Gaps Between Primes

Warwick Maths Society

Robin Visser
Mathematics Institute
University of Warwick

17 October 2023

Prime numbers

Definition

Prime numbers are positive integers >1 which are divisible only by itself and 1 .

Prime numbers

Definition

Prime numbers are positive integers >1 which are divisible only by itself and 1 .

2

Prime numbers

Definition

Prime numbers are positive integers >1 which are divisible only by itself and 1 .

2, 3

Prime numbers

Definition

Prime numbers are positive integers >1 which are divisible only by itself and 1 .

2, 3, 5

Prime numbers

Definition

Prime numbers are positive integers >1 which are divisible only by itself and 1 .
$2,3,5,7$

Prime numbers

Definition

Prime numbers are positive integers >1 which are divisible only by itself and 1 .
$2,3,5,7,11$

Prime numbers

Definition

Prime numbers are positive integers >1 which are divisible only by itself and 1 .
$2,3,5,7,11,13$

Prime numbers

Definition

Prime numbers are positive integers >1 which are divisible only by itself and 1 .
$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67$, $71,73,79,83,89,97,101,103,107,109,113,127,131,137,139$, $149,151,157,163,167,173,179,181,191,193,197,199,211,223$, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, $571,577,587,593,599,601,607,613,617,619,631,641,643,647$, 652 650 661 672 677 682 601 701 700 710 707 722 720 712 1/36

Prime numbers

Theorem (Euclid, ~300BC)
There exist infinitely many prime numbers.

Euclid

Prime numbers

Theorem (Euclid, ~300BC)

There exist infinitely many prime numbers.

Euclid

Proof: Assume for contradiction there are only finitely many primes $p_{1}, p_{2}, \ldots, p_{n}$. Let $P:=p_{1} p_{2} \cdots p_{n}$, and let p be a prime factor of $P+1$. Thus p divides both P and $P+1$, so p divides 1 , contradiction!

Prime numbers

Theorem (Euclid, ~300BC)

There exist infinitely many prime numbers.

Euclid

Proof: Assume for contradiction there are only finitely many primes $p_{1}, p_{2}, \ldots, p_{n}$. Let $P:=p_{1} p_{2} \cdots p_{n}$, and let p be a prime factor of $P+1$. Thus p divides both P and $P+1$, so p divides 1 , contradiction!

Nowadays, there are many different proofs by Euler, Erdős, Goldbach, Furstenberg, Pinasco, Whang, Saidak, ...

Prime numbers

Conjecture (Dirichlet (1838) / Gauss (1792/93) / Legendre (1797/98))

Let $\pi(x)$ denote the number of primes up to x. Then $\pi(x)$ is approximately $x / \log x$.

Prime numbers

Conjecture (Dirichlet (1838) / Gauss (1792/93) / Legendre (1797/98))

Let $\pi(x)$ denote the number of primes up to x. Then $\pi(x)$ is approximately $x / \log x$.

Peter Gustav Lejeune Dirichlet

Carl Friedrich Gauss

Adrien-Marie Legendre

Prime numbers

Conjecture (Dirichlet (1838) / Gauss (1792/93) / Legendre (1797/98))

Let $\pi(x)$ denote the number of primes up to x. Then $\pi(x)$ is approximately $x / \log x$.

- Legendre conjectured that $\pi(x)$ is approximately $x /(\log x-1.08366)$.

Prime numbers

Conjecture (Dirichlet (1838) / Gauss (1792/93) / Legendre (1797/98))

Let $\pi(x)$ denote the number of primes up to x. Then $\pi(x)$ is approximately $x / \log x$.

Peter Gustav Lejeune Dirichlet

Carl Friedrich Gauss

Adrien-Marie Legendre

- Legendre conjectured that $\pi(x)$ is approximately $x /(\log x-1.08366)$.
- Gauss/Dirichlet conjectured that $\pi(x)$ is approximately $\operatorname{li}(x)=\int_{0}^{x} d t / \log t$.

Prime numbers

Limite \boldsymbol{x}	Nombre \boldsymbol{y}		Limite \boldsymbol{x}	Nombre \boldsymbol{r}	
	par la formul	les Tables.		par la formule.	par les Tables.
10080	1230	1230	100000	9588	9592
20000	2268	2263	150000	13844	13849
30000	3252	3246	200000	${ }^{17982}$	${ }^{17984}$
40000	4205	4204	250000	22035	22045
50000	5136	5134	300000	26025	25998
60000	6049	6058	550000	${ }^{29965}$	29977
70000	6949	6936	400000	33854	33861
80000	7838	${ }_{7} 837$			
90000	8717	8713			

Figure: Comparing $\pi(x)+1$ with $x /(\log x-1.08366)$ (A.-M. Legendre, Théorie des Nombres, 1808)

Prime numbers

Unter	gibt es Primzahlen	Integral $\int \frac{\mathrm{d} n}{\log n}$ Abweich.	$\xrightarrow[\text { Ihre }]{\text { Formel }}$ (Abweioh.
500000	41556	$41606,4+50,4$	$41596,9+40,9$
1000000	78501	79627,5 5 126,5	78672,7 +171,7
1500000	114112	114263,1+151,1	$114374,0+264,0$
2000000	148883	149054,8+171,8	149233,0 ${ }^{1} \mathbf{3 5 0 , 0}$
2500000	183016	183245,0+229,0	183495,1+479,1
3000000	216745	$216970,6+225,6$	$217308,5+563,5$

Figure: Comparison of $\pi(x)$ with $\int_{0}^{x} \frac{d t}{\log t}$ and Dirichlet's conjecture (C. F. Gauss. Werke, 1863)

Prime numbers

Figure: Comparison of $\pi(x)$ with Legendre/Gauss/Dirichlet's conjectures.

Prime numbers

Figure: Comparison of $\pi(x)$ with Legendre/Gauss/Dirichlet's conjectures.

Prime numbers

Figure: Comparison of $\pi(x)$ with Legendre/Gauss/Dirichlet's conjectures.

Prime numbers

Figure: Comparison of $\pi(x)$ with Legendre/Gauss/Dirichlet's conjectures.

Prime numbers

Figure: Comparison of $\pi(x)$ with Legendre/Gauss/Dirichlet's conjectures.

Prime numbers

Figure: Comparison of $\pi(x)$ with Legendre/Gauss/Dirichlet's conjectures.

Prime numbers

Figure: Comparison of $\pi(x)$ with Legendre/Gauss/Dirichlet's conjectures.

Prime numbers

Figure: Comparison of $\pi(x)$ with Legendre/Gauss/Dirichlet's conjectures.

Prime numbers

Conjecture (Bertrand 1845)

For all integers $n>1$, there exists a prime p between n and $2 n$.

Joseph Bertrand

Prime numbers

Theorem (Chebyshev 1852)

For all integers $n>1$, there exists a prime p between n and $2 n$.

Theorem (Chebyshev 1852)

For all sufficiently large x,

$$
(0.9212) \frac{x}{\log x} \leq \pi(x) \leq(1.1056) \frac{x}{\log x}
$$

Joseph Bertrand

Pafnuty Chebyshev

Prime numbers

Theorem (Chebyshev 1852)

For all integers $n>1$, there exists a prime p between n and $2 n$.

