Elliptic Curves

Lectures

1. Fermat's method infinite descent

- Let Δ be a right triangle with side lengths a, b, c. We say Δ is rational if side lengths are rational, and we say Δ is primitive if side lengths integers and $\operatorname{gcd}(a, b, c)=1$.
- Every primitive triangle has side lengths $u^{2}-v^{2}, 2 u v$, and $u^{2}+v^{2}$ for some integers $u, v \in \mathbb{Z}, u>v>0$.
- Congruent number: Let D be a positive rational. D is congruent number if there exists rational right-angled triangle with area D.
(equivalently, there exists a rational solution to $y^{2}=x^{3}-D^{2} x$ s.t. $y \neq 0$) (or to $D y^{2}=$ $x^{3}-x$) (or the elliptic curve has positive rank)
- 1 is not a congruent number. Equivalently, there are no integer solutions to $w^{2}=u v(u+$ $v)(u-v)$ where $w \neq 0$.
- In general, if $u, v, w \in \mathbb{Z}, w \neq 0$ such that $D w^{2}=u v(u-v)(u+v)$, then there exists right-angled triangle with area D with side lengths:

$$
\frac{u^{2}-v^{2}}{w}, \quad \frac{2 u v}{w}, \quad \text { and } \quad \frac{u^{2}+v^{2}}{w}
$$

- Let K be a field with $\operatorname{char}(K) \neq 2$. Let $u, v \in K[t]$ be coprime polynomials. If $\alpha u+\beta v$ is a square for 4 distinct pairs $(\alpha, \beta) \in \mathbb{P}^{1}$, then $u, v \in K$.
- Elliptic curve: An elliptic curve E / K is the projective closure of a plane affine curve $y^{2}=f(x)$ where $f \in K[x]$ is a monic cubic polnomial with distinct roots in \bar{K}.
or An elliptic curve E / K is a smooth projective curve of genus 1 with a specified K rational point O_{E}.
- Weierstrass equation: The equation $y^{2}=f(x)$ is called Weierstrass equation.

Fact: Let L / K be field extension Then $E(L)=\left\{(x, y) \in L^{2}: y^{2}=f(x)\right\} \cup\left\{O_{E}\right\} . E(L)$ is an abelian group.
Let E / K be elliptic curve. Then $E(K(t))=E(K)$.

- Isomorphism: Let E and E^{\prime} be elliptic curves. Then E and E^{\prime} are isomorphic if there exists a morphism $\phi: E \rightarrow E^{\prime}$ and a morphism $\chi: E^{\prime} \rightarrow E$ s.t. $\chi \circ \phi=\mathrm{id}_{E}$ and $\phi \circ \chi=\mathrm{id}_{E^{\prime}}$.

Some results on congruent numbers: Let p be a prime number. Then:

- If $p \equiv 3(\bmod 8)$, then p is not congruent, but $2 p$ is congruent.
- If $p \equiv 5(\bmod 8)$, then p is congruent.
- If $p \equiv 7(\bmod 8)$, then p and $2 p$ is congruent.

List of congruent numbers: $5,6,7,13,14,15,20,21,22,23,24,28,29,30,31, \ldots$.

2. Remarks on algebraic curves

- Rational: A plane algebraic curve $C=\{f(x, y)=0\} \subset \mathbb{A}^{2}$ (where f irreducible) is rational if it has a rational parameterisation
I.e. there exists $\phi, \chi \in K(t)$ s.t.
- The map $t \mapsto(\phi(t), \chi(t))$ is injective for all but finitely many points in \mathbb{A}^{1}.
$-f(\phi(t), \chi(t))=0$
Any non-singular plane conic is rational. (e.g. $x^{2}+y^{2}=1$)
Any singular plane curve is rational (not elliptic curves) (e.g. $y^{2}=x^{3}$ or $y^{2}=x^{2}(x+1)$).
- Genus: Let C be smooth projective curve. Genus $g(C) \in \mathbb{Z}_{\geq 0}$ is invariant of C.
- A smooth projective curve $C \subset \mathbb{P}^{2}$ of degree d has genus

$$
g(C)=\frac{(d-1)(d-2)}{2}
$$

(so if $d=1,2$, then genus is 0)
Let C be smooth projective curve.
$-C$ is rational $\quad \Longleftrightarrow g(C)=0$.
$-C$ is elliptic curve $\Longleftrightarrow g(C)=1$.

- Order of vanishing: Let C algebraic curve, function field $K(C) . P \in C$ a smooth point. Write $\operatorname{ord}_{p}(f)$ as the order of vanishing of $f \in K(C)$ at P
$\operatorname{ord}_{p}(f): K(C)^{*} \rightarrow \mathbb{Z}$ is a discrete valuation
$-\operatorname{ord}_{p}\left(f_{1} f_{2}\right)=\operatorname{ord}_{p}\left(f_{1}\right)+\operatorname{ord}_{p}\left(f_{2}\right)$
$-\operatorname{ord}_{p}\left(f_{1}+f_{2}\right) \geq \min \left(\operatorname{ord}_{p}\left(f_{1}\right), \operatorname{ord}_{p}\left(f_{2}\right)\right)$
E.g. If $y^{2}=x(x-1)(x-\lambda)$, then $\operatorname{ord}_{P}(x)=-2$ and $\operatorname{ord}_{P}(y)=-3$ where $P=(0: 1: 0)$.
- Uniformiser: An element $t \in K(C)^{*}$ is a uniformiser at P if $\operatorname{ord}_{p}(t)=1$.
- Let C be an affine curve, defined by $C=\{g(x, y)=0\} \in \mathbb{A}^{2}$ where $g \in K[X, Y]$ is irreducible. Express $g(x, y)$ as

$$
g(x, y)=g_{0}+g_{1}(x, y)+g_{2}(x, y)+g_{3}(x, y)+\ldots
$$

where each g_{i} is homogenoues of degree i.
Suppose $P=(0,0) \in C$ is a smooth point on C, so we have $g_{0}=0$ and $g_{1}=\alpha x+\beta y$ where α, β not both zero. (g_{1} is tangent to C at P)
Then, for any $\gamma, \delta \in K$, we have that $\gamma x+\delta y \in K(C)$ is a uniformiser at P if and only if $\alpha \delta-\beta \gamma \neq 0$ (i.e. $\gamma x+\delta y$ not some multiple of g_{1}, so not tangent)

- Divisor: A formal sum of points on C. Can be expressed in the form:

$$
\sum_{p \in C} n_{p} P \quad \text { with } n_{p} \in \mathbb{Z}
$$

and $n_{p}=0$ for all but finitely many $p \in C$.

- Degree of divisor: $\operatorname{deg}(D)=\sum n_{p}$
- Divisor of function: If $f \in K(C)^{*}$, then

$$
\operatorname{div}(f)=\sum_{P \in C} \operatorname{ord}_{P}(f) P
$$

This is called a principal divisor.

- Effective divisor: Let D be divisor. D is effective if $n_{p} \geq 0$ for all P. Notation: $D \geq 0$
- Riemann Roch space: The Riemann Roch space of $D \in \operatorname{Div}(C)$ is

$$
\mathcal{L}(D)=\left\{f \in K(C)^{\star}: \operatorname{div}(f)+D \geq 0\right\} \cup\{0\}
$$

(i.e. the K-vector space of rational functions on C with poles no worise than that specified by D)
Remark: $\quad \mathcal{L}(D)$ is a finite-dimensional \bar{K}-vector space

- Riemann Roch for genus 1: Let $D=\sum n_{p} P, \operatorname{deg} D=\sum n_{p}$:

$$
\operatorname{dim} \mathcal{L}(D)= \begin{cases}\operatorname{deg} D & \text { if } \operatorname{deg} D>0 \\ 0 \text { or } 1 & \text { if } \operatorname{deg} D=0 \\ 0 & \text { if } \operatorname{deg} D<0\end{cases}
$$

- Let $C \subset \mathbb{P}^{2}$ be a smooth plane cubic and $P \in C$ a point of inflection. Then one can change coordinates such that

$$
C: Y^{2} Z=X(X-Z)(X-\lambda Z)
$$

where $P=(0: 1: 0)$ and $\lambda \neq 0,1$. This is called Legendre form.

- Degree of a morphism Let $\phi: C_{1} \rightarrow C_{2}$ be non-constant morphism of smooth projective curve. Let $\phi^{*}: K\left(C_{2}\right) \rightarrow K\left(C_{1}\right)$ be pullback given by $f \mapsto f \circ \phi$.
The degree of ϕ is [$K\left(C_{1}\right): \phi^{*} K\left(C_{2}\right)$] (we define ϕ is separable iff extension $K\left(C_{1}\right) / \phi^{*} K\left(C_{2}\right)$ is separable)
Fact: $\operatorname{deg} \phi=1$ if and only if ϕ is an isomorphism. $\operatorname{deg} \phi=0$ if and only if ϕ is a constant map.
- Ramification index: Let $P \in C_{1}$ and $Q \in C_{2}$ such that $\phi(P)=Q$. Let $t \in K\left(C_{2}\right)$ be a uniformizer at Q (i.e. $\operatorname{ord}_{Q}(t)=1$) Then the ramification index $e_{\phi}(P)$ is

$$
e_{\phi}(P)=\operatorname{ord}_{P}\left(\phi^{*} t\right) \quad\left(\text { note } e_{\phi}(P) \geq 1\right)
$$

This is independent of choice of t.

- Let $\phi: C_{1} \rightarrow C_{2}$ be non-constant morphism of smooth projective curves. Then

$$
\sum_{P \in \phi^{-1}(Q)} e_{\phi}(P)=\operatorname{deg}(\phi) \quad \text { for all } Q \in C_{2}
$$

If ϕ is separable, then $e_{\phi}(P)=1$ for all but finitely many $P \in C_{1}$.

- ϕ is surjective
$-\left|\phi^{-1}(Q)\right| \leq \operatorname{deg}(\phi)$ with equalty for all but finitely many $Q \in C_{2}$.
- Rational map: Let C be an algebraic curve. A rational map $\phi: C \rightarrow \mathbb{P}^{n}$ is given by

$$
P \mapsto\left(f_{0}(P): f_{1}(P): \cdots: f_{n}(P)\right)
$$

where $f_{0}, f_{1}, \ldots, f_{n} \in K(C)$ are not all zero.
Fact: If C is smooth, then ϕ is a morphism.

3. Weierstrass Equations

- Elliptic curve: An ellipttic curve E over K is a smooth projective curve of genus 1 defined over K with a specified K-rational point O_{E}.
- Weierstrass form: A Weierstrass equation, over a field K, is an equation of the form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

with coefficients $a_{1}, a_{2}, a_{3}, a_{4}, a_{6}$ in K.

- Weierstrass isomorphism: Every elliptic curve E is isomorphic over K to a curve in Weierstrass form via an isomorphism, taking O_{E} to $(0: 1: 0)$.
- If $D \in \operatorname{Div}(E)$ is defined over K (i.e. fixed by $\operatorname{Gal}(\bar{K} / K)$, then $\mathcal{L}(D)$ has a basis in $K(E)$ (not just in $\bar{K}(E)$)
- Points of inflection: Let $C=\{F=0\} \subset \mathbb{P}^{2}$ be algebraic curve. THe points of inflection are given by

$$
\operatorname{det}\left(\frac{\partial^{2} F}{\partial X_{i} \partial X_{j}}\right)=0
$$

(i.e. where the Hessian determinant of F is zero)

- Let E and E^{\prime} be elliptic curves over K in Weierstrass form. Then $E \cong E^{\prime}$ over K iff the equations are related by a change of variables:

$$
\begin{aligned}
& x=u^{2} x^{\prime}+r \\
& y=u^{3} y^{\prime}+u^{2} s x^{\prime}+t
\end{aligned}
$$

where $u, r, s, t \in K, u \neq 0$.
Note: This changes the discriminant by $u^{12} \Delta^{\prime}=\Delta$.

