Modular Forms and L-functions

Lectures

1. Characters

- Character: Let G be abelian topological group. A (unitary) Character of G is a continuous homomorphism: $\chi: G \rightarrow U(1)=\{z \in \mathbb{C}:|z|=1\}$
Notation: The set of all characters of G, denoted \hat{G} forms a group under multiplication.

Examples:

$-G=\mathbb{R}$. Every character is of the form $x \mapsto e^{2 \pi i x y}$ for some $y \in \mathbb{R} . \hat{\mathbb{R}} \cong \mathbb{R}$.
$-G=\mathbb{Z}$. Character depends only on $\chi(1) . \hat{\mathbb{Z}} \cong U(1)$.
$-G=\mathbb{Z} / N \mathbb{Z} . \chi(1)$ is n-th root of unity. $\hat{G} \cong \mu_{N}=\left\{\zeta \in \mathbb{C}^{\times}: \zeta^{N}=1\right\}$.
$-G=\mathbb{R}^{\times}$. Then $\hat{G} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{R}$.
$-G=(\mathbb{Z} / N \mathbb{Z})^{\times}$. Then \hat{G} is finite abelian with order $\phi(N)$.
If $N=2^{r} \cdot p_{1}^{r_{1}} \ldots p_{k}^{r_{k}}$, with p_{i} odd primes, then:

$$
\begin{aligned}
(\mathbb{Z} / N \mathbb{Z})^{\times} & \cong\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{\times} \times\left(\mathbb{Z} / p_{1}^{r_{1}} \mathbb{Z}\right)^{\times} \times \cdots \times\left(\mathbb{Z} / p_{k}^{r_{k}} \mathbb{Z}\right)^{\times} \\
& \cong C_{2} \times C_{2^{r-2}} \times C_{p_{1}^{r_{1}}-p_{1}^{r_{1}-1}} \times \cdots \times C_{p_{k}^{r_{k}}-p_{k}^{r_{k}-1}}
\end{aligned}
$$

where C_{n} is the cyclic group of order n.

- Locally compact group: A topological group G for which the underlying topology is Hausdorff and locally compact (i.e. for all $g \in G$, there exists an open set U and compact set K s.t. $g \in U \subset K)$
Examples: Any finite group, any discrete group. Any compact space. Euclidean space \mathbb{R}^{n}. Unit interval $[0,1]$. The circle group $U(1)$.
- Pontryagin duality: If G is locally compact, then $G \rightarrow \hat{G}$ is an isomorphism (noncanonically).
- Orthogonality relations: Let G be finite abelian group. with $\chi, \chi \in \hat{G}$ characters of G. Then

$$
\sum_{g \in G} \overline{\chi(g)} \chi^{\prime}(g)= \begin{cases}0 & \text { if } \chi \neq \chi^{\prime} \\ |G| & \text { if } \chi=\chi^{\prime}\end{cases}
$$

Also, let $g, g^{\prime} \in G$ be elements of G. Then

$$
\sum_{\chi \in \hat{G}} \overline{\chi(g)} \chi\left(g^{\prime}\right)= \begin{cases}0 & \text { if } g \neq g^{\prime} \\ |G| & \text { if } g=g^{\prime}\end{cases}
$$

- Let G be finite abelian group. Then $\# \hat{G}=\# G$ and G and \hat{G} are (non-canonically) isomorphic.
- L^{1} - function: A function $f: \mathbb{R} \rightarrow \mathbb{C}$, such that $\int_{-\infty}^{+\infty}|f(x)| d x<\infty$.
- Fourier transform: Let f be an L^{1}-function. Then the Fourier transform is:

$$
\hat{f}(y):=\int_{-\infty}^{\infty} e^{-2 \pi i x y} f(x) d x=\int_{\mathbb{R}} \chi_{y}(-x) f(x) d x
$$

- Schwartz space: The set of functions over \mathbb{R} that are "sufficiently nice".

$$
S(\mathbb{R})=\left\{f \in C^{\infty}(\mathbb{R}): \forall k, n \geq 0,\left|x^{n} f^{(k)}(x)\right| \rightarrow 0 \text { as }|x| \rightarrow \infty\right\}
$$

- Fourier inversion formula: If $f \in S(\mathbb{R})$, then $\hat{f} \in S(\mathbb{R})$ and $\hat{\hat{f}}=f(-x)$
- Fourier series: IF $G=\mathbb{R} / \mathbb{Z}$ and $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{C}$, then get Fourier series

$$
c_{n}(f)=\int_{0}^{1} e^{-2 \pi i n x} f(x) d x=\int_{\mathbb{R} / \mathbb{Z}} \chi_{n}(-x) f(x) d x
$$

- Finite Fourier transform: If $G=\mathbb{Z} / N \mathbb{Z}$ and $f: \mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{C}$, then get

$$
\hat{f}(\zeta)=\sum_{a \in \mathbb{Z} / N \mathbb{Z}} \zeta^{-a} f(a)
$$

- (Finite Fourier inversion):

$$
f(x)=\frac{1}{N} \sum_{\zeta \in \mu_{N}} \zeta^{x} \hat{f}(\zeta)
$$

which follows from the lemma:

$$
\sum_{\zeta \in \mu_{N}} \zeta^{k}= \begin{cases}N & \text { if } k \equiv 0 \bmod N \\ 0 & \text { otherwise }\end{cases}
$$

- Poisson summation formula: (for $\left.\mathbb{R}^{n}\right)$ Let $f \in S\left(\mathbb{R}^{n}\right)$. Then

$$
\sum_{a \in \mathbb{Z}^{n}} f(a)=\sum_{b \in \mathbb{Z}^{n}} \hat{f}(b)
$$

- (Functional equation of Θ-function) Let

$$
\Theta(t)=\sum_{n=-\infty}^{\infty} e^{-\pi n^{2} t}
$$

Then $\Theta(1 / t)=t^{1 / 2} \Theta(t)$
Corollary: Let $\vartheta(z)=\sum_{n \in \mathbb{Z}} e^{\pi i n^{2} z}$. Then $\vartheta(-1 / z)=(z / i)^{1 / 2} \vartheta(z)$

- Examples of Fourier transforms:
- Linearity
- Scaling
- Time shifting
- Let $g(x)=e^{-\pi x^{2}}$. Then $\hat{g}(y)=g(y)$

2. Γ-function and Mellin transform

- Gamma function: An analytic function of s :

$$
\Gamma(s)=\int_{0}^{\infty} e^{-y} y^{s} \frac{d y}{y} \quad s \in \mathbb{C}, \operatorname{Re}(s)>0
$$

Properties:
$-\Gamma(s+1)=s \Gamma(s)$ (by integration by parts)
$-\Gamma(1)=1 \Longrightarrow \Gamma(n)=(n-1)$!

$$
\Gamma(s)=\frac{1}{s(s+1) \ldots(s+N-1)} \Gamma(s+N) \quad \forall N \geq 1
$$

- Weierstrauss product formula:

$$
\Gamma(s)^{-1}=e^{\gamma s} s \prod_{n \geq 1}\left(1+\frac{s}{n}\right) e^{-s / n}
$$

where γ is the Euler-Mascheroni constant:

$$
\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log (n)\right)
$$

- Duplication formula:

$$
\pi^{1 / 2} \Gamma(2 s)=2^{2 s-1} \Gamma(s) \Gamma(s+1 / 2)
$$

- Reflection formula:

$$
\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin (\pi s)}
$$

- Let $f: \mathbb{R}_{>0} \rightarrow \mathbb{C}$ be a continuous function. We say f is rapidly decreasing at ∞ if, for all $n \in \mathbb{Z}, y^{n} f(y) \rightarrow 0$ as $y \rightarrow \infty$.
We say f has moderate growth at $\mathbf{0}$, if, for some $m \geq 0,\left|y^{m} f(y)\right|$ is bounded as $y \rightarrow 0$
- Mellin transform: Let $f: \mathbb{R}_{>0} \rightarrow \mathbb{C}$ be a continuous functon rapidly decresaing at ∞, and with moderate growth at 0 for some $m \geq 0$. The Mellin transform is

$$
M(f, s):=\int_{0}^{\infty} f(y) y^{s} \frac{d y}{y}
$$

which converges absolutely, defining an anlytic funciton of s for $\operatorname{Re}(s)>m$.
Examples:

- If $f(y)=e^{-y}$, then $M(f, s)=\Gamma(s)$.
- If $f(y)=\frac{1}{e^{y}-1}$, then $M(f, s)=\Gamma(s) \zeta(s)$
- Riemann-zeta function: Let $\zeta(s)$ be the function

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad \text { for } \operatorname{Re}(s)>1
$$

Then $\zeta(s)$ has a meromorphic continuation to \mathbb{C}, only singularity is simple pole at $s=1$, with residue 1.

