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Prime numbers

Definition

Prime numbers are positive integers > 1 which are divisible only by itself and 1.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,
149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223,
227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293,
307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383,
389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463,
467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569,
571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647,
653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743,
751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839,
853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941,

947, 953, 967, 971, 977, 983, 991, 997, 1009 . . .
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Prime numbers

Theorem (Euclid, ∼300BC)

There exist infinitely many prime numbers.

Euclid

Proof: Assume for contradiction there are only finitely many primes p1, p2, . . . , pn. Let
P := p1p2 · · · pn, and let p be a prime factor of P + 1. Thus p divides both P and P + 1,
so p divides 1, contradiction!

Nowadays, there are many different proofs by Euler, Erdős, Goldbach, Furstenberg,
Pinasco, Whang, Saidak, . . .
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Prime numbers

Conjecture (Dirichlet (1838) / Gauss (1792/93) / Legendre (1797/98))

Let π(x) denote the number of primes up to x . Then π(x) is approximately x/ log x .

Peter Gustav Lejeune Dirichlet Carl Friedrich Gauss Adrien-Marie Legendre

• Legendre conjectured that π(x) is approximately x/(log x − 1.08366).

• Gauss/Dirichlet conjectured that π(x) is approximately li(x) =
∫ x
0 dt/ log t.
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Prime numbers

Figure: Comparing π(x) + 1 with x/(log x − 1.08366) (A.-M. Legendre, Théorie des Nombres, 1808)
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Prime numbers

Figure: Comparison of π(x) with
∫ x

0
dt
log t

and Dirichlet’s conjecture (C. F. Gauss. Werke, 1863)
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Prime numbers
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Figure: Comparison of π(x) with Legendre/Gauss/Dirichlet’s conjectures.
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Prime numbers
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Prime numbers
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Prime numbers
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Prime numbers

Conjecture (Bertrand 1845)

For all integers n > 1, there exists a prime p between n and 2n.

Theorem (Chebyshev 1852)

For all sufficiently large x ,

(0.9212)
x

log x
≤ π(x) ≤ (1.1056)

x

log x
.

Theorem (Chebyshev 1852)

lim inf
x→∞

π(x)

x/ log x
≤ 1, and lim sup

x→∞

π(x)

x/ log x
≥ 1

Joseph Bertrand

Pafnuty Chebyshev
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Prime number theorem

Theorem (Hadamard, de la Vallée Poussin (1896))

Let π(x) be the number of primes at most x . Then

lim
x→∞

π(x)

x/ log x
= 1.

(equivalently, pn ∼ n log n)

• In 1899, de la Vallée Poussin showed that
π(x) =

∫ x
0

dt
log t + O(xe−a

√
log x).

• The Riemann hypothesis would imply
π(x) =

∫ x
0

dt
log t + O(

√
x log x).

There are several elementary proofs of the prime number
theorem due to Selberg, Erdős (1949) and Newman (1980).

Jacques Hadamard

Charles J. de la
Vallée Poussin
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Prime gaps

Let’s compute the prime gaps gn = pn+1 − pn:

1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4,
2, 4, 14, 4, 6, 2, 10, 2, 6, 6, 4, 6, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6,
2, 10, 6, 6, 6, 2, 6, 4, 2, 10, 14, 4, 2, 4, 14, 6, 10, 2, 4, 6, 8, 6, 6, . . .

How does this sequence behave asymptotically?

• How small can gn be?

How goes g(x) = min
pn≥x

(pn+1 − pn) behave as x → ∞?

• How large can gn be?

How goes G (x) = max
pn≤x

(pn+1 − pn) behave as x → ∞?
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How does this sequence behave asymptotically?

• How small can gn be? How goes g(x) = min
pn≥x

(pn+1 − pn) behave as x → ∞?

• How large can gn be?

How goes G (x) = max
pn≤x

(pn+1 − pn) behave as x → ∞?
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Prime gaps

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0

10

20

30

40

pn

p
n
+
1
−

p
n

(pn, pn+1 − pn)

Figure: Scatter plot of (pn, pn+1 − pn) for all pn ≤ 10 000.
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Landau’s prime problems

At the 1912 International Congress of Mathematicians,
Edmund Landau listed four open problems regarding prime
numbers:

1. Can every even integer greater than 2 be written as the
sum of two prime numbers?

2. Are there are infinitely many primes p such that p + 2 is
prime?

3. For every positive integer n, does exist there exist a prime
p between n2 and (n + 1)2?

4. Are there are infinitely many primes p of the form n2 + 1?

All four problems are still open!

