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Abstract

Let K be a number field, d a positive integer, and S a finite set of primes
of K. One of the crowning achievements of 20th-century arithmetic geometry was
Faltings’ proof that there are only finitely many isomorphism classes of dimension
d abelian varieties A/K with good reduction away from S. While many effective
algorithms have been developed to explicitly classify elliptic curves E/K with good
reduction outside a finite set of primes S, effectively solving this problem in higher
dimensions remains a challenge. Developing an algorithm that can effectively output
a set of all such dimension d abelian varieties A/K with good reduction away from
S is known as the effective Shafarevich problem, which remains unsolved.

In this thesis, we begin by giving an introduction and survey on some known
methods for classifying abelian varieties A/K with good reduction away from a finite
set of primes, starting with the case of elliptic curves for which a wealth of known
algorithms exist.

In Chapter 2, we investigate the existence of infinitely many genus g hyper-
elliptic curves C/K with potential good reduction outside a fixed number of primes
in K, and give explicit lower and upper bounds on the number of such primes that
can occur. In Chapter 3, we show that the analogous Shafarevich conjecture over
Zℓ-cyclotomic extensions of number fields fails to hold by exhibiting numerous ex-
amples of infinite families of elliptic curves E/Q∞,ℓ and hyperelliptic curves C/Q∞,ℓ

with good reduction outside a fixed small number of primes S in Q∞,ℓ.
Chapters 4 through 6 present new theoretical and computational methods

for computing abelian surfaces A/Q with good reduction away from 2, making sub-
stantial progress toward resolving the effective Shafarevich conjecture for K = Q,
d = 2, and S = {2}. In Chapter 4, we prove that there exist exactly three isogeny
classes of principally polarized abelian surfaces A/Q with good reduction away from
2 which contain surfaces with full rational 2-torsion. In Chapter 5, we develop
new methods to classify hyperelliptic curves C/K with good reduction outside S,
extending Smart’s method by using the closest vector method (CVP) and integer
linear programming (ILP). Finally, Chapter 6 concludes this thesis with our pièce
de résistance: a detailed set of tables describing the 234 known isogeny classes of
abelian surfaces A/Q with good reduction away from 2, including the 512 known
genus 2 curves C/Q whose Jacobians have good reduction outside 2.
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Chapter 1

Introduction

I rather ambitiously titled this thesis “The Effective Shafarevich Conjecture”. As I
started writing this introductory chapter, it became immediately clear that to give a
full history of the Shafarevich conjecture would result in this thesis being far longer
than even Tolstoy’s War and Peace. So I unfortunately cannot claim that this will be
an exhaustive overview to all the amazing work that’s been done towards the effective
Shafarevich conjecture, and have referenced other excellent expository texts on the
subject wherever possible. However, whilst I’ll be as brief as I can, I’ll aim to include
all the necessary details and background relevant to the scope of this thesis!

In the early 20th century, Louis J. Mordell [296] posed several conjectures re-
garding the finiteness of rational solutions to Diophantine equations. Having proven
his famous theorem that E(Q) is finitely generated for elliptic curves E/Q , in the
same paper he posed several further conjectures; some examples include whether
smooth curves of the form y2 = ax4 + bx3 + cx2 + dx+ e have finitely many integer
solutions, or whether the equation z2 = ax6+bx5y+· · ·+fxy5+gy6 has finitely many
rational solutions . More generally, he stated the following now famous conjecture:

Conjecture 1 (Mordell 1922 [296]). Any smooth curve C/Q of genus g > 1 has
only finitely many rational points.

At the time, this was quite a bold proposition!1 This was an open problem
for many decades, with the only significant progress at first being Chabauty’s proof
[92] in the case of genus g curves C/Q satisfying the property that the rank of its
Jacobian is strictly less than g.

1Even more than 40 years after Mordell stated his conjecture, André Weil famously remarked
that “there is no evidence for or against” the Mordell conjecture [444, p. 454]!

1
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At the 1962 International Congress of Mathematicians in Stockholm, Igor
R. Shafarevich proposed another finiteness conjecture which further generalised the
Mordell conjecture. 2

Conjecture 2 (Shafarevich 1962 [437]). Let K be a number field, g ≥ 2 a positive
integer, and S a finite set of places in K. Then there exist only finitely many smooth
genus g curves C/K with good reduction outside S.3

A classical theorem of Torelli [416] states that a curve C/K of genus ≥ 2

is uniquely determined by its Jacobian Jac(C) considered as a principally polarised
abelian variety (a proof for perfect fields K is given in [110, Cor 12.2], and also
given in the appendix of [261] for arbitrary fields K). Thus, we have that the above
conjecture is in fact implied by the following more general conjecture on finiteness
of abelian varieties:

Conjecture 3 (Shafarevich 1962 [437]). Let K be a number field, d a positive integer,
and S a finite set of places in K. Then there exist only finitely many principally
polarised abelian varieties A/K of dimension d with good reduction outside S.

Shafarevich himself proved Conjecture 3 for elliptic curves (d = 1), as well
as sketching the proof for hyperelliptic curves (see [309, 314]), and it was shown by
Parshin [313] that Conjecture 2 implies the Mordell conjecture, thus reducing the
problem of proving the Mordell conjecture to proving Conjecture 3.

Conjecture 3 (along with the Tate conjecture for abelian varieties over num-
ber fields [417, Section 4] ) was eventually proven by Gerd Faltings in 1983 [153] ,
therefore proving the Mordell conjecture! This proof got Faltings the 1986 Fields
medal and is considered one of the crowning achievements in 20th century arithmetic
geometry. Excellent overviews of the ideas behind Faltings’ proof is given by Bloch
[43] and Mazur [287].

Theorem (Faltings 1983 [153, p. 363]). Let K be a number field, d and g positive
integers, and S a finite set of places of K. Then there exist only finitely many
isomorphism classes of polarised abelian varieties A/K of dimension g, polarisation
degree d, and good reduction outside S.

2It seems Shafarevich himself only conjectured the statement on finiteness of genus g curves C/K
with good reduction outside a given set S of primes, although the latter more general conjecture on
finiteness of abelian varieties is nowadays also commonly referred to as the Shafarevich conjecture.

3We remark that the statement of this conjecture for genus 0 curves (smooth plane conics)
follows from some classical results in class field theory (e.g. see [428]). However, regarding genus
1 curves, there do exist pairs (K,S) with S nonempty, such that there are infinitely many genus 1
curves C/K with good reduction outside S [287, p. 241]. In particular, the Shafarevich conjecture
for genus 1 curves C/K with everywhere good reduction would imply that the Tate-Shafarevich
group XE/K for elliptic curves E/K is finite [321, p. 2], which is still an open problem!



Dra
ft

Draft of 0:21 am, Wednesday, November 13, 2024 3

A theorem of Zarhin [451] proved that, for any abelian variety A/K, the
abelian variety A4 × ˆ︁A4 is principally polarised. Combined with Faltings theorem
above, this proves the Shafarevich conjecture without the need to have any polari-
sation assumption:

Theorem (Faltings–Zarhin). Let K be a number field, d a positive integer, and S a
finite set of places in K. Then there exist only finitely many abelian varieties A/K
of dimension d with good reduction outside S.

Some further proofs of Faltings theorem were given by Vojta [432] using
diophantine approximation techniques, which was further simplified by Faltings
[154] and Bombieri [45]. There’s an excellent book recently published by Ikoma–
Kawaguchi–Moriwaki [216] which gives a fully self-contained and detailed proof of
the Mordell conjecture following the approach by Bombieri and Vojta. There is also
a more recent proof by Lawrence and Venkatesh [262] using p-adic Hodge theory (see
also Liu’s recent notes [265]).