- Discriminant: A Weierstrass equation for a curve E :

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

defines an elliptic curve if and only if the discriminant $\Delta\left(a_{1}, \ldots, a_{6}\right) \neq 0$ where $\Delta \in$ $\mathbb{Z}\left[a_{1}, \ldots, a_{6}\right]$ is the polynomial

$$
\text { where } \begin{aligned}
\Delta & =-b_{2}^{2} b_{8}-8 b_{4}^{3}-27 b_{6}^{2}+9 b_{2} b_{4} b_{6} \\
b_{2} & =a_{1}^{2}+4 a_{2}, \\
b_{4} & =2 a_{4}+a_{1} a_{3}, \\
& b_{6}=a_{3}^{2}+4 a_{6}, \\
& b_{8}=a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2} .
\end{aligned}
$$

If char $K \neq 2,3$, then can reduce to $E: y^{2}=x^{3}+a x+b$ defines elliptic curve, iff the discriminant $\Delta=-16\left(4 a^{3}+27 b^{2}\right)$ is non-zero, where

$$
\begin{array}{rll}
a & =-27 c_{4} & \text { where }
\end{array} c_{4}=b_{2}^{2}-24 b_{4},
$$

- If char $K \neq 2,3$, then $E: y^{2}=x^{3}+a x+b$ and $E: y^{2}=x^{3}+a^{\prime} x+b^{\prime}$ are isomorphic over K iff there exists $u \in K^{*}$ s.t. $a^{\prime}=u^{4} a$ and $b^{\prime}=u^{6} b$.
- j-invariant: $j(E)=\frac{1728\left(4 a^{3}\right)}{4 a^{3}+27 b^{2}}$
$E \cong E^{\prime} \Longrightarrow j(E)=j\left(E^{\prime}\right)$ and converse holds if $K=\bar{K}$

4. Group Law

- Group law Let E be elliptic curve with specified point $O_{K} \in E(K)$. Set of points on E form an abelian group (E, \oplus).
- Identity is specified point O_{E}
- Group operation $P \oplus Q$ is as follows:
* Let S be 3rd point of intersection of line $P Q$ and curve E (if $P=Q$, then let S be intersection between $T_{p} E($ tangent line at $P)$ and E)
* Let R be 3rd point of intersection fo line $O_{E} S$ and curve E.
* Then $P \oplus Q=R$
- Inverse of P :
* Let S be 3rd point of intersection of the tangent line at O_{E} with the curve E.
* Let Q be 3rd point of intersection of line $P S$ and E.
* Then $P \oplus Q=O_{E}$
- Linearly equivalent $D_{1}, D_{2} \in \operatorname{Div}(E)$ are linearly equivalent if $\exists f \in \bar{K}(E)^{*}$ s.t. $\operatorname{div}(f)=$ $D_{1}-D_{2}$. (written $D_{1} \sim D_{2}$).
- Picard group: $\operatorname{Pic}(E)=\operatorname{Div}(E) / \sim$
$\operatorname{Div}^{0}(E)$ is the degree 0 divisors (i.e. $\left.\operatorname{Div}^{0}(E)=\operatorname{ker}(\operatorname{Div}(E) \rightarrow \mathbb{Z})\right)$
$\operatorname{Pic}^{0}(E)=\operatorname{Div}^{0}(E) / \sim$
- Let $\phi: E \rightarrow \operatorname{Pic}^{0}(E)$ be given by $P \mapsto\left[P-O_{E}\right]$. Then $\phi(P \oplus Q)=\phi(P)+\phi(Q)$ and ϕ is a bijection.
Remark: $\quad \phi$ identifies (E, \oplus) with $\left(\operatorname{Pic}^{0}(E),+\right)$ which proves associaitvity!
- Explicit formula: Let $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ be points on E.
- Inverse: The inverse of P_{1} is $\ominus P_{1}=\left(x_{1},-\left(a_{1} x_{1}+a_{3}+y_{1}\right)\right)$.
- Sum:
* Case I: $x_{1}=x_{2}, y_{1} \neq y_{2}: \quad P_{1} \oplus P_{2}=O_{E}$.
* Case II: $x_{1} \neq x_{2}$: $\quad P_{1} \oplus P_{2}=\left(x_{3}, y_{3}\right)$ where

$$
\begin{aligned}
x_{3} & =\lambda^{2}+a_{1} \lambda-a_{2}-x_{1}-x_{2} \\
y_{3} & =-\left(\lambda+a_{1}\right) x_{3}-\nu-a_{3}
\end{aligned}
$$

where

$$
\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { and } \quad \nu=\frac{x_{2} y_{1}-x_{1} y_{2}}{x_{2}-x_{1}}
$$

* Case III: $x_{1}=x_{2}, y_{1}=y_{2}$: So $P_{1}=P_{2}$, where we instead use the tangent slope

$$
\lambda=\frac{3 x_{1}^{2}+3 a_{2} x_{1}+a_{4}-a_{1} y_{1}}{2 y_{1}+a_{1} x_{1}+a_{3}} \quad \text { and } \quad \nu=\frac{-x_{1}^{3}+a_{4} x_{1}+2 a_{6}-a_{3} y_{1}}{2 y_{1}+a_{1} x_{1}+a_{3}}
$$

- Explicit formula for the case $y^{2}=x^{3}+a x+b$:
- Inverse: The inverse of P_{1} is $\ominus P_{1}=\left(x_{1},-y_{1}\right)$
- Sum:
* If $x_{1} \neq x_{2}$, then $P_{1} \oplus P_{2}=\left(x_{2}, y_{2}\right)$ where

$$
\begin{aligned}
x_{3} & =\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)-x_{1}-x_{2} \\
y_{3} & =-\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) x_{3}-\left(\frac{x_{2} y_{1}-x_{1} y_{2}}{x_{2}-x_{1}}\right)
\end{aligned}
$$

* If $x_{1}=x_{2}$ and $y_{1}=y_{2}$, Then $2 P_{1}=\left(x_{3}, y_{3}\right)$ where

$$
\left.\begin{array}{l}
x_{3}=\frac{x^{4}-2 a x^{2}-8 b x+a^{2}}{(2 y)^{2}} \\
y_{3}=\frac{x^{6}+5 a x^{4}+20 b x^{3}-5 a^{2} x^{2}-4 a b x-a^{3}-8 b^{2}}{(2 y)^{3}}=-\left(\frac{3 x^{2}+a}{2 y}\right)^{2}-2 x \\
2 y
\end{array}\right)\left(x_{3}-x_{1}\right)-y_{1} .
$$

- $E(K)$ is an abelian group.
- Elliptic curves are group varieties. I.e. The inverse map $[-1]: E \rightarrow E$ given by $P \mapsto-P$ and the addition map $A: E \times E \rightarrow E$ given by $(P, Q) \mapsto P+Q$ are both morphisms of algebraic varieties.
- n-torsion Define $[n]: E \rightarrow E$ as the n-torsion map given by

$$
P \mapsto P+P+\cdots+P \quad n \text { times } \quad \text { for } n>0
$$

The n-torsion subgroup of E is

$$
E[n]=\operatorname{ker}([n]: E \rightarrow E)=\{P \in E: P+P+\ldots P=0 \quad n \text { times }\}
$$

E.g. If $E: y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)$, then $E[2]=\left\{O_{E},\left(e_{1}, 0\right),\left(e_{2}, 0\right),\left(e_{3}, 0\right)\right\}$

- 3-torsion: If $0 \neq P=(x, y) \in E(K)$, then

$$
3 P=O_{E} \quad \Longleftrightarrow \quad 3 x^{4}+6 a x^{2}+12 b x-a^{2}=0
$$

Elliptic curves over \mathbb{C}

- Lattice: Let w_{1}, w_{2} be basis for \mathbb{C} as \mathbb{R} vector space. Then a lattice Λ can be given as $\Lambda=\left\{a w_{1}+b w_{2}: a, b \in \mathbb{Z}\right\}$.
- Weierstrass p-function: Let Λ be a lattice. Then the Weierstrass p-function is:

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{0 \neq \lambda \in \Lambda}\left(\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda}\right)
$$

This satisfies $\wp^{\prime}(z)^{2}=4 \wp(z)-g_{2} \wp(z)-g_{3}$ where $g_{2}, g_{3} \in \mathbb{C}$ depend on the lattice:

$$
g_{2}=60 \sum_{0 \neq \lambda \in \Lambda} \frac{1}{\lambda^{4}} \quad \text { and } \quad g_{3}=140 \sum_{0 \neq \lambda \in \Lambda} \frac{1}{\lambda^{6}}
$$

Fact: $\quad \mathbb{C} / \Lambda \cong E(\mathbb{C})$ where E is the elliptic curve $y^{2}=4 x^{3}-g_{2} x-g_{3}$. This is isomorphic both as Riemann surfaces and abelian groups.

- Uniformisation theorem: Every elliptic curve over \mathbb{C} is isomorphic to \mathbb{C} / Λ for some lattice Λ.

Summary of results:

- For $K=\mathbb{C}$, then $E(\mathbb{C}) \cong \mathbb{C} / \Lambda \cong \mathbb{R} / \mathbb{Z} \times \mathbb{R} / \mathbb{Z}$ (isomorphic to complex torus)
- For $K=\mathbb{R}$, then

$$
E(\mathbb{R})= \begin{cases}\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{R} / \mathbb{Z} & \text { if } \Delta>0 \\ \mathbb{R} / \mathbb{Z} & \text { if } \Delta<0\end{cases}
$$

- For $K=\mathbb{F}_{q}$, then $E\left(\mathbb{F}_{q}\right)$ is approximately $q+1$. We have Hasse's Theorem:

$$
\left|E\left(\mathbb{F}_{q}\right)-(q+1)\right| \leq 2 \sqrt{q}
$$

- For local fields, $\left[K: \mathbb{Q}_{p}\right]<\infty$, let \mathcal{O}_{K} be the ring of integers. Then $E(K)$ has a subgroup of finite index isomorphic to $\left(\mathcal{O}_{K},+\right)$.
E.g. If $K=\mathbb{Q}_{p}$, then $E(K)$ contains subgroup of finite index isomorphic to $\left(\mathbb{Z}_{p},+\right)$. Note that $\left(\mathbb{Z}_{p},+\right)$ is not finitely generated (contains all rationals without p in denominator), so $E(K)$ is not finitely generated.
- For number fields $[K: \mathbb{Q}]<\infty$, we have that $E(K)$ is a finitely generated abelian group (Mordell-Weil Theorem)

5. Isogenies

- Isogeny Let E_{1}, E_{2} be elliptic curves. An isogeny $\phi: E_{1} \rightarrow E_{2}$ is a nonconstant morphism with $\phi\left(O_{E_{1}}\right)=O_{E_{2}}$. We say E_{1} and E_{2} are isogenous.
- Every morphism $\phi: C_{1} \rightarrow C_{2}$ of curves is either constant or surjective.

Fact: Two elliptic curves E_{1} and E_{2} are isogenuous over \mathbb{F}_{q} if and only if $\# E_{1}\left(\mathbb{F}_{q}\right)=$ $\# E_{2}\left(\mathbb{F}_{q}\right)$.

- $\operatorname{Hom}\left(E_{1}, E_{2}\right)=\left\{\right.$ isogenies $\left.E_{1} \rightarrow E_{2}\right\} \cup\{0\}$. This is a group under $(\phi+\psi)(P)=\phi(P)+$ $\psi(P)$
If $\phi: E_{1} \rightarrow E_{2}$ is isogeny and $\psi: E_{2} \rightarrow E_{3}$ is isogeny, then $\psi \phi$ is isogeny.
- Let $n \in \mathbb{Z}$ with $n \neq 0$. Then $[n]: E \rightarrow E$ is an isogeny.

Corollary: $\operatorname{Hom}\left(E_{1}, E_{2}\right)$ is torision-free as a \mathbb{Z}-module.

