0 \neq w \in \Omega_C$ Then $\operatorname{ord}_p(w) = 0$ for all but finitely many $P \in C$.
- Divisor of differential: Let C be smooth projective curve, and let $0 \neq w \in \Omega_C$. We define the divisor of w:

$$\operatorname{div}(w) := \sum_{P \in C} \operatorname{ord}_P(w) P \in \operatorname{Div}(C)$$

• Genus: Define the genus as

$$g(C) := \dim_K \{ w \in \Omega_C : \operatorname{div}(w) \ge 0 \}$$

The set $\{w \in \Omega_C : \operatorname{div}(w) \ge 0\}$ is the space of regular differentials Riemann-Roch states that: If $0 \neq w \in \Omega_C$, then $\operatorname{deg}(\operatorname{div}(w)) = 2g(C) - 2$.

• Assume char(K) $\neq 2$. Given elliptic curve $E: y^2 = f(x)$. Then $w = \frac{dx}{y}$ is a differential on E with no zeros/poles. (i.e. $\operatorname{ord}_P(w) = 0$ for all $P \in E$)

In particular, the K-vector space of regular differentials on E is spanned by w. w is called the invariant differential.

• Pullback differential: Let $\phi : C_1 \to C_2$ be nonconstant morphism. Then $\phi^* : \Omega_{C_1} \to \Omega_{C_2}$ is given by

$$fdg \mapsto (\phi^* f) d(\phi^* g)$$
 (recall $\phi^*(f) = f \circ \phi$)

• Let $P \in E$. Let $\tau_P : E \to E$ be the translation map given by $X \mapsto P + X$. Then if $w = \frac{dx}{y}$, then

$$\tau_p^* w = w$$

Thus, w is called the **invariant differential**.

• Let $\phi, \psi \in \text{Hom}(E_1, E_2)$, and let w be invariant differential on E_2 . Then

$$(\phi + \psi)^* w = \phi^* w + \psi^* w$$

• Let $\phi: C_1 \to C_2$ be a nonconstant morphism. Then

 ϕ separable $\iff \phi^* : \Omega_{C_1} \to \Omega_{C_2}$ is non-zero

• N-torsion group: If char(K) $\not| n$, then $E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$ (note: this is over algebraically closed field!)

Remark: If char(K) = p, then [p] is inseparable. We have

$$E[p^r] \cong \begin{cases} \mathbb{Z}/p^r \mathbb{Z} & \text{ for all } r \ge 1 \quad (\text{ordinary}), \text{ or} \\ 0 & \text{ for all } r \ge 1 \quad (\text{supersingular}) \end{cases}$$

7. Elliptic curves over finite fields

• Let A be abelian group, and $q: A \to \mathbb{Z}$ a positive definite quadratic form. If $x, y \in A$, then

$$|q(x+y) - q(x) - q(y)| \le 2\sqrt{q(x)q(y)}$$

• Let \mathbb{F}_q be the unique finite field with q elements, where $q = p^m$ for some prime p. The extension $\mathbb{F}_{q^r}/\mathbb{F}_q$ is always *Galois*.

 $\operatorname{Gal}(\mathbb{F}_{q^r}/\mathbb{F}_q)$ is *cyclic* of order r, generated by the **Frobenius** map $x \mapsto x^q$.

• Hasse's theorem Let E/\mathbb{F}_q be elliptic curve. Then

$$|\#E(\mathbb{F}_q) - (q+1)| \le 2\sqrt{q}$$

Note: $#E(\mathbb{F}_q) = #\ker(1-\phi) = \deg(1-\phi)$ where $\phi(x,y) = (x^q, y^q)$ is *Frobenius* map. (since $1-\phi$ is separable)

• Zeta functions: For k a number field

$$\zeta_K(s) = \sum_{\mathfrak{a} \in \mathcal{O}_K} \frac{1}{(N\mathfrak{a})^s} = \prod_{\mathfrak{p} \in \mathcal{O}_K} \left(1 - \frac{1}{(N\mathfrak{p})^s}\right)^{-1}$$

where $N\mathfrak{a}$ is the norm of the ideal \mathfrak{a} .

For K a function field (i.e. $K = \mathbb{F}_q(C)$ where C/\mathbb{F}_q a smooth projective curve)

$$\zeta_k(s) = \prod_{x \in |C|} \left(1 - \frac{1}{(Nx)^s}\right)^{-1}$$

where |C| is the closed points of C (orbits for action $\operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ on $C(\overline{\mathbb{F}}_q)$. and $Nx = q^{\operatorname{deg}(x)}$ where $\operatorname{deg}(x)$ is the size of the orbit.

We have that $\zeta_K(s) = F(q^{-s})$ for some $F \in \mathbb{Q}[[T]]$, where

$$F(T) = \prod_{x \in |C|} \left(1 - T^{\deg(x)} \right)^{-1} = \exp\left(\sum_{n=1}^{\infty} \frac{\#C(\mathbb{F}_{q^n})}{n} T^n\right)$$

• Zeta function of variety: The zeta function of a variety V is

$$Z_V(T) = \exp\left(\sum_{n=1}^{\infty} \frac{\#V(\mathbb{F}_{q^n})}{n} T^n\right)$$

Let E/\mathbb{F}_q elliptic curve, with $\#E(\mathbb{F}_q) = q + 1 - a$. Then

$$Z_E(T) = \frac{1 - aT + qT^2}{(1 - T)(1 - qT)}$$

• Let $#E(\mathbb{F}_q) = q + 1 - a$. Then

$$#E(\mathbb{F}_{q^n}) = q^n + 1 - \alpha^n - \beta^n$$

where $\alpha, \beta \in \mathbb{C}$ are roots of $X^2 - aX + q = 0$. If $\#E(\mathbb{F}_q) = q + 1 - a$, then

$$\begin{split} &\#E(\mathbb{F}_{q^2}) = (q+1-a)(q+1+a), \\ &\#E(\mathbb{F}_{q^3}) = q^3 + 3aq - a^3 + 1 = (q+1-a)(1+a+a^2-q+aq+q^2), \\ &\#E(\mathbb{F}_{q^4}) = -a^4 + 4a^2q + (q^2-1)^2 = (q+1-a)(q+1+a)(1+a^2-2q+q^2) \end{split}$$

• **Trace:** Define tr : $\operatorname{End}(E) \to \mathbb{Z}$ given by

$$\phi \mapsto \langle \phi, 1 \rangle = \deg(\phi + 1) - \deg(\phi) - 1$$

E.g. If $\phi: E \to E$ is q-power Frobenius, then $\operatorname{tr}(\phi) = \#E(\mathbb{F}_q) - q - 1$. *Fact:* For any $\phi \in \operatorname{End}(E)$, we have $\phi^2 - [\operatorname{tr}\phi]\phi + [\operatorname{deg}\phi] = 0$

• Let $\phi \in \text{End}(E)$ with $n \in \mathbb{Z}$. Then $\text{tr}(\phi) = 2n$ and $\text{deg}(\phi) = n^2$ if and only if $\phi = [n]$.

8. Formal groups

- *I*-adic topology Let R ring, $I \subset R$ an ideal. The *I*-adic topology is the topology on R with basis $\{r + I^n : r \in R, n \ge 1\}$.
- Cauchy A sequence (x_n) in R is Cauchy if $\forall k, \exists N \text{ s.t. } \forall m, n \geq N, x_m x_n \in I^k$.
- Complete: *R* is complete if

$$-\bigcap_{n>0}I^n = \{0\}$$

- Every Cauchy sequence converges

Note: If $x \in I$, then 1 - x is unit

Examples:

- The *p*-adic integers \mathbb{Z}_p is completion of \mathbb{Z} w.r.t the ideal $p\mathbb{Z}$.
- The power series in t, $\mathbb{Z}[[t]]$ is completion of $\mathbb{Z}[t]$ w.r.t the ideal (t).
- Hensel's Lemma: Let R be integral domain, and complete w.r.t ideal $I \subset R$. Let $F \in R[X]$ and $s \ge 1$.