Nowadays, both the polarised and unpolarised versions the Shafarevich con-
jecture has been proven for many other families of varieties: E.g. for K3 surfaces
[12, 372], hyper-Kähler varieties [176], flag varieties [222], del Pezzo surfaces [351],
certain canonically polarised surfaces [221], Enriques surfaces [405], and certain Fano
threefolds [223].

This introduction would not be complete without also mentioning that anal-
ogous versions of the Mordell conjecture and Shafarevich conjecture have also been
posed over function fields, with their proofs being given before Faltings’ proof over
number fields.4 In the 1960s, the Mordell conjecture over characteristic zero function
fields was proven independently by Manin [276] and Grauert [186] (with Coleman
[103] correcting an error in Manin’s proof), and was proven by Samuel [343] in the
positive characteristic case. Similarly, the Shafarevich conjecture for function fields
was resolved by Arakelov [14], Parshin [313], and Szpiro [402].

Effective Conjectures

One could more generally ask if effective algorithms exist for the Mordell and Shafare-
vich conjectures. Whilst we do have effectivity results for function fields [450], Falt-
ings proof for number fields is not fully effective. Whilst Parshin [403] recognised that
his proof can be used to given an effective bound on the cardinality of C(K), neither

4When stating the Mordell conjecture for curves C over function fields K/k, one must exclude
isotrivial curves (i.e. curves C/K which are L-isomorphic to a curve C0/k, over a finite extension
L/K).
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his proof nor the other proofs of Vojta–Faltings–Bombieri or Lawrence–Venkatesh
can be used to (even in principle) give a fully effective algorithm to compute C(K)

in all cases. Indeed, even effectively determining whether C(Q) ̸= ∅ is still an open
problem.5

We thus pose the following effective version of the Mordell conjecture:

Conjecture (Effective Mordell). There exists an effective algorithm that accepts as
input a number field K and a smooth curve C/K of genus g > 1, and outputs all
K-rational points on the curve C(K) (or equivalently, outputs a constant hC/K such
that all points in C(K) have height at most hC/K).

This conjecture has been stated in many different ways with various different
generalisations (e.g. see modified Szpiro conjecture [404], the ABC conjecture [279,
307], or Vojta’s height inequality [431]; effective versions of any of these would imply
the effective Mordell conjecture [145]).

Whilst the effective Mordell conjecture is still open in general, many ap-
proaches have been published to study this in certain cases. These include local meth-
ods, descent, constructing quotients, Chabauty-Coleman [92, 103] (also quadratic
Chabauty, non-abelian Chabauty [248]). An excellent review of these methods, in
particular those of Chabauty and the Mordell-Weil sieve is given by McCallum–
Poonen [289] and by Siksek [379], whilst a more comprehensive overview of Kim’s
non-abelian Chabauty is given by Corwin [111].

A thorough survey of the two methods of Lawrence-Venkatesh and Kim is
given by Balakrishnan–Best–Bianchi–Lawrence–Müller–Triantafillou–Vonk [21], de-
scribing possible approaches towards a proof of the effective Mordell conjecture.
Recently, Kim’s non-abelian Chabauty has had the most success in practically de-
termining the set C(Q) for many curves C/Q for which Chabauty on its own doesn’t
work. A recent famous example was determining all rational points on the split
Cartan modular curve X+

sp(13) (the cursed curve) done by Balakrishnan–Dogra–
Müller–Tuitman–Vonk [20].6 Kim’s methods have also been applied to compute the
rational points on the modular curves X+

0 (N) for N = 67, 73, and 103, done by
Balakrishnan–Best–Bianchi–Lawrence–Müller–Triantafillou–Vonk [21] with various
other genus 2 and 3 modular curves X+

0 (N) for prime levels N from 107 to 239

5It’s perhaps worth mentioning that it’s not obvious whether such an algorithm should even
exist, as it was shown by David–Putnam–Robinson–Matiyasevich [122, 281] that there in fact does
not exist any algorithm to determine whether an arbitrary system of Diophantine equations has
solutions over Z (Hilbert’s 10th problem).

6Bilu, Parent, and Rebolledo [36, 37] had already determined all rational points on X+
sp(p) for

all primes p ≥ 11 with the exception of p = 13. They refer to level 13 as the cursed level (e.g. see
[37, Remark 5.11]) as their methods break down for p = 13.
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recently being resolved by Balakrishnan–Dogra–Müller–Tuitman–Vonk [22].
We shall also pose the analogous effective conjecture for Shafarevich, both

for curves of genus > 1 and for abelian varieties.

Conjecture 4 (Effective Shafarevich I). There exists an effective algorithm that
accepts as input, a number field K, a positive integer g ≥ 2, and a finite set S of
places in K, and outputs a list of all smooth genus g curves C/K with good reduction
outside S (or equivalently, outputs a constant cK,g,S such that all such curves satisfy
hF (C) ≤ cK,g,S, where hF (C) denotes the Faltings height of C, as defined in [295,
p. 153]).

Conjecture 5 (Effective Shafarevich II). There exists an effective algorithm that
accepts as input, a number field K, a positive integer d ≥ 1, and a finite set S of
places in K, and outputs a list of all dimension d abelian varieties A/K with good
reduction outside S (or equivalently, outputs a constant cK,d,S such that all such
abelian varieties satisfy hF (C) ≤ cK,g,S).

Rémond [330] noted that the construction of Kodaira–Parshin can be made
effective, thus showing that Effective Shafarevich I implies Effective Mordell. Fur-
thermore, as noted in [434, Proposition 6.1], Effective Shafarevich II implies Effective
Shafarevich I.

Whilst Mordell has been effectively solved in many cases, both versions of the
effective Shafarevich conjecture have been solved in far fewer cases. For this thesis,
we shall focus on giving methods to solving the above two effective versions of the
Shafarevich conjecture.

We will being this chapter by giving a brief overview of some elliptic curve
cases which have been shown, along with some resolved cases for higher genus curves
and higher dimension abelian varieties. Chapters 4 through 6 will then focus on our
attempts to solve Effective Shafarevich II for K = Q, d = 2, and S = {2}.

1.1 History

1.1.1 Elliptic Curves

We first consider the simplest case: the theory of elliptic curves. The study of elliptic
curves had their origins as far back as Diophantus [25] in the 2nd century AD, with
their study truly being at the forefront of modern number theory over the last 150
years. More recently, the use of elliptic curves in cryptography has truly cemented its
importance both in pure number theory as well as applications in computer science.
An excellent overview of the theory of elliptic curves is given by Silverman [383, 382].
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There is an extensive amount of literature available on classifying elliptic
curves E/K with good reduction outside S, and thus the following is certainly not
an exhaustive overview by any means.

Firstly, we note that the case K = Q, and S = ∅ simply corresponds to
showing that there are no elliptic curves over Q with everywhere good reduction.
This can be handled by an elementary diophantine argument, first stated by Tate,
with a proof published by Ogg [308, p. 144]. In the 1960s, Ogg [308] then classified all
24 elliptic curves over Q with good reduction outside S = {2}, followed independently
by Coghlan [100] and Stephens [390] who handled the S = {2, 3} case. The S = {3}
case was also separately done by Hadano [198].

Various other papers then followed, giving a full classification of elliptic curves
E/Q with good reduction outside of various sets of primes S. An overview of some
of these results are given in Table 1.1.

Table 1.1: Summary of total number of elliptic curves E/Q with good reduction
outside S, for various sets S. We denote |E(S)| as the total number of such elliptic
curves.