- (homomorphisms): Let $\phi: E_{1} \rightarrow E_{2}$ be isogeny. Then $\phi(P+Q)=\phi(P)+\phi(Q)$ for all $P, Q \in E_{1}$.
- Degree 2 isogeny: Let E, E^{\prime} be two elliptic curves over K, defined by

$$
\begin{aligned}
E: y^{2} & =x\left(x^{2}+a x+b\right) \\
E^{\prime}: y^{2} & =x\left(x^{2}+a^{\prime} x+b^{\prime}\right)
\end{aligned}
$$

where $a, b \in K$ such that $b\left(a^{2}-4 b\right) \neq 0$, and where $a^{\prime}=-2 a$ and $b^{\prime}=a^{2}-4 b$.
Then, there is a degree 2 isogeny $\phi: E \rightarrow E^{\prime}$ where

$$
(x, y) \mapsto\left(\left(\frac{y}{x}\right)^{2}: \frac{y\left(x^{2}-b\right)}{x^{2}}: 1\right) \quad \text { and } \quad \phi\left(O_{E}\right)=O_{E^{\prime}}
$$

- Let $\phi: E_{1} \rightarrow E_{2}$ be an isogeny. Then there exists a morphism $\xi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ making the following diagram commute:

where x_{i} denote the x-coordinates on a Weierstrass equation for E_{i}.
Moreover, if $\xi(t)=\frac{r(t)}{s(t)}$ where $r, s \in K[t]$ coprime, then $\operatorname{deg}(\phi)=\operatorname{deg}(\xi)=\max (\operatorname{deg}(r), \operatorname{deg}(s))$.
- $\operatorname{deg}[2]=4$.
- Quadratic form Let A abelian group. $q: A \rightarrow \mathbb{Z}$ is a quadratic form if
$-q(n x)=n^{2} q(x)$ for all $n \in \mathbb{Z}, x \in A$
$-(x, y) \mapsto q(x+y)-q(x)-q(y)$ is \mathbb{Z}-bilinear.
A map $q: A \rightarrow \mathbb{Z}$ is a quadratic form iff it satisfies the parallelogram law: $q(x+y)+$ $q(x-y)=2 q(x)+2 q(y)$ for all $x, y \in A$.
- deg : $\operatorname{Hom}\left(E_{1}, E_{2}\right) \rightarrow \mathbb{Z}$ is a quadratic form.
- Let $P, Q \in E$, and let $P, Q, P+Q, P-Q \neq 0$, and let $x_{1}, x_{2}, x_{3}, x_{4}$ be the x-coordinates of these 4 points respectively. Then, there exist polynomials $W_{0}, W_{1}, W_{2} \in \mathbb{Z}[a, b]\left[x_{1}, x_{2}\right]$ of degree ≤ 2 in x_{1} and of degree ≤ 2 in x_{2} such that

$$
\left(1: x_{3}+x_{4}: x_{3} x_{4}\right)=\left(W_{0}: W_{1}: W_{2}\right)
$$

These polynomials can explicitly be given as

$$
\begin{aligned}
& W_{0}=\left(x_{1}-x_{2}\right)^{2} \\
& W_{1}=2\left(x_{1} x_{2}+a\right)\left(x_{1}+x_{2}\right)+4 b \\
& W_{2}=x_{1}^{2} x_{2}^{2}-2 a x_{1} x_{2}-4 b\left(x_{1}+x_{2}\right)+a^{2}
\end{aligned}
$$

- Corollary: $\operatorname{deg}(n \phi)=n^{2} \operatorname{deg}(\phi)$. In particular, $\operatorname{deg}[n]=n^{2}$.

6. Invariant differential

- Invariant differential Let C algebraic curve. The space of differentials Ω_{C} is the $K(C)$-vector space generated by $d f$ for $f \in K(C)$ subject to the relations
$-d(f+g)=d f+d g$
$-d(f g)=f d(g)+g d(f)$
$-d a=0$ for all $a \in K$
Fact: Ω_{C} is 1-dimensional $K(C)$ vector space (for curves C)
(In general, if V is an algebraic variety of dimension d, then Ω_{V} is d-dimensional $K(V)$ vector space)
- Order of differential: Let $0 \neq w \in \Omega_{C}$. Let $P \in C$ be a smooth point and $t \in K(C)$ be a uniformiser at P. Then $w=f d t$ for some $f \in K(C)^{*}$.
We define

$$
\operatorname{ord}_{P}(w):=\operatorname{ord}_{P}(f)
$$

which is independent of choice of uniformiser t.

- Let $f \in K(C)^{*}$ such that $\operatorname{ord}_{P}(f)=n \neq 0$. If $\operatorname{char}(K) \nmid n$, then $\operatorname{ord}_{p}(d f)=n-1$.
- Let C be smooth projective curve, and let $0 \neq w \in \Omega_{C}$ Then $\operatorname{ord}_{p}(w)=0$ for all but finitely many $P \in C$.
- Divisor of differential: Let C be smooth projective curve, and let $0 \neq w \in \Omega_{C}$. We define the divisor of w :

$$
\operatorname{div}(w):=\sum_{P \in C} \operatorname{ord}_{P}(w) P \in \operatorname{Div}(C)
$$

- Genus: Define the genus as

$$
g(C):=\operatorname{dim}_{K}\left\{w \in \Omega_{C}: \operatorname{div}(w) \geq 0\right\}
$$

The set $\left\{w \in \Omega_{C}: \operatorname{div}(w) \geq 0\right\}$ is the space of regular differentials Riemann-Roch states that: If $0 \neq w \in \Omega_{C}$, then $\operatorname{deg}(\operatorname{div}(w))=2 g(C)-2$.

- Assume char $(K) \neq 2$. Given elliptic curve $E: y^{2}=f(x)$. THen $w=\frac{d x}{y}$ is a differential on E with no zeros/poles. (i.e. $\operatorname{ord}_{P}(w)=0$ for all $P \in E$)

In particular, the K-vector space of regular differentials on E is spanned by w. w is called the invariant differential.

- Pullback differential: Let $\phi: C_{1} \rightarrow C_{2}$ be nonconstant morphism. Then $\phi^{*}: \Omega_{C_{1}} \rightarrow$ $\Omega_{C_{2}}$ is given by

$$
f d g \mapsto\left(\phi^{*} f\right) d\left(\phi^{*} g\right) \quad\left(\text { recall } \phi^{*}(f)=f \circ \phi\right)
$$

- Let $P \in E$. Let $\tau_{P}: E \rightarrow E$ be the translation map given by $X \mapsto P+X$. Then if $w=\frac{d x}{y}$, then

$$
\tau_{p}^{*} w=w
$$

Thus, w is called the invariant differential.

- Let $\phi, \psi \in \operatorname{Hom}\left(E_{1}, E_{2}\right)$, and let w be invariant differential on E_{2}. Then

$$
(\phi+\psi)^{*} w=\phi^{*} w+\psi^{*} w
$$

- Let $\phi: C_{1} \rightarrow C_{2}$ be a nonconstant morphism. Then

$$
\phi \text { separable } \quad \Longleftrightarrow \quad \phi^{*}: \Omega_{C_{1}} \rightarrow \Omega_{C_{2}} \text { is non-zero }
$$

- N-torsion group: If $\operatorname{char}(K) \nmid n$, then $E[n] \cong(\mathbb{Z} / n \mathbb{Z})^{2}$ (note: this is over algebraically closed field!)
Remark: If $\operatorname{char}(K)=p$, then $[p]$ is inseperable. We have

$$
E\left[p^{r}\right] \cong\left\{\begin{array}{lll}
\mathbb{Z} / p^{r} \mathbb{Z} & \text { for all } r \geq 1 & \text { (ordinary), or } \\
0 & \text { for all } r \geq 1 & \text { (supersingular) }
\end{array}\right.
$$

7. Elliptic curves over finite fields

- Let A be abelian group, and $q: A \rightarrow \mathbb{Z}$ a positive definite quadratic form. If $x, y \in A$, then

$$
|q(x+y)-q(x)-q(y)| \leq 2 \sqrt{q(x) q(y)}
$$

- Let \mathbb{F}_{q} be the unique finite field with q elements, where $q=p^{m}$ for some prime p. THe extension $\mathbb{F}_{q^{r}} / \mathbb{F}_{q}$ is always Galois.
$\operatorname{Gal}\left(\mathbb{F}_{q^{r}} / \mathbb{F}_{q}\right)$ is cyclic of order r, generated by the Frobenius map $x \mapsto x^{q}$.
- Hasse's theorem Let E / \mathbb{F}_{q} be elliptic curve. Then

$$
\left|\# E\left(\mathbb{F}_{q}\right)-(q+1)\right| \leq 2 \sqrt{q}
$$

Note: $\# E\left(\mathbb{F}_{q}\right)=\# \operatorname{ker}(1-\phi)=\operatorname{deg}(1-\phi)$ where $\phi(x, y)=\left(x^{q}, y^{q}\right)$ is Frobenius map. (since $1-\phi$ is separable)

- Zeta functions: For k a number field

$$
\zeta_{K}(s)=\sum_{\mathfrak{a} \in \mathcal{O}_{K}} \frac{1}{(N \mathfrak{a})^{s}}=\prod_{\mathfrak{p} \in \mathcal{O}_{K}}\left(1-\frac{1}{(N \mathfrak{p})^{s}}\right)^{-1}
$$

where $N \mathfrak{a}$ is the norm of the ideal \mathfrak{a}.
For K a function field (i.e. $K=\mathbb{F}_{q}(C)$ where C / \mathbb{F}_{q} a smooth projective curve)

$$
\zeta_{k}(s)=\prod_{x \in|C|}\left(1-\frac{1}{(N x)^{s}}\right)^{-1}
$$

where $|C|$ is the closed points of C (orbits for action $\operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right)$ on $C\left(\overline{\mathbb{F}}_{q}\right)$. and $N x=$ $q^{\operatorname{deg}(x)}$ where $\operatorname{deg}(x)$ is the size of the orbit.
We have that $\zeta_{K}(s)=F\left(q^{-s}\right)$ for some $F \in \mathbb{Q}[[T]]$, where

$$
F(T)=\prod_{x \in|C|}\left(1-T^{\operatorname{deg}(x)}\right)^{-1}=\exp \left(\sum_{n=1}^{\infty} \frac{\# C\left(\mathbb{F}_{q^{n}}\right)}{n} T^{n}\right)
$$

- Zeta function of variety: The zeta function of a variety V is

$$
Z_{V}(T)=\exp \left(\sum_{n=1}^{\infty} \frac{\# V\left(\mathbb{F}_{q^{n}}\right)}{n} T^{n}\right)
$$

Let E / \mathbb{F}_{q} elliptic curve, with $\# E\left(\mathbb{F}_{q}\right)=q+1-a$. Then

$$
Z_{E}(T)=\frac{1-a T+q T^{2}}{(1-T)(1-q T)}
$$

- Let $\# E\left(\mathbb{F}_{q}\right)=q+1-a$. Then

$$
\# E\left(\mathbb{F}_{q^{n}}\right)=q^{n}+1-\alpha^{n}-\beta^{n}
$$

where $\alpha, \beta \in \mathbb{C}$ are roots of $X^{2}-a X+q=0$.
If $\# E\left(\mathbb{F}_{q}\right)=q+1-a$, then

$$
\begin{aligned}
& \# E\left(\mathbb{F}_{q^{2}}\right)=(q+1-a)(q+1+a), \\
& \# E\left(\mathbb{F}_{q^{3}}\right)=q^{3}+3 a q-a^{3}+1=(q+1-a)\left(1+a+a^{2}-q+a q+q^{2}\right), \\
& \# E\left(\mathbb{F}_{q^{4}}\right)=-a^{4}+4 a^{2} q+\left(q^{2}-1\right)^{2}=(q+1-a)(q+1+a)\left(1+a^{2}-2 q+q^{2}\right)
\end{aligned}
$$

- Trace: Define $\operatorname{tr}: \operatorname{End}(E) \rightarrow \mathbb{Z}$ given by

$$
\phi \mapsto\langle\phi, 1\rangle=\operatorname{deg}(\phi+1)-\operatorname{deg}(\phi)-1
$$

E.g. If $\phi: E \rightarrow E$ is q-power Frobenius, then $\operatorname{tr}(\phi)=\# E\left(\mathbb{F}_{q}\right)-q-1$.

Fact: For any $\phi \in \operatorname{End}(E)$, we have $\phi^{2}-[\operatorname{tr} \phi] \phi+[\operatorname{deg} \phi]=0$

- Let $\phi \in \operatorname{End}(E)$ with $n \in \mathbb{Z}$. Then $\operatorname{tr}(\phi)=2 n$ and $\operatorname{deg}(\phi)=n^{2}$ if and only if $\phi=[n]$.