- Bernoulli numbers: Numbers given as coefficients of generating function of $t /\left(e^{t}-1\right)$:

$$
\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}=\frac{t}{e^{t}-1}=\left(1+\frac{t}{2!}+\frac{t^{2}}{3!}+\ldots\right)^{-1}=1-\frac{t}{2}+\frac{1}{6} \frac{t^{2}}{2!}-\ldots
$$

Examples: $\quad B_{0}=1, B_{1}=-1 / 2, B_{2}=1 / 6, B_{3}=0, B_{4}=-1 / 30$, and $B_{12}=-691 /(2 \cdot 3 \cdot$ $5 \cdot 7 \cdot 13$)
Fact: $\quad B_{n}=0$ if $n \geq 3$ odd.
Corollary: $\quad \zeta(0)=-1 / 2=B_{1}$ and for all $n \geq 2, \zeta(1-n)=-B_{n} / n$

- Functional equation: Let

$$
Z(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)
$$

Then $Z(s)$ has simple poles at $s=1,0$ with residues $+1,-1$ and $Z(s)=Z(1-s)$

- Euler product formula: If $\operatorname{Re}(s)>1$, then

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}=\prod_{p \text { prime }}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\ldots\right)=\prod_{p \text { prime }}\left(\frac{1}{1-p^{-s}}\right)
$$

3. Dirichlet L-functions

- Dirichlet series: Let a_{n} be a sequence with at most polynomial growth. Then the Dirichlet series is:

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

- Dirichlet character: Let $N \geq 1$. A Dirichlet character $(\bmod N)$ is a character $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$.
- Dirichlet L-function: Let

$$
L(\chi, s)=\sum_{\substack{n \geq 1 \\(n, N)=1}} \chi(n) n^{-s}
$$

This converges absolutely for $\operatorname{Re}(s)>1$.

- Euler product: Since χ is multiplicative, we have the Euler product

$$
L(\chi, s)=\prod_{\substack{p \text { prime } \\(p, N)=1}}\left(1+\frac{\chi(p)}{p^{s}}+\frac{\chi(p)^{2}}{p^{2 s}}+\ldots\right)=\prod_{(p, N)=1}\left(1-\frac{\chi(p)}{p^{s}}\right)^{-1}
$$

- Analytic continuation: Let $\psi: \mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{C}$ be any periodic function. Define

$$
L(\psi, s):=\sum_{n \geq 1} \psi(n) n^{-s}
$$

which converges for $\operatorname{Re}(s)>1$.
The Mellin transform is:

$$
\Gamma(s) L(\psi, s)=\sum_{n \geq 1} \psi(n) M\left(e^{-n y}, s\right)=M(f, s) \quad \text { with } \quad f(y)=\sum_{n=1}^{N} \psi(n) \frac{e^{(N-n) y}}{e^{N y}-1}
$$

which extends $L(\psi, s)$ meromorphically to $\operatorname{Re}(s)>0$.

- For any $\psi: \mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{C}, L(\psi, s)$ has a meromorphic continuation to $\{\operatorname{Re}(s)>0\}$, holomorphic for $s \neq 1$. At $s=1$, at worst simple pole, residue $=\frac{1}{N} \sum_{n \in \mathbb{Z} / N \mathbb{Z}} \psi(n)$.
- Let $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$be a Dirichlet character. Then
- If $\chi \neq \chi_{0}$, then $L(\chi, s)$ is analytic at $s=1$.
- For χ_{0}, the residue at $s=1$ is

$$
\operatorname{Res}_{s=1} L\left(\chi_{0}, s\right)=\frac{\phi(N)}{N}=\prod_{p \mid N}\left(1-\frac{1}{p}\right)
$$

- Dirichlet's Theorem on Primes in Arithmetic Progression: Let $a, n \in \mathbb{Z}$ such that $1 \leq a<N$ with $(a, N)=1$. Then there exists infinitely many primes p such that $p \equiv a(\bmod N)$.
Lemmas:

$$
\sum_{p} p^{-x} \sim-\log (x-1) \text { as } x \rightarrow 1_{+}
$$

- Let $\chi \neq \chi_{0}$. Then

$$
\sum_{(p, N)=1} \chi(p) p^{-x}
$$

is bounded as $x \rightarrow 1_{+}$.

- Lattice: Let V be finite $\operatorname{dim} \mathbb{R}$-vector space, and let $\left(e_{i}\right)$ be a \mathbb{R}-basis of V. A lattice in V is a subgroup $\Lambda \subset V$ of the form

$$
\sum_{1 \leq i \leq d} \mathbb{Z} e_{i}
$$

Properties:
(a) Λ is a discrete subgroup. I.e. for any norm on $V,\{x \in \Lambda:\|x\|<R\}$ is finite, for all R.
(b) Λ is cocompact. I.e. V / Λ is compact.

Furthermore, Λ is lattice if and only if (a) and (b) hold.

- Norm: Let V be a vector space over \mathbb{R} or \mathbb{C}. A norm is a function $\|\cdot\|: V \rightarrow \mathbb{R}$ such that
$-\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in V$.
- $\|\alpha x\|=|\alpha|\|x\|$ for all $\alpha \in \mathbb{R}$ or \mathbb{C}, and for all $x \in V$.
- If $\|x\|=0$, then $x=0$ is the zero vector.
- Equivalent norms: Let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ be two norms on V. These norms are equivalent if, there exists constants $A, B>0$ such that

$$
A\|x\| \leq\|x\|^{\prime} \leq B\|x\|
$$

for all $x \in V$.

- Let V be a finite dimensional vector space over \mathbb{R}. Then any two norms on V are equivalent.
- Let $\Lambda \subset V$ be a lattice, with $\|\cdot\|$ any norm on V. Then

$$
\sum_{0 \neq x \in \Lambda} \frac{1}{\|x\|^{\alpha}} \text { converges } \Longleftrightarrow \alpha>\operatorname{dim}(v)
$$

4. Modular group

- Upper half plane: Upper half plane is

$$
\mathfrak{h}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}
$$

- $\mathbf{G L}_{2}(\mathbb{R})$: General linear group over \mathbb{R}; the set of 2×2 invertible matrices over \mathbb{R}.

$$
\mathrm{GL}_{2}(\mathbb{R}):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}(\mathbb{R}): a d-b c \neq 0\right\}
$$

- Group action: $\mathrm{GL}_{2}(\mathbb{R})$ acts on $\mathbb{C} \backslash \mathbb{R}$ on the left by

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): z \mapsto \frac{a z+b}{c z+d}=\gamma(z)
$$

- $\mathrm{GL}_{2}(\mathbb{R})^{+}$: The set of 2×2 matrices over \mathbb{R} with positive determinant.

$$
\mathrm{GL}_{2}(\mathbb{R})^{+}:=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}(\mathbb{R}): a d-b c>0\right\}
$$