Theorem (Chebyshev 1852)

For all sufficiently large x,

$$
(0.9212) \frac{x}{\log x} \leq \pi(x) \leq(1.1056) \frac{x}{\log x}
$$

Theorem (Chebyshev 1852)

$$
\liminf _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x} \leq 1, \quad \text { and } \quad \limsup _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x} \geq 1
$$

Joseph Bertrand

Prime number theorem

Theorem (Hadamard, de la Vallée Poussin (1896))
Let $\pi(x)$ be the number of primes at most x. Then

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x}=1
$$

(equivalently, $p_{n} \sim n \log n$)

Jacques Hadamard

10
Charles J. de la
Vallée Poussin

Prime number theorem

Theorem (Hadamard, de la Vallée Poussin (1896))
Let $\pi(x)$ be the number of primes at most x. Then

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x}=1
$$

(equivalently, $p_{n} \sim n \log n$)

- In 1899, de la Vallée Poussin showed that $\pi(x)=\int_{0}^{x} \frac{d t}{\log t}+O\left(x e^{-a \sqrt{\log x}}\right)$.

Jacques Hadamard

hos.abrath finn
Charles J. de la
Vallée Poussin

Prime number theorem

Theorem (Hadamard, de la Vallée Poussin (1896))

Let $\pi(x)$ be the number of primes at most x. Then

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x}=1
$$

(equivalently, $p_{n} \sim n \log n$)

- In 1899, de la Vallée Poussin showed that

$$
\pi(x)=\int_{0}^{x} \frac{d t}{\log t}+O\left(x e^{-a \sqrt{\log x}}\right)
$$

- The Riemann hypothesis would imply

$$
\pi(x)=\int_{0}^{x} \frac{d t}{\log t}+O(\sqrt{x} \log x) .
$$

Jacques Hadamard

hos.abrath finn
Charles J. de la Vallée Poussin

Prime number theorem

Theorem (Hadamard, de la Vallée Poussin (1896))

Let $\pi(x)$ be the number of primes at most x. Then

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x}=1
$$

(equivalently, $p_{n} \sim n \log n$)

- In 1899, de la Vallée Poussin showed that

$$
\pi(x)=\int_{0}^{x} \frac{d t}{\log t}+O\left(x e^{-a \sqrt{\log x}}\right)
$$

- The Riemann hypothesis would imply

$$
\pi(x)=\int_{0}^{x} \frac{d t}{\log t}+O(\sqrt{x} \log x)
$$

There are several elementary proofs of the prime number theorem due to Selberg, Erdős (1949) and Newman (1980).

Jacques Hadamard

Charles J. de la Vallée Poussin

Prime gaps

Let's compute the prime gaps $g_{n}=p_{n+1}-p_{n}$:

Prime gaps

Let's compute the prime gaps $g_{n}=p_{n+1}-p_{n}$:

$$
\begin{aligned}
& 1,2,2,4,2,4,2,4,6,2,6,4,2,4,6,6,2,6,4,2,6,4,6,8,4,2,4 \text {, } \\
& 2,4,14,4,6,2,10,2,6,6,4,6,6,2,10,2,4,2,12,12,4,2,4,6 \\
& 2,10,6,6,6,2,6,4,2,10,14,4,2,4,14,6,10,2,4,6,8,6,6, \ldots
\end{aligned}
$$

Prime gaps

Let's compute the prime gaps $g_{n}=p_{n+1}-p_{n}$:

$$
\begin{aligned}
& 1,2,2,4,2,4,2,4,6,2,6,4,2,4,6,6,2,6,4,2,6,4,6,8,4,2,4 \text {, } \\
& 2,4,14,4,6,2,10,2,6,6,4,6,6,2,10,2,4,2,12,12,4,2,4,6 \text {, } \\
& 2,10,6,6,6,2,6,4,2,10,14,4,2,4,14,6,10,2,4,6,8,6,6, \ldots
\end{aligned}
$$

How does this sequence behave asymptotically?

Prime gaps

Let's compute the prime gaps $g_{n}=p_{n+1}-p_{n}$:
$1,2,2,4,2,4,2,4,6,2,6,4,2,4,6,6,2,6,4,2,6,4,6,8,4,2,4$, $2,4,14,4,6,2,10,2,6,6,4,6,6,2,10,2,4,2,12,12,4,2,4,6$, $2,10,6,6,6,2,6,4,2,10,14,4,2,4,14,6,10,2,4,6,8,6,6, \ldots$

How does this sequence behave asymptotically?

- How small can g_{n} be?

Prime gaps

Let's compute the prime gaps $g_{n}=p_{n+1}-p_{n}$:
$1,2,2,4,2,4,2,4,6,2,6,4,2,4,6,6,2,6,4,2,6,4,6,8,4,2,4$, $2,4,14,4,6,2,10,2,6,6,4,6,6,2,10,2,4,2,12,12,4,2,4,6$, $2,10,6,6,6,2,6,4,2,10,14,4,2,4,14,6,10,2,4,6,8,6,6, \ldots$

How does this sequence behave asymptotically?

- How small can g_{n} be? How goes $g(x)=\min _{p_{n} \geq x}\left(p_{n+1}-p_{n}\right)$ behave as $x \rightarrow \infty$?

Prime gaps

Let's compute the prime gaps $g_{n}=p_{n+1}-p_{n}$:
$1,2,2,4,2,4,2,4,6,2,6,4,2,4,6,6,2,6,4,2,6,4,6,8,4,2,4$, $2,4,14,4,6,2,10,2,6,6,4,6,6,2,10,2,4,2,12,12,4,2,4,6$, $2,10,6,6,6,2,6,4,2,10,14,4,2,4,14,6,10,2,4,6,8,6,6, \ldots$

How does this sequence behave asymptotically?

- How small can g_{n} be? How goes $g(x)=\min _{p_{n} \geq x}\left(p_{n+1}-p_{n}\right)$ behave as $x \rightarrow \infty$?
- How large can g_{n} be?

Prime gaps

Let's compute the prime gaps $g_{n}=p_{n+1}-p_{n}$:
$1,2,2,4,2,4,2,4,6,2,6,4,2,4,6,6,2,6,4,2,6,4,6,8,4,2,4$, $2,4,14,4,6,2,10,2,6,6,4,6,6,2,10,2,4,2,12,12,4,2,4,6$, $2,10,6,6,6,2,6,4,2,10,14,4,2,4,14,6,10,2,4,6,8,6,6, \ldots$

How does this sequence behave asymptotically?

- How small can g_{n} be? How goes $g(x)=\min _{p_{n} \geq x}\left(p_{n+1}-p_{n}\right)$ behave as $x \rightarrow \infty$?
- How large can g_{n} be? How goes $G(x)=\max _{p_{n} \leq x}\left(p_{n+1}-p_{n}\right)$ behave as $x \rightarrow \infty$?

Prime gaps

Figure: Scatter plot of $\left(p_{n}, p_{n+1}-p_{n}\right)$ for all $p_{n} \leq 10000$.