8. Formal groups

- I-adic topology Let R ring, $I \subset R$ an ideal. The I-adic topology is the topology on R with basis $\left\{r+I^{n}: r \in R, n \geq 1\right\}$.
- Cauchy A sequence $\left(x_{n}\right)$ in R is Cauchy if $\forall k, \exists N$ s.t. $\forall m, n \geq N, x_{m}-x_{n} \in I^{k}$.
- Complete: R is complete if
$-\bigcap_{n \geq 0} I^{n}=\{0\}$
- Every Cauchy sequence converges

Note: If $x \in I$, then $1-x$ is unit
Examples:

- The p-adic integers \mathbb{Z}_{p} is completion of \mathbb{Z} w.r.t the ideal $p \mathbb{Z}$.
- The power series in $t, \mathbb{Z}[[t]]$ is completion of $\mathbb{Z}[t]$ w.r.t the ideal (t).
- Hensel's Lemma: Let R be integral domain, and complete w.r.t ideal $I \subset R$. Let $F \in R[X]$ and $s \geq 1$.
Supose $a \in R$ satisifes
$-F(a) \equiv 0\left(\bmod I^{s}\right)$
- $F^{\prime}(a) \in R^{*}$

Then, there exists a unique $b \in R$ s.t.
$-F(b)=0$
$-b \equiv a\left(\bmod I^{s}\right)$
Setup: Consider the elliptic curve $E: Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+$ $a_{6} Z^{3}$. Usually we take affine piece where $Z \neq 0$, but intead we now take affine piece where $Y \neq 0$. Let $t=-X / Y$ and $w=-Z / Y$. Define

$$
f(t, w)=t^{3}+a_{1} t w+a_{2} t^{2} w+a_{3} w^{2}+a_{4} t w^{2}+a_{6} w^{3}
$$

Thus $E: w=f(t, w)$
Applying Hensel's Lemma with $R=\mathbb{Z}\left[a_{1}, \ldots, a_{6}\right][[t]], I=(t)$, and $F(X)=X-f(t, X)$ with $s=3, a=0$, we get there exists a unique $w(t) \in \mathbb{Z}\left[a_{1}, \ldots, a_{6}\right][[t]]$ such that
$-w(t)=f(t, w(t))$, and
$-w(t) \equiv 0\left(\bmod t^{3}\right)$
The function $w(t)$ can be given as $w(t)=\lim _{n \rightarrow \infty} w_{n}(t)$ where

$$
w_{0}(t)=0 \quad \text { and } \quad w_{n+1}(t)=f\left(t, w_{n}(t)\right)
$$

The approximations are:

$$
\begin{aligned}
w_{0}(t) & =0 \\
w_{1}(t) & =t^{3} \\
w_{2}(t) & =t^{3}\left(1+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{6} t^{6}\right) \\
w_{3}(t) & =t^{3}\left(1+a_{1} t+\left(a_{1}^{2}+a_{2}\right) t^{2}+\left(2 a_{1} a_{2}+a_{3}\right) t^{3}+\left(a_{2}^{2}+3 a_{1} a_{3}+a_{4}\right) t^{4}+\ldots\right) \\
& \vdots \\
w(t) & =t^{3}\left(1+A_{1} t+A_{2} t^{2}+A_{3} t^{3}+\ldots\right)=\sum_{n=2}^{\infty} A_{n-2} t^{n+1}
\end{aligned}
$$

$$
\text { where } \quad A_{1}=a_{1}, \quad A_{2}=a_{1}^{2}+a_{2}, \quad A_{3}=a_{1}^{3}+2 a_{1} a_{2}+a_{3}, \ldots
$$

- Let R be integral domain, complete w.r.t. ideal I, and $a_{1}, \ldots, a_{6} \in R$, and $K=\operatorname{Frac}(R)$.

THen $\hat{E}(I)=\{(t, w) \in E(K): t, w \in I\}$ is a subgroup of $E(K)$.
Remark: By uniqueness in Hensel's Lemma (using $s=1$), we have

$$
\hat{E}(I)=\{(t, w(t)) \in E(K): t \in I\}
$$

- By Hensel's lemma, there exists $i(t) \in \mathbb{Z}\left[a_{1}, \ldots, a_{6}\right][[t]]$ with $i(0)=0$ such that

$$
[-1](t, w(t))=(i(t), w(i(t)))
$$

where

$$
i(X)=-X-a_{1} X^{2}-a_{2} X^{3}-\left(a_{1}^{3}+a_{3}\right) X^{4}+\ldots
$$

Also by Hensel's lemma, there exists $F\left(t_{1}, t_{2}\right) \in \mathbb{Z}\left[a_{1}, \ldots, a_{6}\right]\left[\left[t_{1}, t_{2}\right]\right]$ with $F(0,0)=0$ such that

$$
\left(t_{1}, w\left(t_{1}\right)\right)+\left(t_{2}, w\left(t_{2}\right)\right)=\left(F\left(t_{1}, t_{2}\right), w\left(F\left(t_{1}, t_{2}\right)\right)\right)
$$

where

$$
\begin{aligned}
F(X, Y)=X+Y-a_{1} X Y & -a_{2}\left(X^{2} Y+X Y^{2}\right) \\
& +\left(2 a_{3} X^{3} Y+\left(a_{1} a_{2}-3 a_{3}\right) X^{2} Y^{2}+2 a_{3} X Y^{3}\right)+\ldots
\end{aligned}
$$

- Formal group: Let R be a ring. A formal group over R is a power series $F(X, Y) \in$ $R[[X, Y]]$ satisfying:

1. $F(X, Y)=F(Y, X)$
2. $F(X, 0)=X$ and $F(0, Y)=Y$. (one implies the other)
3. $F(F(X, Y), Z)=F(X, F(Y, Z))$

Furthermore, one automatically gets that there exists a unique $i(T)=-T+\cdots \in R[[T]]$ such that $F(T, i(T))=0$.
Construction of inverse: We define a sequence of power series $\left(g_{n}(T)\right)_{n=1}^{\infty}$. Let $g_{1}(T)=$ $-T$. For $n \geq 2$, set

$$
g_{n}(T)=g_{n-1}(T)-b T^{n} \quad \text { where } b \text { is such that } F\left(T, g_{n-1}(T)\right)=-b T^{n} \quad\left(\bmod T^{n+1}\right)
$$

Then take the limit $g(T)=\lim _{n \rightarrow \infty} g_{n}(T)$. The inverse is $i(T)=g(T)$
Examples:

- Additive formal group: $\hat{\mathbb{G}}_{a}$. Power series is $F(X, Y)=X+Y$ (with inverse $i(X)=-X$)
- Multiplicative formal group: $\hat{\mathbb{G}}_{m}$. Power series is $F(X, Y)=X+Y+X Y$ (with inverse $i(X)=-X\left(1-X+X^{2}-X^{3}+X^{4}-X^{5}+\ldots\right)$)
$-F(X, Y)=\frac{X+Y}{1-X Y}=X+Y+\left(X Y^{2}+X^{2} Y\right)+\left(X^{2} Y^{3}+Y^{3} X^{2}\right)+\ldots$
- Sum on $\hat{E}(I): \quad F(X, Y)=X+Y-a_{1} X Y-a_{2}\left(X^{2} Y+X Y^{2}\right)+\left(2 a_{3} X^{3} Y+\left(a_{1} a_{2}-\right.\right.$ $\left.\left.3 a_{3}\right) X^{2} Y^{2}+2 a_{3} X Y^{3}\right)+\ldots$
- Morphism of formal groups: Let \mathcal{F} and \mathcal{G} be formal groups over R given by power series F and G.
- A morphism $f: \mathcal{F} \rightarrow \mathcal{G}$ is a power series $f(T) \in R[[T]]$ such that $f(0)=0$ and $f(F(X, Y))=G(f(X), f(Y))$.
$-\mathcal{F}$ is isomorphic to \mathcal{G} if there exist morphisms $f: \mathcal{F} \rightarrow \mathcal{G}$ and $g: \mathcal{G} \rightarrow \mathcal{F}$ such that $f(g(X))=X$ and $g(f(X))=X$.
- Let R be ring with $\operatorname{char}(R)=0$. Then every formal group \mathcal{F} over R is isomorphic to \hat{G}_{a} over $R \otimes \mathbb{Q}$ (i.e. R with denominators)
More precisely
- There is unique power series

$$
\log (T)=T+\frac{a_{2}}{2} T^{2}+\frac{a_{3}}{3} T^{3}+\ldots
$$

with $a_{i} \in R$ such that $\log (F(X, Y))=\log (X)+\log (Y)$.

- There is unique power series

$$
\exp (T)=T++\frac{b_{2}}{2!} T^{2}+\frac{b_{3}}{3!} T^{3}+\ldots
$$

with $b_{i} \in R$ such that $\exp (\log (T))=\log (\exp (T))=T$.
Note: Let $F_{1}(X, Y)=\frac{\partial F}{\partial X}(X, Y)$. Define log by using

$$
p(T)=F_{1}(0, T)^{-1}=1+a_{2} T+a_{3} T^{2}+a_{4} T^{3}+\ldots
$$

- Multiplicative Inverse: Let $f \in R[[T]]$ be given as

$$
f=\sum_{n=0}^{\infty} a_{n} T^{n}
$$

Then f has a multiplicative inverse g in $R[[T]](f g=1)$ if and only if a_{0} is a unit in R. If so, then g is

$$
g=\sum_{n=0}^{\infty} b_{n} T^{n} \quad \text { where } \quad b_{0}=\frac{1}{a_{0}} \quad \text { and } \quad b_{n}=-\frac{1}{a_{0}} \sum_{i=1}^{n} a_{i} b_{n-i} \quad \text { for } n \geq 1
$$

- Composition Inverse: Let $f=a T+\cdots \in R[[T]]$ with $a \in R^{\times}$. THen there exists unique $g=a^{-1} T+\cdots \in R[[T]]$ such that $f(g(t))=g(f(T))=T$ (i.e. power series has inverse)
Construction: Let $g_{1}(T)=a^{-1} T$. Set
$g_{n}(T)=g_{n-1}(T)-\frac{b}{a} T^{n} \quad$ where b is such that $f\left(g_{n-1}(T)\right)=T+b T^{n} \quad\left(\bmod T^{n+1}\right)$
Then take the limit $g(T)=\lim _{n \rightarrow \infty} g_{n}(T)$.
- Ideal into group: Let R be ring complete w.r.t. ideal I. Let \mathcal{F} be a formal group given by $F \in R[[X, Y]]$. For $x, y \in I$, define

$$
x \oplus_{\mathcal{F}} y=F(x, y) \in I
$$

This turns I into a group!. $\mathcal{F}(I):=\left(I, \oplus_{\mathcal{F}}\right)$ is an abelian group.
Examples:

- Additive group: $\hat{\mathbb{G}}_{a}(I)=(I,+)$.
- Multiplicative group: $\hat{\mathbb{G}}_{m}(I)=(1+I, \times)$.
- Multiplication-by- m : Let \mathcal{F} be a formal group with power series $F \in R[[X, Y]]$. For any $n \in \mathbb{Z}$, we define the map $[n]$ recursively as:

$$
[0](T)=0, \quad \text { and } \quad[n](T)=F([n-1] T, T)
$$

- Let \mathcal{F} be a formal group over R and $n \in \mathbb{Z}$. Suppose $n \in R^{\times}$(where $n=1+1+\ldots 1 n$ times). Then
$-[n]: \mathcal{F} \rightarrow \mathcal{F}$ is an isomorphism.
- IF R complete w.r.t. ideal I, then $[n]: \mathcal{F}(I) \rightarrow \mathcal{F}(I)$ is an isomorphism. In particularm $\mathcal{F}(I)$ has no n-torsion.