Edmund Landau
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Cramér’s random model

• By the prime number theorem, we expect a randomly chosen positive integer n “to
be prime with probability 1/ log n”.

• Define the sequence of independent random variables X2,X3,X4, . . . to have two
possible outcomes, either 0 or 1, where

P(X2 = 1) = 1, and P(Xn = 1) =
1

log n
for all n ≥ 3.

• Define the random variables P1,P2,P3, . . . as

P1 = 2, and Pn+1 = min{i : Xi = 1 and i > Pn}

Conjecture (Naive Cramér random model)

The asymptotic behaviour for the primes {2, 3, 5, 7, . . . , } should (almost surely) behave
like the asymptotic behaviour for the random set {P1,P2,P3, . . . }.
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Cramér’s random model

• Assuming Cramér’s random model, for a random integer n, we have

P(n prime) =
1

log n
and P(n + 2 prime) =

1

log (n + 2)
∼ 1

log n

• Assuming these events are independent, this gives

P(n and n + 2 prime) ∼ 1

(log n)2

which suggests

#{p ≤ x | p and p + 2 prime} ∼ x

(log x)2
.

• But this is wrong! In particular P(n prime) and P(n + 2 prime) should not be
independent events!
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Cramer’s random model (modified)

• A more refined model yields the following conjecture:

Conjecture (Hardy–Littlewood)

Let π2(x) denote the number of primes p ≤ x such that p + 2
is prime. Then

π2(x) ∼ 2
∏

p prime
p≥3

(
1− 1

(p − 1)2

) x

(log x)2
.

• This conjecture is strongly supported by numerical
evidence!

• It’s known that π2(x) ≤ C x
(log x)2

for some constant

C < 3.4.

G. H. Hardy

John E. Littlewood
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Small prime gaps

Recall g(x) = min
pn≥x

(pn+1 − pn).

Conjecture (Alphonse de Polignac (1849))

For every even integer k , there exists infinitely many primes p
such that p + k is prime.

• de Polignac’s conjecture implies g(x) = 2 for all x > 2
(clearly g(x) ≥ 2 for all x > 2).

• Euclid’s proof gives g(n) ≤ n! + 1.

• Bertrand’s postulate gives g(x) ≤ x for all x > 2.

• By the pigeonhole principle, the prime number theorem
gives g(x) ≤ (1 + ϵ) log x for all sufficiently large x .

Jules de Polignac
(Alphonse’s daddy)
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Small prime gaps

Upper bound for g(x) Authors Year

(1 + ϵ) log x Hadamard, de la Vallee Poussin 1896
(1− c) log x Erdős 1940
(5759 + ϵ) log x Rankin 1947
(1516 + ϵ) log x Ricci 1954

(0.4665 + ϵ) log x Bombieri–Davenport 1965
(0.4571 + ϵ) log x Pilt’ai 1972
(0.4542 + ϵ) log x Uchiyama 1975
(0.4425 + ϵ) log x Huxley 1975
(0.4393 + ϵ) log x Huxley 1984
(0.2484 + ϵ) log x Maier 1988

Table: Summary of upper bounds for g(x), where ϵ > 0 is any positive real number.
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Small prime gaps

Theorem (Goldston–Pintz–Yıldırım 2005)

g(x) = o(log x), or equivalently lim inf
n→∞

pn+1 − pn
log pn

= 0

Daniel Goldston János Pintz Cem Yıldırım

• Goldston–Pintz–Yıldırım improved the bound to g(x) ≪
√
log x(log log x)2 in 2007.

• Pintz proved g(x) ≪ (log x)1/3+ϵ in 2013 (unpublished).
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Small prime gaps

Then, a major breakthrough!

Theorem (Zhang 2013)

lim inf
n→∞

(pn+1 − pn) ≤ 70 000 000.

• This proves that Polignac’s conjecture is true for some
even k ≤ 70 000 000 !

Yitang Zhang
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Small prime gaps

Table: Summary of upper bounds for lim infn→∞(pn+1 − pn)

Bound Authors Date/Time

70 000 000 Yitang Zhang 14 May 2013

63 374 611 Mark Lewko 20 May 2013
59 874 594 Timothy Trudgian 28 May 2013
59 470 640 Scott Morrison 30 May 2013
58 885 998 Terence Tao 30 May 2013, 09:13
57 554 086 Morrison–Tao 30 May 2013, 22:22
48 112 378 Morrison–Tao 31 May 2013, 18:49
42 543 038 Morrison–Tao 31 May 2013, 22:14

...
...