Landau's prime problems

At the 1912 International Congress of Mathematicians, Edmund Landau listed four open problems regarding prime numbers:

Edmund Landau

Landau's prime problems

At the 1912 International Congress of Mathematicians, Edmund Landau listed four open problems regarding prime numbers:

1. Can every even integer greater than 2 be written as the sum of two prime numbers?

Edmund Landau

Landau's prime problems

At the 1912 International Congress of Mathematicians, Edmund Landau listed four open problems regarding prime numbers:

1. Can every even integer greater than 2 be written as the sum of two prime numbers?
2. Are there are infinitely many primes p such that $p+2$ is prime?

Edmund Landau

Landau's prime problems

At the 1912 International Congress of Mathematicians, Edmund Landau listed four open problems regarding prime numbers:

1. Can every even integer greater than 2 be written as the sum of two prime numbers?
2. Are there are infinitely many primes p such that $p+2$ is prime?
3. For every positive integer n, does exist there exist a prime

Edmund Landau p between n^{2} and $(n+1)^{2}$?

Landau's prime problems

At the 1912 International Congress of Mathematicians, Edmund Landau listed four open problems regarding prime numbers:

1. Can every even integer greater than 2 be written as the sum of two prime numbers?
2. Are there are infinitely many primes p such that $p+2$ is prime?
3. For every positive integer n, does exist there exist a prime

Edmund Landau p between n^{2} and $(n+1)^{2}$?
4. Are there are infinitely many primes p of the form $n^{2}+1$?

Landau's prime problems

At the 1912 International Congress of Mathematicians, Edmund Landau listed four open problems regarding prime numbers:

1. Can every even integer greater than 2 be written as the sum of two prime numbers?
2. Are there are infinitely many primes p such that $p+2$ is prime?
3. For every positive integer n, does exist there exist a prime

Edmund Landau p between n^{2} and $(n+1)^{2}$?
4. Are there are infinitely many primes p of the form $n^{2}+1$?

All four problems are still open!

Landau's prime problems

At the 1912 International Congress of Mathematicians, Edmund Landau listed four open problems regarding prime numbers:

1. Can every even integer greater than 2 be written as the sum of two prime numbers?
2. Are there are infinitely many primes p such that $p+2$ is prime?
3. For every positive integer n, does exist there exist a

Edmund Landau prime p between n^{2} and $(n+1)^{2}$?
4. Are there are infinitely many primes p of the form $n^{2}+1$?

All four problems are still open!

Cramér's random model

- By the prime number theorem, we expect a randomly chosen positive integer n "to be prime with probability $1 / \log n$ ".

Cramér's random model

- By the prime number theorem, we expect a randomly chosen positive integer n "to be prime with probability $1 / \log n$ ".
- Define the sequence of independent random variables $\mathbf{X}_{2}, \mathbf{X}_{3}, \mathbf{X}_{4}, \ldots$ to have two possible outcomes, either 0 or 1 , where

$$
\mathbb{P}\left(\mathbf{X}_{2}=1\right)=1, \quad \text { and } \quad \mathbb{P}\left(\mathbf{X}_{n}=1\right)=\frac{1}{\log n} \text { for all } n \geq 3
$$

Cramér's random model

- By the prime number theorem, we expect a randomly chosen positive integer n "to be prime with probability $1 / \log n$ ".
- Define the sequence of independent random variables $\mathbf{X}_{2}, \mathbf{X}_{3}, \mathbf{X}_{4}, \ldots$ to have two possible outcomes, either 0 or 1 , where

$$
\mathbb{P}\left(\mathbf{X}_{2}=1\right)=1, \quad \text { and } \quad \mathbb{P}\left(\mathbf{X}_{n}=1\right)=\frac{1}{\log n} \text { for all } n \geq 3
$$

- Define the random variables $\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \ldots$ as

$$
\mathbf{P}_{1}=2, \quad \text { and } \quad \mathbf{P}_{n+1}=\min \left\{i: \mathbf{X}_{i}=1 \text { and } i>\mathbf{P}_{n}\right\}
$$

Cramér's random model

- By the prime number theorem, we expect a randomly chosen positive integer n "to be prime with probability $1 / \log n$ ".
- Define the sequence of independent random variables $\mathbf{X}_{2}, \mathbf{X}_{3}, \mathbf{X}_{4}, \ldots$ to have two possible outcomes, either 0 or 1 , where

$$
\mathbb{P}\left(\mathbf{X}_{2}=1\right)=1, \quad \text { and } \quad \mathbb{P}\left(\mathbf{X}_{n}=1\right)=\frac{1}{\log n} \text { for all } n \geq 3
$$

- Define the random variables $\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \ldots$ as

$$
\mathbf{P}_{1}=2, \quad \text { and } \quad \mathbf{P}_{n+1}=\min \left\{i: \mathbf{X}_{i}=1 \text { and } i>\mathbf{P}_{n}\right\}
$$

Conjecture (Naive Cramér random model)

The asymptotic behaviour for the primes $\{2,3,5,7, \ldots$,$\} should (almost surely) behave$ like the asymptotic behaviour for the random set $\left\{\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \ldots\right\}$.

Cramér's random model

- Assuming Cramér's random model, for a random integer n, we have

$$
\mathbb{P}(n \text { prime })=\frac{1}{\log n} \quad \text { and } \quad \mathbb{P}(n+2 \text { prime })=\frac{1}{\log (n+2)} \sim \frac{1}{\log n}
$$

Cramér's random model

- Assuming Cramér's random model, for a random integer n, we have

$$
\mathbb{P}(n \text { prime })=\frac{1}{\log n} \quad \text { and } \quad \mathbb{P}(n+2 \text { prime })=\frac{1}{\log (n+2)} \sim \frac{1}{\log n}
$$

- Assuming these events are independent, this gives

$$
\mathbb{P}(n \text { and } n+2 \text { prime }) \sim \frac{1}{(\log n)^{2}}
$$

which suggests

$$
\#\{p \leq x \mid p \text { and } p+2 \text { prime }\} \sim \frac{x}{(\log x)^{2}}
$$

Cramér's random model

- Assuming Cramér's random model, for a random integer n, we have

$$
\mathbb{P}(n \text { prime })=\frac{1}{\log n} \quad \text { and } \quad \mathbb{P}(n+2 \text { prime })=\frac{1}{\log (n+2)} \sim \frac{1}{\log n}
$$

- Assuming these events are independent, this gives

$$
\mathbb{P}(n \text { and } n+2 \text { prime }) \sim \frac{1}{(\log n)^{2}}
$$

which suggests

$$
\#\{p \leq x \mid p \text { and } p+2 \text { prime }\} \sim \frac{x}{(\log x)^{2}}
$$

- But this is wrong! In particular $\mathbb{P}(n$ prime $)$ and $\mathbb{P}(n+2$ prime $)$ should not be independent events!

Cramer's random model (modified)

- A more refined model yields the following conjecture:

Conjecture (Hardy-Littlewood)

Let $\pi_{2}(x)$ denote the number of primes $p \leq x$ such that $p+2$ is prime. Then

G. H. Hardy

John E. Littlewood

Cramer's random model (modified)

- A more refined model yields the following conjecture:

Conjecture (Hardy-Littlewood)

Let $\pi_{2}(x)$ denote the number of primes $p \leq x$ such that $p+2$ is prime. Then

$$
\pi_{2}(x) \sim 2 \prod_{\substack{p \text { prime } \\ p \geq 3}}\left(1-\frac{1}{(p-1)^{2}}\right) \frac{x}{(\log x)^{2}}
$$

- This conjecture is strongly supported by numerical evidence!