- $\mathrm{GL}_{2}(\mathbb{R})^{+}$maps \mathfrak{h} to itself.
- $\mathrm{PGL}_{2}(\mathbb{R})^{+}$:

$$
\mathrm{PGL}_{2}(\mathbb{R})^{+}:=\frac{\mathrm{GL}_{2}(\mathbb{R})^{+}}{\mathbb{R}^{\times} \cdot I} \cong \frac{\mathrm{SL}_{2}(\mathbb{R})}{\{ \pm I\}}
$$

- $\mathrm{PGL}_{2}(\mathbb{R})^{+}$is the full group of holomorphic automorphisms of \mathfrak{h}.
- $\mathrm{SL}_{2}(\mathbb{Z})$: Special linear grup over \mathbb{Z}; the set of 2×2 matrices over \mathbb{Z} with determinant 1 .

$$
\mathrm{SL}_{2}(\mathbb{R})^{+}:=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}(\mathbb{Z}): a d-b c=1\right\}
$$

- If $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$, then $\bar{\Gamma}$ is image in $\operatorname{PSL}_{2}(\mathbb{Z})$
- Modular group: If $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$, then $\bar{\Gamma}=\mathrm{PSL}_{2}(\mathbb{Z})$ is called the modular group.
- Let

$$
S= \pm\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad T= \pm\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Then $\mathrm{PSL}_{2}(\mathbb{Z})=\langle S, T\rangle$.

- Fundamental domain: Let

$$
\mathcal{D}=\left\{z \in \mathfrak{h}:-\frac{1}{2}<\operatorname{Re}(z) \leq \frac{1}{2},|z| \geq 1, \text { and if }|z|=1, \text { then } \operatorname{Re}(z) \geq 0\right\}
$$

Then \mathcal{D} is a fundamental set for $\operatorname{PSL}_{2}(\mathbb{Z})$. I.e. every orbit of $\operatorname{PSL}_{2}(\mathbb{Z})$ on h intersects \mathcal{D} in exactly one point.

- Stabilizers: For $z \in \mathfrak{h}$, let $\bar{\Gamma}_{z}=\{\gamma \in \bar{\Gamma}: \gamma(z)=z\}$ be the stabiliser subgroup of z. If $z \in \mathcal{D}$, then:

$$
-\bar{\Gamma}_{z}=\{1\} \text { if } z \notin\{i, \rho\} .
$$

$-\bar{\Gamma}_{i}=\langle S\rangle \cong \mathbb{Z} / 2 \mathbb{Z}$
$-\bar{\Gamma}_{\rho}=\langle T S\rangle \cong \mathbb{Z} / 3 \mathbb{Z}$
Remark: $\mathrm{PSL}_{2}(\mathbb{Z})$ is freely generated by $\langle S\rangle$ and $\langle T S\rangle$.

- Hyperbolic measure: The (hyperbolic) measure $\frac{d x d y}{y^{2}}$ is invariant under $\mathrm{SL}_{2}(\mathbb{R})$.
- The quotient $\bar{\Gamma} \backslash \mathfrak{h}$ has finite measure for any finite index subgroup $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$
- Principal congruence subgroup: Let $N \geq 1$. The principal congruence subgroup $\bmod N$ is

$$
\begin{gathered}
\Gamma(N):=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv I \bmod N\right\}=\operatorname{ker}\left(\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})\right) \\
\Gamma_{0}(N)=\left\{\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): c \equiv 0 \quad \bmod N\right\} \\
\Gamma_{1}(N)=\left\{\gamma \in \Gamma_{0}(N): d \equiv 1 \quad \bmod N\right\}
\end{gathered}
$$

Note: $\quad \Gamma(N) \subset \Gamma_{1}(N) \subset \Gamma_{0}(N)$

- Congruence subgroup: Let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be a subgroup. Γ is a congruence subgroup if $\Gamma(N) \subset \Gamma$ for some N.
Remark about non-congruence subgroup:

$$
\frac{\#\{\text { congruence subgroups of index } \leq M\}}{\#\{\text { all subgroups of index } \leq M\}} \longrightarrow 0 \quad \text { as } M \rightarrow \infty
$$

- For $\mathrm{SL}_{n}(\mathbb{Z}), n \geq 3$, every subgroup of finite index is a congruence subgroup!
- j-operator: Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{R})^{+}$, and let $z \in \mathfrak{h}$. Define

$$
j(\gamma, z):=c z+d
$$

Note that, by action of γ,

$$
\gamma\binom{z}{1}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{z}{1}=\binom{a z+b}{c z+d}=(c z+d)\binom{\frac{a z+b}{c z+d}}{1}=j(\gamma, z)\binom{\gamma(z)}{1}
$$

Properties:
$-j(\gamma \delta, z)=j(\gamma, \delta(z)) \cdot j(\delta, z)$
$-j\left(\gamma^{-1}, z\right)=j\left(\gamma, \gamma^{-1}(z)\right)^{-1}$
$-\frac{d}{d z} \gamma(z)=\frac{\operatorname{det}(\gamma)}{j(\gamma, z)^{2}}$
$-\operatorname{Im} \gamma(z)=\frac{\operatorname{det} \gamma \operatorname{Im}(z)}{|j(\gamma, z)|^{2}}$

5. Modular forms (of level 1)

- Modular: A complex valued function on \mathfrak{h} is modular of weight k if, for all $\gamma \in$ $\mathrm{SL}_{2}(\mathbb{Z})$, we have

$$
f(\gamma(z))=j(\gamma, z)^{k} f(z)=(c z+d)^{k} f(z)
$$

Note: If above property holds for $\gamma, \delta \in \mathrm{SL}_{2}(\mathbb{Z})$, then it holds for $\gamma \delta$.

- If k is odd, then f identically zero.
- Let k be even. Then f is modular of weight k if and only if

$$
f(z+1)=f(z) \quad \text { and } \quad f(-1 / z)=z^{k} f(z)
$$

- Eisenstein series: Let $k \geq 4$ be even. Define (for $z \in \mathfrak{h}$)

$$
G_{k}(z)=\sum_{\substack{(c, d) \in \mathbb{Z}^{2} \\(c, d) \neq(0,0)}} \frac{1}{(c z+d)^{k}}
$$

Properties of $G_{k}(z)$:

- (i) Series for G_{k} converges to a holomorphic function of \mathfrak{h} which is modular of weight k.
- (ii) We have the q-expansion

$$
G_{k}(z)=2 \zeta(k)+2 \frac{(2 \pi i)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n} \quad \text { where } \quad \sigma_{r}(n)=\sum_{1 \leq d \mid n} d^{r}
$$

which arises from the lemma that, for all $k \geq 2$,

$$
\sum_{n \in \mathbb{Z}} \frac{1}{(z+n)^{k}}=\frac{(2 \pi i)^{k}}{(k-1)!} \sum_{m \geq 1} m^{k-1} q^{m} \quad \text { where } q=e^{2 \pi i z}
$$

- Weierstrauss \wp-function: Let $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2} \subset \mathbb{C}$ be a lattice, where ω_{1} and ω_{2} are linearly independent over \mathbb{R}. Then the Weierstrauss \wp-function is

$$
\begin{aligned}
\wp(u) & =\frac{1}{u^{2}}+\sum_{0 \neq w \in \Lambda}\left(\frac{1}{(u-w)^{2}}-\frac{1}{w^{2}}\right) \\
& =\frac{1}{u^{2}}+\sum_{c, d \in \mathbb{Z}^{2} \backslash(0,0)}\left(\frac{1}{\left(u-c w_{1}-d w_{2}\right)^{2}}-\frac{1}{\left(c w_{1}+d w_{2}\right)^{2}}\right)
\end{aligned}
$$

- Laurent expansion of \wp at origin:

$$
\wp(u)=\frac{1}{u^{2}}+\sum_{\substack{k \geq 4 \\ k \text { even }}}(k-1) G_{k}(\Lambda) u^{k-2} \quad \text { where } \quad G_{k}(\Lambda)=\sum_{0 \neq w \in \Lambda} \frac{1}{w^{k}}=\frac{1}{w_{2}^{k}} G_{k}\left(\frac{w_{1}}{w_{2}}\right)
$$