...
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Polymath
This was organised into a Polymath project, with dozens of contributors!

Figure: Progress on upper bound for lim infn→∞(pn+1 − pn) over time.
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Small Prime Gaps

Theorem (Polymath 8a, 2013)

There are infinitely many positive integers n such that pn+1 − pn ≤ 4680.

Theorem (Maynard 2013)

There are infinitely many positive integers n such that pn+1 − pn ≤ 600.

Theorem (Polymath 8b, 2014)

There are infinitely many positive integers n such that pn+1 − pn ≤ 246.

• This is the best unconditional bound proven to date!

• Assuming the Elliott-Halberstam conjecture, we have pn+1 − pn ≤ 12 infinitely often.
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Cramer’s random model (revisited)
• Recall Cramer’s random model, where P(Xn = 1) = 1/ log n and the random
variables P1,P2,P3, . . . are defined as

P1 = 2, and Pn+1 = min{i : Xi = 1 and i > Pn}

• Define the heuristic maximal prime gap as the random variable G(x) (dependent on
x) as

G(x) = max
Pn≤x

(Pn+1 − Pn)

Theorem (Cramer 1936)

The following holds with probability 1:

lim sup
x→∞

G(x)

(log x)2
= 1.

• However, we’ve seen Cramér’s model isn’t perfect!
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Granville’s random model

• Granville proposed the following refinement: For a suitably chosen parameter T , let
X3,X4, . . . be a sequence of random variables such that, if n has some prime factor
≤ T , then Xn = 0, otherwise, let

P(Xn = 1) :=
∏
p≤T

(
p

p − 1

)
· 1

log n
.

Conjecture (Granville 1995)

lim sup
x→∞

G (x)

(log x)2
≥ 2e−γ ≈ 1.12.

“It is evident that the primes are randomly distributed but, unfortunately, we don’t know
what ’random’ means.” - R. C. Vaughan (February 1990)
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Results
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Figure: Comparison of G(x) with Cramer and Granville’s conjecture.
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Large prime gaps

Table: Summary of upper bounds of the form G(x) ≪ xθ proven to date.

Constant θ Authors Year

1− 1/33000 ≈ 0.999969 . . . Hoheisel 1930
1− 1/250 = 0.996 Heilbronn 1933
3/4 + ϵ = 0.75 Chudukov 1936
5/8 + ϵ = 0.625 Ingham 1937
5/8− 1/616 + ϵ ≈ 0.623377 . . . Titchmarsh 1942
5/8− 1/488 + ϵ ≈ 0.622951 . . . Min 1949
5/8− 1/392 + ϵ ≈ 0.622449 . . . Haneke 1962
3/5 + ϵ = 0.6 Montgomery 1971
7/12 + ϵ ≈ 0.583333 . . . Huxley 1972
13/23 ≈ 0.565217 . . . Iwaniec, Jutila 1979
11/20 = 0.55 Heath-Brown, Iwaniec 1979
11/20− 1/406 ≈ 0.547537 . . . Iwaniec, Pintz 1984
11/20− 1/384 ≈ 0.547396 . . . Mozzochi 1986
6/11 ≈ 0.545454 . . . Lou, Yao 1992
107/200 = 0.535 Baker, Harman 1996 25 / 36



Large prime gaps

Theorem (Baker–Harman–Pintz (2001))

G (x) ≪ x0.525

Roger Baker Glyn Harman János Pintz

• Assuming the Riemann Hypothessis, we get G (x) ≪
√
x log x .

• Assuming both RH and some results on Montgomery’s pair correlation function, we
get G (x) ≪

√
x log x .
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Large prime gaps

Let’s consider lower bounds for G (x) = max
pn≤x

(pn+1 − pn).

Theorem

For any positive integer n, there exists n consecutive composite numbers (i.e. G (x) → ∞
as x → ∞).

Proof: (n + 1)! + 2, (n + 1)! + 3, . . . , (n + 1)! + (n + 1) are all composite.

• Using log (n!) ≤ n log n, this proves G (x) ≫ log x/ log log x .

• Chebyshev proved G (x) ≫ log x .

• The prime number theorem implies G (x) ≥ (1− ϵ) log x
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Large prime gaps

Definition

For any positive integer x , let Y (x) be the largest integer y such that the interval
{1, 2, . . . , y} can be sieved out by a set of residue classes ap mod p for each prime p ≤ x .