Supose $a \in R$ satisifies

$$-F(a) \equiv 0 \pmod{I^s}$$

$$- F'(a) \in R^*$$

Then, there exists a unique $b \in R$ s.t.

$$- F(b) = 0$$
$$- b \equiv a \pmod{I^s}$$

Setup: Consider the elliptic curve $E: Y^2Z + a_1XYZ + a_3YZ^2 = X^3 + a_2X^2Z + a_4XZ^2 + a_6Z^3$. Usually we take affine piece where $Z \neq 0$, **but intead** we now take affine piece where $Y \neq 0$. Let t = -X/Y and w = -Z/Y. Define

$$f(t,w) = t^3 + a_1 t w + a_2 t^2 w + a_3 w^2 + a_4 t w^2 + a_6 w^3$$

Thus E: w = f(t, w)

Applying Hensel's Lemma with $R = \mathbb{Z}[a_1, \ldots, a_6][[t]], I = (t)$, and F(X) = X - f(t, X) with s = 3, a = 0, we get there exists a unique $w(t) \in \mathbb{Z}[a_1, \ldots, a_6][[t]]$ such that

$$- w(t) = f(t, w(t)), \text{ and}$$
$$- w(t) \equiv 0 \pmod{t^3}$$

The function w(t) can be given as $w(t) = \lim_{n \to \infty} w_n(t)$ where

$$w_0(t) = 0$$
 and $w_{n+1}(t) = f(t, w_n(t))$

The approximations are:

$$w_{0}(t) = 0$$

$$w_{1}(t) = t^{3}$$

$$w_{2}(t) = t^{3}(1 + a_{1}t + a_{2}t^{2} + a_{3}t^{3} + a_{4}t^{4} + a_{6}t^{6})$$

$$w_{3}(t) = t^{3}(1 + a_{1}t + (a_{1}^{2} + a_{2})t^{2} + (2a_{1}a_{2} + a_{3})t^{3} + (a_{2}^{2} + 3a_{1}a_{3} + a_{4})t^{4} + \dots)$$

$$\vdots$$

$$w(t) = t^{3}(1 + A_{1}t + A_{2}t^{2} + A_{3}t^{3} + \dots) = \sum_{n=2}^{\infty} A_{n-2}t^{n+1}$$
where $A_{1} = a_{1}, \quad A_{2} = a_{1}^{2} + a_{2}, \quad A_{3} = a_{1}^{3} + 2a_{1}a_{2} + a_{3}, \dots$

• Let R be integral domain, complete w.r.t. ideal I, and $a_1, \ldots, a_6 \in R$, and K = Frac(R). Then $\hat{E}(I) = \{(t, w) \in E(K) : t, w \in I\}$ is a subgroup of E(K).

Remark: By uniqueness in Hensel's Lemma (using s = 1), we have

$$\hat{E}(I) = \{(t, w(t)) \in E(K) : t \in I\}$$

• By Hensel's lemma, there exists $i(t) \in \mathbb{Z}[a_1, \ldots, a_6][[t]]$ with i(0) = 0 such that

$$[-1](t, w(t)) = (i(t), w(i(t)))$$

where

$$i(X) = -X - a_1 X^2 - a_2 X^3 - (a_1^3 + a_3) X^4 + \dots$$

Also by Hensel's lemma, there exists $F(t_1, t_2) \in \mathbb{Z}[a_1, \ldots, a_6][[t_1, t_2]]$ with F(0, 0) = 0 such that

$$(t_1, w(t_1)) + (t_2, w(t_2)) = (F(t_1, t_2), w(F(t_1, t_2)))$$

where

$$F(X,Y) = X + Y - a_1 XY - a_2 (X^2 Y + XY^2) + (2a_3 X^3 Y + (a_1 a_2 - 3a_3) X^2 Y^2 + 2a_3 XY^3) + \dots$$

- Formal group: Let R be a ring. A formal group over R is a power series $F(X, Y) \in R[[X, Y]]$ satisfying:
 - 1. F(X, Y) = F(Y, X)
 - 2. F(X,0) = X and F(0,Y) = Y. (one implies the other)
 - 3. F(F(X, Y), Z) = F(X, F(Y, Z))

Furthermore, one automatically gets that there exists a unique $i(T) = -T + \cdots \in R[[T]]$ such that F(T, i(T)) = 0.

Construction of inverse: We define a sequence of power series $(g_n(T))_{n=1}^{\infty}$. Let $g_1(T) = -T$. For $n \ge 2$, set

$$g_n(T) = g_{n-1}(T) - bT^n$$
 where b is such that $F(T, g_{n-1}(T)) = -bT^n \pmod{T^{n+1}}$

Then take the limit $g(T) = \lim_{n \to \infty} g_n(T)$. The **inverse** is i(T) = g(T)

Examples:

- Additive formal group: $\hat{\mathbb{G}}_a$. Power series is F(X,Y) = X + Y(with inverse i(X) = -X)
- Multiplicative formal group: $\hat{\mathbb{G}}_m$. Power series is F(X,Y) = X + Y + XY(with inverse $i(X) = -X(1 - X + X^2 - X^3 + X^4 - X^5 + \dots))$
- $-F(X,Y) = \frac{X+Y}{1-XY} = X + Y + (XY^2 + X^2Y) + (X^2Y^3 + Y^3X^2) + \dots$
- Sum on $\hat{E}(I)$: $F(X,Y) = X + Y a_1XY a_2(X^2Y + XY^2) + (2a_3X^3Y + (a_1a_2 3a_3)X^2Y^2 + 2a_3XY^3) + \dots$
- Morphism of formal groups: Let \mathcal{F} and \mathcal{G} be formal groups over R given by power series F and G.
 - A morphism $f : \mathcal{F} \to \mathcal{G}$ is a power series $f(T) \in R[[T]]$ such that f(0) = 0 and f(F(X,Y)) = G(f(X), f(Y)).
 - \mathcal{F} is **isomorphic** to \mathcal{G} if there exist morphisms $f : \mathcal{F} \to \mathcal{G}$ and $g : \mathcal{G} \to \mathcal{F}$ such that f(g(X)) = X and g(f(X)) = X.
- Let R be ring with $\operatorname{char}(R) = 0$. Then every formal group \mathcal{F} over R is isomorphic to \hat{G}_a over $R \otimes \mathbb{Q}$ (i.e. R with denominators)

More precisely

- There is unique power series

$$\log(T) = T + \frac{a_2}{2}T^2 + \frac{a_3}{3}T^3 + \dots$$

with $a_i \in R$ such that $\log(F(X, Y)) = \log(X) + \log(Y)$.

- There is unique power series

$$\exp(T) = T + +\frac{b_2}{2!}T^2 + \frac{b_3}{3!}T^3 + \dots$$

with $b_i \in R$ such that $\exp(\log(T)) = \log(\exp(T)) = T$.