Set S |E(S)| Authors Year

∅ 0 Tate, proof published by Ogg [308] 1965
{2} 24 Ogg [308] 1965
{2, 3} 752 Coghlan7[100], Stephens [390] 1967, 1965
{11} 12 Agrawal-Coates-Hunt-Van der Poorten [7] 1980
{2, p}, p ≤ 23 280, 288, . . . Cremona, Lingham [118] 2007
{2, 3, 23} 5520 Koutsianas [252] 2015
{2, 3, 5, 7, 11} 592 192 von Känel, Matschke [435] 2016
{2, 3, 5, 7, 11, 13} 4 576 128 Best, Matschke8[32] 2020
{2, 3, . . . , 19} 217 923 072 Matschke [282, 284] 2021

The next step would be to classify elliptic curves over various quadratic fields
K. Indeed, as with the rational case, this has similarly been extensively studied
by many authors [260, 317, 318, 319, 398, 115], with the specific case of S = ∅
receiving much attention over the last few decades by Setzer [367, 368], Ishii [217,
218], Rohrlich [335], Comalada, Nart [104, 105, 106], and Kida, Kagawa [242, 243,
244, 245, 246, 247]. Elkies gives a (partially complete) database of elliptic curves
with everywhere good reduction over real quadratic fields of discriminant ≤ 106

[146].
7We note that Coghlan’s original paper lists a total of 760 models of elliptic curves, however 8

of these curves are actually Q-isomorphic to previously listed elliptic curves.
8This computation was originally done heuristically, but has since been verified unconditionally.
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We shall simply give a brief table summarising some of the above results,
extending the tables of Laska [260, p. 93] given in Table 1.2.

Table 1.2: Summary of the total number of elliptic curves over quadratic fields K
with good reduction outside S for S = ∅, {2}, {3}, or {2, 3}. An asterisk indicates
that completeness is conditional on GRH. Values which haven’t been verified (evenly
conditionally) are only given as a lower bound.

Set S Field K

Q(
√
−5) Q(

√
−3) Q(

√
−2) Q(

√
−1) Q(

√
2) Q(

√
3) Q(

√
5)

∅ 0 0 0 0 0 0 0
{2} 32* 48 40 64 400 288* 384
{3} ≥ 40 18 ≥ 32 8 76* ≥ 34 56
{2, 3} ≥ 8192 1776 ≥ 12224 1280 9536* ≥ 10272 9920

Nowadays, effective algorithms to classify all elliptic curves over K with good
reduction outside any finite set S have been well-studied, with early effective algo-
rithms given by Coates [99] to modern implementations of Cremona–Lingham [118]
being implemented in Sage and Magma, with many practical optimisations having
being well-developed in the elliptic case.

We provide a summary of some of the most well-known methods for solv-
ing the Shafarevich problem for elliptic curves below, noting that the techniques
involved are not strictly disjoint. While it is impossible to delve into the specifics of
each method in detail, we offer numerous references that apply or implement these
methods for the interested reader.

1. Elementary (ad hoc) methods: Let E/Q be an elliptic curve with global
minimal model E : y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6. If E/Q has good
reduction away from S, then its minimal discriminant ∆min,

∆min = b22b8 − 8b43 − 27b26 + 9b2b4b6

is an S-smooth integer, where b2 = a21−4a2, b4 = 2a4−a1a3, b6 = a23−4a6, and
b8 = a24−a1a3a4+a21a6+a2a23−4a2a6. As ordp(∆min) can be uniformly bounded
for all primes p, this gives an explicit finite set of Diophantine equations, which
can be solved directly via elementary arguments if S is small enough, as Ogg
[308] did in the case of S = ∅ and S = {2}.

For larger degree number fields K, and sets of primes S, this quickly becomes
infeasible to do in practice, requiring better methods.



Dra
ft

Draft of 0:21 am, Wednesday, November 13, 2024 8

2. Mordell curves: Given an elliptic curve E/K, we have that the minimal
discriminant ∆min satisfies c26 = c34 − 1728∆min where c4 = b22 − 24b4 and
c6 = b32−36b2b4+216b6. Thus, one approach to compute such E/K with good
reduction away from S is by computing the possible values for c4 and c6 by
computing all S-integral points on the Mordell curves Y 2 = X3+k for finitely
many values of k.

Whilst it’s a classical result of Siegel and Mahler [377, 272] that there are
only finitely such S-integral points, explicit bounds on the heights of such
points were given by Baker and Coates [18, 17, 99], giving an algorithm to
effectively compute all such S-integral points assuming knowledge of the full
set of Mordell-Weil generators for Y 2 = X3 + k.

This method was successfully implemented by Cremona–Lingham [118] to com-
pute all elliptic curves E/Q with good reduction outside {2, p} and {2, 3, p}
for various odd primes p. The Cremona–Lingham algorithm has also been
implemented in Sage [342] over Q as

EllipticCurves_with_good_reduction_outside_S.

3. Thue-Mahler equations.

If E/K is an elliptic curve with good reduction away from S, then its been
shown by Bennett–Gherga–Rechnitzer [28, Theorem 1] that one can construct
a binary cubic form F (x, y) ∈ Z[x, y] whose discriminant is an S∪{2, 3}-smooth
integer and such that

F (u, v) = ω0u
3 + ω1u

2v + ω2uv
2 + ω3v

3

is a S∪{2, 3}-smooth integer for some relatively prime integers u, v ∈ Z. In
particular, E/K has a model which depends only on F, u, v. By thus determin-
ing all cubic binary forms F of a given discriminant and computing solutions
to the relevant Thue-Mahler equations, this yields an algorithm to compute all
elliptic curves E/K with good reduction outside S.

It’s known that there are finitely many such solutions by Mahler [271], extend-
ing work of Thue [414]. Methods to effectively solve such Thue–Mahler equa-
tions were developed by Vinogradov–Sprindzuk [429], Coates [98], Bugeaud–
Gyory [78], Evertse [149], with practical implementations given by Tzanakis–De
Weger [419] and most recently also by Gherga and Siksek [179].
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This method was first implemented by Agrawal, Coates, Hunt, and van der
Poorten [7] to compute all elliptic curves E/Q with conductor 11 with some
recent computations being done Bennett-Gherga-Rechnitzer [28, 29] to com-
pute all elliptic curves E/Q with good reduction away from {2, 3, 23} and
{2, 3, 5, 7, 11}.

4. Modular symbols: If E/K is a modular elliptic curve of conductor N over
some totally real field K, then there exists some suitable Hilbert newform
f of parallel weight 2 and level N whose L-function coincides with that of
E/K. This gives a method to compute all modular elliptic curves with good
reduction outside S by computing the space of Γ0(N) modular symbols (and
the corresponding action of the Hecke algebra) for finitely many levels N .

If K = Q or a totally real quadratic or cubic field, then it is known that all
such elliptic curves are modular [62, 128, 174], and thus this method gives an
unconditional computation of all such elliptic curves.

Modular symbols were first introduced by Birch [39]. One of the first imple-
mentations of the modular symbol method to compute elliptic curves was by
Tingley [415], who extended famous tables of Birch-Kuyk [40] by computing
all modular elliptic curves over Q of conductor N ≤ 300. This was then fur-
thermore extended by Cremona [116] who published a list of all elliptic curves
of conductor N ≤ 1000 over Q, with online tables going far beyond 1000.

An excellent overview of the modular symbol method is given by Cremona
[116] and a more computational source is also given by Stein [388].

5. S-unit equations: Given an elliptic curve E/K : y2 = (x−α1)(x−α2)(x−
α3) with good reduction away from S, we have that λ := (α3 − α1)/(α2 − α1)

is an S∪{2}-unit in K(E[2]), and similarly 1−λ = (α2−α3)/(α2−α1) is also
an S∪{2}-unit in K(E[2]).

This therefore gives an algorithm to classify all such λ by first classifying all
possible fields 2-division fields K(E[2]) (e.g. by doing a Hunter search [101,
p. 445]), and then finding all solutions to the S-unit equation x + y = 1 in
K(E[2]).