Example: Let x = 7. The primes ≤ x are {2, 3, 5, 7}. We can cover the interval
{1, . . . , 9} by choosing the following residue classes: a2 = 1, a3 = 2, a5 = 1, and a7 = 4

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9
For p = 2, ap = 1

For p = 3, ap = 2

For p = 5, ap = 1

For p = 7, ap = 4

As no choice of residue classes can cover {1, . . . , 10}, this proves Y (7) = 9.
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Large prime gaps

Theorem

Let ϵ > 0. Then G (x) ≥ Y ((1− ϵ) log x) for all sufficiently large x .

Proof:

• Let p1, p2, . . . , pn be all the primes ≤ x , and let P = p1p2 · · · pn.
• By the Chinese Remainder Theorem, there exists some integer m ≤ P such that
m ≡ −ap mod p for all p ≤ x

• We claim all the integers {m + 1,m + 2, . . . ,m + Y (x)} are composite. Indeed, for
any i = 1, . . . ,Y (x), there exists a p ≤ x such that p divides m + i .

• This gives a sequence of Y (x) consecutive composite numbers, no larger than P,
and thus G (P) ≥ Y (x).

• By the prime number theorem, logP ∼ x , which proves G (x) ≥ Y ((1− ϵ) log x).

29 / 36



Large prime gaps

Theorem

Let ϵ > 0. Then G (x) ≥ Y ((1− ϵ) log x) for all sufficiently large x .

Proof:

• Let p1, p2, . . . , pn be all the primes ≤ x , and let P = p1p2 · · · pn.

• By the Chinese Remainder Theorem, there exists some integer m ≤ P such that
m ≡ −ap mod p for all p ≤ x

• We claim all the integers {m + 1,m + 2, . . . ,m + Y (x)} are composite. Indeed, for
any i = 1, . . . ,Y (x), there exists a p ≤ x such that p divides m + i .

• This gives a sequence of Y (x) consecutive composite numbers, no larger than P,
and thus G (P) ≥ Y (x).

• By the prime number theorem, logP ∼ x , which proves G (x) ≥ Y ((1− ϵ) log x).

29 / 36



Large prime gaps

Theorem

Let ϵ > 0. Then G (x) ≥ Y ((1− ϵ) log x) for all sufficiently large x .

Proof:

• Let p1, p2, . . . , pn be all the primes ≤ x , and let P = p1p2 · · · pn.
• By the Chinese Remainder Theorem, there exists some integer m ≤ P such that
m ≡ −ap mod p for all p ≤ x

• We claim all the integers {m + 1,m + 2, . . . ,m + Y (x)} are composite. Indeed, for
any i = 1, . . . ,Y (x), there exists a p ≤ x such that p divides m + i .

• This gives a sequence of Y (x) consecutive composite numbers, no larger than P,
and thus G (P) ≥ Y (x).

• By the prime number theorem, logP ∼ x , which proves G (x) ≥ Y ((1− ϵ) log x).

29 / 36



Large prime gaps

Theorem

Let ϵ > 0. Then G (x) ≥ Y ((1− ϵ) log x) for all sufficiently large x .

Proof:

• Let p1, p2, . . . , pn be all the primes ≤ x , and let P = p1p2 · · · pn.
• By the Chinese Remainder Theorem, there exists some integer m ≤ P such that
m ≡ −ap mod p for all p ≤ x

• We claim all the integers {m + 1,m + 2, . . . ,m + Y (x)} are composite. Indeed, for
any i = 1, . . . ,Y (x), there exists a p ≤ x such that p divides m + i .

• This gives a sequence of Y (x) consecutive composite numbers, no larger than P,
and thus G (P) ≥ Y (x).

• By the prime number theorem, logP ∼ x , which proves G (x) ≥ Y ((1− ϵ) log x).

29 / 36



Large prime gaps

Theorem

Let ϵ > 0. Then G (x) ≥ Y ((1− ϵ) log x) for all sufficiently large x .

Proof:

• Let p1, p2, . . . , pn be all the primes ≤ x , and let P = p1p2 · · · pn.
• By the Chinese Remainder Theorem, there exists some integer m ≤ P such that
m ≡ −ap mod p for all p ≤ x

• We claim all the integers {m + 1,m + 2, . . . ,m + Y (x)} are composite. Indeed, for
any i = 1, . . . ,Y (x), there exists a p ≤ x such that p divides m + i .

• This gives a sequence of Y (x) consecutive composite numbers, no larger than P,
and thus G (P) ≥ Y (x).