Cramer's random model (modified)

- A more refined model yields the following conjecture:

Conjecture (Hardy-Littlewood)

Let $\pi_{2}(x)$ denote the number of primes $p \leq x$ such that $p+2$ is prime. Then

$$
\pi_{2}(x) \sim 2 \prod_{\substack{p \text { prime } \\ p \geq 3}}\left(1-\frac{1}{(p-1)^{2}}\right) \frac{x}{(\log x)^{2}}
$$

- This conjecture is strongly supported by numerical evidence!
- It's known that $\pi_{2}(x) \leq C \frac{x}{(\log x)^{2}}$ for some constant $C<3.4$.

Small prime gaps

Recall $g(x)=\min _{p_{n} \geq x}\left(p_{n+1}-p_{n}\right)$.

Small prime gaps

Recall $g(x)=\min _{p_{n} \geq x}\left(p_{n+1}-p_{n}\right)$.

Conjecture (Alphonse de Polignac (1849))

For every even integer k, there exists infinitely many primes p such that $p+k$ is prime.

Jules de Polignac (Alphonse's daddy)

Small prime gaps

Recall $g(x)=\min _{p_{n} \geq x}\left(p_{n+1}-p_{n}\right)$.

Conjecture (Alphonse de Polignac (1849))

For every even integer k, there exists infinitely many primes p such that $p+k$ is prime.

- de Polignac's conjecture implies $g(x)=2$ for all $x>2$ (clearly $g(x) \geq 2$ for all $x>2$).

Jules de Polignac (Alphonse's daddy)

Small prime gaps

Recall $g(x)=\min _{p_{n} \geq x}\left(p_{n+1}-p_{n}\right)$.

Conjecture (Alphonse de Polignac (1849))

For every even integer k, there exists infinitely many primes p such that $p+k$ is prime.

- de Polignac's conjecture implies $g(x)=2$ for all $x>2$ (clearly $g(x) \geq 2$ for all $x>2$).
- Euclid's proof gives $g(n) \leq n!+1$.

Jules de Polignac (Alphonse's daddy)

Small prime gaps

Recall $g(x)=\min _{p_{n} \geq x}\left(p_{n+1}-p_{n}\right)$.

Conjecture (Alphonse de Polignac (1849))

For every even integer k, there exists infinitely many primes p such that $p+k$ is prime.

- de Polignac's conjecture implies $g(x)=2$ for all $x>2$ (clearly $g(x) \geq 2$ for all $x>2$).
- Euclid's proof gives $g(n) \leq n!+1$.

Jules de Polignac (Alphonse's daddy)

- Bertrand's postulate gives $g(x) \leq x$ for all $x>2$.

Small prime gaps

Recall $g(x)=\min _{p_{n} \geq x}\left(p_{n+1}-p_{n}\right)$.

Conjecture (Alphonse de Polignac (1849))

For every even integer k, there exists infinitely many primes p such that $p+k$ is prime.

- de Polignac's conjecture implies $g(x)=2$ for all $x>2$ (clearly $g(x) \geq 2$ for all $x>2$).
- Euclid's proof gives $g(n) \leq n!+1$.

Jules de Polignac (Alphonse's daddy)

- Bertrand's postulate gives $g(x) \leq x$ for all $x>2$.
- By the pigeonhole principle, the prime number theorem gives $g(x) \leq(1+\epsilon) \log x$ for all sufficiently large x.

Small prime gaps

Upper bound for $g(x)$	Authors	Year
$(1+\epsilon) \log x$	Hadamard, de la Vallee Poussin	1896
$(1-c) \log x$	Erdős	1940
$\left(\frac{57}{59}+\epsilon\right) \log x$	Rankin	1947
$\left(\frac{15}{16}+\epsilon\right) \log x$	Ricci	1954
$(0.4665+\epsilon) \log x$	Bombieri-Davenport	1965
$(0.4571+\epsilon) \log x$	Pilt'ai	1972
$(0.4542+\epsilon) \log x$	Uchiyama	1975
$(0.4425+\epsilon) \log x$	Huxley	1975
$(0.4393+\epsilon) \log x$	Huxley	1984
$(0.2484+\epsilon) \log x$	Maier	1988

Table: Summary of upper bounds for $g(x)$, where $\epsilon>0$ is any positive real number.

Small prime gaps

Theorem (Goldston-Pintz-Yıldırım 2005)

$$
g(x)=o(\log x) \text {, or equivalently } \liminf _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\log p_{n}}=0
$$

Daniel Goldston

János Pintz

Cem Yıldırım

Small prime gaps

Theorem (Goldston-Pintz-Yıldırım 2005)

$$
g(x)=o(\log x) \text {, or equivalently } \liminf _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\log p_{n}}=0
$$

Daniel Goldston

János Pintz

Cem Yıldırım

- Goldston-Pintz-Yıldırım improved the bound to $g(x) \ll \sqrt{\log x}(\log \log x)^{2}$ in 2007 .

Small prime gaps

Theorem (Goldston-Pintz-Yıldırım 2005)

$$
g(x)=o(\log x) \text {, or equivalently } \liminf _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\log p_{n}}=0
$$

Daniel Goldston

János Pintz

Cem Yıldırım

- Goldston-Pintz-Yıldırım improved the bound to $g(x) \ll \sqrt{\log x}(\log \log x)^{2}$ in 2007.
- Pintz proved $g(x) \ll(\log x)^{1 / 3+\epsilon}$ in 2013 (unpublished).

Small prime gaps

Then, a major breakthrough!

Small prime gaps

Then, a major breakthrough!
Theorem (Zhang 2013)

$$
\liminf _{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right) \leq 70000000
$$

Yitang Zhang

Small prime gaps

Then, a major breakthrough!
Theorem (Zhang 2013)

$$
\liminf _{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right) \leq 70000000
$$

- This proves that Polignac's conjecture is true for some even $k \leq 70000000$!