Such equations were shown to have finitely many solutions by Siegel [377] for
S = ∅, Mahler [271] for K = Q, and Parry [312] for general S-units over
number fields K. By using the theory of logarithmic forms by Baker [16],
Győry [195, 196] gave some of the first effective height bounds for solutions
to S-unit equations, with further optimal bounds given recently by Gyory and
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Yu [197]. Nowadays there are numerous practical implementations of S-unit
solvers, e.g. see von Känel–Matschke [435], Alvarado-Koutsianas-Malmskog-
Rasmussen-Vincent-West [11], and Matschke [282], giving a fully general im-
plementation of this in Sage.

This method has been the most successful in solving effective Shafarevich for
elliptic curves for large sets S in recent years, with Benjamin Matschke using
an optimised S-unit equation solver to compute all 217 923 072 elliptic curves
E/Q with good reduction away from the first eight rational primes [282, 284]
(a computation that took almost one CPU-month).

Nowadays, computations of all elliptic curves of conductor N for large N
ranges over many databases. Since the original 1972 Antwerp tables [40] listing
elliptic curves of conductor N ≤ 200, an enormous amount of computations over
many CPU-decades have been run, with the LMFDB listing computations of Cre-
mona giving all elliptic curves of conductor N ≤ 500 000. We must also mention the
Stein-Watkins [389] database of elliptic curves extending Brumer and McGuinness
original database [76]. Recently, a database of elliptic curves ordered by height was
also given by Balakrishnan, Ho, Kaplan, Spicer, Stein, and Weigandt [23].

1.1.2 Higher genus curves

Beyond elliptic curves, the next natural problem is to classify genus 2 curves C/K
with good reduction away from a finite set of primes S. Whilst effective methods
are also known in the genus 2 case, far fewer cases have been practically computed
compared to the computation of elliptic curves.

One of the first classifications of genus 2 curves was Merriman–Smart’s [290,
291] list of 164 genus 2 curves C/Q containing at least one rational Weierstrass point
and with good reduction away from 2. This was extended by Smart [290, 386] who
gave a full classification of all 366 genus 2 curves over Q with good reduction outside
{2}, using finiteness results from Evertse and Győry [150].9 A recent project by
Rowan [339] has also considered the case of genus 2 curves C/Q with good reduction
outside {3}.

Recently, Dabrowski–Sadek [134] have looked at to classify all genus 2 curves
with good reduction outside one odd prime, under the assumption that C has at
least two rational Weierstrass points. They also’ve recently given examples of genus
2 curve C/K over quadratic fields K with everywhere good reduction [119].

9Similarly to some early tables of elliptic curves, we remark that their paper listed 427 such
models of genus 2 curves, although many models were Q-isomorphic to each other, as noted by van
Wamelen [426].
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Finally, we mention the works of Malmskog, Rasmussen [275] as well as Bouw-
Koutsianas-Sijsling-Wewers [56] who gave a classification of Picard curves (i.e. genus
3 curves with affine equation y3 = f(x) for some quartic f) with good reduction
outside {3} and {2, 3} respectively.

Nowadays, effective algorithms to classify all genus g hyperelliptic curves
C/K with good reduction away from S are well-known, with an explicit algorithm
sketched in Chapter 2. Effective heights bound on genus g hyperelliptic curves C/K
with good reduction outside S was recently given by von Känel [433].

Beyond the hyperelliptic (and certain superelliptic) cases, not much seems
to be known regarding effective Shafarevich algorithms for curves at present. Even
just formulating an effective algorithm to compute genus 3 plane quartic curves
C/Q : f(x, y, z) = 0 with good reduction outside some small set of primes S appears
to be intractable with current methods, with no obvious way to reduce the problem
to that of solving S-unit equations or Thue–Mahler equations.

1.1.3 Higher dimension abelian varieties

Compared to the elliptic case, the effective Shafarevich conjecture for abelian vari-
eties has been solved in far fewer cases in higher dimensions. Nonetheless, a lot of
work has gone to the case S = ∅, i.e. good reduction everywhere.

In the case of good reduction everywhere over Q, Abrashkin first proved that
there are no such abelian varieties of dimension 2 and 3 [3, 4]. and then Abraskin
and Fontaine [169] independently showed that there are no such abelian varieties (of
any dimension) over Q. The same result was also shown by Fontaine for everywhere
good reduction over K = Q, Q(i), Q(

√
−3), or Q(

√
5). Some further results were

also shown by Abrashkin where he also showed the nonexistence of such solutions
for K = Q(

√
2), Q(

√
−2), Q(

√
−7) and the cyclotomic field Q(ζ7) [2].

Schoof classified all such abelian varieties (up to isogeny) with everywhere
good reduction over Q(

√
6) [352] as well as for certain cyclotomic fields Q(ζf ) [353].

Recently, Schoof has extended similar classification to all real quadratic fields over
discriminant at most 37 [357]. We also mention the recent work of Dembélé [126]
giving a classification of of all abelian varieties over Q(

√
53), Q(

√
61), and Q(

√
73)

with everywhere good reduction, assuming GRH.
For semistable abelian varieties over Q having good reduction outside one

prime, Brumer–Kramer [72] showed that there’s no such abelian variety having good
reduction outside p for any prime p ∈ {2, 3, 5, 7}. Schoof [354] extended this clas-
sification to good reduction outside 11 or 13. Calegari [82], extending the above
results of Schoof and Brumer–Kramer showed that, for N squarefree, there exists a
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nontrivial semistable abelian variety A/Q with good reduction outside the primes
dividing N if and only if N ̸∈ {1, 2, 3, 5, 6, 7, 10, 13}, thus settling the question of the
existence of such abelian varieties over Q.

Schoof also showed a similar classification for N = 15 and 23 [355, 356],
showing that any simple semistable abelian variety A/Q with good reduction outside
some prime N with N ≤ 23 must be isogenous to J0(N). Brumer–Kramer gave
some extensions to this result for certain semistable abelian varieties A/K under
some conditions on the 2-torsion group A[2] [74].

Effective algorithms to compute all abelian varieties A/K of GL2-type with
good reduction outside S have been published by von Känel [434]. In particular, ex-
amples for constructing abelian varieties of GL2-type with everywhere good reduction
are also given by Dembélé and Kumar [127], with examples of abelian surfaces given
in [182, 181].

We remark that the assumption of semistability here is essential! Indeed,
without this assumption, one can find many examples of (non-semistable) abelian
surfaces A/Q with good reduction away from 2; in particular we know of at least
234 such isogeny classes of abelian surfaces with conductors ranging from 28 to 220

(shown in Table 6.20).
Finally, we should mention an effective algorithm shown by Levent Alpöge

and Brian Lawrence, which gives a general algorithm to solve the effective Shafare-
vich conjecture, assuming some standard motivic conjectures. Inspired by the results
given by Patrikis–Voloch–Zarhin [315], they proved the following:

Theorem (Alpöge–Lawrence 2020). [10] There exists an effective algorithm T that
takes as input a positive integer d, a number field K and a finite of of places S of K,
and outputs (if T terminates) the finite set of all principally polarised dimension d

abelian varieties over K with good reduction outside S, along with an unconditional
certificate of correctness of the output. The Fontaine-Mazur, Grothendieck-Serre,
absolute Hodge, and Tate conjectures together imply that T always terminates.

In particular, their algorithm terminates if given any ℓ-adic Galois represen-
tation ρ : Gal(K/K) → GL2g(Qℓ) satisfying a set of reasonable constraints, there
exists an abelian variety A/K of dimension d such that its ℓ-adic Galois represen-
tation ρA,ℓ is isomorphic to ρ⊕(d/g). This conjecture is in particular implied by
the conjectures of Fontaine-Mazur, Grothendieck-Serre, absolute Hodge, and Tate,
where formal statements of these conjectures can be found in [315, Section 3].