Note: Let $F_1(X, Y) = \frac{\partial F}{\partial X}(X, Y)$. Define log by using

$$p(T) = F_1(0,T)^{-1} = 1 + a_2T + a_3T^2 + a_4T^3 + \dots$$

• Multiplicative Inverse: Let $f \in R[[T]]$ be given as

$$f = \sum_{n=0}^{\infty} a_n T^n$$

Then f has a multiplicative inverse g in R[[T]] (fg = 1) if and only if a_0 is a unit in R. If so, then g is

$$g = \sum_{n=0}^{\infty} b_n T^n$$
 where $b_0 = \frac{1}{a_0}$ and $b_n = -\frac{1}{a_0} \sum_{i=1}^n a_i b_{n-i}$ for $n \ge 1$

• Composition Inverse: Let $f = aT + \cdots \in R[[T]]$ with $a \in R^{\times}$. Then there exists unique $g = a^{-1}T + \cdots \in R[[T]]$ such that f(g(t)) = g(f(T)) = T (i.e. power series has inverse)

Construction: Let $g_1(T) = a^{-1}T$. Set

$$g_n(T) = g_{n-1}(T) - \frac{b}{a}T^n \quad \text{where } b \text{ is such that } f(g_{n-1}(T)) = T + bT^n \pmod{T^{n+1}}$$

Then take the limit $g(T) = \lim_{n \to \infty} g_n(T)$.

• Ideal into group: Let R be ring complete w.r.t. ideal I. Let \mathcal{F} be a formal group given by $F \in R[[X, Y]]$. For $x, y \in I$, define

$$x \oplus_{\mathcal{F}} y = F(x, y) \in I$$

This turns I into a group!. $\mathcal{F}(I) := (I, \oplus_{\mathcal{F}})$ is an **abelian group**. Examples:

- Additive group: $\hat{\mathbb{G}}_a(I) = (I, +).$
- Multiplicative group: $\hat{\mathbb{G}}_m(I) = (1 + I, \times).$
- Multiplication-by-m: Let \mathcal{F} be a formal group with power series $F \in R[[X, Y]]$. For any $n \in \mathbb{Z}$, we define the map [n] recursively as:

$$[0](T) = 0$$
, and $[n](T) = F([n-1]T, T)$

- Let \mathcal{F} be a formal group over R and $n \in \mathbb{Z}$. Suppose $n \in R^{\times}$ (where n = 1 + 1 + ... 1 n times). Then
 - $-[n]: \mathcal{F} \to \mathcal{F}$ is an isomorphism.
 - IF R complete w.r.t. ideal I, then $[n] : \mathcal{F}(I) \to \mathcal{F}(I)$ is an isomorphism. In particularm $\mathcal{F}(I)$ has no n-torsion.

9. Elliptic Curves over Local Fields

Setup: K is field, complete w.r.t. discrete valuation $v: K^{\times} \to \mathbb{Z}$. Valuation ring is $\mathcal{O}_K = \{x \in K^{\times} : v(x) \ge 0\} \cup \{0\}$. The unit group $\mathcal{O}_K^{\times} = \{x \in K^{\times} : v(x) = 0\}$ Maximal ideal is $\pi \mathcal{O}_K$, where $\pi \in K$ is chosen such that $v(\pi) = 1$. Residue field is $k = \mathcal{O}_K / \pi \mathcal{O}_K$. Example: $K = \mathbb{Q}_p, \ \mathcal{O}_K = \mathbb{Z}_p, \ \pi \mathcal{O}_K = p\mathbb{Z}_p, \ k = \mathbb{F}_p$

• Integral: A Weierstrass equation for E with coefficients $a_1, \ldots, a_6 \in K$ is integral if $a_1, \ldots, a_6 \in \mathcal{O}_k$.

Note: Substituting $a_i = u^i a'_i$ proves that integral Weierstrass equations always exist for any EC.

• Minimal: Let Δ be discriminant of elliptic curve. Equation is minimal if $v(\Delta)$ minimal among all integral Weierstrass equations for E

Fact: If E integral then $\Delta \in \mathcal{O}_k$ and thus $v(\Delta) \ge 0$. Thus, by well-ordering, minimal Weierstrass equations always exist. If char $(k) \ne 2, 3$ then there exist minimal Weierstrass equations of the form $y^2 = x^3 + ax + b$.

Fact: If char(k) $\neq 2, 3$, then $y^2 = x^3 + ax + b$ is minimal if and only if $v_p(a) < 4$ or $v_p(b) < 6$.

• Let E/K have integral Weierstrass equation: $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$. Let $0 \neq P \in E(K)$, say P = (x, y). Then either $x, y \in \mathcal{O}_K$, or v(x) = -2s and v(y) = -3s for some $s \geq 1$

We define:

$$E_r(K) := \hat{E}(\pi^r \mathcal{O}_K) = \{ (t, w) \in E(K) : t, w \in \pi^r \mathcal{O}_K \}$$

= $\{ (x, y) \in E(K) : v(x) \le -2r \text{ and } v(y) \le -3r \} \cup \{ 0 \}$

Obtain a sequence of subgroups:

$$\cdots \subset E_4(K) \subset E_3(K) \subset E_2(K) \subset E_1(K)$$

More generally, for any formal group \mathcal{F} over \mathcal{O}_K :

$$\cdots \subset \mathcal{F}(\pi^4 \mathcal{O}_K) \subset \mathcal{F}(\pi^3 \mathcal{O}_K) \subset \mathcal{F}(\pi^2 \mathcal{O}_K) \subset \mathcal{F}(\pi \mathcal{O}_K)$$

• Let \mathcal{F} be a formal group over \mathcal{O}_K . Let e = v(p) where $p = \operatorname{char}(k)$. If $r > \frac{e}{n-1}$, then

$$\log: \mathcal{F}(\pi^r \mathcal{O}_K) \longrightarrow \widehat{\mathbb{G}}_a(\pi^r \mathcal{O}_K)$$

is an *isomorphism* with inverse exp : $\hat{\mathbb{G}}_a(\pi^r \mathcal{O}_K) \to \mathcal{F}(\pi^r \mathcal{O}_K)$.

• For $r \ge 1$,

$$\frac{\mathcal{F}(\pi^r \mathcal{O}_K)}{\mathcal{F}(\pi^{r+1} \mathcal{O}_K)} \cong (k, +)$$

If $|k| < \infty$, then $\mathcal{F}(\pi \mathcal{O}_K)$ contains a subgroup of finite index $\cong (\mathcal{O}_K, +)$

• Reduction mod π : Reduction mod π is the natural quotient map $\mathcal{O}_k \to \mathcal{O}_K / \pi \mathcal{O}_K = k$ given by $x \mapsto \tilde{x}$

• Reduction of curve: The reduction \tilde{E}/k of E/k is defined to be the reduction of a minimal Weierstrass equation. Let E/K have minimal Weierstrass equation

$$E: y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

We then reduce each coefficient modulo π to obtain a (possibly singular) curve over k:

$$\tilde{E}: y^2 + \tilde{a}_1 x y + \tilde{a}_3 y = x^3 + \tilde{a}_2 x^2 + \tilde{a}_4 x + \tilde{a}_6$$

• Let E/K elliptic curve. The reduction mod π , of two minimal Weierstrass equations for E define *isomorphic* curves over k.

E has good reduction if \tilde{E} is non-singular (and thus elliptic curve), otherwise has bad reduction.

Fact: E has good reduction at p if and only if $v(\Delta) = 0$ for minimal $v(\Delta)$.

• Let E/K be an elliptic curve with integral Weierstrass equation. Let discriminant the Δ . Then

$v(\Delta) = 0$	\implies	good reduction
$0 < v(\Delta) < 12$	\Rightarrow	bad reduction
$v(\Delta) \ge 12$	\implies	equation may not be minimal

If $\Gamma k \neq 2, 3, \ldots$

• Reduction map: Let E/K be elliptic curve over K. Let $P \in E$ with homogenous projective coordinates $P = (x : y : z) \in \mathbb{P}^2(K)$. Choose representative such that $\min(v(x), v(y), v(z)) = 0$ (i.e. all $x, y, z \in \mathcal{O}_K$ and gcd(x, y, z) = 1).