Yitang Zhang

Small prime gaps

Table: Summary of upper bounds for $\lim \inf _{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right)$

Bound	Authors	Date/Time
70000000	Yitang Zhang	14 May 2013

Small prime gaps

Table: Summary of upper bounds for $\lim _{\inf }^{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right)$

Bound	Authors	Date/Time
70000000	Yitang Zhang	14 May 2013
63374611	Mark Lewko	20 May 2013

Small prime gaps

Table: Summary of upper bounds for $\lim \inf _{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right)$

Bound	Authors	Date/Time
70000000	Yitang Zhang	14 May 2013
63374611	Mark Lewko	20 May 2013
59874594	Timothy Trudgian	28 May 2013

Small prime gaps

Table: Summary of upper bounds for $\lim \inf _{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right)$

Bound	Authors	Date/Time
70000000	Yitang Zhang	14 May 2013
63374611	Mark Lewko	20 May 2013
59874594	Timothy Trudgian	28 May 2013
59470640	Scott Morrison	30 May 2013

Small prime gaps

Table: Summary of upper bounds for $\lim \inf _{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right)$

Bound	Authors	Date/Time
70000000	Yitang Zhang	14 May 2013
63374611	Mark Lewko	20 May 2013
59874594	Timothy Trudgian	28 May 2013
59470640	Scott Morrison	30 May 2013
58885998	Terence Tao	30 May 2013, 09:13

Small prime gaps

Table: Summary of upper bounds for $\lim \inf _{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right)$

Bound	Authors	Date/Time
70000000	Yitang Zhang	14 May 2013
63374611	Mark Lewko	20 May 2013
59874594	Timothy Trudgian	28 May 2013
59470640	Scott Morrison	30 May 2013
58885998	Terence Tao	30 May 2013, 09:13
57554086	Morrison-Tao	30 May 2013, 22:22

Small prime gaps

Table: Summary of upper bounds for $\lim \inf _{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right)$

Bound	Authors	Date/Time
70000000	Yitang Zhang	14 May 2013
63374611	Mark Lewko	20 May 2013
59874594	Timothy Trudgian	28 May 2013
59470640	Scott Morrison	30 May 2013
58885998	Terence Tao	30 May 2013, 09:13
57554086	Morrison-Tao	30 May 2013, 22:22
48112378	Morrison-Tao	31 May 2013, 18:49

Small prime gaps

Table: Summary of upper bounds for $\lim _{\inf }^{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right)$

Bound	Authors	Date/Time
70000000	Yitang Zhang	14 May 2013
63374611	Mark Lewko	20 May 2013
59874594	Timothy Trudgian	28 May 2013
59470640	Scott Morrison	30 May 2013
58885998	Terence Tao	30 May 2013, 09:13
57554086	Morrison-Tao	30 May 2013, 22:22
48112378	Morrison-Tao	31 May 2013, 18:49
42543038	Morrison-Tao	31 May 2013, 22:14

Polymath

This was organised into a Polymath project, with dozens of contributors!

Figure: Progress on upper bound for $\lim \inf _{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right)$ over time.

Small Prime Gaps

Theorem (Polymath 8a, 2013)

There are infinitely many positive integers n such that $p_{n+1}-p_{n} \leq 4680$.

Small Prime Gaps

Theorem (Polymath 8a, 2013)

There are infinitely many positive integers n such that $p_{n+1}-p_{n} \leq 4680$.

Theorem (Maynard 2013)

There are infinitely many positive integers n such that $p_{n+1}-p_{n} \leq 600$.

Small Prime Gaps

Theorem (Polymath 8a, 2013)

There are infinitely many positive integers n such that $p_{n+1}-p_{n} \leq 4680$.

Theorem (Maynard 2013)

There are infinitely many positive integers n such that $p_{n+1}-p_{n} \leq 600$.

Theorem (Polymath 8b, 2014)

There are infinitely many positive integers n such that $p_{n+1}-p_{n} \leq 246$.

Small Prime Gaps

Theorem (Polymath 8a, 2013)

There are infinitely many positive integers n such that $p_{n+1}-p_{n} \leq 4680$.

Theorem (Maynard 2013)

There are infinitely many positive integers n such that $p_{n+1}-p_{n} \leq 600$.

Theorem (Polymath 8b, 2014)

There are infinitely many positive integers n such that $p_{n+1}-p_{n} \leq 246$.

- This is the best unconditional bound proven to date!

Small Prime Gaps

Theorem (Polymath 8a, 2013)

There are infinitely many positive integers n such that $p_{n+1}-p_{n} \leq 4680$.

Theorem (Maynard 2013)

There are infinitely many positive integers n such that $p_{n+1}-p_{n} \leq 600$.

Theorem (Polymath 8b, 2014)

There are infinitely many positive integers n such that $p_{n+1}-p_{n} \leq 246$.

- This is the best unconditional bound proven to date!
- Assuming the Elliott-Halberstam conjecture, we have $p_{n+1}-p_{n} \leq 12$ infinitely often.

Cramer's random model (revisited)

- Recall Cramer's random model, where $\mathbb{P}\left(\mathbf{X}_{n}=1\right)=1 / \log n$ and the random variables $\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \ldots$ are defined as

$$
\mathbf{P}_{1}=2, \quad \text { and } \quad \mathbf{P}_{n+1}=\min \left\{i: \mathbf{X}_{i}=1 \text { and } i>\mathbf{P}_{n}\right\}
$$

Cramer's random model (revisited)

- Recall Cramer's random model, where $\mathbb{P}\left(\mathbf{X}_{n}=1\right)=1 / \log n$ and the random variables $\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \ldots$ are defined as

$$
\mathbf{P}_{1}=2, \quad \text { and } \quad \mathbf{P}_{n+1}=\min \left\{i: \mathbf{X}_{i}=1 \text { and } i>\mathbf{P}_{n}\right\}
$$

- Define the heuristic maximal prime gap as the random variable $\mathbf{G}(x)$ (dependent on x) as

$$
\mathbf{G}(x)=\max _{\mathbf{P}_{n} \leq x}\left(\mathbf{P}_{n+1}-\mathbf{P}_{n}\right)
$$

Cramer's random model (revisited)

- Recall Cramer's random model, where $\mathbb{P}\left(\mathbf{X}_{n}=1\right)=1 / \log n$ and the random variables $\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \ldots$ are defined as

$$
\mathbf{P}_{1}=2, \quad \text { and } \quad \mathbf{P}_{n+1}=\min \left\{i: \mathbf{X}_{i}=1 \text { and } i>\mathbf{P}_{n}\right\}
$$

- Define the heuristic maximal prime gap as the random variable $\mathbf{G}(x)$ (dependent on $x)$ as

$$
\mathbf{G}(x)=\max _{\mathbf{P}_{n} \leq x}\left(\mathbf{P}_{n+1}-\mathbf{P}_{n}\right)
$$

Theorem (Cramer 1936)

The following holds with probability 1:

$$
\limsup _{x \rightarrow \infty} \frac{\mathbf{G}(x)}{(\log x)^{2}}=1
$$

Cramer's random model (revisited)

- Recall Cramer's random model, where $\mathbb{P}\left(\mathbf{X}_{n}=1\right)=1 / \log n$ and the random variables $\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \ldots$ are defined as

$$
\mathbf{P}_{1}=2, \quad \text { and } \quad \mathbf{P}_{n+1}=\min \left\{i: \mathbf{X}_{i}=1 \text { and } i>\mathbf{P}_{n}\right\}
$$

- Define the heuristic maximal prime gap as the random variable $\mathbf{G}(x)$ (dependent on $x)$ as

$$
\mathbf{G}(x)=\max _{\mathbf{P}_{n} \leq x}\left(\mathbf{P}_{n+1}-\mathbf{P}_{n}\right)
$$

Theorem (Cramer 1936)

The following holds with probability 1:

$$
\limsup _{x \rightarrow \infty} \frac{\mathbf{G}(x)}{(\log x)^{2}}=1
$$

- However, we've seen Cramér's model isn't perfect!