We shall present a very simplified version of a similar algorithm to that given
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by Alpöge-Lawrence in Chapter 4.10

Giving a provably complete list of abelian surfaces A/Q with good reduction
away from 2 is still an open problem. Attempts at solving this problem will be the
focus of Chapters 4, 5 and 6.

1.2 Hyperelliptic Curves

We’ll start by stating some preliminary definitions and results required for the rest
of the thesis. First, we formally define hyperelliptic curves, following the definitions
given by Stoll [397]. In order to define hyperelliptic curves, we first need to define a
suitable ambient space.

Definition 1.1. [397, p. 5] Let K be a field, and let d1, d2, d3 be fixed positive
integers. We define the weighted projective space P2

d1,d2,d3
as the ambient space

whose points over K are weighted equivalence classes of K3\{0, 0, 0}. In other words,
we define

P2
d1,d2,d3 := K3\{0, 0, 0}/ ∼

where ∼ denotes an equivalence on K3\{0, 0, 0}, where for (X,Y, Z), (X ′, Y ′, Z ′) ∈
K3\{0, 0, 0}, we have

(X,Y, Z) ∼ (X ′, Y ′, Z ′) if and only if (X,Y, Z) = (λd1X ′, λd2Y ′, λd3Z ′)

for some λ ∈ K×.

We do note that there are various equivalent ways of defining hyperelliptic
curves in the literature. One elegant definition is to define such a curve C/K as
a complete non-singular curve of genus g ≥ 2 which admits a map x : C → P1 of
degree 2. Now by picking some function y ∈ k(C) such that y ̸∈ k(x), one can show
that this is equivalent to the following more explicit definition:

Definition 1.2. [397, p. 5] Let K be a field, and let g ≥ 2 be a fixed positive
integer.11 If char(K) ̸= 2, then a hyperelliptic curve of genus g is a subvariety

10Whilst this algorithm is (conjecturally) effective, a very rough back-of-the-envelope computation
suggests that the current age of the universe (≈ 13.7 billion years) would be a very weak lower
bound on the length of time it would take for T to provably compute all principally polarised
abelian surfaces A/Q with good reduction away from 2 (although we remark this is excluding any
attempts to optimise their algorithm)!

11Whilst some authors include g = 1 in the definition of hyperelliptic curves, we’ll adopt the safer
convention of assuming g ≥ 2 (even though some of our later results for hyperelliptic curves will
still remain true if g = 1).
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of P2
1,g+1,1 defined by an equation of the form

Y 2 = F (X,Z) (1.3)

where F ∈ K[X,Z] is homogeneous of degree 2g + 2 and is squarefree. Otherwise,
if char(K) = 2, then a hyperelliptic curve of genus g is a smooth subvariety of
P2
1,g+1,1 defined by an equation of the form

Y 2 +H(X,Z)Y = F (X,Z) (1.4)

where H,F ∈ K[X,Z] are homogeneous polynomials of degrees g + 1 and 2g + 2

respectively.

We note in the above definition that, if char(K) ̸= 2, then if some curve C
is given in the form (1.4), then one can complete the square on the left hand side to
obtain a curve in the form (1.3).

It’s also worth noting that one can define hyperelliptic curves without needing
weighted projective space, however it’s not as simple as taking the projective closure
of the affine curve y2 = f(x) (otherwise, this introduces singular points). Indeed,
an alternative definition using ordinary projective space is to first consider an affine
curve C0 : y

2 = f(x), and then define the hyperelliptic curve C as the closure of the
image of the map [1, x, x2, . . . , xg+1, y] : C0 −→ Pg+2 [383, p. 40].

For convenience, we shall often only refer to affine models y2 = f(x) of
hyperelliptic curves for the remainder of this thesis (and will thus not explicitly refer
to weighted projective space very often).

1.2.1 Affine models

For a given hyperelliptic curve C/K, any point (X : Y : Z) ∈ C must have either
X ̸= 0 or Z ̸= 0. Therefore, we can cover C with two affine charts, given by ψ1 and
ψ2:

ψ1 : A2 −→ P2
1,g+1,1 and ψ2 : A2 −→ P2

1,g+1,1

(x, y) ↦−→ (x : y : 1) (y, z) ↦−→ (1 : y : z)

We note that almost all points of C lie in the affine patch ψ1(A2). Indeed,
let c′ be the coefficient of X2g+2 in F (X,Z). Then note that, if (1 : Y : 0) ∈ C, then
Y 2 = c′, which yields exactly one additional solution (1 : 0 : 0) if c′ = 0, otherwise,
two distinct solutions if c′ ̸= 0. We denote these points as the points at infinity of
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C.
Therefore, one can easily study C by simply restricting to the affine patch

ψ1(A2) and defining f(x) = F (X, 1), whilst keeping in mind the additional one (resp.
two) points at infinity if deg f(x) is odd (resp. even). We simply notate the unique
point at infinity as∞ if deg f(x) is odd, or as the two points∞1 and∞2 if deg f(x)
is even.

We shall therefore study hyperelliptic curves as non-singular projective mod-
els of the affine curve

y2 + h(x)y = f(x) (1.5)

where degh(x) < g + 2 and deg f(x) ∈ {2g + 1, 2g + 2} with f(x) having distinct
roots. We shall furthermore assume that K doesn’t have characteristic 2, then as
before we can complete the square on the left hand side of (1.5) which allows us to
assume h = 0, and thus obtain a simplified affine model for C as

y2 = f(x)

where deg f(x) ∈ {2g + 1, 2g + 2}.
We denote the roots of f(x) as the Weierstrass points of C, or equivalently,

these are the ramification points of the degree-2 cover C → P1.

1.2.2 Rosenhain normal form

Given a hyperelliptic curve C/K, for many of our arguments, it will be most conve-
nient to assume some structure on the Weierstrass points of C, such as assuming that
all Weierstrass points are integral, or alternatively that 0 and 1 are both Weierstrass
points. With this aim, we can prove the following well-known result:

Proposition 6. Let C/K be a smooth genus g hyperelliptic curve over some field K
with char(K) ̸= 2. Then C/K is isomorphic over K to a curve with a Weierstrass
model of the form

y2 = x(x− 1)(x− λ1)(x− λ2) · · · (x− λ2g−1)

for some λ1, . . . , λ2g−1 ∈ K
×.

We first consider the case for elliptic curves (i.e. genus g = 1). We recall that
any elliptic curve E/K is isomorphic over K to an elliptic curve given in Legendre
form: y2 = x(x− 1)(x− λ), for some λ ∈ K with λ ̸= 0, 1 [383, p. 49]. This allows
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us to study the Q-isomorphism classes of elliptic curves by simply specifying λ. We
now consider the generalisation of this argument to hyperelliptic curves:

Let C/K be a hyperelliptic curve over some field K, with char(K) ̸= 2. We
assume that a simplified model for C is given by y2 = f(x). First consider the case
where deg f = 2g + 2. We thus have that

y2 = c(x− α1)(x− α2) · · · (x− α2g+2)

for some c ∈ K and distinct roots αi ∈ K.
Now we consider the Mobius transformations sending the roots α1, α2, α3 to

0, 1 and ∞ respectively, given by

x =
α3(α2 − α1)x

′ + α1(α3 − α2)

(α2 − α1)x′ + (α3 − α2)
and y =

Ay′(︁
(α2 − α1)x′ + (α3 − α2)

)︁g+1

where we have A ∈ K given by

A =
√
c · (α3 − α2)(α3 − α1)(α2 − α1)

g ·
√
α1 − α2 ·

2g+2∏︂
i=4

√
α3 − αi.