9. Elliptic Curves over Local Fields

Setup: K is field, complete w.r.t. discrete valuation $v: K^{\times} \rightarrow \mathbb{Z}$.
Valuation ring is $\mathcal{O}_{K}=\left\{x \in K^{\times}: v(x) \geq 0\right\} \cup\{0\}$.
The unit group $\mathcal{O}_{K}^{\times}=\left\{x \in K^{\times}: v(x)=0\right\}$
Maximal ideal is $\pi \mathcal{O}_{K}$, where $\pi \in K$ is chosen such that $v(\pi)=1$.
Residue field is $k=\mathcal{O}_{K} / \pi \mathcal{O}_{K}$.
Example: $K=\mathbb{Q}_{p}, \mathcal{O}_{K}=\mathbb{Z}_{p}, \pi \mathcal{O}_{K}=p \mathbb{Z}_{p}, k=\mathbb{F}_{p}$

- Integral: A Weierstrass equation for E with coefficients $a_{1}, \ldots, a_{6} \in K$ is integral if $a_{1}, \ldots a_{6} \in \mathcal{O}_{k}$.
Note: Substituting $a_{i}=u^{i} a_{i}^{\prime}$ proves that integral Weierstrass equations always exist for any EC.
- Minimal: Let Δ be discriminant of elliptic curve. Equation is minimal if $v(\Delta)$ minimal among all integral Weierstrass equations for E
Fact: If E integral then $\Delta \in \mathcal{O}_{k}$ and thus $v(\Delta) \geq 0$. Thus, by well-ordering, minimal Weierstrass equations always exist. If $\operatorname{char}(k) \neq 2,3$ then there exist minimal Weierstrass equations of the form $y^{2}=x^{3}+a x+b$.
Fact: If $\operatorname{char}(k) \neq 2,3$, then $y^{2}=x^{3}+a x+b$ is minimal if and only if $v_{p}(a)<4$ or $v_{p}(b)<6$.
- Let E / K have integral Weierstrass equation: $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$. Let $0 \neq P \in E(K)$, say $P=(x, y)$. Then either $x, y \in \mathcal{O}_{K}$, or $v(x)=-2 s$ and $v(y)=-3 s$ for some $s \geq 1$

We define:

$$
\begin{aligned}
E_{r}(K):=\hat{E}\left(\pi^{r} \mathcal{O}_{K}\right) & =\left\{(t, w) \in E(K): t, w \in \pi^{r} \mathcal{O}_{K}\right\} \\
& =\{(x, y) \in E(K): v(x) \leq-2 r \text { and } v(y) \leq-3 r\} \cup\{0\}
\end{aligned}
$$

Obtain a sequence of subgroups:

$$
\cdots \subset E_{4}(K) \subset E_{3}(K) \subset E_{2}(K) \subset E_{1}(K)
$$

More generally, for any formal group \mathcal{F} over \mathcal{O}_{K} :

$$
\cdots \subset \mathcal{F}\left(\pi^{4} \mathcal{O}_{K}\right) \subset \mathcal{F}\left(\pi^{3} \mathcal{O}_{K}\right) \subset \mathcal{F}\left(\pi^{2} \mathcal{O}_{K}\right) \subset \mathcal{F}\left(\pi \mathcal{O}_{K}\right)
$$

- Let \mathcal{F} be a formal group over \mathcal{O}_{K}. Let $e=v(p)$ where $p=\operatorname{char}(k)$. If $r>\frac{e}{p-1}$, then

$$
\log : \mathcal{F}\left(\pi^{r} \mathcal{O}_{K}\right) \longrightarrow \hat{\mathbb{G}}_{a}\left(\pi^{r} \mathcal{O}_{K}\right)
$$

is an isomorphism with inverse exp : $\hat{\mathbb{G}}_{a}\left(\pi^{r} \mathcal{O}_{K}\right) \rightarrow \mathcal{F}\left(\pi^{r} \mathcal{O}_{K}\right)$.

- For $r \geq 1$,

$$
\frac{\mathcal{F}\left(\pi^{r} \mathcal{O}_{K}\right)}{\mathcal{F}\left(\pi^{r+1} \mathcal{O}_{K}\right)} \cong(k,+)
$$

If $|k|<\infty$, then $\mathcal{F}\left(\pi \mathcal{O}_{K}\right)$ contains a subgroup of finite index $\cong\left(\mathcal{O}_{K},+\right)$

- Reduction $\bmod \pi:$ Reduction $\bmod \pi$ is the natural quotient map $\mathcal{O}_{k} \rightarrow \mathcal{O}_{K} / \pi \mathcal{O}_{K}=k$ given by $x \mapsto \tilde{x}$
- Reduction of curve: The reduction \tilde{E} / k of E / k is defined to be the reduction of a minimal Weierstrass equation. Let E / K have minimal Weierstrass equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

We then reduce each coefficient modulo π to obtain a (possibly singular) curve over k :

$$
\tilde{E}: y^{2}+\tilde{a}_{1} x y+\tilde{a}_{3} y=x^{3}+\tilde{a}_{2} x^{2}+\tilde{a}_{4} x+\tilde{a}_{6}
$$

- Let E / K elliptic curve. The reduction $\bmod \pi$, of two minimal Weierstrass equations for E define isomorphic curves over k.
E has good reduction if \tilde{E} is non-singular (and thus elliptic curve), otherwise has bad reduction.
Fact: $\quad E$ has good reduction at p if and only if $v(\Delta)=0$ for minimal $v(\Delta)$.
- Let E / K be an elliptic curve with integral Weierstrass equation. Let discriminant tbe Δ. Then

$$
\begin{array}{rll}
v(\Delta)=0 & \Longrightarrow & \text { good reduction } \\
0<v(\Delta)<12 & \Longrightarrow & \text { bad reduction } \\
v(\Delta) \geq 12 & \Longrightarrow & \text { equation may not be minimal }
\end{array}
$$

If $\Gamma k \neq 2,3, \ldots$

- Reduction map: Let E / K be elliptic curve over K. Let $P \in E$ with homogenous projective coordinates $P=(x: y: z) \in \mathbb{P}^{2}(K)$. Choose representative such that $\min (v(x), v(y), v(z))=0$ (i.e. all $x, y, z \in \mathcal{O}_{K}$ and $\operatorname{gcd}(x, y, z)=1$).
Then we define the reduction map

$$
\begin{aligned}
\mathbb{P}^{2}(K) & \longrightarrow \mathbb{P}^{2}(k) \\
(x: y: z) & \mapsto(\tilde{x}: \tilde{y}: \tilde{z})
\end{aligned}
$$

Restricting the above map to the curve $E(K)$ gives

$$
\begin{gathered}
E(K) \longrightarrow \tilde{E}(k) \\
P \mapsto \tilde{P}
\end{gathered}
$$

- Let $E(K)$ be given by minimal Weierstrass equation. Then if $P=(x, y) \in E(K)$, then
- If $x, y \in \mathcal{O}_{K}$, then $\tilde{P}=(\tilde{x}, \tilde{y})$.
- Otherwise, $\tilde{P}=(0: 1: 0)=O_{E}$.
- Let E / k elliptic curve. We define

$$
\tilde{E}_{\mathrm{ns}}= \begin{cases}\tilde{E} & \text { if } E \text { has good reduction } \\ \tilde{E} \backslash\{\text { singular point }\} & \text { if } E \text { has bad reduction }\end{cases}
$$

$\tilde{E}_{\text {ns }}$ is a group.
If bad reduction, then $\tilde{E}_{\text {ns }}$ is isomorphic to either \mathbb{G}_{a} (if cusp) or \mathbb{G}_{m} (if node).

- Define $E_{0}(K)=\left\{P \in E(K): \tilde{P} \in \tilde{E}_{n s}(k)\right\}$ (i.e. all points on $E(K)$ which don't get reduced to the singular point. Good reduction implies $\left.E_{0}(K)=E(K)\right)$
- $E_{0}(K)$ is a subgroup of $E(K)$ and reduction $\bmod \pi$ is a surjective group homomorphism $E_{0}(K) \longrightarrow \tilde{E}_{\text {ns }}(k)$
- We have the following filtration:

- If $|k|<\infty$, then $\mathbb{P}^{n}(k)$ is compact (w.r.t π-adic topology)
- If $|k|<\infty$, then $E_{0}(k) \subset E(K)$ has finite index.
- Tamagawa number: Define the Tamagawa number $c_{K}(E)=\left[E(K): E_{0}(K)\right]<\infty$. Note that good reduction implies $c_{K}(E)=1$.
Fact: $\quad c_{k}(E)=v(\Delta)$ or $c_{k}(E) \leq 4$.
- If $\left[K: \mathbb{Q}_{p}\right]<\infty$, then $E(k)$ contains a subgroup $E_{r}(K)$ of finite index with $E_{r}(K) \cong$ $\left(\mathcal{O}_{k},+\right)$
Corollary: $E(K)_{\text {torsion }}$ injects into $\frac{E(K)}{E_{r}(K)}$ and therefore $E(K)_{\text {torsion }}$ is finite!.
- Unramified extension: Let $\left[K: \mathbb{Q}_{p}\right]<\infty$ be local field, and let L / K be a finite extension. Let L and K have residue fields ℓ and k. Let f be the residue degree $f=[\ell: k]$, and let $[L: K]=e f$.
L / K is unramified if $e=1$ (i.e. $[L: K]=[\ell: k]$ and $\operatorname{Gal}(L / K)=\operatorname{Gal}(\ell / k))$

- For each integer $m \geq 1$
- k has unique extension of degree m (say k_{m})
- K has unique unramified extension of degree m (say K_{m})

Note: Can be found by adjoining the $\left(p^{m}-1\right)$-th roots of unity to \mathbb{Q}_{p}

- Maximal unramified extension: $K^{\mathrm{ur}}=\bigcup_{m \geq 1} K_{m}$ (inside \bar{K})

Notation: Let $P \in E(K)$. Then $[n]^{-1} P=\{Q \in E(\bar{K}): n Q=P\}$. We define the field extension $K\left(\left\{P_{1}, \ldots, P_{2}\right\}\right)=K\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right)$ where $P_{i}=\left(x_{i}, y_{i}\right)$.

- Let $\left[K: \mathbb{Q}_{p}\right]<\infty, E / K$ elliptic curve with good reduction, and $p \nmid n$. If $P \in E(K)$ then $K\left([n]^{-1} P\right) / K$ is unramified.

10. Elliptic Curves over Number Fields (Torsion Subgroup)

Notation: K is number field, $[K: \mathbb{Q}]<\infty . E / K$ is elliptic curve. \mathfrak{p} is a prime of K (i.e. of \mathcal{O}_{K}). $K_{\mathfrak{p}}$ is the p-adic completion of K.
$k_{\mathfrak{p}}$ is the residue field $\mathcal{O}_{K} / \mathfrak{p}$
Example: $K=\mathbb{Q}, \mathcal{O}_{K}=\mathbb{Z}, \mathfrak{p}=p \mathbb{Z}, K_{\mathfrak{p}}=\mathbb{Q}_{p}, k_{\mathfrak{p}}=\mathbb{F}_{p} \sim \mathbb{Z} / p \mathbb{Z}$.

- Good reduction: \mathfrak{p} is a prime of good reduction for E / K, if $E / K_{\mathfrak{p}}$ has good reduction.
- E / K has only finitely many primes of bad reduction. Indeed, any primes of bad reduction must divide Δ.

Remark: If K has class number 1 (e.g. $K=\mathbb{Q}$), then can always find Weierstrass equation for E with $a_{1}, \ldots, a_{6} \in \mathcal{O}_{K}$ minimal at all primes \mathfrak{p}.