Then we define the reduction map

$$\mathbb{P}^{2}(K) \longrightarrow \mathbb{P}^{2}(k)$$
$$(x:y:z) \mapsto (\tilde{x}:\tilde{y}:\tilde{z})$$

Restricting the above map to the curve E(K) gives

$$E(K) \longrightarrow \tilde{E}(k)$$
$$P \mapsto \tilde{P}$$

- Let E(K) be given by minimal Weierstrass equation. Then if $P = (x, y) \in E(K)$, then
 - If $x, y \in \mathcal{O}_K$, then $\tilde{P} = (\tilde{x}, \tilde{y})$.
 - Otherwise, $\tilde{P} = (0:1:0) = O_E$.
- Let E/k elliptic curve. We define

$$\tilde{E}_{\rm ns} = \begin{cases} \tilde{E} & \text{if } E \text{ has good reduction} \\ \tilde{E} \setminus \{\text{singular point}\} & \text{if } E \text{ has bad reduction} \end{cases}$$

 $E_{\rm ns}$ is a group.

If bad reduction, then \tilde{E}_{ns} is isomorphic to either \mathbb{G}_a (if cusp) or \mathbb{G}_m (if node).

- Define $E_0(K) = \{P \in E(K) : \tilde{P} \in \tilde{E}_{ns}(k)\}$ (i.e. all points on E(K) which don't get reduced to the singular point. Good reduction implies $E_0(K) = E(K)$)
- $E_0(K)$ is a subgroup of E(K) and reduction mod π is a surjective group homomorphism $E_0(K) \longrightarrow \tilde{E}_{ns}(k)$
- We have the following **filtration**:

- If $|k| < \infty$, then $\mathbb{P}^n(k)$ is compact (w.r.t π -adic topology)
- If $|k| < \infty$, then $E_0(k) \subset E(K)$ has finite index.
- Tamagawa number: Define the Tamagawa number c_K(E) = [E(K) : E₀(K)] < ∞. Note that good reduction implies c_K(E) = 1.
 Fact: c_k(E) = v(Δ) or c_k(E) ≤ 4.
- If $[K : \mathbb{Q}_p] < \infty$, then E(k) contains a subgroup $E_r(K)$ of finite index with $E_r(K) \cong (\mathcal{O}_k, +)$

Corollary: $E(K)_{\text{torsion}}$ injects into $\frac{E(K)}{E_r(K)}$ and therefore $E(K)_{\text{torsion}}$ is finite!.

• Unramified extension: Let $[K : \mathbb{Q}_p] < \infty$ be local field, and let L/K be a finite extension. Let L and K have residue fields ℓ and k. Let f be the residue degree $f = [\ell : k]$, and let [L : K] = ef.

L/K is **unramified** if e = 1 (i.e. $[L:K] = [\ell:k]$ and $\operatorname{Gal}(L/K) = \operatorname{Gal}(\ell/k)$)

$$\begin{array}{ccc} K & \stackrel{V_K}{\longrightarrow} & \mathbb{Z} \\ \cap & & & \downarrow^{\times e} \\ L & \stackrel{V_L}{\longrightarrow} & \mathbb{Z} \end{array}$$

- For each integer $m \ge 1$
 - -k has unique extension of degree m (say k_m)
 - -K has unique unramified extension of degree m (say K_m)

Note: Can be found by adjoining the $(p^m - 1)$ -th roots of unity to \mathbb{Q}_p

• Maximal unramified extension: $K^{\text{ur}} = \bigcup_{m \ge 1} K_m$ (inside \overline{K})

Notation: Let $P \in E(K)$. Then $[n]^{-1}P = \{Q \in E(\overline{K}) : nQ = P\}$. We define the field extension $K(\{P_1, \ldots, P_2\}) = K(x_1, \ldots, x_r, y_1, \ldots, y_r)$ where $P_i = (x_i, y_i)$.

• Let $[K : \mathbb{Q}_p] < \infty$, E/K elliptic curve with good reduction, and $p \not| n$. If $P \in E(K)$ then $K([n]^{-1}P)/K$ is unramified.

10. Elliptic Curves over Number Fields (Torsion Subgroup)

Notation: K is number field, $[K : \mathbb{Q}] < \infty$. E/K is elliptic curve. \mathfrak{p} is a prime of K (i.e. of \mathcal{O}_K). $K_\mathfrak{p}$ is the *p*-adic completion of K. $k_\mathfrak{p}$ is the residue field $\mathcal{O}_K/\mathfrak{p}$ Example: $K = \mathbb{Q}, \ \mathcal{O}_K = \mathbb{Z}, \ \mathfrak{p} = p\mathbb{Z}, \ K_\mathfrak{p} = \mathbb{Q}_p, \ k_\mathfrak{p} = \mathbb{F}_p \sim \mathbb{Z}/p\mathbb{Z}.$

- Good reduction: \mathfrak{p} is a prime of good reduction for E/K, if $E/K_{\mathfrak{p}}$ has good reduction.
- E/K has only finitely many primes of bad reduction. Indeed, any primes of bad reduction must divide Δ .

Remark: If K has class number 1 (e.g. $K = \mathbb{Q}$), then can always find Weierstrass equation for E with $a_1, \ldots, a_6 \in \mathcal{O}_K$ minimal at all primes \mathfrak{p} .

- $E(K)_{\text{torsion}}$ is finite.
- Let p be a prime with good reduction, with $p \not| n$, Then reduction mod p gives an injection $E(K)[n] \hookrightarrow \tilde{E}(k_P)[n]$
- Let E/\mathbb{Q} be elliptic curve. Let p be a prime for which E has good reduction (e.g. any $p \not| \Delta$ will have good reduction) We have

$$#E(\mathbb{Q})_{\text{tors}} | #E(\mathbb{F}_p) \cdot p^a \text{ for some } a \ge 0$$

Furthermore, if working in $K = \mathbb{Q}_p$, then e = 1, and thus

$$\begin{aligned} #E(\mathbb{Q})_{\text{tors}} &| \#\tilde{E}(\mathbb{F}_p) \quad \text{if } p \text{ odd} \\ #E(\mathbb{Q})_{\text{tors}} &| 2 \cdot \#\tilde{E}(\mathbb{F}_p) \quad \text{if } p = 2 \end{aligned}$$

• Let $E: y^2 = f(x)$ be an elliptic curve over \mathbb{F}_p . Let $\left(\frac{f(x)}{p}\right)$ be the Legendre symbol for $f(x) \mod p$. In other words

$$\left(\frac{f(x)}{p}\right) = \begin{cases} 1 & \text{if } f(x) \text{ is a square mod } p, \text{ and } p \not| f(x) \\ -1 & \text{if } f(x) \text{ is not a square mod } p \\ 0 & \text{if } p \text{ divides } f(x) \end{cases}$$

Then we have

$$#E(\mathbb{F}_p) = 1 + \sum_{x \in \mathbb{F}_p} \left(\left(\frac{f(x)}{p} \right) + 1 \right)$$

- Let E/\mathbb{Q} be given by Weierstrass equation $a_1, \ldots, a_6 \in \mathbb{Z}$. Suppose $0 \neq T = (x, y) \in E(\mathbb{Q})_{\text{tors}}$. THen
 - $-4x, 8y \in \mathbb{Z}$
 - If $2|a_1$ or $2T \neq 0$, then $x, y \in \mathbb{Z}$
- Nagell-Lutz Let E/\mathbb{Q} be given with equation $y^2 = x^3 + ax + b$ with $a, b \in \mathbb{Z}$. Suppose $0 \neq T = (x, y) \in E(\mathbb{Q})_{\text{tors}}$. Then $x, y \in \mathbb{Z}$ and either y = 0 or $y^2 | (4a^3 + 27b^2)$
- (Mazur): Let E/\mathbb{Q} elliptic curve. Then

$$E(\mathbb{Q})_{\text{tors}} \cong \begin{cases} \mathbb{Z}/n\mathbb{Z} & \text{where } 1 \le n \le 12, n \ne 11 \\ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2n\mathbb{Z} & \text{where } 1 \le n \le 4 \end{cases}$$

Furthermore, all 15 possibilities occur infinitely often over \mathbb{Q} .