Granville's random model

- Granville proposed the following refinement: For a suitably chosen parameter T, let $\mathbf{X}_{3}, \mathbf{X}_{4}, \ldots$ be a sequence of random variables such that, if n has some prime factor $\leq T$, then $\mathbf{X}_{n}=0$, otherwise, let

$$
\mathbb{P}\left(\mathbf{X}_{n}=1\right):=\prod_{p \leq T}\left(\frac{p}{p-1}\right) \cdot \frac{1}{\log n} .
$$

Granville's random model

- Granville proposed the following refinement: For a suitably chosen parameter T, let $\mathbf{X}_{3}, \mathbf{X}_{4}, \ldots$ be a sequence of random variables such that, if n has some prime factor $\leq T$, then $\mathbf{X}_{n}=0$, otherwise, let

$$
\mathbb{P}\left(\mathbf{X}_{n}=1\right):=\prod_{p \leq T}\left(\frac{p}{p-1}\right) \cdot \frac{1}{\log n} .
$$

Conjecture (Granville 1995)

$$
\limsup _{x \rightarrow \infty} \frac{G(x)}{(\log x)^{2}} \geq 2 e^{-\gamma} \approx 1.12
$$

Granville's random model

- Granville proposed the following refinement: For a suitably chosen parameter T, let $\mathbf{X}_{3}, \mathbf{X}_{4}, \ldots$ be a sequence of random variables such that, if n has some prime factor $\leq T$, then $\mathbf{X}_{n}=0$, otherwise, let

$$
\mathbb{P}\left(\mathbf{X}_{n}=1\right):=\prod_{p \leq T}\left(\frac{p}{p-1}\right) \cdot \frac{1}{\log n} .
$$

Conjecture (Granville 1995)

$$
\limsup _{x \rightarrow \infty} \frac{G(x)}{(\log x)^{2}} \geq 2 e^{-\gamma} \approx 1.12
$$

"It is evident that the primes are randomly distributed but, unfortunately, we don't know what 'random' means." - R. C. Vaughan (February 1990)

Results

Figure: Comparison of $G(x)$ with Cramer and Granville's conjecture.

Results

Figure: Comparison of $G(x)$ with Cramer and Granville's conjecture.

Results

Figure: Comparison of $G(x)$ with Cramer and Granville's conjecture.

Results

Figure: Comparison of $G(x)$ with Cramer and Granville's conjecture.

Large prime gaps

Table: Summary of upper bounds of the form $G(x) \ll x^{\theta}$ proven to date.

Constant θ		Authors	Year
$1-1 / 33000$	$\approx 0.999969 \ldots$	Hoheisel	1930
$1-1 / 250$	$=0.996$	Heilbronn	1933
$3 / 4+\epsilon$	$=0.75$	Chudukov	1936
$5 / 8+\epsilon$	$=0.625$	Ingham	1937
$5 / 8-1 / 616+\epsilon$	$\approx 0.623377 \ldots$	Titchmarsh	1942
$5 / 8-1 / 488+\epsilon$	$\approx 0.622951 \ldots$	Min	1949
$5 / 8-1 / 392+\epsilon$	$\approx 0.622449 \ldots$	Haneke	1962
$3 / 5+\epsilon$	$=0.6$	Montgomery	1971
$7 / 12+\epsilon$	$\approx 0.583333 \ldots$	Huxley	1972
$13 / 23$	$\approx 0.565217 \ldots$	Iwaniec, Jutila	1979
$11 / 20$	$=0.55$	Heath-Brown, Iwaniec	1979
$11 / 20-1 / 406$	$\approx 0.547537 \ldots$	Iwaniec, Pintz	1984
$11 / 20-1 / 384$	$\approx 0.547396 \ldots$	Mozzochi	1986
$6 / 11$	$\approx 0.545454 \ldots$	Lou, Yao	1992
$107 / 200$	$=0.535$	Baker, Harman	1996

Large prime gaps

Theorem (Baker-Harman-Pintz (2001))

$G(x) \ll x^{0.525}$

Roger Baker

Glyn Harman

János Pintz

Large prime gaps

Theorem (Baker-Harman-Pintz (2001))

$G(x) \ll x^{0.525}$

Roger Baker

Glyn Harman

János Pintz

- Assuming the Riemann Hypothessis, we get $G(x) \ll \sqrt{x} \log x$.

Large prime gaps

Theorem (Baker-Harman-Pintz (2001))

$G(x) \ll x^{0.525}$

Roger Baker

Glyn Harman

János Pintz

- Assuming the Riemann Hypothessis, we get $G(x) \ll \sqrt{x} \log x$.
- Assuming both RH and some results on Montgomery's pair correlation function, we get $G(x) \ll \sqrt{x \log x}$.

Large prime gaps

Let's consider lower bounds for $G(x)=\max _{p_{n} \leq x}\left(p_{n+1}-p_{n}\right)$.

Large prime gaps

Let's consider lower bounds for $G(x)=\max _{p_{n} \leq x}\left(p_{n+1}-p_{n}\right)$.

Theorem

For any positive integer n, there exists n consecutive composite numbers (i.e. $G(x) \rightarrow \infty$ as $x \rightarrow \infty$).

Large prime gaps

Let's consider lower bounds for $G(x)=\max _{p_{n} \leq x}\left(p_{n+1}-p_{n}\right)$.

Theorem

For any positive integer n, there exists n consecutive composite numbers (i.e. $G(x) \rightarrow \infty$ as $x \rightarrow \infty$).

Proof: $(n+1)!+2,(n+1)!+3, \ldots,(n+1)!+(n+1)$ are all composite.

Large prime gaps

Let's consider lower bounds for $G(x)=\max _{p_{n} \leq x}\left(p_{n+1}-p_{n}\right)$.

Theorem

For any positive integer n, there exists n consecutive composite numbers (i.e. $G(x) \rightarrow \infty$ as $x \rightarrow \infty$).

Proof: $(n+1)!+2,(n+1)!+3, \ldots,(n+1)!+(n+1)$ are all composite.

- Using $\log (n!) \leq n \log n$, this proves $G(x) \gg \log x / \log \log x$.

Large prime gaps

Let's consider lower bounds for $G(x)=\max _{p_{n} \leq x}\left(p_{n+1}-p_{n}\right)$.

Theorem

For any positive integer n, there exists n consecutive composite numbers (i.e. $G(x) \rightarrow \infty$ as $x \rightarrow \infty$).

Proof: $(n+1)!+2,(n+1)!+3, \ldots,(n+1)!+(n+1)$ are all composite.

- Using $\log (n!) \leq n \log n$, this proves $G(x) \gg \log x / \log \log x$.
- Chebyshev proved $G(x) \gg \log x$.

Large prime gaps

Let's consider lower bounds for $G(x)=\max _{p_{n} \leq x}\left(p_{n+1}-p_{n}\right)$.

Theorem

For any positive integer n, there exists n consecutive composite numbers (i.e. $G(x) \rightarrow \infty$ as $x \rightarrow \infty$).

Proof: $(n+1)!+2,(n+1)!+3, \ldots,(n+1)!+(n+1)$ are all composite.