- $E(K)_{\text {torsion }}$ is finite.
- Let p be a prime with good reduction, with $p \nmid n$, THen reduction $\bmod p$ gives an injection $E(K)[n] \hookrightarrow \tilde{E}\left(k_{P}\right)[n]$
- Let E / \mathbb{Q} be elliptic curve. Let p be a prime for which E has good reduction (e.g. any $p \nmid \Delta$ will have good reduction) We have

$$
\# E(\mathbb{Q})_{\text {tors }} \mid \# \tilde{E}\left(\mathbb{F}_{p}\right) \cdot p^{a} \quad \text { for some } a \geq 0
$$

Furthermore, if working in $K=\mathbb{Q}_{p}$, then $e=1$, and thus

$$
\begin{aligned}
& \# E(\mathbb{Q})_{\text {tors }} \mid \# \tilde{E}\left(\mathbb{F}_{p}\right) \quad \text { if } p \text { odd } \\
& \# E(\mathbb{Q})_{\text {tors }} \mid 2 \cdot \# \tilde{E}\left(\mathbb{F}_{p}\right) \quad \text { if } p=2
\end{aligned}
$$

- Let $E: y^{2}=f(x)$ be an elliptic curve over \mathbb{F}_{p}. Let $\left(\frac{f(x)}{p}\right)$ be the Legendre symbol for $f(x) \bmod p$. In other words

$$
\left(\frac{f(x)}{p}\right)= \begin{cases}1 & \text { if } f(x) \text { is a square } \bmod p, \text { and } p \nmid f(x) \\ -1 & \text { if } f(x) \text { is not a square } \bmod p \\ 0 & \text { if } p \text { divides } f(x)\end{cases}
$$

Then we have

$$
\# E\left(\mathbb{F}_{p}\right)=1+\sum_{x \in \mathbb{F}_{P}}\left(\left(\frac{f(x)}{p}\right)+1\right)
$$

- Let E / \mathbb{Q} be given by Weierstrass equation $a_{1}, \ldots, a_{6} \in \mathbb{Z}$. Suppose $0 \neq T=(x, y) \in$ $E(\mathbb{Q})_{\text {tors }}$. THen
$-4 x, 8 y \in \mathbb{Z}$
- If $2 \mid a_{1}$ or $2 T \neq 0$, then $x, y \in \mathbb{Z}$
- Nagell-Lutz Let E / \mathbb{Q} be given with equation $y^{2}=x^{3}+a x+b$ with $a, b \in \mathbb{Z}$. Suppose $0 \neq T=(x, y) \in E(\mathbb{Q})_{\text {tors }}$. THen $x, y \in \mathbb{Z}$ and either $y=0$ or $y^{2} \mid\left(4 a^{3}+27 b^{2}\right)$
- (Mazur): Let E / \mathbb{Q} elliptic curve. Then

$$
E(\mathbb{Q})_{\text {tors }} \cong \begin{cases}\mathbb{Z} / n \mathbb{Z} & \text { where } 1 \leq n \leq 12, n \neq 11 \\ \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 n \mathbb{Z} & \text { where } 1 \leq n \leq 4\end{cases}
$$

Furthermore, all 15 possibilities occur infinitely often over \mathbb{Q}.

11. Kummer theory

Setup: Fix $n>1$. Let K be field, $\operatorname{char} K \nmid n$. Denote μ_{n} as the multiplicative group of nth roots of unity (in K). Assuming $\mu_{n} \subset K$

- Let $\Delta \subset K^{\times} /\left(K^{\times}\right)^{n}$ be a finite subgroup. Define $\sqrt[n]{\Delta}=\left\{\sqrt[n]{a}: a \in K^{\times}, a \cdot\left(K^{\times}\right)^{n} \in \Delta\right\}$

Let $L=K(\sqrt[n]{\Delta})$. Then L / K is Galois and $\operatorname{Gal}(L / K) \cong \operatorname{Hom}\left(\Delta, \mu_{n}\right)$.

- Kummer pairing: Define the map $\langle\rangle:, \operatorname{Gal}(L / K) \times \Delta \rightarrow \mu_{n}$ given by

$$
(\sigma, x) \mapsto \frac{\sigma(\sqrt[n]{x})}{\sqrt[n]{x}}
$$

Fact: This map is well-defined and bilinear.

- We have the two group isomorphisms:

$$
\begin{array}{ll}
\operatorname{Gal}(L / K) \longrightarrow \operatorname{Hom}\left(\Delta, \mu_{n}\right) & \sigma \mapsto\left(x \mapsto \frac{\sigma(\sqrt[n]{x})}{\sqrt[n]{x}}\right) \\
\Delta \longrightarrow \operatorname{Hom}\left(\operatorname{Gal}(L / K), \mu_{n}\right) & x \mapsto\left(\sigma \mapsto \frac{\sigma(\sqrt[n]{x})}{\sqrt[n]{x}}\right)
\end{array}
$$

- Exponent: Let G be a finite group. the exponent of G is the lowest common multiple of the orders of the elements of G. Note that the exponent divides $|G|$.
Fact: $\operatorname{Gal}(K(\sqrt[n]{\Delta}) / K)$ is an abelian group of exponent dividing n.
- There is a bijection

$$
\begin{aligned}
\left\{\begin{array}{l}
\text { finite subgroups } \\
\Delta \subset K^{\times} /\left(K^{\times}\right)^{n}
\end{array}\right\} & \longleftrightarrow\left\{\begin{array}{l}
\text { finite abelian extensions } \\
L / K \text { of exponent dividing } n
\end{array}\right\} \\
\Delta & \longmapsto K(\sqrt[n]{\Delta}) \\
\frac{\left(L^{*}\right)^{n} \cap K^{*}}{\left(K^{*}\right)^{n}} & \longleftrightarrow L
\end{aligned}
$$

- Let K number field, $\mu_{n} \subset K$. Let S be a finite set of primes of K. There are only finitely many extensions L / K such that
- L / K is abelian of exponent dividing n.
- L / K is unramified at all primes $\mathfrak{p} \notin S$
- Let

$$
K(S, n):=\left\{x \in K^{\times} /\left(K^{\times}\right)^{n}: v_{\mathfrak{p}}(x) \equiv 0(\bmod n) \forall \mathfrak{p} \notin S\right\}
$$

Then $K(S, n)$ is finite.

- If $K=\mathbb{Q}$, then

$$
|\mathbb{Q}(S, 2)|=2^{|S|+1}
$$

12. Elliptic curves over number fields (Mordell-Weil)

- Let E / K elliptic curve, with L / K a finite Galois extension. Then the map

$$
\frac{E(K)}{n E(K)} \longrightarrow \frac{E(L)}{n E(L)}
$$

has finite kernel.

- Weak Mordell Weil: Let K number field, E / K elliptic curve. Let $n \geq 2$ integer. Then

$$
\left|\frac{E(K)}{n E(K)}\right|<\infty
$$

Remark: If $K=\mathbb{R}$ or \mathbb{C} or $\left[K: \mathbb{Q}_{p}\right]<\infty$, then $\left|\frac{E(K)}{n E(K)}\right|<\infty$, however $E(K)$ is not finitely generated.

- Mordell-Weil: Let K number field, E / K elliptic curve. Then $E(K)$ is a finitely generated abelian group.
Specifically, fix an integer $n \geq 2$. Let $P_{1}, P_{2}, \ldots, P_{m}$ be set of coset representatives for $E(K) / n E(K)$. Then

$$
\Sigma=\left\{P \in E(K): \hat{h}(P) \leq \max _{1 \leq i \leq m} \hat{h}\left(P_{i}\right)\right\}
$$

generates $E(K)$.
This proves $E(K) \cong E(K)_{\text {tors }} \times \mathbb{Z}^{r}$ where r is the rank of the curve.
(Curve with rank at least 28 are known. Conjectured that rank is unbounded. Conjectured that average rank is $1 / 2$, current upper bound is 1.5)

13. Heights

- Height of a point: Let $K=\mathbb{Q}$. Let $P \in \mathbb{P}^{n}(\mathbb{Q})$ be $P=\left(a_{0}: a_{1}: \cdots: a_{n}\right)$ where $a_{i} \in \mathbb{Z}$ and $\operatorname{gcd}\left(a_{0}, a_{1}, \ldots, a_{n}\right)=1$ The height of P is

$$
H(P)=\max _{0 \leq i \leq n}\left|a_{i}\right|
$$

Height of rational: Equivalently, if $x=\frac{u}{v} \in \mathbb{Q}$, with $u, v \in \mathbb{Z}$ coprime, then height of x is $H(x)=\max (|u|,|v|)$

- Let $f_{1}, f_{2} \in \mathbb{Q}\left[X_{1}, X_{2}\right]$ be coprime homogenuous polynomials of degree d. Let $F: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ be $\left(x_{1}: x_{2}\right) \rightarrow\left(f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right)\right)$ Then there exists $c_{1}, c_{2}>0$ s.t.

$$
c_{1} H(P)^{d} \leq H(F(P)) \leq c_{2} H(P)^{d} \quad \text { for all } P \in \mathbb{P}^{1}(\mathbb{Q})
$$

- Logarithmic height: The logarithmic height is a function $h: E(\mathbb{Q}) \rightarrow \mathbb{R}_{\geq 0}$ defined by $h(P)=\log (H(P))\left(\right.$ and $\left.h\left(O_{E}\right)=0\right)$.
- Let E, E^{\prime} be elliptic curves over \mathbb{Q}. Let $\phi: E \rightarrow E^{\prime}$ be isogeny over \mathbb{Q}. There exists $c>0$ such that

$$
|h(\phi(P))-\operatorname{deg}(\phi) h(P)| \leq c \quad \text { for all } P \in E(\mathbb{Q})
$$

Note: $\quad c$ depends on E, E^{\prime} and ϕ, but not on P.
Example: If $\phi=[2]: E \rightarrow E$, then there exists $c>0$ such that

$$
|h(2 P)-4 h(P)|<c \quad \text { for all } P \in E(\mathbb{Q})
$$

- Canonical height: For $P \in E(\mathbb{Q})$, we define

$$
\hat{h}(P)=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} h\left(2^{n} P\right)
$$

This converges for all $P \in E(\mathbb{Q})$ and does not depend on Weierstrass equation.

- $|h(P)-\hat{h}(P)|$ is bounded for $P \in E(\mathbb{Q})$
- For any $B>0$

$$
\#\{P \in E(\mathbb{Q}): \hat{h}(P)<B\}<\infty
$$

- Let $\phi: E \rightarrow E^{\prime}$ be isogeny over \mathbb{Q}. Then

$$
\hat{h}(\phi P)=(\operatorname{deg} \phi) \hat{h}(P) \quad \text { for all } P \in E(\mathbb{Q})
$$

- Let E / \mathbb{Q} be elliptic curve. There exists $c>0$ such that

$$
H(P+Q) \cdot H(P-Q) \leq c \cdot H(P)^{2} \cdot H(Q)^{2} \quad \text { for all } P, Q \in E(\mathbb{Q})
$$

- $\hat{h}: E(\mathbb{Q}) \rightarrow \mathbb{R}_{\geq 0}$ is a quadratic form.
- Let $P \in E(\mathbb{Q})$. Then P is a torsion point if and only if $\hat{h}(P)=0$.
- Absolute values: Let $M_{\mathbb{Q}}$ denote the set of standard absolute values on \mathbb{Q}, which consists of:
- One archimedean absolute value $|x|_{\infty}=\max (-x, x)$.
- For each prime $p \in \mathbb{Z}$, one nonarchimedean (p-adic) absolute value $|x|_{p}=p^{-v_{p}(x)}$.
- Height: For an arbitrary number field K, let $P=\left(a_{0}: a_{1}: \cdots: a_{n}\right) \in \mathbb{P}^{n}(K)$, and define the height

$$
H_{K}(P):=\prod_{v \in M_{K}} \max \left\{\left|a_{0}\right|_{v},\left|a_{1}\right|_{v}, \ldots,\left|a_{n}\right|_{v}\right\}^{\left[K_{v}: \mathbb{Q}_{v}\right]}
$$

where M_{K} denotes the set of standard absolute values on K (i.e. the absolute values in K whose restriction to \mathbb{Q} is in $M_{\mathbb{Q}}$)

Note the absolute values are normalised such that

$$
\prod_{v \in M_{K}}|x|_{v}^{\left[K_{v}: \mathbb{Q}_{v}\right]}=1
$$

14. Dual isogenies and the Weil pairing

- Let $\Phi \in E(\bar{K})$ be a finite $\operatorname{Gal}(\bar{K} / K)$-stable subgroup (i.e. for all $T \in \Phi$, then $T^{\sigma} \in \Phi$ for all $\sigma \in \operatorname{Gal}(\bar{K} / K))$.
Then there exists an elliptic curve E^{\prime} / K and a separable isogeny $\phi: E \rightarrow E^{\prime}$ defined over K with kernel Φ such that for every isogeny $\phi: E \rightarrow E^{\prime}$ with $\Phi \subset \operatorname{ker}(\phi)$ factors uniquely via ϕ.