- Normalised Eisenstein series: Define

$$
E_{k}(z)=\frac{1}{2 \zeta(k)} G_{k}(z)=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}
$$

Examples:

$$
\begin{aligned}
& E_{4}=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}=1+240 q+2160 q^{2}+6720 q^{3}+17520 q^{4}+\ldots \\
& E_{6}=1-504 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n}=1-504 q-16632 q^{2}-122976 q^{3}-532728 q^{4}-\ldots \\
& E_{8}=1+480 \sum_{n=1}^{\infty} \sigma_{7}(n) q^{n}=1+480 q+61920 q^{2}+1050240 q^{3}+7926240 q^{4}+\ldots \\
& E_{10}=1-264 \sum_{n=1}^{\infty} \sigma_{9}(n) q^{n}=1-264 q-135432 q^{2}-5196576 q^{3}-69341448 q^{4}-\ldots \\
& E_{12}=1+\frac{65520}{691} \sum_{n=1}^{\infty} \sigma_{11}(n) q^{n}=1+\frac{65520}{691} q+\frac{134250480}{691} q^{2}+\frac{11606736960}{691} q^{3}+\ldots \\
& E_{14}=1-24 \sum_{n=1}^{\infty} \sigma_{13}(n) q^{n}=1-24 q-196632 q^{2}-38263776 q^{3}-1610809368 q^{4}-\ldots
\end{aligned}
$$

- Meromorphic/holomorphic at infinity: Let f be complex function on \mathfrak{h} such that $f(z+N)=f(z)$ for some $N \geq 1$. Let $\tilde{f}\left(q_{N}\right)=f(z)$ where $q_{N}=e^{2 \pi i z / N}$. If f holomorphic for $\operatorname{Im}(z)>Y$, then \tilde{f} holomorphic on $\left\{0<\left|q_{N}\right|<e^{-2 \pi Y / N}\right\}$.
We say f is meromorphic/holomorphic at infinity if \tilde{f} meromorphic/holomorphic at $q_{n}=0$.
I.e. Let f have convergent series representation

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n z / N} \quad \text { for } \operatorname{Im}(z)>Y
$$

Then:

- If $c_{n}=0$ for sufficiently small n, then meromorphic at infinity.
- If $c_{n}=0$ for all $n<0$, then holomorphic at infinity.
- Modular form: A modular form of weight $k \in 2 \mathbb{Z}$ is a holomorphic function $f: \mathfrak{h} \rightarrow \mathbb{C}$ which is
(i) modular of weight k.
(ii) holomorphic at infinity.
- Weak modular form: Same as above, but can replace (ii) with memormorphic at infinity.
- Valence formula: Let f be a (weak) modular form of weight k, not indeitcally zero. Then

$$
\sum_{\substack{z \in \mathcal{D} \\ z \neq i, \rho}} \operatorname{ord}_{z=z_{0}} f+\frac{1}{2} \operatorname{ord}_{z=i} f+\frac{1}{3} \operatorname{ord}_{z=\rho} f+\operatorname{ord}_{\infty} f=\frac{k}{12}
$$

Applications:
$-M_{k}=0$ if $k<0$.
$-M_{0}=\mathbb{C}$.
$-M_{2}=\{0\}$

- For all $k \geq 0$,

$$
\operatorname{dim}_{\mathbb{C}} M_{k} \leq 1+\frac{k}{12}
$$

Corollary: $\quad M_{k}=\mathbb{C} E_{k}$ for $k \in\{4,6,8,10\} . E_{4}^{2}=E_{8}$ and $E_{4} E_{6}=E_{10}$.

- Delta function: Define

$$
\Delta=\frac{E_{4}^{3}-E_{6}^{2}}{1728}=q-24 q^{2}+252 q^{3}-1472 q^{4}+\cdots=\sum_{n=1} \tau(n) q^{n}
$$

$\tau(n)$ is Ramanujan τ-function.
Corollary: $M_{12}=\mathbb{C} E_{4}^{3} \oplus \mathbb{C} \Delta$

- Cusp form: Let $S_{k}=\left\{f \in M_{k}: \operatorname{ord}_{\infty} f \geq 1\right\}$. These are the space of cusp forms of weight 1. Note $\Delta \in S_{12}$.
- $M_{k}=S_{k} \oplus \mathbb{C} \cdot E_{k}$
- $f \mapsto f \Delta$ is an isomorphism between m_{k} and S_{k+12}
- Let $k \geq 0$ be even. Then

$$
\operatorname{dim}_{\mathbb{C}} M_{k}= \begin{cases}\left\lfloor\frac{k}{12}\right\rfloor & \text { if } k \equiv 2 \bmod 12 \tag{1}\\ 1+\left\lfloor\frac{k}{12}\right\rfloor & \text { otherwise }\end{cases}
$$

- Basis: A basis for M_{k} is

$$
\left\{E_{4}^{a} E_{6}^{b} \Delta^{c}: b \in\{0,1\}, a, c \geq 0,4 a+6 b+12 c=k\right\}
$$

Any element of M_{k} can be expressed uniquely as a polynomial in E_{4} and E_{6} (i.e E_{4} and E_{6} are algebraically independent)

- Basis (weak modular forms): A basis for the set of weak modular forms of weight $k, M_{k}^{!}$is

$$
\left\{E_{4}^{a} E_{6}^{b} \Delta^{c}: b \in\{0,1\}, a \geq 0, c \in \mathbb{Z}, 4 a+6 b+12 c=k\right\}
$$

Properties of $\tau(n)$:

- (i) $\tau(n) \in \mathbb{Z}$ for all $n \geq 1$.
- (ii) $\tau(n) \equiv \sigma_{11}(n) \bmod 691$.
- Modular function $\mathbf{j}:$ Noting $\Delta(z) \neq 0$ for all $z \in \mathfrak{h}$, we define the j function:

$$
j(z)=\frac{E_{4}(z)^{3}}{\Delta(z)}
$$

This is holomorphic on H, modular of weight 0 , and memorphic at ∞ with $\operatorname{ord}_{\infty} j=-1$.

- Modular function: A modular function (of level 1) is a meromorphic function f on H, modular of weight 0 and meromorphic at ∞.
$-j$ defines a bijection $j: \mathrm{SL}_{2}(\mathbb{Z}) \backslash H \rightarrow \mathbb{C}$.
- The field of modular functions equals $\mathbb{C}(j)$ (i.e. every modular function is rational function of j)
- j has a triple zero at $z=\rho$.
$-j-1728=E_{6}^{2} / \Delta$ has a double zero at $z=i$.
- The q-expansion is given as:

$$
j=\frac{1}{q}+744+196884 q+21493760 q^{2}+\ldots
$$

- Picard's Little Theorem: If $f: \mathbb{C} \rightarrow \mathbb{C}$ is a nonconstant entire function, then f omits at most one value
- Weight $k=2$: There are no non-zero weight 2 modular forms (of level 1). However, we can define $G_{2}(z)$ as

$$
G_{2}(z):=\sum_{\substack { m=\infty \\
\begin{subarray}{c}{n=-\infty \\
\text { if } \\
\text { in } \\
\hline{ m = \infty \\
\begin{subarray} { c } { n = - \infty \\
\text { if } \\
\text { in } \\
\hline } } \end{subarray} \infty}^{\infty} \frac{1}{(m z+n)^{2}}=\frac{\pi^{2}}{3}\left(1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}\right)
$$

Note this is conditionally convergent, and so swapping the sums does not yield the same function $G_{2}(z)$. So $G_{2}(-1 / z) \neq z^{2} G_{2}(z)$, but we do have

$$
G_{2}(-1 / z)=z^{2} G_{2}(z)-2 \pi i z
$$

6. Hecke operators

- Slash operator: Let $k \in \mathbb{Z}$, and let f a (complex) function on \mathfrak{h}, and $\gamma \in \mathrm{GL}_{2}(\mathbb{R})^{+}$. The slash operator is

$$
\left.f\right|_{k} \gamma:=\frac{(\operatorname{det}(\gamma))^{k / 2}}{j(\gamma, z)^{k}} f(\gamma(z))=\frac{(a d-b c)^{k / 2}}{(c z+d)^{k}} f\left(\frac{a z+b}{c z+d}\right) \quad \text { where } \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

This defines (right) action of $\mathrm{GL}_{2}(\mathbb{R})^{+}$
Thus $\left.f\right|_{k}(\gamma \delta)=\left.\left(\left.f\right|_{k} \gamma\right)\right|_{k} \delta$.