11. Kummer theory

Setup: Fix n > 1. Let K be field, charK n. Denote μ_n as the multiplicative group of nth roots of unity (in K). Assuming $\mu_n \subset K$

- Let $\Delta \subset K^{\times}/(K^{\times})^n$ be a finite subgroup. Define $\sqrt[n]{\Delta} = \{\sqrt[n]{a} : a \in K^{\times}, a \cdot (K^{\times})^n \in \Delta\}$ Let $L = K(\sqrt[n]{\Delta})$. Then L/K is Galois and $\operatorname{Gal}(L/K) \cong \operatorname{Hom}(\Delta, \mu_n)$.
- Kummer pairing: Define the map $\langle , \rangle : \operatorname{Gal}(L/K) \times \Delta \to \mu_n$ given by

$$(\sigma, x) \mapsto \frac{\sigma(\sqrt[n]{x})}{\sqrt[n]{x}}$$

Fact: This map is well-defined and bilinear.

• We have the two group isomorphisms:

$$Gal(L/K) \longrightarrow Hom(\Delta, \mu_n) \qquad \sigma \mapsto (x \mapsto \frac{\sigma(\sqrt[n]{x})}{\sqrt[n]{x}})$$
$$\Delta \longrightarrow Hom(Gal(L/K), \mu_n) \qquad x \mapsto (\sigma \mapsto \frac{\sigma(\sqrt[n]{x})}{\sqrt[n]{x}})$$

• Exponent: Let G be a finite group. the exponent of G is the lowest common multiple of the orders of the elements of G. Note that the exponent divides |G|.

Fact: Gal $(K(\sqrt[n]{\Delta})/K)$ is an abelian group of exponent dividing *n*.

• There is a bijection

$$\left\{\begin{array}{l} \text{finite subgroups}\\ \Delta \subset K^{\times}/(K^{\times})^n \end{array}\right\} \longleftrightarrow \left\{\begin{array}{l} \text{finite abelian extensions}\\ L/K \text{ of exponent dividing } n \end{array}\right\}$$
$$\Delta \longmapsto K(\sqrt[n]{\Delta})$$
$$\frac{(L^*)^n \cap K^*}{(K^*)^n} \longleftrightarrow L$$

- Let K number field, $\mu_n \subset K$. Let S be a finite set of primes of K. There are only finitely many extensions L/K such that
 - -L/K is abelian of exponent dividing n.
 - -L/K is unramified at all primes $\mathfrak{p} \notin S$
- Let

$$K(S,n) := \{ x \in K^{\times} / (K^{\times})^n : v_{\mathfrak{p}}(x) \equiv 0 \pmod{n} \; \forall \mathfrak{p} \notin S \}$$

Then K(S, n) is finite.

• If $K = \mathbb{Q}$, then

$$|\mathbb{Q}(S,2)| = 2^{|S|+1}$$

12. Elliptic curves over number fields (Mordell-Weil)

• Let E/K elliptic curve, with L/K a finite Galois extension. Then the map

$$\frac{E(K)}{nE(K)} \longrightarrow \frac{E(L)}{nE(L)}$$

has finite kernel.

• Weak Mordell Weil: Let K number field, E/K elliptic curve. Let $n \ge 2$ integer. Then

$$\left|\frac{E(K)}{nE(K)}\right| < \infty$$

Remark: If $K = \mathbb{R}$ or \mathbb{C} or $[K : \mathbb{Q}_p] < \infty$, then $\left|\frac{E(K)}{nE(K)}\right| < \infty$, however E(K) is **not** finitely generated.

• Mordell-Weil: Let K number field, E/K elliptic curve. Then E(K) is a finitely generated abelian group.

Specifically, fix an integer $n \geq 2$. Let P_1, P_2, \ldots, P_m be set of coset representatives for E(K)/nE(K). Then

$$\Sigma = \{ P \in E(K) : \hat{h}(P) \le \max_{1 \le i \le m} \hat{h}(P_i) \}$$

generates E(K).

This proves $E(K) \cong E(K)_{\text{tors}} \times \mathbb{Z}^r$ where r is the rank of the curve.

(Curve with rank at least 28 are known. Conjectured that rank is unbounded. Conjectured that average rank is 1/2, current upper bound is 1.5)

13. Heights

• Height of a point: Let $K = \mathbb{Q}$. Let $P \in \mathbb{P}^n(\mathbb{Q})$ be $P = (a_0 : a_1 : \cdots : a_n)$ where $a_i \in \mathbb{Z}$ and $gcd(a_0, a_1, \ldots, a_n) = 1$ The height of P is

$$H(P) = \max_{0 \le i \le n} |a_i|$$

Height of rational: Equivalently, if $x = \frac{u}{v} \in \mathbb{Q}$, with $u, v \in \mathbb{Z}$ coprime, then height of x is $H(x) = \max(|u|, |v|)$

• Let $f_1, f_2 \in \mathbb{Q}[X_1, X_2]$ be coprime homogenuous polynomials of degree d. Let $F : \mathbb{P}^1 \to \mathbb{P}^1$ be $(x_1 : x_2) \to (f_1(x_1, x_2), f_2(x_1, x_2))$ Then there exists $c_1, c_2 > 0$ s.t.

$$c_1 H(P)^d \le H(F(P)) \le c_2 H(P)^d$$
 for all $P \in \mathbb{P}^1(\mathbb{Q})$

- Logarithmic height: The logarithmic height is a function $h : E(\mathbb{Q}) \to \mathbb{R}_{\geq 0}$ defined by $h(P) = \log(H(P))$ (and $h(O_E) = 0$).
- Let E, E' be elliptic curves over \mathbb{Q} . Let $\phi: E \to E'$ be isogeny over \mathbb{Q} . There exists c > 0 such that

$$|h(\phi(P)) - \deg(\phi)h(P)| \le c \quad \text{for all } P \in E(\mathbb{Q})$$

Note: c depends on E, E' and ϕ , but **not** on P. *Example:* If $\phi = [2] : E \to E$, then there exists c > 0 such that

$$|h(2P) - 4h(P)| < c \text{ for all } P \in E(\mathbb{Q})$$

• Canonical height: For $P \in E(\mathbb{Q})$, we define

$$\hat{h}(P) = \lim_{n \to \infty} \frac{1}{4^n} h(2^n P)$$

This converges for all $P \in E(\mathbb{Q})$ and does not depend on Weierstrass equation.

- $|h(P) \hat{h}(P)|$ is bounded for $P \in E(\mathbb{Q})$
- For any B > 0

$$\#\{P \in E(\mathbb{Q}) : \hat{h}(P) < B\} < \infty$$

• Let $\phi: E \to E'$ be isogeny over \mathbb{Q} . Then

$$\hat{h}(\phi P) = (\deg \phi)\hat{h}(P) \text{ for all } P \in E(\mathbb{Q})$$

• Let E/\mathbb{Q} be elliptic curve. There exists c > 0 such that

$$H(P+Q) \cdot H(P-Q) \le c \cdot H(P)^2 \cdot H(Q)^2$$
 for all $P, Q \in E(\mathbb{Q})$

- $\hat{h}: E(\mathbb{Q}) \to \mathbb{R}_{\geq 0}$ is a quadratic form.
- Let $P \in E(\mathbb{Q})$. Then P is a torsion point if and only if $\hat{h}(P) = 0$.