We therefore have that C is isomorphic over K to a non-singular projective curve
with affine model

y2 = x(x− 1)(x− λ1)(x− λ2) · · · (x− λ2g−1) (1.6)

where λ1, . . . , λ2g−1 are distinct roots given by

λi =
(α3 − α2)(αi+3 − α1)

(α2 − α1)(α3 − αi+3)
(1.7)

for all i ∈ {1, . . . , 2g−1}. Similarly, in the case where deg f = 2g+1, then we obtain
a similar result by considering the simpler transformations

x = (α2 − α1)x
′ + α1 and y =

√
c · (α2 − α1)

(2g+1)/2y′

which again yields that C is isomorphic over K to a non-singular projective curve
with affine model

y2 = x(x− 1)(x− λ1)(x− λ2) · · · (x− λ2g−1)
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where λ1, . . . , λ2g−1 are distinct roots given by

λi =
αi+2 − α1

α2 − α1

for all i ∈ {1, . . . , 2g − 1}.
Transforming a hyperelliptic curve C into the above form is known as trans-

forming into Rosenhain normal form [337].
Whilst the above isomorphism allows us to represent any hyperelliptic curve

as one with Weierstrass points including 0, 1, and∞, we note that this only yields an
isomorphic curve over some quadratic extension of K(α1, . . . , αn). To instead con-
sider isomorphisms only over K(α1, . . . , αn), we can instead adjust the constant A to
be in K(α1, . . . , αn). This therefore yields an isomorphism of C over K(α1, . . . , αn)

to an equation of the form:

y2 = c′x(x− 1)(x− λ1) · · · (x− λ2g−1)

where λi is given as before in (1.7), and c′ ∈ K(α1, . . . , αn).
We also note that we are free to choose any three of the roots a1, . . . , a2g+2

to send to 0, 1, ∞, and not necessarily just a1, a2, a3. Thus, for a given hyperelliptic
curve of genus g, there may be several possible representations given in the form
(1.6), however there will always be only finitely many (specifically, at most (2g+2)!)
possible representations in the form (1.6). We note that this agrees with the fact
that the moduli space of genus g hyperelliptic curves Hg has dimension 2g− 1 [162,
p. 75].

1.3 Jacobians

As with hyperelliptic curves, there are various ways one can define and work with
Jacobian varieties. We shall not dive too deeply into the formal definition of the
Jacobian here; for our purposes, it suffices to know simply that the Jacobian Jac(C)
of a smooth genus g curve C/K is a dimension g abelian variety over K with a
natural isomorphism to Pic0(C).

For completeness, we shall give a definition of the Jacobian first over C (the
analytic Jacobian), then for arbitrary fields K (the algebraic Jacobian) in the case
where C(K) ̸= ∅. A good introductory reference for Jacobians over C is Griffiths
[190], whereas a good general discussion for Jacobians in general are given by Milne
[295] and Mumford [300].



Dra
ft

Draft of 0:21 am, Wednesday, November 13, 2024 18

Definition 1.8 (Analytic Jacobian). [190, p. 153] Let C be a smooth curve of genus
g over C. Let ω1, ω2, . . . , ωg be a basis for the set of regular differentials Ω1

C(C) over
C. Define the lattice Λ ⊂ Cg as

Λ :=

{︃(︂∫︂
γ
ω1,

∫︂
γ
ω2, . . . ,

∫︂
γ
ωg

)︂ ⃓⃓⃓⃓
γ ∈ H1(C,Z)

}︃
⊂ Cg.

where H1(C,Z) is the first homology group of C. We define the complex torus Cg/Λ
as the analytic Jacobian of C.

Even for curves C defined over number fields K, we’ll call the above definition
(considering C as a curve over C) the analytic Jacobian of C/K.

One can show that the analytic Jacobian is canonically a principally polarised
abelian variety, with a natural isomorphicsm to Pic0(C).

To define the Jacobian over arbitrary fields K, we wish to give Pic0(C) some
algebraic structure, however doing this explicitly is far more non-trivial in the general
case; there are some subtleties to consider. In the case where C(K) ̸= ∅, we can give
the following (non-constructive) definition, following the definition given in Milne
[295]:

Definition 1.9 (Algebraic Jacobian). [295, p. 85] Let C/K be a smooth projective
curve such that C(K) ̸= ∅. Let VarK denote the category of varieties over K and
let Set denote the category of sets. For any variety T in VarK , we denote Pic0(T )
as the degree 0 Picard group of T (see [295, p. 35] for a formal definition).

We define the Picard functor P 0
C as the contravariant functor between VarK

and Set given by

P 0
C : VarK −→ Set, T ↦−→ Pic0(C × T )

q∗Pic0(T )
.

In other words, P 0
C(T ) are the families of invertible sheaves of degree zero on C

parametrised by T , modulo trivial families (here, q∗ denotes the pullback of the
standard projection map q : C × T → T ).

Furthermore, for any variety X, we define the contravariant functor hX given
by

hX : VarK −→ Set, T ↦−→ Hom(T,X).

We thus define the Jacobian Jac(C) of C as the variety J such that the functor P 0
C

is isomorphic to hJ .12 Such a variety always exists if C(K) ̸= ∅, and is furthermore
12We remark that this definition is also simply the statement that P 0

C is represented by Jac(C).
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unique (up to isomorphism) by Yoneda’s lemma. An explicit construction of Jac(C)
as a variety birational to the g-th symmetric power of C is given by Weil [440] .

Whilst this gives a satisfactory definition of Jac(C) in the case where C(K) ̸=
∅, we would still like to work with Jac(C) even if C(K) = ∅. Unfortunately in this
case, the above functor P 0

C is not always representable, and so a general definition
requires more care. [295, p. 86]. In particular, one requirement for representability is
that the natural map Pic(C)→ Pic(CL)

Gal(L/K) be a bijection, for a Galois extension
L/K. Indeed, for any Galois extension L/K, we have an exact sequence

0→ Pic(C)→ Pic(CL)
Gal(L/K) → Br(K)

where Br(K) is the Brauer group of the fieldK. i.e. given an element in Pic(CL)
Gal(L/K),

there is a Brauer group obstruction to having it arise from an element in Pic(C).13

Fortunately these issues can be dealt with, and a formal definition of the Jacobian
for arbitrary curves C/K can be given essentially by replacing P 0

C with its sheafi-
fication, the details of which we omit here; see Bosch–Lütkebohmert–Raynaud [51,
Chapter 8], Milne [295, Chapter 3], or Urbanik [421] for a full formal definition.

One corollary of the above definition is that the functorial definition of the
Jacobian J(C) is isomorphic to Pic0(C) and thus J(C) is naturally an abelian variety.
However, we note that this definition does not give any explicit model for J(C).

In general, providing an explicit model of the Jacobian in terms of a set of
defining polynomials is a highly non-trivial task. For elliptic curves (g = 1) E, we
simply have that Jac(E) is isomorphic to E, since E is isomorphic to Pic0(E) by
the map P ↦→ P − (∞). Already in the genus 2 case, things become a lot more
complicated. Indeed, Cassels and Flynn [91] gave an explicit construction for the
Jacobian of an arbitrary genus 2 curve over K as a smooth projective curve in P15

defined by 72 quadratic forms over K. It is thus best left for computers to use these
equations!

Giving a detailed overview of Jacobian varieties is well beyond the scope of
this thesis, so we shall not go into much further detail regarding Jacobians, as most
of our calculations will simply use results from cluster pictures [138] (as described
in the section 1.4) and so we’ll not need to work directly with the geometry of the
Jacobian. For the most part, it suffices to know that the Jacobian of a genus g
curve C/K is some finitely generated abelian variety (by the Mordell-Weil theorem
[397, p. 20]) of dimension g which naturally represents the group Pic0(C).