- Modular: A funcitno $f: \mathfrak{h} \rightarrow \mathbb{C}$ is modular of weight k if and only if

$$
\left.f\right|_{k} \gamma=f \quad \text { for all } \gamma \in \Gamma
$$

- If $f: \mathfrak{h} \rightarrow \mathbb{C}$ is modular of weight k and $\gamma \in \mathrm{GL}_{2}(\mathbb{R})^{+}$, then $g=\left.f\right|_{k} \gamma$ is not necessarily modular of weight k.
- If $\gamma_{1}, \ldots, \gamma_{r} \in \mathrm{GL}_{2}(\mathbb{R})^{+}$such that the family of $\operatorname{cosets} \Gamma \gamma_{1}, \ldots, \Gamma \gamma_{r}$ is invariant under right action of Γ, then

$$
f \text { modular of weight }\left.k \Longrightarrow \sum_{i=1}^{r} f\right|_{k} \gamma_{i} \text { modular of weight } k
$$

- Let $m \geq 1$. Let $\Delta_{m}=\left\{\gamma \in \operatorname{Mat}_{2}(\mathbb{Z}): \operatorname{det}(\gamma)=m\right\}$ (i.e. 2×2 matrices over \mathbb{Z} with determinant m). Then

$$
\Delta_{m}=\coprod_{\delta \in \Pi_{m}} \Gamma \delta \quad \text { (disjoint union) }
$$

where

$$
\Pi_{m}=\left\{\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right): a, d>0, a d=m, b \in R_{d}\right\}
$$

where R_{d} is any complete set of integers $\bmod d$. (e.g. $R_{d}=\{0, \ldots, d-1\}$). So Π_{m} is a set of representatives of Γ in Δ_{m}.
Examples:

- If $m=1$, then $\Pi_{1}=\{I\}$ and $\Delta_{1}=\Gamma$.
- If $m=2$, then

$$
\Pi_{2}=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

- If $m=3$, then

$$
\Pi_{3}=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right),\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

- If $m=4$, then

$$
\Pi_{3}=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 4
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
0 & 4
\end{array}\right),\left(\begin{array}{ll}
1 & 3 \\
0 & 4
\end{array}\right),\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right),\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

- If $m=p$ prime, then we have $\left|\Pi_{p}\right|=p+1$, with

$$
\Pi_{3}=\left\{\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & p
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
0 & p
\end{array}\right), \ldots,\left(\begin{array}{cc}
1 & p-1 \\
0 & p
\end{array}\right)\right\}
$$

- In general, $\left|\Pi_{m}\right|=\sum_{d \mid m} d=\sigma(m)$.
- Hecke operators: Let $f: \mathfrak{h} \rightarrow \mathbb{C}$, let k be integer, and let $m \geq 1$. We define the Hecke operator T_{m} as

$$
\left.f\right|_{k} T_{m}=\left.m^{k / 2-1} \sum_{\delta \in \Pi_{m}} f\right|_{k} \delta
$$

Note: f modular weight k implies $\left.f\right|_{k} T_{m}$ modular weight k
Notation: $T_{m} f=\left.f\right|_{k} T_{m}$ (is fine since T_{m} commute)

- - If $\left(m, m^{\prime}\right)=1$, then

$$
\left.\left.f\right|_{k} T_{m}\right|_{k} T_{m^{\prime}}=\left.f\right|_{k} T_{m m^{\prime}}
$$

- For p prime, and $r \geq 1$, we have

$$
\left.\left.f\right|_{k} T_{p^{r}}\right|_{k} T_{p}=\left.f\right|_{k} T_{p^{r+1}}+\left.p^{k-1} f\right|_{k} T_{p^{r-1}}
$$

- For all $m, m^{\prime} \geq 1, T_{m}$ and $T_{m^{\prime}}$ commute.
- $\quad-f \in M_{k} \Longrightarrow T_{m} f \in M_{k}$
$-f \in S_{k} \Longrightarrow T_{m} f \in S_{k}$
- If $f=\sum_{n \in \mathbb{Z}} a_{n} q^{n}$ weak modular form, weight k, then

$$
T_{m} f=\sum_{n \in \mathbb{Z}} b_{n} q^{n}, \quad b_{n}=\sum_{1 \leq d \mid(m, n)} d^{k-1} a_{m n / d^{2}}
$$

Examples:

- If $m=1$, then T_{1} is the identity operator.
- If $m=2$, then $T_{2} f=\sum b_{n} q^{n}$ where

$$
b_{n}= \begin{cases}a_{2 n} & \text { if } n \text { odd } \\ a_{2 n}+2^{k-1} a_{n / 2} & \text { if } n \text { even }\end{cases}
$$

- If $m=3$, then $T_{3} f=\sum b_{n} q^{n}$ where

$$
b_{n}= \begin{cases}a_{3 n} & \text { if } 3 \text { not divides } n \\ a_{3 n}+3^{k-1} a_{n / 3} & \text { if } 3 \text { divides } n\end{cases}
$$

- If $m=4$, then $T_{4} f=\sum b_{n} q^{n}$ where

$$
b_{n}= \begin{cases}a_{4 n} & \text { if } n \text { odd } \\ a_{4 n}+2^{k-1} a_{n} & \text { if } n \equiv 2 \bmod 4 \\ a_{4 n}+2^{k-1} a_{n}+4^{k-1} a_{n / 4} & \text { if } n \equiv 0 \bmod 4\end{cases}
$$

- If $m=p$ prime, then $T_{p} f=\sum b_{n} q^{n}$ where

$$
b_{n}= \begin{cases}a_{p n} & \text { if } p \text { not divides } n \\ a_{p n}+p^{k-1} a_{n / p} & \text { if } p \text { divides } n\end{cases}
$$

- Suppose $m \geq 1, \lambda \in \mathbb{C}, f \in \sum_{n \geq 0} a_{n} q^{n} \in M_{k}$ and $f \neq 0$ with $T_{m} f=\lambda f$. Then
- (i) $a_{m}=\lambda a_{1}$, more generally if $(m, n)=1, a_{m n}=\lambda a_{n}$
- (ii) If $a_{0} \neq 0$ (i.e. $f \notin S_{k}$), then $\lambda=\sigma_{k-1}(m)$
- Hecke eigenform: f is a Hecke eigenform if $T_{m} f=\lambda_{m} f$ (for some $\lambda_{m} \in \mathbb{C}$) for all $m \geq 1$ (i.e. f is eigenvector for all Hecke operators)
- Let $f=\sum_{n \geq 0} a_{n} q^{n} \in M_{k}$ for $k>0$. Suppose $a_{0} \neq 0$. Then f is a Hecke eigenform if and only if $f=a_{0} E_{k}$. If so, then $\lambda_{m}=\sigma_{k-1}(m)$
- If f, g are modular of weight k, we define

$$
\Omega(f, g)=f(z) \bar{g}(z) y^{k} \frac{d x d y}{y^{2}}
$$

This is Γ-invariant.