- Absolute values: Let $M_{\mathbb{Q}}$ denote the set of standard absolute values on \mathbb{Q} , which consists of:
 - One archimedean absolute value $|x|_{\infty} = \max(-x, x)$.
 - For each prime $p \in \mathbb{Z}$, one nonarchimedean (*p*-adic) absolute value $|x|_p = p^{-v_p(x)}$.
- Height: For an arbitrary number field K, let $P = (a_0 : a_1 : \cdots : a_n) \in \mathbb{P}^n(K)$, and define the height

$$H_K(P) := \prod_{v \in M_K} \max\{|a_0|_v, |a_1|_v, \dots, |a_n|_v\}^{[K_v:\mathbb{Q}_v]}$$

where M_K denotes the set of standard absolute values on K (i.e. the absolute values in K whose restriction to \mathbb{Q} is in $M_{\mathbb{Q}}$)

Note the absolute values are normalised such that

$$\prod_{v \in M_K} |x|_v^{[K_v:\mathbb{Q}_v]} = 1$$

14. Dual isogenies and the Weil pairing

• Let $\Phi \in E(\bar{K})$ be a finite $\operatorname{Gal}(\bar{K}/K)$ -stable subgroup (i.e. for all $T \in \Phi$, then $T^{\sigma} \in \Phi$ for all $\sigma \in \operatorname{Gal}(\bar{K}/K)$).

Then there exists an elliptic curve E'/K and a separable isogeny $\phi : E \to E'$ defined over K with kernel Φ such that for every isogeny $\phi : E \to E'$ with $\Phi \subset \ker(\phi)$ factors uniquely via ϕ .

- **Dual isogeny:** Let $\phi : E \to E'$ be an isogeny of degree *n*. Then there exists unique isogeny $\hat{\phi} : E' \to E$ s.t. $\hat{\phi} \circ \phi = [n]$. $\hat{\phi}$ is called the **dual isogeny** of ϕ .
 - Elliptic curves being isogenous is equivalence relation.
 - $\deg(\hat{\phi}) = \deg(\phi) \text{ and } [n] = [n]$
 - $-\hat{\phi} = \phi$
 - If $\psi: E \to E'$ isogeny and $\phi: E' \to E''$ isogeny, then $\widehat{\phi\psi} = \hat{\psi}\hat{\phi}$
 - If $\phi \in \text{End}(E)$, then $\text{tr}(\phi) = \phi + \hat{\phi}$
- If $\phi, \psi \in \operatorname{Hom}(E, E')$, then $\widehat{\phi + \psi} = \widehat{\phi} + \widehat{\psi}$.
- sum: Define sum : $\operatorname{Div}(E) \to E$ as $\sum n_p(P) \mapsto \sum n_p P$ (sum using group law) *Remark:* Given the isomorphism $\phi : E \to \operatorname{Pic}^0(E)$ given by $P \mapsto [P - O_E]$, we have

 $\operatorname{sum} D \mapsto [D] \quad \text{for all } D \in \operatorname{Div}^0(E)$

- Let $D \in \text{Div}(E)$. Then $D \sim 0$ if and only if deg(D) = 0 and sumD = 0. (i.e. D is principal iff both the sum and degree are 0)
- Weil pairing: Let $\phi : E \to E'$ be isogeny of degree n, with char $(K) \not [n]$. Let $E[\phi]$ be the kernel of ϕ . The Weil pairing:

$$e_{\phi}: E[\phi] \times E'[\hat{\phi}] \to \mu_n = \{x \in K : x^n = 1\}$$

Definition of map: Let $S \in E[\phi], T \in E'[\hat{\phi}]$. As ϕ has degree n, this implies nT = 0.

- Choose $f \in \overline{K}(E')$ such that $\operatorname{div}(f) = n(T) n(0)$.
- Choose $g \in \overline{K}(E)$ such that $\operatorname{div}(g) = \phi^*(T) \phi^*(0)$
- Thus $\phi^* f = cg^n$. Can assume wlog $\phi^* f = g^n$.

We define

$$e_{\phi}(S,T) = \zeta = \frac{g(X+S)}{g(X)}$$
 for any $X \in E$

- e_{ϕ} is bilinear and non-degenerate (i.e. if $e_{\phi}(S,T) = 1$ for all $S \in E[\phi]$, then $T = O_{E'}$)
- If E, E', ϕ are defined over K, then e_{ϕ} is Galois equivariant (i.e. $e_{\phi}(\sigma S, \sigma T) = \sigma(e_{\phi}(S, T))$ for all $\sigma \in \text{Gal}(\bar{K}/K)$

• Taking $\phi = [n] : E \to E$ gives a pairing:

$$e_n: E[n]: E[n] \to \mu_n$$

- If $E[n] \subset E(K)$, then $\mu_n \subset K$ (can find $S, T \in E[n]$ such that $e_n(S, T)$ is primitive n-th root of unity)
 - e_n is alternating. I.e. $e_n(T,T) = 1$ for all $T \in E[n]$.
 - $e_n(S,T) = e_n(T,S)^{-1}.$

15. Galois cohomology

Setup: G a group. A is a G-module (i.e. an abelian group A with a left group action $G \times A \to A$ s.t. we have identity, compatibility, and $g \cdot (a+b) = g \cdot a + g \cdot b$)

• $H^0(G, A) = A^G = \{a \in A : \sigma(a) = a \text{ for all } \sigma \in G\}$ Cochain: $C_1(G, A) = \{ \text{maps } G \to A \}$ \cup Cocycle: $Z^1(G, A) = \{(a_\sigma)_{\sigma \in G} : a_{\sigma\tau} = \sigma(a_\tau) + a_\sigma\}$ \cup Coboundary: $B^1(G, A) = \{(\sigma b - b)_{\sigma \in G} : b \in A\}$ $H^1(G, A) = \frac{Z'(G, A)}{B'(G, A)} = \frac{\text{cocycles}}{\text{coboundaries}}$

Remark: If G acts trivially, then $Z^1(G, A) = \{homogeneous \text{ maps} G \to A\}$ and $B^1(G, A) = \{(0)\}$ (the zero map). Thus $H^1(G, A) = \text{Hom}(G, A)$

Examples: If $G = \operatorname{Gal}(\mathbb{C}/\mathbb{R} = \{ \operatorname{id}, \operatorname{conj} \}$ and $A = \mathbb{C}$, then

- $C_1(G, A) = \{ \text{maps } G \to A \} \cong \mathbb{C} \times \mathbb{C}.$
- $Z^{1}(G, A) = \{(0, ix) : x \in \mathbb{R}\}$
- $B^{1}(G, A) = \{(0, ix) : x \in \mathbb{R}\}\$
- $H^1(G, A)$ is trivial.
- A short exact sequence of *G*-modules:

$$0 \longrightarrow A \xrightarrow{\phi} B \xrightarrow{\psi} C \longrightarrow 0$$

gives rise to long exact sequence of abelian groups:

$$0 \longrightarrow A^G \xrightarrow{\phi} B^G \xrightarrow{\psi} C^G \xrightarrow{\delta} H^1(G, A) \xrightarrow{\phi_*} H^1(G, B) \xrightarrow{\psi_*} H^1(G, C)$$

Definition of δ : :

- Let $c \in C^G$. There exists $b \in B$ s.t. $\psi(b) = c$.
- Note $\psi(\sigma b b) = 0$. For all $\sigma \in G$, there exists $a_{\sigma} \in A$ s.t. $\psi(a_{\sigma}) = \sigma b b$.
- Can show $(a_{\sigma})_{\sigma \in G} \in Z'(G, A)$.
- Define $\delta(C) = \text{class of } (a_{\sigma})_{\sigma \in G}$ in H'(G, A)
- Let A be a G-module, $H \triangleleft G$ a normal subgroup. Then there is an inflation and restriction exact sequence:

$$0 \longrightarrow H^1(G/H, A^H) \xrightarrow{\text{inflation}} H^1(G, A) \xrightarrow{\text{restriction}} H^1(H, A)$$

• Hilbert's Theorem 90: Let L/K be finite Galois extension. Then $H^1(\text{Gal}(L/K), L^{\times}) = 0$ (i.e. $Z^1 \subset B^1$).