13We refer to Snowden’s notes [387] for a further discussion on the obstructions to representability
of the Jacobian in the general case.
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1.3.1 Primes of almost good reduction

One key property of Jacobians which is central to our thesis is that, if C/K has
good reduction at some prime p, then Jac(C) will have good reduction at p (this
follows by functoriality). But crucially the converse is not true! A prime p of bad
reduction for C but good reduction for Jac(C) is sometimes called a prime of almost
good reduction or mild bad reduction for C.

A rather trivial example of this be seen by noting that the Jacobian of any
genus 0 curve is a dimension 0 abelian variety (a point) which trivially has good
reduction everywhere. A far more interesting example by Armand Brumer [70] is
given by the following genus 2 curve C/Q:

C/Q : y2 = (x2 + 4)(14008x4 − 6548x3 − 10807372x2 + 15298348x− 597161415)

The conductor is N = 47891 = 83 ·577, however the minimal discriminant is ∆min =

3112 · 83 · 577 · 2354912 (a 76-digit number!); here both the primes 31 and 23549 are
primes of almost good reduction for C/Q.

Proving an effective bound on the possible primes of almost good reduction
for C given a bound on the bad primes for Jac(C) would give an effective solution to
the Shafarevich conjecture for Jacobians of hyperelliptic curves. Unfortunately, this
is still a very open problem; as the above example illustrates, such primes of mild
bad reduction can be very big!

Whilst we won’t make much use of the following observation in our thesis,
one can give the following rather neat necessary and sufficient criterion for a prime
p to be a prime of almost good reduction for C:

First recall that a criterion of Neron-Ogg-Shafarevich [366, p. 493] states
that, for an abelian variety A/K, A has good reduction at a prime p if and only
if the action of the inertia subgroup Ip ⊂ Gal(K/K) acts trivially on the ℓ-adic
Tate module Tℓ(A) (for any prime ℓ coprime to the residue characteristic of p). An
analogous criterion for smooth proper curves C/K is given by Oda [306, Theorem
3.2], stating that a curve C/K has good reduction at p if and only if the action of Ip
acts trivially on the pro-ℓ completion of its geometric fundamental group π1(C⊗K)ℓ.

Now noting that Tℓ(A) ∼= π1(A ⊗K)ℓ (e.g. see [125, p. 15]), and using that
the fundamental group of Jac(C) is simply the abelianisation of the fundamental
group of C (e.g. see [393, Proposition 68]), one can characterise primes p of almost
good reduction as the primes p for which Ip has a non-trivial action on π1(C ⊗K)ℓ
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but acts trivially on its abeliansation π1(C ⊗K)ab
ℓ .

A detailed description of the action of inertia Ip on π1(C ⊗ K)ℓ for primes
p of almost good reduction is given by Oda [306]. Whilst this criterion gives a
geometric explanation for primes p of almost good reduction, in order to run explicit
computations with such primes for Jacobians of hyperelliptic curves, its far simpler
for us to use the machinery of cluster pictures, which we shall introduce in section
1.4!

1.3.2 Computing with the Jacobian

For our purposes, we won’t need to know the algebraic structure of the Jacobian,
and instead perform computations on Jac(C) by working explicitly with divisors
D ∈ Pic0(C). Given a curve C/K of genus g, one can represent a divisor class [D]

in Pic0(C) as a formal sum of points

D = n1(P1) + n2(P2) + · · ·+ nk(Pk)

where Pi ∈ C(K) and ni ∈ Z such that n1 + · · ·+ nk = 0. For a subfield L ⊂ K, we
say that D ∈ Pic0(C) is L-rational if D is fixed by the action of Gal(K/L).

We state the following theorem which allows us to uniquely represent elements
of Pic0(C) as certain unordered tuples of points:

Theorem 7. [84, p. 96] Let C/K be a genus g hyperelliptic curve with a fixed point
P∞ ∈ C(K). Then each class D in Pic0(C) has a unique representative of the form

(P1) + (P2) + · · ·+ (Pk)− k(P∞)

for some k ≤ g, where Pi ̸= −Pj for i ̸= j and such that no Pi satisfying Pi = −Pi
appears more than once.14 Such divisors are called reduced divisors.

For hyperelliptic curves C/K with an odd degree model, one can always take
P∞ to be the unique point at infinity. Otherwise, for hyperelliptic curves with an
even degree model, we can take divisors of the form (P1) + (P2) + · · · + (Pk) −
(k/2)(P+∞ + P−∞).

The way Jacobians are handled computationally, particularly in Magma, are
usually via the Mumford representation [301], i.e. the reduced divisor D = (P1) +

(P2) + · · · + (Pk) − k(P0) is stored as a pair of two polynomials (a(x), b(x)) where
a = (x − x1)(x − x2) · · · (x − xk) and b(x) is the unique polynomial of degree < k

14Here, for a point P = (x, y) on C, we define −P as (x,−y).
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such that b(xi) = yi, where Pi = (xi, yi). Cantor [84] gave an algorithm to perform
arithmetic on these pairs, giving a computational method to work with Jacobians of
hyperelliptic curves without requiring an explicit model for Jac(C) as a variety.

1.3.3 Fields of n-torsion on the Jacobian

Finally, we shall give some results about torsion points over the Jacobian Jac(C)
of a hyperelliptic curve C/K. If the context of the hyperelliptic curve C is clear,
we abbreviate Jac(C) simply by J . As with elliptic curves, we also denote the set
of n-torsion points on J (over K) by J [n]. It’s well-known that J [n] ∼= (Z/nZ)2g if
char(K) does not divide n. Otherwise, if char(K) = p, then there exists some integer
i ∈ {0, . . . , g} such that for all m ≥ 1. we have J [pm] ∼= (Z/pmZ)i [300, p. 64].

We now give a sketch proof of the field in which the 2-torsion J [2] lies.

Theorem 8. [448, p. 5] Let C/K be a hyperelliptic curve with affine model C : y2 =

c(x− α1) · · · (x− αn). Then the field of 2-torsion K(J [2]) is K(α1, . . . , αn).

Proof. [448, p. 5] We shall first give an explicit description of the elements of J [2].
Indeed, let W denote the Weierstrass points of C. Then for any subset U ⊂ W of
even cardinality, we define the divisor eU ∈ Div0(C) as

eU :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︂
P∈U

P − |U | · (∞) if n odd∑︂
P∈U

P − |U |
2
·
(︁
(∞1) + (∞2)

)︁
if n even

We claim that the set of all eU over all subsets U ⊆ W of even cardinality
cover all elements in J [2]. Indeed, we first note that, for any αi, we have that the
divisor of the function x− αi ∈ K(C)× is

div(x− αi) =

⎧⎨⎩2(αi, 0)− 2(∞) if n odd

2(αi, 0)−
(︁
(∞1) + (∞2)

)︁
if n even

Therefore, by taking the appropriate product of functions (x−αi), we have that 2eU
is principal, and thus each eU is an element of J [2].

Next, we aim to show which elements eU are equivalent in Pic0(C). We first
note that eU1 + eU2 is equivalent to eU1⊖U2 where U1 ⊖ U2 = (U1 ∪ U2)\(U1 ∩ U2)

is the symmetric difference of U1 and U2. Since div(y) = eW , we have that eW is
principal, and furthermore that eU is principal if and only if eW\U is principal. Thus
it suffices to classify when eU is principal for subsets U ⊂ W where |U | ≤ g.
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Now let U ⊂ W be non-empty and |U | ≤ g. Assume for contradiction that
eU = div(h) for some function h ∈ K(C)×. By definition of eU , h cannot have any
poles at any affine (i.e. non-infinite) point in C, thus h is some polynomial in x and
y. Furthermore, noting that the divisor of poles of y has degree n, and the divisors
of poles of h has degree |U | ≤ g = ⌊n−1

2 ⌋, this implies h must be a polynomial only
in x. As U non-empty, we have for some (αi, 0) ∈ U , that h(αi) = 0 and so (x−αi)
divides h. However, since ord(αi,0)(x − αi) = 2, this implies that h/(x − αi) must
have some pole on the affine part of C, which yields a contradiction.