- Peterson inner product Let $f, g \in M_{k}$, at least one a cusp form. Then

$$
\langle f, g\rangle:=\int_{\mathcal{D}} \Omega(f, g)=\int_{\Gamma \backslash \mathfrak{h}} \Omega(f, g)
$$

(can integrate over any (measurable) fundamental set)

- For all $m \geq 1,\left\langle T_{m} f, g\right\rangle=\left\langle f, T_{m} g\right\rangle$ (i.e. inner product is self-adjoint)
- There exists a basis for S_{k} composed of Hecke eigneforms (simultaneuous eigenvectors for $\left.\left\{T_{m}\right\}\right)$ Moreover, the eignenvalues of T_{m} are all real.
- Multiplicity one: Let $f, g \in M_{k} \backslash\{0\}$ such that $\forall p, \exists \lambda_{p}$ with $T_{p} f=\lambda_{p} f, T_{p} g=\lambda_{p} g$. Then $f=c g$ for some $c \in \mathbb{C}$
- (Strong mulriplicity one): Let $f, g \in M_{k} \backslash\{0\}$ such that $T_{p} f=\lambda_{p} f$ for all but finitely many primes p. Then $f=c g$.
- Normalised Hecke eigenform: A cusp form which is a Hecke eigenform with $a_{1}=1$ is said to be normalised. In this case $T_{n} f=a_{n} f$ for all $n \geq 1$.
S_{k} has a unique basis of normalised Hecke eigenforms.
Examples:
- For $k=12$, normalised eigenform is Δ.
- For $k \in\{16,18,20,22,26\}$, normalised eigenform is $E_{k-12} \Delta$.
- For $k=24$, , the space of cusp forms S_{24} has basis $\left\{E_{4}^{3} \Delta, \Delta^{2}\right\}$, where

$$
\begin{aligned}
E_{4}^{3} \Delta & =q+696 q^{2}+162252 q^{3}+12831808 q^{4}+\ldots \\
\Delta^{2} & =q^{2}-48 q^{3}+1080 q^{4}+\ldots
\end{aligned}
$$

Computing how T_{2} acts on the basis we get

$$
\begin{aligned}
T_{2}\left(E_{4}^{3} \Delta\right) & =696 q+21220461 q^{2}+\cdots=696 E_{4}^{3} \Delta+20736000 \Delta^{2} \\
T_{2}\left(\Delta^{2}\right) & =q+1080 q^{2}+\cdots=1 \cdot E_{4}^{3} \Delta+384 \Delta^{2}
\end{aligned}
$$

The matrix of T_{2} with respect to this basis is therefore

$$
T_{2}=\left(\begin{array}{cc}
696 & 1 \\
20736000 & 384
\end{array}\right)
$$

Thus, there are two normalised eigenforms h_{1}, h_{2} with coefficients in $\mathbb{Q}(\sqrt{144169})$.

$$
\begin{aligned}
& h_{1}=E_{4}^{3} \Delta+(-156+12 \sqrt{144169}) \Delta^{2} \\
& h_{2}=E_{4}^{3} \Delta+(-156-12 \sqrt{144169}) \Delta^{2}
\end{aligned}
$$

- For $k=28$, the space of cusp forms S_{28} has basis $\left\{E_{4}^{4} \Delta, E_{4} \delta^{2}\right\}$, where

$$
\begin{aligned}
E_{4}^{4} \Delta & =q+936 q^{2}+331452 q^{3}+53282368 q^{4} \ldots \\
E_{4} \Delta^{2} & =q^{2}+192 q^{3}-8280 q^{4} \ldots
\end{aligned}
$$

Computing how T_{2} acts on the basis we get

$$
\begin{aligned}
T_{2}\left(E_{4}^{4} \Delta\right) & =936 q+187500096 q^{2}+\cdots=936 E_{4}^{4} \Delta+186624000 E_{4} \Delta^{2} \\
T_{2}\left(E_{4} \Delta^{2}\right) & =q-8280 q^{2}+\cdots=1 \cdot E_{4}^{4} \Delta-9216 E_{4} \Delta^{2}
\end{aligned}
$$

The matrix of T_{2} with respect to this basis is therefore

$$
T_{2}=\left(\begin{array}{cc}
936 & 1 \\
186624000 & -9216
\end{array}\right)
$$

Thus, there are two normalised eigenforms h_{1}, h_{2} with coefficients in $\mathbb{Q}(\sqrt{18209})$.

$$
\begin{aligned}
& h_{1}=E_{4}^{4} \Delta+(-5076+108 \sqrt{18209}) E_{4} \Delta^{2} \\
& h_{2}=E_{4}^{4} \Delta+(-5076-108 \sqrt{18209}) E_{4} \Delta^{2}
\end{aligned}
$$

- Note $\Delta=\sum_{n \geq 1} \tau(n) q^{n} \in S_{12} . \operatorname{dim}\left(S_{12}\right)=1$ and $\tau(1)=1$ implies Δ is normalised eigenform. Thus $T_{m} \Delta=\tau(n) \Delta$ for all $m \geq 1$.
Therefore
$-\tau(m n)=\tau(m) \tau(n)$ if $(m, n)=1$.
$-\tau\left(p^{r+1}\right)=\tau(p) \tau\left(p^{r}\right)-p^{11} \tau\left(p^{r-1}\right)$
- Maeda's conjecture: For every $k>26$, the characteristic polynomial of T_{2} acting on S_{k} is conjectured to be irreducible over \mathbb{Q} (and has Galois group the full symmetric group).
This has been verified computationally for all weights $k \leq 12000$
- Let $f=\sum a_{n} q^{n} \in S_{k}$. Then there exists C such that $\left|a_{n}\right| \leq C n^{k / 2}$.
- (Deligne, 1972) Let f be a normalised eigenform. Then, for p prime, $\left|a_{p}\right| \leq 2 p^{(k-1) / 2}$ (very difficult). This implies that, for any $f \in S_{k}$, we have $a_{n}=\mathcal{O}\left(n^{\frac{k-1}{2}} \log n\right)$.
Also implies that $|\tau(p)|<2 p^{11 / 2}$

7. L-functions of Modular forms

- Let f be non-zero cusp form, $f=\sum_{n=1}^{\infty} a_{n} q^{n} \in S_{k}$. Define

$$
L(f, s):=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

As $a_{n}=\mathcal{O}\left(n^{k / 2}\right)$, this converges absolutely for $\operatorname{Re}(s)>\frac{k}{2}+1$.

- $L(f, s)$ is an entire function of s, and satisfies the functional equation

$$
\Lambda(f, s):=2(2 \pi)^{-s} \Gamma(s) L(f, s)=(-1)^{k / 2} \Lambda(f, k-s)
$$

- Euler product: Suppose $f=\sum_{n \geq 1} a_{n} q^{n} \in S_{k}$ is normalised eigenform. Then

$$
L(f, s):=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=\prod_{p} \frac{1}{1-a_{p} p^{-s}+p^{k-1-2 s}} \quad \text { for } \operatorname{Re}(s)>\frac{k}{2}+1
$$

- Eisenstein series: For the Eisenstein series E_{k}, the Dirichlet series naturally attached to E_{k} is

$$
\sum_{n=1}^{\infty} \sigma_{k-1}(n) n^{-s}=\zeta(s) \zeta(s+1-k)
$$

8. Epstein zeta function

(associated to a quadratic form)

- Setup: Let V be real inner product space of $\operatorname{dim} N<\infty$ with norm $\|v\|=(v, v)^{1 / 2}$.

Let $\Lambda \subset V$ be a lattice.