Corollary 1: $H^1(\text{Gal}(\bar{K}/K), \bar{K}^{\times}) = 0$

Corollary 2: $H^1(\operatorname{Gal}(\bar{K}/K), \mu_n) \cong K^*/(K^*)^n$. If $\mu_n \in K$, then $\operatorname{Hom}_{\operatorname{cts}}(\operatorname{Gal}(\bar{K}/K), \mu_n) \cong K^*/(K^*)^n$

Setup: Let $\phi : E \to E'$ be isogeny of elliptic curves over K. Notation: $H'(K, _)$ means $H'(\text{Gal}(\bar{K}/K), _)$.

There is short exact sequence of $\operatorname{Gal}(\overline{K}/K)$ -modules:

$$0 \longrightarrow E[\phi] \longrightarrow E \xrightarrow{\phi} E' \longrightarrow 0$$

Get long exact sequence

$$E(K) \xrightarrow{\phi} E'(K) \xrightarrow{\delta} H^1(K, E[\phi]) \longrightarrow H^1(K, E) \xrightarrow{\phi_*} H^1(K, E')$$

Get short exact sequence

• Selmer group: THe ϕ -Selmer group is

 $S^{(\phi)}(E/K) = \ker \alpha$ (the diagonal map above)

or alternatively

$$S^{(\phi)}(E/K) = \operatorname{Ker}\left(H^{1}(K, E[\phi]) \to \prod_{V} H^{1}(K_{V}, E)\right)$$
$$= \{\alpha \in H^{1}(K, E[\phi]) : \operatorname{res}_{v}(\alpha) \in \operatorname{im}(\delta_{v}) \ \forall v\}$$

• Tate-Shaferavich group: $\operatorname{III}(E/K) = \ker (H'(K, E) \to \prod_V H'(K_v, E))$ Get short exact sequence:

$$0 \to \frac{E'(K)}{\phi E(K)} \to S^{(\phi)}(E/K) \to \operatorname{III}(E/K)[\phi_*] \to 0$$

- **Place:** Let *K* be number field. A **place** of *K* is an equivalence class of absolute values on *K*. Three types: *Trivial*, *archimedan*, and *non-Archimedean*.
- $S^{(n)}(E/K)$ is finite.
- Let S be finite set of places. The subgroup of $H^1(K, A)$ unramified outside S is

$$H^1(K,A;S) = \ker\left(H^1(K,A) \to \prod_{v \notin S} H^1(K_v^{nr},A)\right)$$

Conjecture: $\operatorname{III}(E/k)$ is finite.

16. Descent by cyclic isogeny

Setup: Let E, E' be elliptic curves over a number field K. Let $\phi : E \to E'$ be an isogeny of degree n.

Define the map α by the long exact sequence

$$E(K) \longrightarrow E'(K) \xrightarrow{\delta} H'(K, \mu_n) \longrightarrow H'(K, E)$$

$$\downarrow^{\cong \text{ by Hilbert 90}}_{K^*/(K^*)^n}$$

- Let $f \in K(E')$ and $g \in K(E)$ with $\operatorname{div}(f) = n(T) n(0)$ and $\phi^* f = g^n$. Then $\alpha(P) = f(P) \mod (K^*)^n$ for all $P \in E'(K) \setminus \{0, T\}$
- Setup of 2-isogeny: Let E and E' be elliptic curves:

$$E: y^2 = x(x^2 + ax + b)$$

 $E': y^2 = x(x^2 + a'x + b')$

such that $b \neq 0$ and $a^2 - 4b \neq 0$, and a' = -2a and $b' = a^2 - 4b$. There then is a 2-isogeny $\phi : E \to E'$ which maps:

$$(x,y) \mapsto \left(\left(\frac{y}{x}\right)^2, \frac{y(x^2-b)}{x^2} \right)$$

and its dual isogeny $\hat{\phi}: E' \to E$ which maps

$$(x,y) \mapsto \left(\frac{1}{4}\left(\frac{y}{x}\right)^2, \frac{y(x^2-b')}{8x^2}\right)$$

with kernels

$$E[\phi] = \{0_E, T\} \qquad T = (0, 0) \in E(K)$$
$$E'[\hat{\phi}] = \{0_{E'}, T'\} \qquad T' = (0, 0) \in E'(K)$$

• There is a group homomorphism:

$$E'(K) \longrightarrow K^*/(K^*)^2$$
$$(x,y) \longmapsto \begin{cases} x \mod (K^*)^2 & \text{if } x \neq 0 \\ b' \mod (K^*)^2 & \text{if } x = 0 \end{cases}$$

with kernel $\phi(E(K))$.

Remark: This gives two injective group homomorphisms:

$$\alpha_E : \frac{E(K)}{\hat{\phi}(E'(K))} \longleftrightarrow K^*/(K^*)^2$$
$$\alpha_{E'} : \frac{E'(K)}{\phi(E(K))} \longleftrightarrow K^*/(K^*)^2$$

• We have

$$2^{\operatorname{rank} E(K)} = \frac{|\operatorname{Im}(\alpha_E)| \cdot |\operatorname{Im}(\alpha_{E'})|}{4}$$

• If K is number field, and $a, b \in \mathcal{O}_K$, then

$$\operatorname{Im}(\alpha_E) \subset K(S,2)$$

where $S = \{ \text{primes dividing } b \}.$

Notation: $K(S,n) = \{x \in K^{\times}/(K^{\times})^n : \operatorname{ord}_v(x) \equiv 0 \pmod{n} \text{ for all } v \in M_K - S\}$ Example: Let S be finite set of primes. Then $\mathbb{Q}(S,2)$ is simply a finite set of squarefree integers containing only primes from S. E.g. if $S = \{2,3,5\}$, then $\mathbb{Q}(S,2) = \langle -1,2,3,5 \rangle = \{1,-1,2,-2,3,-3,5,-5,6,-6,10,-10,15,-15,30,-30\}$ (as cosets in $\mathbb{Q}^{\times}/(\mathbb{Q}^{\times})^2$)

• If $b_1b_2 = b$, then

$$b_1(K^*)^2 \in \operatorname{Im}(\alpha_E) \quad \iff \quad w^2 = b_1 u^4 + a u^2 v^2 + b_2 v^4$$

is soluble for $u, v, w \in K$ not all zero

Fact: If $a, b_1, b_2 \in \mathbb{Z}$ and $p \not| 2b(a^2 - 4b)$, then $w^2 = b_1 u^4 + a u^2 v^2 + b_2 v^4$ has solution over \mathbb{Q}_p

- Calculating the **rank** of $E: y^2 = x(x^2 + ax + b)$:
 - Setup the 2-isogeny by defining $E': y^2 = x(x^2 + a'x + b)$ where a' = -2a and $b' = a^2 4b$.
 - We aim to calculate $\operatorname{Im}(\alpha_E)$ and $\operatorname{Im}(\alpha_{E'})$.
 - Obtain bounds on the size by using that $\operatorname{Im}(\alpha_E) \subset \langle -1, p_{b_1}, p_{b_2}, \ldots, p_{b_k} \rangle$ where p_{b_i} are the primes dividing b'.