• By the prime number theorem, logP ∼ x , which proves G (x) ≥ Y ((1− ϵ) log x).

29 / 36



Large prime gaps

Theorem

Let ϵ > 0. Then G (x) ≥ Y ((1− ϵ) log x) for all sufficiently large x .

Proof:

• Let p1, p2, . . . , pn be all the primes ≤ x , and let P = p1p2 · · · pn.
• By the Chinese Remainder Theorem, there exists some integer m ≤ P such that
m ≡ −ap mod p for all p ≤ x

• We claim all the integers {m + 1,m + 2, . . . ,m + Y (x)} are composite. Indeed, for
any i = 1, . . . ,Y (x), there exists a p ≤ x such that p divides m + i .

• This gives a sequence of Y (x) consecutive composite numbers, no larger than P,
and thus G (P) ≥ Y (x).

• By the prime number theorem, logP ∼ x , which proves G (x) ≥ Y ((1− ϵ) log x).

29 / 36



Large prime gaps

Table: Summary of lower bounds for G(x) arising from lower bounds for Y (x).

Bound for G (x) Bound for Y (x) Authors Year

(1− ϵ) log x x Hadamard, de la Vallee Poussin 1896

(2− ϵ) log x 2x Backlund 1929

(4− ϵ) log x 4x Brauer, Zeitz 1930

log x log log log x

log log log log x

x log log x

log log log x
Westzynthius 1931

log x log log log x x log log x Ricci 1934

log x log log x

(log log log x)2
x log x

(log log x)2
Erdős (Chang) 1935 (1938)
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Erdős (Chang) 1935 (1938)

30 / 36



Large prime gaps

Table: Summary of lower bounds for G(x) arising from lower bounds for Y (x).

Bound for G (x) Bound for Y (x) Authors Year

(1− ϵ) log x x Hadamard, de la Vallee Poussin 1896

(2− ϵ) log x 2x Backlund 1929

(4− ϵ) log x 4x Brauer, Zeitz 1930

log x log log log x

log log log log x

x log log x

log log log x
Westzynthius 1931

log x log log log x x log log x Ricci 1934

log x log log x

(log log log x)2
x log x

(log log x)2
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Erdős (Chang) 1935 (1938)

30 / 36



Large prime gaps

Theorem (Rankin 1938)

For any ϵ > 0,

G (x) ≥ (c − ϵ)
log x log log x log log log log x

(log log log x)2

where c = 1
3 , for sufficiently large x .

R.A. Rankin

Table: Summary of improvements made to the constant c.

Constant c Authors Year

1
2e

γ ≈ 0.8905 Schonhage 1963
eγ ≈ 1.7811 Rankin 1963
1.31256eγ ≈ 2.0172 Maier, Pomerance 1990
2eγ ≈ 3.5621 Pintz 1997
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Large prime gaps

Erdős offered a cash prize of 10 000 USD for anyone who could prove c can be arbitrary
large!

- Excerpt from A Tribute to Paul Erdős (1990)
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Large prime gaps
More than 75 years after Rankin’s theorem, this was solved independently by
Ford–Green–Konyagin–Tao and Maynard!

Theorem (Ford–Green–Konyagin–Tao, Maynard 2014)

G (x) ≥ f (x)
log x log log x log log log log x

(log log log x)2

for some function f (x) that goes to infinity as x → ∞.

Kevin Ford Ben Green Sergei Konyagin Terence Tao James Maynard
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Large prime gaps

• Ford–Green–Konyagin–Tao arguments gave no effective lower bound for f (x).

• Maynard’s argument gave f (x) ≫ log log log x
log log log log x .

• Combining their methods yields the following result:

Theorem (Ford–Green–Konyagin–Maynard–Tao 2014)

G (x) ≫ log x log log x log log log log x

log log log x
.

Terence Tao has offered 10 000 USD to anyone who can prove the implicit constant given
above can be arbitrarily large!
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Conclusion

So far we have 2 ≤ g(x) ≤ 246 and

log x log log x log log log log x

log log log x
≪ G (x) ≪ x0.525.

“It will be millions of years before we’ll have any understanding, and even then it won’t
be a complete understanding, because we’re up against the infinite.”

- Paul Erdős (1987)

“Prime numbers, like timeless jewels adorning the infinite expanse of mathematical reality,
stand as nature’s most enigmatic gift to those who explore their intricacies. They dance
on the fine line between order and chaos, revealing the secret harmonies that beckon

mathematicians to uncover the symphony within.”

- ChatGPT (2023)
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Thank you!
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