- Dual lattice: Let V be real inner product space, with Λ a lattice. Then the dual lattice Λ^{\prime} is:

$$
\Lambda^{\prime}=\{v \in V: \forall x \in \Lambda,(x, v) \in \mathbb{Z}\}
$$

Examples:

- Dual lattice of \mathbb{Z}^{n} is \mathbb{Z}^{n}.
- In \mathbb{R}, dual lattice of $\mathbb{Z} a$ is $\frac{1}{a} \mathbb{Z}$.
- In \mathbb{R}^{2}, dual lattice of $\mathbb{Z} \mathbf{a}+\mathbb{Z} \mathbf{b}$ is

$$
\mathbb{Z} \cdot \frac{R b}{a \cdot R b}+\mathbb{Z} \cdot \frac{R a}{b \cdot R a}
$$

where \mathbf{R} is the 90° rotation matrix.
If $\Lambda=\oplus_{i=1}^{N} \mathbb{Z} e_{i}$ then $\Lambda^{\prime}=\oplus_{i=1}^{N} \mathbb{Z} e_{i}^{\prime}$, where $\left(e_{i}^{\prime}\right)$ is dual basis given by $\left(e_{i}, e_{j}^{\prime}\right)=\delta_{i j}$

- Measure: If $\left(v_{1}, \ldots, v_{N}\right)$ are coordinates with respect to an orthonormal basis, then $d \mu_{V}=d v_{1} d v_{2} \ldots d v_{N}$.
- Covolume: Let $m(\Lambda)$ be the covolume of Λ
$m(\Lambda)=\int_{V / \Lambda} d \mu_{V}=\int_{\mathcal{F}_{V}} d \mu_{V} \quad$ where $\mathcal{F}_{\Lambda}=\left\{\sum_{i=1}^{N} x_{i} e_{i}: 0 \leq x_{i}<1\right\}$ and $\left(e_{i}\right)$ basis for Λ
\mathcal{F}_{Λ} is the fundamental parallelopiped for Λ
- Epstein Zeta function: The Epstein zeta function of $(\Lambda,\|\cdot\|)$ is

$$
G(\Lambda, s)=\sum_{0 \neq x \in \Lambda} \frac{1}{\|x\|^{2 s}}
$$

This is absolutely convergent if $\operatorname{Re}(s)>N / 2$.
E.g.

- If $V=\mathbb{R}$ with Euclidean norm, $\Lambda=\mathbb{Z}$. Then

$$
G(\Lambda, s)=\sum_{0 \neq n \in \mathbb{Z}} \frac{1}{|n|^{2 s}}=2 \zeta(2 s)
$$

- If $V=\mathbb{C}$ with Euclidean norm, $\Lambda=\mathbb{Z}[i]$. Then

$$
G(\Lambda, s)=\sum_{x+i y \in \in \mathbb{Z}[i] \backslash 0} \frac{1}{\left(x^{2}+y^{2}\right)^{s}}=\frac{1}{4} \zeta_{\mathbb{Q}(i)}(s)
$$

- Functional equation: $Z(\Lambda, s):=\pi^{-s} \Gamma(s) G(\Lambda, s)$ has a memomorphic continuation to \mathbb{C}, holomorphic except for simple poles at $s=N / 2,0$ with residues $m(\Lambda)^{-1},-1$ respectively. It satisfies functional equation:

$$
Z(\Lambda, s)=m(\Lambda)^{-1} Z\left(\Lambda^{\prime}, N / 2-s\right)
$$

In particular, $G(\Lambda, 0)=-1$ (e.g. $\zeta(0)=-\frac{1}{2}$)

- Poisson summation for Λ : Let $f \in \mathcal{L}(V)$ with Fourier transform

$$
\hat{f}(v)=\int_{V} e^{-2 \pi i(u, v)} f(u) d \mu_{V}(u)
$$

Then

$$
\sum_{x \in \Lambda} f(x)=m(\Lambda)^{-1} \sum_{x \in \Lambda^{\prime}} \hat{f}(x)
$$

- Let $\Theta_{\Lambda}(t)=\sum_{x \in \Lambda} e^{-\pi\|x\|^{2} t}$. Then it satisfies the transformation law

$$
\Theta_{\Lambda}(t)=t^{-N / 2} m(\Lambda)^{-1} \Theta_{\Lambda^{\prime}}(1 / t)
$$

- Real analytic Eisenstein series

$$
G(z, s)=\sum_{m, n \in \mathbb{Z}} \frac{y^{s}}{|m z+n|^{2 s}} \quad y=\operatorname{Im}(z)
$$

- $G(\gamma(z), s)=G(z, s)$ for all $\gamma \in S L_{2}(\mathbb{Z})$
- Define $\mathcal{E}(z, s):=\pi^{-s} \Gamma(s) G(z, s)$. Then \mathcal{E} has meromorphic continuation to \mathbb{C}, with simple poles at $s=1,0$, with residues $+1,-1$ respectively, and $\mathcal{E}(z, s)=\mathcal{E}(z, 1-s)$.
- Kronecker limit formula: Let G^{\prime} be the s-derivative of G. Then we have

$$
G^{\prime}(z, 0)=4 \zeta^{\prime}(0)-\log \left(y\left|\eta^{4}\right|\right)=-\log \left(4 \pi^{2} y\left|\eta^{4}\right|\right)
$$

where $\eta=\eta(z)=q^{1 / 24} \prod_{i=1}^{\infty}\left(1-q^{n}\right)$ and where $q^{1 / 24}=e^{2 \pi i z / 24}$.
Corollary:
$-\eta(-1 / z)=(z / i)^{1 / 2} \eta(z)$
$-\Delta(z)=\eta(z)^{24}=q \prod_{i=1}^{\infty}\left(1-q^{n}\right)^{24}$

- To prove KLF, use the following lemma. Define

$$
H(z, s)=\pi^{-s} \Gamma(s) \sum_{n \in \mathbb{Z}} \frac{1}{|z+n|^{2 s}}
$$

- If $z \notin \mathbb{R}$, then

$$
H(z, s)=\pi^{\frac{1}{2}-s}|y|^{1-2 s} \Gamma\left(s-\frac{1}{2}\right)+H_{1}(z, s)
$$

where $H_{1}(z, s)$ is entire function of s.

- Case $y \neq 0$:

$$
H_{1}(z, 0)= \begin{cases}-2 \log \left|1-e^{2 \pi i z}\right| & \text { if } y>0 \\ -2 \log \left|1-e^{-2 \pi i z}\right| & \text { if } y<0\end{cases}
$$

- Case $y=0$: If $x \in \mathbb{R} \backslash \mathbb{Z}$, then $H(x, s)$ has analytic continuation to $\mathbb{C} \backslash\{1 / 2\}$ and

$$
H(x, 0)=-2 \log \left|1-e^{2 \pi i x}\right|
$$

- Let $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$be a Dirichlet character $\bmod N$, with $\chi \neq \chi_{0}$.
- Then

$$
L(\chi, 0)=-\frac{1}{N} \sum_{\substack{0<n<N \\(n, N)=1}} \chi(n) n
$$

- If $\chi(-1)=1$ (i.e. χ is even), then $L(\chi, 0)=0$ and

$$
L^{\prime}(\chi, 0)=-\sum_{\substack{0<n<N / 2 \\(n, N)=1}} \chi(n) \log \left|1-e^{2 \pi i n / N}\right|
$$

Applications to number theory

- Quadratic field: $K=\mathbb{Q}(\sqrt{d})$ where $d \in \mathbb{Z} \backslash\{0,1\}$ squarefree.
- Ring of integers: $\mathcal{O}_{K}=\mathbb{Z}[\theta]=\mathbb{Z}+\mathbb{Z} \theta$ where

$$
\theta=\left\{\begin{array}{lll}
\sqrt{d} & \text { if } d \not \equiv 1 & (\bmod 4) \\
\frac{1+\sqrt{d}}{2} & \text { if } d \equiv 1 & (\bmod 4)
\end{array}\right.
$$

- Norm: Let $x=a+b \sqrt{d}$, and let $x^{\prime}=a-b \sqrt{d}$. Then the norm is $N_{K / \mathbb{Q}}(x)=x x^{\prime}=$ $a^{2}-b^{2} d$.
- Discriminant:

$$
d_{k}=\left|\begin{array}{cc}
1 & \theta \\
1 & \theta^{\prime}
\end{array}\right|^{2}=\left\{\begin{array}{lll}
4 d & \text { if } d \not \equiv 1 & (\bmod 4) \\
d & \text { if } d \equiv 1 & (\bmod 4)
\end{array}\right.
$$

- Units: Let \mathcal{O}_{K}^{\times}denote the units (i.e. elements x such that $N_{K / \mathbb{Q}}(x)= \pm 1$). Then, if $D<0$, then

$$
\mathcal{O}_{K}^{\times}= \begin{cases}\{ \pm i, \pm 1\} & \text { if } D=-1 \\ \left\{ \pm 1, \pm e^{ \pm 2 \pi i / 3}\right\} & \text { if } D=-3 \\ \{ \pm 1\} & \text { otherwise }\end{cases}
$$

Else, if $D<0$, then $\mathcal{O}_{K}^{\times}=\{ \pm 1\} \times\langle\epsilon\rangle$ where ϵ is the fundamental unit.