Similarly, use that $\operatorname{Im}(\alpha_{E'}) \subset \langle -1, p_{b'_1}, p_{b'_2}, \ldots, p_{b'_k} \rangle$ where $p_{b'_i}$ are the primes dividing b'.

- For each b_1 dividing b, determine if b_1 is in $\text{Im}(\alpha_E)$ by determining if there exist $u, v, w \in K$ not all zero such that

$$w^2 = b_1 u^4 + a u^2 v^2 + b_2 v^4$$

Tips:

- * If $b_1, b_2, a \leq 0$, then no solutions over \mathbb{R} , hence no solutions in \mathbb{Q} .
- * Can multiply through to assume integer solutions with gcd(u, v) = 1.
- * Use quadratic reciprocity.
- * Use that $\operatorname{Im}(\alpha_E)$ is a group to eliminate checking every possible subset of $\langle -1, p_{b_1}, \ldots, p_{b_k} \rangle$.
- Finally, use

rank $E(K) = \log_2 |\operatorname{Im}(\alpha_E)| + \log_2 |\operatorname{Im}(\alpha_{E'})| - 2$

to compute the rank, given $\operatorname{Im}(\alpha_E)$ and $\operatorname{Im}(\alpha_{E'})$.

Birch Swinnerton-Dyer conjecture

• Let E/\mathbb{Q} be elliptic curve. Define the associated L-function $L(E,s) = \prod_p L_p(E,s)$ where

$$L_p(E,s) = \begin{cases} (1 - a_p p^{-s} + p^{1-2s})^{-1} & \text{if good reduction} \\ (1 - p^{-s})^{-1} & \text{if split mult reduction} \\ (1 + p^{-s})^{-1} & \text{if nonsplit mult reduction} \\ 1 & \text{if additive reduction} \end{cases}$$

where $\#\tilde{E}(\mathbb{F}_p) = p+1-a_p$, By Hasse's bound, we know L(E, s) converges for $\operatorname{Re}(s) > 3/2$.

- Analytic continuation: L(E, s) is the L-functio of a weight 2 modular form and hence has an analytic continuation to all of \mathbb{C}
- Weak BSD: $\operatorname{ord}_{s=1}L(E,s) = \operatorname{rank}E(\mathbb{Q})$
- Strong BSD:

$$\lim_{s \to 1} \frac{1}{(s-1)^r} L(E,s) = \frac{\Omega_E \cdot |\mathrm{III}(E/\mathbb{Q})| \cdot \mathrm{Reg}E(\mathbb{Q}) \cdot \prod_p c_p}{|E(\mathbb{Q})_{\mathrm{tors}}|^2}$$

where

- $-c_p = [E(\mathbb{Q}_p) : E_0(\mathbb{Q}_p)] =$ Tamagawa number of E/\mathbb{Q}_p .
- Let P_1, \ldots, P_r generate the non-torsion part of $E(\mathbb{Q})$. So $E(\mathbb{Q})/E(\mathbb{Q})_{\text{torsion}} = \langle P_1, \ldots, P_r \rangle$. Then the regulator of $E(\mathbb{Q})$ is

$$\operatorname{Reg} E(\mathbb{Q}) = \operatorname{det}([P_i, P_j])_{i,j=1,\dots,r} = \begin{vmatrix} [P_1, P_1] & [P_1, P_2] & \dots & [P_1, P_r] \\ [P_2, P_1] & [P_2, P_2] & \dots & [P_2, P_r] \\ \vdots & \vdots & \ddots & \vdots \\ [P_r, P_1] & [P_r, P_2] & \dots & [P_r, P_r] \end{vmatrix}$$

where $[P,Q] = \hat{h}(P+Q) - \hat{h}(P) - \hat{h}(Q)$

 $-\Omega_E$ is the integral

$$\Omega_E = \int_{E(\mathbb{R})} \frac{dx}{|2y + a_1x + a_3|}$$

where a_i are coefficients of globally minimal Weierstrass equation for E.

• Kolyvagin: If $\operatorname{ord}_{s=1}L(E, s) = 0$ or 1 (i.e. analytic rank is 0 or 1), then weak BSD is true and $|\operatorname{III}(E/\mathbb{Q})| < \infty$

Misc

Automorphism group: Let E/k be elliptic curve. Then Aut(E) is finite, and its order is

- 2 if $j(E) \notin \{0, 1728\}$
- 4 if j(E) = 0 and char $k \notin \{2, 3\}$
- 6 if j(E) = 1728 and char $k \notin \{2, 3\}$
- 12 if j(E) = 0 = 1728 and char k = 3
- 24 if j(E) = 0 = 1728 and char k = 2

In the last two cases, E is always supersingular

Endomophisms: An endomorphism of E is an isogeny from E to E. Denoted, End(E), it forms a ring

- Multiplication by n: $[n]: E \to E$ given by $X \mapsto X + X + \dots + X$ n times.
- (For finite fields) Frobenius endomorphism: $\phi: E \to E$ given by $(x, y) \mapsto (x^q, y^q)$
- Translation: $\tau_P: E \to E$ given by $X \mapsto P + X$

Some Geometric Notions

• Coordinate ring: Let V be a variety over K. The coordinate ring of V/K is defined by

$$K[V] = \frac{K[X]}{I(V/K)}$$

Elements of K[V] are the polynomial functions on V.

K(V) is an integral domain. It's quotient field is denoted by K(V).

• Maximal ideal: Let V be variety, and P a point on V. The maximal ideal at P is

$$M_P = \{ f \in K[V] : f(P) = 0 \}$$

• Local ring: Let V be variety, and P a point on V. The local ring of V at P is

$$K[V]_P = \{F \in K(V) : F = \frac{f}{g} \text{ for some } f, g \in K[V] \text{ with } g(P) \neq 0\}$$

I.e. $K[V]_P$ is the set of regular function at P (functions defined at P).

• Rational map: Let $V_1, V_2 \subset \mathbb{P}^n$ projective varieties. A rational map from V_1 to V_2 is a map of the form

$$\phi: V_1 \to V_2 \qquad \phi = [f_0, \dots, f_n]$$

where $f_0, \ldots, f_n \in \overline{K}(V_1)$ are s.t., fr every point $P \in V_1$ at which f_0, \ldots, f_n are all defined: $\phi(P) = [f_0(P), \ldots, f_n(P)] \in V_2.$

Note: A rational map $\phi: V_1 \to V_2$ may **not** necessarily be well-defined at every point of V_1 .

- **Regular:** A rational map $\phi = [f_0, \ldots, f_n] : V_1 \to V_2$ is **regular** at $P \in V_1$ if there is a function $g \in \bar{K}(V_1)$ such that
 - For each i, gf_i is regular at P.
 - There exists an *i* for which $gf_i(P) \neq 0$

Note: We may have to take different g's for different points.

• Morphism: A rational map that is regular at every point.

Curves

- Let C be a curve, and $P \in C$ a smooth point. Then $K[C]_P$ is a discrete valuation ring.
- Order of vanishing: Let C be a curve with function field K(C). Let $P \in C$ be a smooth point. The function $\operatorname{ord}_P(f) : K(C) \to \mathbb{Z} \cup \infty$ is the order of vanishing of $f \in K(C)$ at P.

Defined as

$$\operatorname{ord}_P(f) = \sup\{d \in \mathbb{Z} : f \in M_p^d\}$$