- Dual isogeny: Let $\phi: E \rightarrow E^{\prime}$ be an isogeny of degree n. Then there exists unique isogeny $\hat{\phi}: E^{\prime} \rightarrow E$ s.t. $\hat{\phi} \circ \phi=[n] . \hat{\phi}$ is called the dual isogeny of ϕ.
- Elliptic curves being isogenous is equivalence relation.
$-\operatorname{deg}(\hat{\phi})=\operatorname{deg}(\phi)$ and $[\hat{n}]=[n]$
$-\hat{\hat{\phi}}=\phi$
- If $\psi: E \rightarrow E^{\prime}$ isogeny and $\phi: E^{\prime} \rightarrow E^{\prime \prime}$ isogeny, then $\widehat{\phi \psi}=\hat{\psi} \hat{\phi}$
- If $\phi \in \operatorname{End}(E)$, then $\operatorname{tr}(\phi)=\phi+\hat{\phi}$
- If $\phi, \psi \in \operatorname{Hom}\left(E, E^{\prime}\right)$, then $\widehat{\phi+\psi}=\hat{\phi}+\hat{\psi}$.
- sum: Define sum : $\operatorname{Div}(E) \rightarrow E$ as $\sum n_{p}(P) \mapsto \sum n_{p} P$ (sum using group law)

Remark: Given the isomorphism $\phi: E \rightarrow \operatorname{Pic}^{0}(E)$ given by $P \mapsto\left[P-O_{E}\right]$, we have

$$
\operatorname{sum} D \mapsto[D] \text { for all } D \in \operatorname{Div}^{0}(E)
$$

- Let $D \in \operatorname{Div}(E)$. Then $D \sim 0$ if and only if $\operatorname{deg}(D)=0$ and $\operatorname{sum} D=0$. (i.e. D is principal iff both the sum and degree are 0)
- Weil pairing: Let $\phi: E \rightarrow E^{\prime}$ be isogeny of degree n, with $\operatorname{char}(K) \nmid n$. Let $E[\phi]$ be the kernel of ϕ. The Weil pairing:

$$
e_{\phi}: E[\phi] \times E^{\prime}[\hat{\phi}] \rightarrow \mu_{n}=\left\{x \in K: x^{n}=1\right\}
$$

Definition of map: Let $S \in E[\phi], T \in E^{\prime}[\hat{\phi}]$. As ϕ has degree n, this implies $n T=0$.

- Choose $f \in \bar{K}\left(E^{\prime}\right)$ such that $\operatorname{div}(f)=n(T)-n(0)$.
- Choose $g \in \bar{K}(E)$ such that $\operatorname{div}(g)=\phi^{*}(T)-\phi^{*}(0)$
- Thus $\phi^{*} f=c g^{n}$. Can assume wlog $\phi^{*} f=g^{n}$.

We define

$$
e_{\phi}(S, T)=\zeta=\frac{g(X+S)}{g(X)} \quad \text { for any } X \in E
$$

- e_{ϕ} is bilinear and non-degenerate (i.e. if $e_{\phi}(S, T)=1$ for all $S \in E[\phi]$, then $T=O_{E^{\prime}}$)
- If E, E^{\prime}, ϕ are defined over K, then e_{ϕ} is Galois equivariant (i.e. $e_{\phi}(\sigma S, \sigma T)=\sigma\left(e_{\phi}(S, T)\right)$ for all $\sigma \in \operatorname{Gal}(\bar{K} / K)$
- Taking $\phi=[n]: E \rightarrow E$ gives a pairing:

$$
e_{n}: E[n]: E[n] \rightarrow \mu_{n}
$$

- If $E[n] \subset E(K)$, then $\mu_{n} \subset K$ (can find $S, T \in E[n]$ such that $e_{n}(S, T)$ is primitive n-th root of unity)
- e_{n} is alternating. I.e. $e_{n}(T, T)=1$ for all $T \in E[n]$.
$-e_{n}(S, T)=e_{n}(T, S)^{-1}$.

15. Galois cohomology

Setup: G a group. A is a G-module (i.e. an abelian group A with a left group action $G \times A \rightarrow A$ s.t. we have identity, compatibility, and $g \cdot(a+b)=g \cdot a+g \cdot b)$

- $H^{0}(G, A)=A^{G}=\{a \in A: \sigma(a)=a$ for all $\sigma \in G\}$

$$
\begin{array}{ll}
\text { Cochain: } & C_{1}(G, A)=\{\text { maps } G \rightarrow A\} \\
\text { Cocycle: } & Z^{1}(G, A)=\left\{\left(a_{\sigma}\right)_{\sigma \in G}: a_{\sigma \tau}=\sigma\left(a_{\tau}\right)+a_{\sigma}\right\}
\end{array}
$$

\cup
Coboundary: $\quad B^{1}(G, A)=\left\{(\sigma b-b)_{\sigma \in G}: b \in A\right\}$

$$
H^{1}(G, A)=\frac{Z^{\prime}(G, A)}{B^{\prime}(G, A)}=\frac{\text { cocycles }}{\text { coboundaries }}
$$

Remark: If G acts trivially, then $Z^{1}(G, A)=\{$ homogeneous maps $G \rightarrow A\}$ and $B^{1}(G, A)=$ $\{(0)\}$ (the zero map). Thus $H^{1}(G, A)=\operatorname{Hom}(G, A)$
Examples: If $G=\operatorname{Gal}(\mathbb{C} / \mathbb{R}=\{\mathrm{id}$, conj $\}$ and $A=\mathbb{C}$, then

- $C_{1}(G, A)=\{$ maps $G \rightarrow A\} \cong \mathbb{C} \times \mathbb{C}$.
$-Z^{1}(G, A)=\{(0, i x): x \in \mathbb{R}\}$
- $B^{1}(G, A)=\{(0, i x): x \in \mathbb{R}\}$
- $H^{1}(G, A)$ is trivial.
- A short exact sequence of G-modules:

$$
0 \longrightarrow A \xrightarrow{\phi} B \xrightarrow{\psi} C \longrightarrow 0
$$

gives rise to long exact sequence of abelian groups:

$$
0 \longrightarrow A^{G} \xrightarrow{\phi} B^{G} \xrightarrow{\psi} C^{G} \xrightarrow{\delta} H^{1}(G, A) \xrightarrow{\phi_{*}} H^{1}(G, B) \xrightarrow{\psi_{*}} H^{1}(G, C)
$$

Definition of $\delta:$:

- Let $c \in C^{G}$. THere exists $b \in B$ s.t. $\psi(b)=c$.
- Note $\psi(\sigma b-b)=0$. For all $\sigma \in G$, there exists $a_{\sigma} \in A$ s.t. $\psi\left(a_{\sigma}\right)=\sigma b-b$.
- Can show $\left(a_{\sigma}\right)_{\sigma \in G} \in Z^{\prime}(G, A)$.
- Define $\delta(C)=$ class of $\left(a_{\sigma}\right)_{\sigma \in G}$ in $H^{\prime}(G, A)$
- Let A be a G-module, $H \triangleleft G$ a normal subgroup. THen there is an inflation and restriction exact sequence:

$$
0 \longrightarrow H^{1}\left(G / H, A^{H}\right) \xrightarrow{\text { inflation }} H^{1}(G, A) \xrightarrow{\text { restriction }} H^{1}(H, A)
$$

- Hilbert's Theorem 90: Let L / K be finite Galois extension. THen $H^{1}\left(\operatorname{Gal}(L / K), L^{\times}\right)=$ 0 (i.e. $Z^{1} \subset B^{1}$).
Corollary 1: $\quad H^{1}\left(\operatorname{Gal}(\bar{K} / K), \bar{K}^{\times}\right)=0$
Corollary 2: $\quad H^{1}\left(\operatorname{Gal}(\bar{K} / K), \mu_{n}\right) \cong K^{*} /\left(K^{*}\right)^{n}$. If $\mu_{n} \in K$, then $\operatorname{Hom}_{\operatorname{cts}}\left(\operatorname{Gal}(\bar{K} / K), \mu_{n}\right) \cong$ $K^{*} /\left(K^{*}\right)^{n}$

Setup: Let $\phi: E \rightarrow E^{\prime}$ be isogeny of elliptic curves over K. Notation: $H^{\prime}\left(K,{ }_{Z}\right)$ means $H^{\prime}(\operatorname{Gal}(\bar{K} / K), \quad$).

There is short exact sequence of $\operatorname{Gal}(\bar{K} / K)$-modules:

$$
0 \longrightarrow E[\phi] \longrightarrow E \xrightarrow{\phi} E^{\prime} \longrightarrow 0
$$

Get long exact sequence

$$
E(K) \xrightarrow{\phi} E^{\prime}(K) \xrightarrow{\delta} H^{1}(K, E[\phi]) \longrightarrow H^{1}(K, E) \xrightarrow{\phi_{*}} H^{1}\left(K, E^{\prime}\right)
$$

Get short exact sequence

- Selmer group: THe ϕ-Selmer group is

$$
S^{(\phi)}(E / K)=\operatorname{ker} \alpha \quad \text { (the diagonal map above) }
$$

or alternatively

$$
\begin{aligned}
S^{(\phi)}(E / K) & =\operatorname{Ker}\left(H^{1}(K, E[\phi]) \rightarrow \prod_{V} H^{1}\left(K_{V}, E\right)\right) \\
& =\left\{\alpha \in H^{1}(K, E[\phi]): \operatorname{res}_{v}(\alpha) \in \operatorname{im}\left(\delta_{v}\right) \forall v\right\}
\end{aligned}
$$

- Tate-Shaferavich group: $\amalg(E / K)=\operatorname{ker}\left(H^{\prime}(K, E) \rightarrow \prod_{V} H^{\prime}\left(K_{v}, E\right)\right)$

Get short exact sequence:

$$
0 \rightarrow \frac{E^{\prime}(K)}{\phi E(K)} \rightarrow S^{(\phi)}(E / K) \rightarrow \amalg(E / K)\left[\phi_{*}\right] \rightarrow 0
$$

- Place: Let K be number field. A place of K is an equivalence class of absolute values on K. Three types: Trivial, archimedan, and non-Archimedean.
- $S^{(n)}(E / K)$ is finite.
- Let S be finite set of places. THe subgroup of $H^{1}(K, A)$ unramified outside S is

$$
H^{1}(K, A ; S)=\operatorname{ker}\left(H^{1}(K, A) \rightarrow \prod_{v \notin S} H^{1}\left(K_{v}^{n r}, A\right)\right)
$$

Conjecture: $\amalg(E / k)$ is finite.

16. Descent by cyclic isogeny

Setup: Let E, E^{\prime} be elliptic curves over a number field K. Let $\phi: E \rightarrow E^{\prime}$ be an isogeny of degree n.
Define the map α by the long exact sequence

- Let $f \in K\left(E^{\prime}\right)$ and $g \in K(E)$ with $\operatorname{div}(f)=n(T)-n(0)$ and $\phi^{*} f=g^{n}$. THen $\alpha(P)=$ $f(P) \bmod \left(K^{*}\right)^{n}$ for all $P \in E^{\prime}(K) \backslash\{0, T\}$
- Setup of 2-isogeny: Let E and E^{\prime} be elliptic curves:

$$
\begin{aligned}
E: y^{2} & =x\left(x^{2}+a x+b\right) \\
E^{\prime}: y^{2} & =x\left(x^{2}+a^{\prime} x+b^{\prime}\right)
\end{aligned}
$$

such that $b \neq 0$ and $a^{2}-4 b \neq 0$, and $a^{\prime}=-2 a$ and $b^{\prime}=a^{2}-4 b$. There then is a 2-isogeny $\phi: E \rightarrow E^{\prime}$ which maps:

$$
(x, y) \mapsto\left(\left(\frac{y}{x}\right)^{2}, \frac{y\left(x^{2}-b\right)}{x^{2}}\right)
$$

and its dual isogeny $\hat{\phi}: E^{\prime} \rightarrow E$ which maps

$$
(x, y) \mapsto\left(\frac{1}{4}\left(\frac{y}{x}\right)^{2}, \frac{y\left(x^{2}-b^{\prime}\right)}{8 x^{2}}\right)
$$

with kernels

$$
\begin{aligned}
E[\phi] & =\left\{0_{E}, T\right\} & T & =(0,0) \in E(K) \\
E^{\prime}[\hat{\phi}] & =\left\{0_{E^{\prime}}, T^{\prime}\right\} & T^{\prime} & =(0,0) \in E^{\prime}(K)
\end{aligned}
$$