- Let $K=\mathbb{Q}(\sqrt{d})$ with discriminant d_{k}. Then
- $(p)=p^{2}$ is ramified if and only if $p \mid d_{k}$.
- There exists a unique Dirichlet character $\chi_{K}:\left(\mathbb{Z} /\left|d_{k}\right| \mathbb{Z}\right) \rightarrow\{ \pm 1\}$ such that if $p \nmid d_{k}$ then

$$
\chi_{K}(p)= \begin{cases}+1 & \text { if } p \text { splits } \\ -1 & \text { if } p \text { inert }\end{cases}
$$

Moreover $\chi(-1)=\operatorname{sgn}(d)$

- Dedekind ζ-function: Let K be number field, with ring of integers \mathcal{O}_{K}. The Dedekind ζ-function of K is:

$$
\zeta_{K}(s)=\sum_{0 \neq I \subset \mathcal{O}_{K}} \frac{1}{N(I)^{s}}
$$

Examples:

- If $K=\mathbb{Q}$, then $\mathcal{O}_{K}=\mathbb{Z}, I=(n)$ and $\zeta_{K}(s)=\zeta(s)$ (Riemann zeta function)
- If $K=\mathbb{Q}(i)$, then $\mathcal{O}_{K}=\mathbb{Z}[i], I=(a+b i)$. Can choose canonical generator for each I s.t a is positive odd. Thus

$$
\zeta_{K}(s)=\sum_{k=0}^{\infty} \sum_{a>0, a \text { odd }} \frac{1}{\left(2^{k}(a+b i)\right)^{s}}
$$

- Generally, if K principal ideal domain, then just have $I=(x)$ gives $N(I)=$ $\left|N_{K / \mathbb{Q}}(x)\right|$
- Euler product: $\zeta_{k}(S)$ converges for $\operatorname{Re}(s)=\sigma>1$ and has an Euler product:

$$
\zeta_{K}(s)=\prod_{\text {primeideals } P} \frac{1}{1-N(p)^{-s}}
$$

- $\zeta_{K}(s)=\zeta(s) L\left(\chi_{K}, s\right)$
- Analytic class number formula: Let $K=\mathbb{Q}(\sqrt{d}), d<0$ be imaginary quadratic field. Let h_{K} be class number of K. Let w_{k} be the number of roots of unity in K. I.e.

$$
w_{K}= \begin{cases}4 & \text { if } K=\mathbb{Q}(i) \\ 6 & \text { if } K=\mathbb{Q}(\sqrt{-3}) \\ 2 & \text { otherwise }\end{cases}
$$

Then $\zeta_{K}(s)$ has a meromorphic continuation to \mathbb{C}, with simple pole at $s=1$ with

$$
\zeta_{k}(0)=-\frac{h_{k}}{w_{k}} \quad \text { and } \quad \operatorname{Res}_{s=1} \zeta_{K}(s)=\frac{2 \pi}{\left|d_{K}\right|^{1 / 2}} \cdot \frac{h_{K}}{w_{K}}
$$

- Let K be imaginary quadratic. Then

$$
h_{K}=-\frac{w_{K}}{2 \cdot\left|d_{K}\right|} \sum_{\substack{0<n<\left|d_{K}\right| \\\left(n, d_{K}\right)=1}} n \chi_{K}(n)
$$

- Let $K=\mathbb{Q}(\sqrt{-d}), d>3$ and $d \equiv 3(\bmod 4)$. Then

$$
h_{K}\left(2-\chi_{K}(2)\right)=\sum_{\substack{0<n<d / 2 \\(n, d)=1}} \chi(x)
$$

- Let $K=\mathbb{Q}(\sqrt{-q}), q$ prime >3 and $q \equiv 3(\bmod 4)$. Then

$$
h_{k}=\left\{\begin{array}{lll}
R-N & q \equiv 7 & (\bmod 8) \\
\frac{1}{3}(R-N) & q \equiv 3 & (\bmod 8)
\end{array}\right.
$$

where

$$
\begin{aligned}
& R=\# \text { of quadratic residues in interval }(0, q / 2) \\
& N=\# \text { of quadratic non-residues in interval }(0, q / 2)
\end{aligned}
$$

- Real quadratic: Let K be real quadratic field. Then $\zeta_{K}(s)$ has meromorphic continuation to \mathbb{C}, with simple poles at $s=1$ and simple zero at $s=0$.

$$
\zeta_{K}^{\prime}(0)=-\frac{h_{K}}{w_{K}} \log (\epsilon)=-\frac{h_{K}}{2} \log (\epsilon)
$$

and

$$
\operatorname{Res}_{s=1} \zeta_{K}(s)=\frac{4}{d_{k}^{1 / 2}} \frac{h_{k} \log \epsilon}{w_{k}}=\frac{2}{d_{k}^{1 / 2}} h_{k} \log \epsilon
$$

where $\epsilon>1$ is the fundamental unit of K

- Fundamental unit: Let $K=\mathbb{Q}(\sqrt{d})$, with ring of integers \mathcal{O}_{K}. Then $\mathcal{O}_{K}^{\times} \cong\{ \pm 1\} \times \mathbb{Z}$ and $\epsilon>1$ is a generator of $\mathcal{O}_{K}^{\times} \bmod \pm 1$.
Examples :
- For $K=\mathbb{Q}(\sqrt{2})$, then $\epsilon=1+\sqrt{2}$.
- If $K=\mathbb{Q}(\sqrt{3})$, then $\epsilon=2+\sqrt{3}$
- If $K=\mathbb{Q}(\sqrt{5})$, then $\epsilon=\frac{1}{2}(1+\sqrt{5})$
- If $K=\mathbb{Q}(\sqrt{7})$, then $\epsilon=8+3 \sqrt{7}$
- Let $x_{1}, x_{2} \in \mathbb{R}^{\times}$. Then for $\operatorname{Re}(s)>0$:

$$
\frac{1}{\left|x_{1} x_{2}\right|^{s}}=\frac{2 \Gamma(s)}{\Gamma(s / 2)^{2}} \int_{0}^{\infty} \frac{1}{\left(u x_{1}^{2}+u^{-1} x_{2}^{2}\right)^{s}} \frac{d u}{u}
$$

- For any Dirichlet character $\chi \neq \chi_{0}, L(\chi, 1) \neq 0$.
- Class formula for real quadratic: Let K be real quadratic field, with fundamental unit $\epsilon>1$. Then

$$
h_{k}=\frac{1}{\log \epsilon} \sum_{\substack{0<n<d_{k} / 2 \\\left(n, d_{k}\right)=1}} \chi_{k}(n) \cdot \log \left(\sin \frac{n \pi}{d_{K}}\right)
$$

- Let η be

$$
\eta=\prod_{\substack{0<n<d_{k} / 2 \\\left(n, d_{k}\right)=1}}\left(\sin \frac{n \pi}{d_{K}}\right)^{-\chi(n)}
$$

Then $\eta \in \mathcal{O}_{k}^{\times}$and $\eta=\epsilon^{h_{K}}$

Quadratic field examples