- Using $\log (n!) \leq n \log n$, this proves $G(x) \gg \log x / \log \log x$.
- Chebyshev proved $G(x) \gg \log x$.
- The prime number theorem implies $G(x) \geq(1-\epsilon) \log x$

Large prime gaps

Definition

For any positive integer x, let $Y(x)$ be the largest integer y such that the interval $\{1,2, \ldots, y\}$ can be sieved out by a set of residue classes $a_{p} \bmod p$ for each prime $p \leq x$.

Large prime gaps

Definition

For any positive integer x, let $Y(x)$ be the largest integer y such that the interval $\{1,2, \ldots, y\}$ can be sieved out by a set of residue classes $a_{p} \bmod p$ for each prime $p \leq x$.

Example: Let $x=7$. The primes $\leq x$ are $\{2,3,5,7\}$. We can cover the interval $\{1, \ldots, 9\}$ by choosing the following residue classes: $a_{2}=1, a_{3}=2, a_{5}=1$, and $a_{7}=4$

For $p=2, a_{p}=1$

For $p=3, a_{p}=2$

$$
\text { For } p=5, a_{p}=1
$$

For $p=7, a_{p}=4$

Large prime gaps

Definition

For any positive integer x, let $Y(x)$ be the largest integer y such that the interval $\{1,2, \ldots, y\}$ can be sieved out by a set of residue classes $a_{p} \bmod p$ for each prime $p \leq x$.

Example: Let $x=7$. The primes $\leq x$ are $\{2,3,5,7\}$. We can cover the interval $\{1, \ldots, 9\}$ by choosing the following residue classes: $a_{2}=1, a_{3}=2, a_{5}=1$, and $a_{7}=4$

$$
\text { For } p=2, a_{p}=1
$$

For $p=3, a_{p}=2$

For $p=5, a_{p}=1$

For $p=7, a_{p}=4$

As no choice of residue classes can cover $\{1, \ldots, 10\}$, this proves $Y(7)=9$.

Large prime gaps

Theorem

Let $\epsilon>0$. Then $G(x) \geq Y((1-\epsilon) \log x)$ for all sufficiently large x.

Large prime gaps

Theorem

Let $\epsilon>0$. Then $G(x) \geq Y((1-\epsilon) \log x)$ for all sufficiently large x.
Proof:

- Let $p_{1}, p_{2}, \ldots, p_{n}$ be all the primes $\leq x$, and let $P=p_{1} p_{2} \cdots p_{n}$.

Large prime gaps

Theorem

Let $\epsilon>0$. Then $G(x) \geq Y((1-\epsilon) \log x)$ for all sufficiently large x.

Proof:

- Let $p_{1}, p_{2}, \ldots, p_{n}$ be all the primes $\leq x$, and let $P=p_{1} p_{2} \cdots p_{n}$.
- By the Chinese Remainder Theorem, there exists some integer $m \leq P$ such that $m \equiv-a_{p} \bmod p$ for all $p \leq x$

Large prime gaps

Theorem

Let $\epsilon>0$. Then $G(x) \geq Y((1-\epsilon) \log x)$ for all sufficiently large x.

Proof:

- Let $p_{1}, p_{2}, \ldots, p_{n}$ be all the primes $\leq x$, and let $P=p_{1} p_{2} \cdots p_{n}$.
- By the Chinese Remainder Theorem, there exists some integer $m \leq P$ such that $m \equiv-a_{p} \bmod p$ for all $p \leq x$
- We claim all the integers $\{m+1, m+2, \ldots, m+Y(x)\}$ are composite. Indeed, for any $i=1, \ldots, Y(x)$, there exists a $p \leq x$ such that p divides $m+i$.

Large prime gaps

Theorem

Let $\epsilon>0$. Then $G(x) \geq Y((1-\epsilon) \log x)$ for all sufficiently large x.

Proof:

- Let $p_{1}, p_{2}, \ldots, p_{n}$ be all the primes $\leq x$, and let $P=p_{1} p_{2} \cdots p_{n}$.
- By the Chinese Remainder Theorem, there exists some integer $m \leq P$ such that $m \equiv-a_{p} \bmod p$ for all $p \leq x$
- We claim all the integers $\{m+1, m+2, \ldots, m+Y(x)\}$ are composite. Indeed, for any $i=1, \ldots, Y(x)$, there exists a $p \leq x$ such that p divides $m+i$.
- This gives a sequence of $Y(x)$ consecutive composite numbers, no larger than P, and thus $G(P) \geq Y(x)$.

Large prime gaps

Theorem

Let $\epsilon>0$. Then $G(x) \geq Y((1-\epsilon) \log x)$ for all sufficiently large x.

Proof:

- Let $p_{1}, p_{2}, \ldots, p_{n}$ be all the primes $\leq x$, and let $P=p_{1} p_{2} \cdots p_{n}$.
- By the Chinese Remainder Theorem, there exists some integer $m \leq P$ such that $m \equiv-a_{p} \bmod p$ for all $p \leq x$
- We claim all the integers $\{m+1, m+2, \ldots, m+Y(x)\}$ are composite. Indeed, for any $i=1, \ldots, Y(x)$, there exists a $p \leq x$ such that p divides $m+i$.
- This gives a sequence of $Y(x)$ consecutive composite numbers, no larger than P, and thus $G(P) \geq Y(x)$.
- By the prime number theorem, $\log P \sim x$, which proves $G(x) \geq Y((1-\epsilon) \log x)$.

Large prime gaps

Table: Summary of lower bounds for $G(x)$ arising from lower bounds for $Y(x)$.

Bound for $G(x)$	Bound for $Y(x)$	Authors	Year
$(1-\epsilon) \log x$	x	Hadamard, de la Vallee Poussin	1896

Large prime gaps

Table: Summary of lower bounds for $G(x)$ arising from lower bounds for $Y(x)$.

Bound for $G(x)$	Bound for $Y(x)$	Authors	Year
$(1-\epsilon) \log x$	x	Hadamard, de la Vallee Poussin	1896
$(2-\epsilon) \log x$	$2 x$	Backlund	1929

Large prime gaps

Table: Summary of lower bounds for $G(x)$ arising from lower bounds for $Y(x)$.

Bound for $G(x)$	Bound for $Y(x)$	Authors	Year
$(1-\epsilon) \log x$	x	Hadamard, de la Vallee Poussin	1896
$(2-\epsilon) \log x$	$2 x$	Backlund	1929
$(4-\epsilon) \log x$	$4 x$	Brauer, Zeitz	1930

Large prime gaps

Table: Summary of lower bounds for $G(x)$ arising from lower bounds for $Y(x)$.

Bound for $G(x)$	Bound for $Y(x)$	Authors	Year
$(1-\epsilon) \log x$	x	Hadamard, de la Vallee Poussin	1896
$(2-\epsilon) \log x$	$2 x$	Backlund	1929
$(4-\epsilon) \log x$	$4 x$	Brauer, Zeitz	1930
$\frac{\log x \log \log \log x}{\log \log \log \log x}$	$\frac{x \log \log x}{\log \log \log x}$	Westzynthius	1931

Large prime gaps

Table: Summary of lower bounds for $G(x)$ arising from lower bounds for $Y(x)$.