- There is a group homomorphism:

$$
\begin{aligned}
E^{\prime}(K) & \longrightarrow K^{*} /\left(K^{*}\right)^{2} \\
(x, y) & \longmapsto \begin{cases}x \bmod \left(K^{*}\right)^{2} & \text { if } x \neq 0 \\
b^{\prime} \bmod \left(K^{*}\right)^{2} & \text { if } x=0\end{cases}
\end{aligned}
$$

with kernel $\phi(E(K))$.
Remark: This gives two injective group homomorphisms:

$$
\begin{aligned}
& \alpha_{E}: \frac{E(K)}{\hat{\phi}\left(E^{\prime}(K)\right)} \longleftrightarrow K^{*} /\left(K^{*}\right)^{2} \\
& \alpha_{E^{\prime}}: \frac{E^{\prime}(K)}{\phi(E(K))} \longleftrightarrow K^{*} /\left(K^{*}\right)^{2}
\end{aligned}
$$

- We have

$$
2^{\mathrm{rank} E(K)}=\frac{\left|\operatorname{Im}\left(\alpha_{E}\right)\right| \cdot\left|\operatorname{Im}\left(\alpha_{E^{\prime}}\right)\right|}{4}
$$

- If K is number field, and $a, b \in \mathcal{O}_{K}$, then

$$
\operatorname{Im}\left(\alpha_{E}\right) \subset K(S, 2)
$$

where $S=\{$ primes dividing $b\}$.
Notation: $\quad K(S, n)=\left\{x \in K^{\times} /\left(K^{\times}\right)^{n}: \operatorname{ord}_{v}(x) \equiv 0(\bmod n)\right.$ for all $\left.v \in M_{K}-S\right\}$
Example: Let S be finite set of primes. Then $\mathbb{Q}(S, 2)$ is simply a finite set of squarefree integers containing only primes from S. E.g. if $S=\{2,3,5\}$, then $\mathbb{Q}(S, 2)=\langle-1,2,3,5\rangle=$ $\{1,-1,2,-2,3,-3,5,-5,6,-6,10,-10,15,-15,30,-30\}$ (as cosets in $\left.\mathbb{Q}^{\times} /\left(\mathbb{Q}^{\times}\right)^{2}\right)$

- If $b_{1} b_{2}=b$, then

$$
\begin{aligned}
b_{1}\left(K^{*}\right)^{2} \in \operatorname{Im}\left(\alpha_{E}\right) \Longleftrightarrow & w^{2}=b_{1} u^{4}+a u^{2} v^{2}+b_{2} v^{4} \\
& \text { is soluble for } u, v, w \in K \text { not all zero }
\end{aligned}
$$

Fact: If $a, b_{1}, b_{2} \in \mathbb{Z}$ and $p \nmid 2 b\left(a^{2}-4 b\right)$, then $w^{2}=b_{1} u^{4}+a u^{2} v^{2}+b_{2} v^{4}$ has solution over \mathbb{Q}_{p}

- Calculating the rank of $E: y^{2}=x\left(x^{2}+a x+b\right)$:
- Setup the 2-isogeny by defining $E^{\prime}: y^{2}=x\left(x^{2}+a^{\prime} x+b\right)$ where $a^{\prime}=-2 a$ and $b^{\prime}=a^{2}-4 b$.
- We aim to calculate $\operatorname{Im}\left(\alpha_{E}\right)$ and $\operatorname{Im}\left(\alpha_{E^{\prime}}\right)$.
- Obtain bounds on the size by using that $\operatorname{Im}\left(\alpha_{E}\right) \subset\left\langle-1, p_{b_{1}}, p_{b_{2}}, \ldots, p_{b_{k}}\right\rangle$ where $p_{b_{i}}$ are the primes dividing b^{\prime}.
Similarly, use that $\operatorname{Im}\left(\alpha_{E^{\prime}}\right) \subset\left\langle-1, p_{b_{1}^{\prime}}, p_{b_{2}^{\prime}}, \ldots, p_{b_{k}^{\prime}}\right\rangle$ where $p_{b_{i}^{\prime}}$ are the primes dividing b^{\prime}.
- For each b_{1} dividing b, determine if b_{1} is in $\operatorname{Im}\left(\alpha_{E}\right)$ by determining if there exist $u, v, w \in K$ not all zero such that

$$
w^{2}=b_{1} u^{4}+a u^{2} v^{2}+b_{2} v^{4}
$$

Tips:

* If $b_{1}, b_{2}, a \leq 0$, then no solutions over \mathbb{R}, hence no solutions in \mathbb{Q}.
* Can multiply through to assume integer solutions with $\operatorname{gcd}(u, v)=1$.
* Use quadratic reciprocity.
* Use that $\operatorname{Im}\left(\alpha_{E}\right)$ is a group to eliminate checking every possible subset of $\left\langle-1, p_{b_{1}}, \ldots, p_{b_{k}}\right\rangle$.
- Finally, use

$$
\operatorname{rank} E(K)=\log _{2}\left|\operatorname{Im}\left(\alpha_{E}\right)\right|+\log _{2}\left|\operatorname{Im}\left(\alpha_{E^{\prime}}\right)\right|-2
$$

to compute the rank, given $\operatorname{Im}\left(\alpha_{E}\right)$ and $\operatorname{Im}\left(\alpha_{E^{\prime}}\right)$.

Birch Swinnerton-Dyer conjecture

- Let E / \mathbb{Q} be elliptic curve. Define the associated L-fuction $L(E, s)=\prod_{p} L_{p}(E, s)$ where

$$
L_{p}(E, s)= \begin{cases}\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1} & \text { if good reduction } \\ \left(1-p^{-s}\right)^{-1} & \text { if split mult reduction } \\ \left(1+p^{-s}\right)^{-1} & \text { if nonsplit mult reduction } \\ 1 & \text { if additive reduction }\end{cases}
$$

where $\# \tilde{E}\left(\mathbb{F}_{p}\right)=p+1-a_{p}$, By Hasse's bound, we know $L(E, s)$ converges for $\operatorname{Re}(s)>3 / 2$.

- Analytic continuation: $L(E, s)$ is the L-functio of a weight 2 modular form and hence has an analytic continuation to all of \mathbb{C}
- Weak BSD: $\operatorname{ord}_{s=1} L(E, s)=\operatorname{rank} E(\mathbb{Q})$
- Strong BSD:

$$
\lim _{s \rightarrow 1} \frac{1}{(s-1)^{r}} L(E, s)=\frac{\Omega_{E} \cdot|\amalg(E / \mathbb{Q})| \cdot \operatorname{Reg} E(\mathbb{Q}) \cdot \prod_{p} c_{p}}{\left|E(\mathbb{Q})_{\mathrm{tors}}\right|^{2}}
$$

where
$-c_{p}=\left[E\left(\mathbb{Q}_{p}\right): E_{0}\left(\mathbb{Q}_{p}\right)\right]=$ Tamagawa number of E / \mathbb{Q}_{p}.

- Let P_{1}, \ldots, P_{r} generate the non-torsion part of $E(\mathbb{Q})$. So $E(\mathbb{Q}) / E(\mathbb{Q})_{\text {torsion }}=\left\langle P_{1}, \ldots, P_{r}\right\rangle$. Then the regulator of $E(\mathbb{Q})$ is

$$
\operatorname{Reg} E(\mathbb{Q})=\operatorname{det}\left(\left[P_{i}, P_{j}\right]\right)_{i, j=1, \ldots, r}=\left|\begin{array}{cccc}
{\left[P_{1}, P_{1}\right]} & {\left[P_{1}, P_{2}\right]} & \ldots & {\left[P_{1}, P_{r}\right]} \\
{\left[P_{2}, P_{1}\right]} & {\left[P_{2}, P_{2}\right]} & \ldots & {\left[P_{2}, P_{r}\right]} \\
\vdots & \vdots & \ddots & \vdots \\
{\left[P_{r}, P_{1}\right]} & {\left[P_{r}, P_{2}\right]} & \ldots & {\left[P_{r}, P_{r}\right]}
\end{array}\right|
$$

where $[P, Q]=\hat{h}(P+Q)-\hat{h}(P)-\hat{h}(Q)$
$-\Omega_{E}$ is the integral

$$
\Omega_{E}=\int_{E(\mathbb{R})} \frac{d x}{\left|2 y+a_{1} x+a_{3}\right|}
$$

where a_{i} are coefficients of globally minimal Weierstrass equation for E.

- Kolyvagin: If $\operatorname{ord}_{s=1} L(E, s)=0$ or 1 (i.e. analytic rank is 0 or 1), then weak BSD is true and $|\amalg(E / \mathbb{Q})|<\infty$

Misc

Automorphism group: Let E / k be elliptic curve. Then $\operatorname{Aut}(E)$ is finite, and its order is

- 2 if $j(E) \notin\{0,1728\}$
- 4 if $j(E)=0$ and char $k \notin\{2,3\}$
- 6 if $j(E)=1728$ and char $k \notin\{2,3\}$
- 12 if $j(E)=0=1728$ and char $k=3$
- 24 if $j(E)=0=1728$ and char $k=2$

In the last two cases, E is always supersingular
Endomophisms: An endomorphism of E is an isogeny from E to E. Denoted, $\operatorname{End}(E)$, it forms a ring

- Multiplication by $\mathrm{n}:[n]: E \rightarrow E$ given by $X \mapsto X+X+\cdots+X n$ times.
- (For finite fields) Frobenius endomorphism: $\phi: E \rightarrow E$ given by $(x, y) \mapsto\left(x^{q}, y^{q}\right)$
- Translation: $\tau_{P}: E \rightarrow E$ given by $X \mapsto P+X$
- Coordinate ring: Let V be a variety over K. The coordinate ring of V / K is defined by

$$
K[V]=\frac{K[X]}{I(V / K)}
$$

Elements of $K[V]$ are the polynomial functions on V. $K(V)$ is an integral domain. It's quotient field is denoted by $K(V)$.

- Maximal ideal: Let V be variety, and P a point on V. The maximal ideal at P is

$$
M_{P}=\{f \in K[V]: f(P)=0\}
$$

- Local ring: Let V be variety, and P a point on V. The local ring of V at P is

$$
K[V]_{P}=\left\{F \in K(V): F=\frac{f}{g} \text { for some } f, g \in K[V] \text { with } g(P) \neq 0\right\}
$$

I.e. $K[V]_{P}$ is the set of regular function at P (functions defined at P).

- Rational map: Let $V_{1}, V_{2} \subset \mathbb{P}^{n}$ projective varieties. A rational map from V_{1} to V_{2} is a map of the form

$$
\phi: V_{1} \rightarrow V_{2} \quad \phi=\left[f_{0}, \ldots, f_{n}\right]
$$

where $f_{0}, \ldots, f_{n} \in \bar{K}\left(V_{1}\right)$ are s.t., fr every point $P \in V_{1}$ at which f_{0}, \ldots, f_{n} are all defined: $\phi(P)=\left[f_{0}(P), \ldots, f_{n}(P)\right] \in V_{2}$.
Note: A rational map $\phi: V_{1} \rightarrow V_{2}$ may not necessarily be well-defined at every point of V_{1}.

- Regular: A rational map $\phi=\left[f_{0}, \ldots, f_{n}\right]: V_{1} \rightarrow V_{2}$ is regular at $P \in V_{1}$ if there is a function $g \in \bar{K}\left(V_{1}\right)$ such that
- For each $i, g f_{i}$ is regular at P.
- There exists an i for which $g f_{i}(P) \neq 0$

Note: We may have to take different g 's for different points.

- Morphism: A rational map that is regular at every point.

Curves

- Let C be a curve, and $P \in C$ a smooth point. THen $K[C]_{P}$ is a discrete valuation ring.
- Order of vanishing: Let C be a curve with function field $K(C)$. Let $P \in C$ be a smooth point. THe function $\operatorname{ord}_{P}(f): K(C) \rightarrow \mathbb{Z} \cup \infty$ is the order of vanishing of $f \in K(C)$ at P.
Defined as

$$
\operatorname{ord}_{P}(f)=\sup \left\{d \in \mathbb{Z}: f \in M_{p}^{d}\right\}
$$