Bound for $G(x)$	Bound for $Y(x)$	Authors	Year
$(1-\epsilon) \log x$	x	Hadamard, de la Vallee Poussin	1896
$(2-\epsilon) \log x$	$2 x$	Backlund	1929
$(4-\epsilon) \log x$	$4 x$	Brauer, Zeitz	1930
$\frac{\log x \log \log \log x}{\log \log \log \log x}$	$\frac{x \log \log x}{\log \log \log x}$	Westzynthius	1931
$\log x \log \log \log x$	$x \log \log x$	Ricci	1934

Large prime gaps

Table: Summary of lower bounds for $G(x)$ arising from lower bounds for $Y(x)$.

Bound for $G(x)$	Bound for $Y(x)$	Authors	Year
$(1-\epsilon) \log x$	x	Hadamard, de la Vallee Poussin	1896
$(2-\epsilon) \log x$	$2 x$	Backlund	1929
$(4-\epsilon) \log x$	$4 x$	Brauer, Zeitz	1930
$\frac{\log x \log \log \log x}{\log \log \log \log x}$	$\frac{x \log \log x}{\log \log \log x}$	Westzynthius	1931
$\frac{x \log \log x}{\log x \log \log \log x}$	Ricci	1934	
$\frac{\log x \log \log x}{(\log \log \log x)^{2}}$	$\frac{x \log x}{(\log \log x)^{2}}$	Erdős (Chang)	$1935(1938)$

Large prime gaps

Theorem (Rankin 1938)

For any $\epsilon>0$,

$$
G(x) \geq(c-\epsilon) \frac{\log x \log \log x \log \log \log \log x}{(\log \log \log x)^{2}}
$$

where $c=\frac{1}{3}$, for sufficiently large x.

R.A. Rankin

Large prime gaps

Theorem (Rankin 1938)

For any $\epsilon>0$,

$$
G(x) \geq(c-\epsilon) \frac{\log x \log \log x \log \log \log \log x}{(\log \log \log x)^{2}}
$$

where $c=\frac{1}{3}$, for sufficiently large x.

R.A. Rankin

Table: Summary of improvements made to the constant c.

Constant c		Authors	Year
$\frac{1}{2} e^{\gamma}$	≈ 0.8905	Schonhage	1963
e^{γ}	≈ 1.7811	Rankin	1963
$1.31256 e^{\gamma}$	≈ 2.0172	Maier, Pomerance	1990
$2 e^{\gamma}$	≈ 3.5621	Pintz	1997

Large prime gaps

Erdős offered a cash prize of 10000 USD for anyone who could prove c can be arbitrary large!

Rankin [35] proved that for some $c>0$ and infinitely many n the following inequality holds:

$$
\begin{equation*}
p_{n+1}-p_{n}>\frac{c \log n \log \log n \log \log \log \log n}{(\log \log \log n)^{2}} . \tag{1}
\end{equation*}
$$

I offered (perhaps somewhat rashly) $\$ 10000$ for a proof that (1) holds for every c. The

- Excerpt from A Tribute to Paul Erdős (1990)

Large prime gaps

More than 75 years after Rankin's theorem, this was solved independently by Ford-Green-Konyagin-Tao and Maynard!

Large prime gaps

More than 75 years after Rankin's theorem, this was solved independently by Ford-Green-Konyagin-Tao and Maynard!

Theorem (Ford-Green-Konyagin-Tao, Maynard 2014)

$$
G(x) \geq f(x) \frac{\log x \log \log x \log \log \log \log x}{(\log \log \log x)^{2}}
$$

for some function $f(x)$ that goes to infinity as $x \rightarrow \infty$.

Kevin Ford

Ben Green

Sergei Konyagin

Terence Tao

James Maynard

Large prime gaps

- Ford-Green-Konyagin-Tao arguments gave no effective lower bound for $f(x)$.

Large prime gaps

- Ford-Green-Konyagin-Tao arguments gave no effective lower bound for $f(x)$.
- Maynard's argument gave $f(x) \gg \frac{\log \log \log x}{\log \log \log \log x}$.

Large prime gaps

- Ford-Green-Konyagin-Tao arguments gave no effective lower bound for $f(x)$.
- Maynard's argument gave $f(x) \gg \frac{\log \log \log x}{\log \log \log \log x}$.
- Combining their methods yields the following result:

Theorem (Ford-Green-Konyagin-Maynard-Tao 2014)

$$
G(x) \gg \frac{\log x \log \log x \log \log \log \log x}{\log \log \log x} .
$$

Large prime gaps

- Ford-Green-Konyagin-Tao arguments gave no effective lower bound for $f(x)$.
- Maynard's argument gave $f(x) \gg \frac{\log \log \log x}{\log \log \log \log x}$.
- Combining their methods yields the following result:

Theorem (Ford-Green-Konyagin-Maynard-Tao 2014)

$$
G(x) \gg \frac{\log x \log \log x \log \log \log \log x}{\log \log \log x} .
$$

Terence Tao has offered 10000 USD to anyone who can prove the implicit constant given above can be arbitrarily large!

Conclusion

So far we have $2 \leq g(x) \leq 246$ and

$$
\frac{\log x \log \log x \log \log \log \log x}{\log \log \log x} \ll G(x) \ll x^{0.525}
$$

Conclusion

So far we have $2 \leq g(x) \leq 246$ and

$$
\frac{\log x \log \log x \log \log \log \log x}{\log \log \log x} \ll G(x) \ll x^{0.525}
$$

"It will be millions of years before we'll have any understanding, and even then it won't be a complete understanding, because we're up against the infinite."

Conclusion

So far we have $2 \leq g(x) \leq 246$ and

$$
\frac{\log x \log \log x \log \log \log \log x}{\log \log \log x} \ll G(x) \ll x^{0.525}
$$

"It will be millions of years before we'll have any understanding, and even then it won't be a complete understanding, because we're up against the infinite." - Paul Erdős (1987)

Conclusion

So far we have $2 \leq g(x) \leq 246$ and

$$
\frac{\log x \log \log x \log \log \log \log x}{\log \log \log x} \ll G(x) \ll x^{0.525}
$$

"It will be millions of years before we'll have any understanding, and even then it won't be a complete understanding, because we're up against the infinite." - Paul Erdős (1987)
"Prime numbers, like timeless jewels adorning the infinite expanse of mathematical reality, stand as nature's most enigmatic gift to those who explore their intricacies. They dance on the fine line between order and chaos, revealing the secret harmonies that beckon mathematicians to uncover the symphony within."

Conclusion

So far we have $2 \leq g(x) \leq 246$ and

$$
\frac{\log x \log \log x \log \log \log \log x}{\log \log \log x} \ll G(x) \ll x^{0.525}
$$

"It will be millions of years before we'll have any understanding, and even then it won't be a complete understanding, because we're up against the infinite." - Paul Erdős (1987)
"Prime numbers, like timeless jewels adorning the infinite expanse of mathematical reality, stand as nature's most enigmatic gift to those who explore their intricacies. They dance on the fine line between order and chaos, revealing the secret harmonies that beckon mathematicians to uncover the symphony within." - ChatGPT (2023)

Thank you!