By the above argument, this proves that we have a unique distinct divisor
eU in Pic0(C) for every partition of W into two even subsets. As there are 22g

such partitions, and |J [2]| = 22g, this finally implies that all elements of J [2] are
represented by divisors of the form eU . Therefore, K(J [2]) ⊆ K(α1, . . . , αn).

For the other inclusion, one can show that the only permutation in the Galois
group Gal(K(α1, . . . , αn)/K) which fixes every partition ofW into two even subsets
is the identity [448, p. 6], assuming n ̸= 4. This therefore proves the other inclusion,
and thus the claim holds.

We shall also state an analogous result for the field of four-torsion K(J [4]).
A proof in the case where J is the Jacobian of an odd degree hyperelliptic curve is
given later in 76.

Theorem 9. [448, p. 7] Let C/K be a hyperelliptic curve with affine model C : y2 =

c(x− α1) · · · (x− αn). Then the field of 4-torsion K(J [4]) is

K(J [4]) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K(J [2])

(︂
ζ4,

{︁√︁
αi − αj

}︁
1≤i,j≤n

)︂
if n odd

K(J [2])
(︂
ζ4,

{︁√︁
αi − αj

∏︂
1≤ℓ≤n−1
ℓ ̸=i,j

√
αℓ − αn

}︁
1≤i,j≤n

)︂
if n even

Before moving on to cluster pictures, it’s worth mentioning the following
definition, which will allow us to classify the various Jacobians seen in a later section:

Definition 1.10. Let C/K be a hyperelliptic curve of genus g with its associated
Jacobian Jac(C). Then we say that Jac(C) is split (over K) if there exist abelian
varieties A1 and A2 over K of lower dimension than g, such that Jac(C) is isogenous
(over K) to A1 ×A2.
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Otherwise, we say the Jacobian is simple (over K). Furthermore, if there do
not exist abelian varieties A1, A2 over K such that Jac(C) is isogenous (over K) to
A1 ×A2, then we say that the Jacobian is geometrically simple.

Specifically, if C/K is a genus 2 curve, then Jac(C) splits exactly when it’s
isogenous to E1 × E2 for some two elliptic curves E1, E2 over K.

It’s worth also mentioning the following theorem, which in some cases allows
us to easily identify when the Jacobian of a genus 2 curve C is split:

Theorem 10. [91, p. 155] Let C/K be a smooth bielliptic genus 2 curve with Weier-
strass model of the form

y2 = ax6 + bx4 + cx2 + d.

Then the Jacobian Jac(C) is isogenous to the product of the two elliptic curves E1/K

and E2/K given by

E1 : y
2 = ax3 + bx2 + cx+ d, and E2 : y

2 = dx3 + cx2 + bx+ a.

We further note that this also gives an alternative way to calculate the rank,
since we have that rank(Jac(C)) = rank(E1) + rank(E2). A proof of this theorem
can be found in Cassels-Flynn [91, p. 155].

1.4 Cluster pictures

We shall finally introduce the main machinery which we’ll use to study the reduction
of hyperelliptic curves. For a given hyperelliptic curve C over K, we consider the
notion of cluster pictures, first introduced by Dokchitser, Dokchitser, Maistret, Mor-
gan [137], where its power to compute many arithmetic invariants of hyperelliptic
curves is described in [138].

Definition 1.11. [138, p. 2] Let g ≥ 2, and let C be a hyperelliptic curve over a
number field K of genus g given with a simplfieid model

y2 = f(x) = c(x− α1)(x− α2) · · · (x− αn),

where n ∈ {2g + 1, 2g + 2}. Let R = {α1, . . . , αn} denote the set of roots of f , with
P(R) being the power set of R. Let p be an odd prime in K, and let vp denote the
discrete normalised p-adic valuation induced by p. We define the cluster picture
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Σp ⊂ P(R) associated to C (with respect to p) as the following set:

Σp :=
{︁
s ∈ P(R) | s = Dz,d ∪R for some z ∈ K, d ∈ Q

}︁
where Dz,d := {x ∈ K | vp(x− z) ≥ d}. I.e. these are simply the subsets of R which
are cut out by bounded p-adic discs in K.15

Before we state the theorems, we must first introduce some cluster picture
terminology:

Definition 1.12. Elements s of Σp are called clusters. The depth ds of a cluster s is

ds := min
r,r′∈s

vp(r − r′)

(i.e. the maximal valuation which cuts out s). For any cluster s ∈ Σp we also define
the leading depth νs as

νs := vp(c) +
∑︂
r∈R

dr∧s

where r ∧ s denotes the smallest cluster containing both r and s.

We easily note that Σp will always contain all the singleton elements {ri} for
all ri ∈ R, as well as the entire set of roots R. If Σp consists of only these elements,
we say that the cluster picture at p is trivial.

We call a cluster s odd (resp. even) if |s| is odd (resp. even). If s′ ⊊ s is a
maximal subcluster, we say that s′ is a child of s and that s is the parent of s′. We
call a cluster s principal if |s| ≥ 3 except if either s = R is even and has exactly two
children, or if s has a child of size 2g.

The remarkable property of cluster pictures (and why it’s so useful) is that,
for any hyperelliptic curve C/K, it provides a very simple way of easily reading off
the reduction type of C as well as Jac(C) at any odd prime p.

We now partially restate the main theorem given in [138]. We first recall that
a variety X over some number field K has potentially good reduction at p if there
exists a finite extension K ′/K such that X/K ′ has good reduction at p.

Theorem 11. [138, p. 4] Let C/K be a hyperelliptic curve of genus g, and let p be
an odd prime in K. Then we can read off the reduction type of C at p using Σp as
follows:

15We note that the extension of the p-adic valuation from K to K(J [2]) is not uniquely determined
if p is not totally ramified in K(J [2])/K , however choosing a different valuation simply corresponds
to constructing Σp over σ(R) for some σ ∈ Gal(K(R)/K), and thus yields an isomorphic cluster
picture.
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(i) C has potentially good reduction at p if and only if Σp has no proper clusters
of size < 2g + 1 (i.e. Σp is either trivial, or consists of a single non-trivial
cluster of size 2g + 1)

(ii) Assuming C has potentially good reduction at p, it then furthermore has good
reduction at p, if K(R)/K is unramified at p and vs ∈ 2Z for the unique
principal cluster s.

(iii) Jac(C) has potentially good reduction at p if and only if all clusters s ̸= R in
Σp is odd.

(iv) Furthermore, Jac(C) has good reduction at p if and only if K(R)/K is unram-
ified at p and vs ∈ 2Z for all principal clusters s.

A beautiful overview of everything that cluster pictures can do is given in
[31]. We note that cluster pictures have recently been used very successfully in a
wide variety of computations and theorems, e.g. see [140, 13, 254, 299, 34, 68, 187].
We also remark that a Sage implementation to compute cluster pictures has been
given by Best and van Bommel [33].

We now illustrate applying this theorem to the following example of a genus
2 curve over Q.

Example 12. Let C/Q be a genus 2 curve given by the simplifed model, 16

C/Q : y2 = 6x6 − 13x5 + 27x4 − 28x3 + 27x2 − 13x+ 6 (1.13)

We remark this is the genus 2 curves with LMFDB label 2880.c.368640.1 [268, Genus
2 curve 2880.c.368640.1]

By factorising the right hand side of (1.13), we obtain y2 = (x2−x+1)(2x2−
x+ 2)(3x2 − 2x+ 3), and therefore the Weierstrass points of C can be presented as

y2 = 6(x− α1)(x− α2)(x− α3)(x− α4)(x− α5)(x− α6)

where

α1 =
1+i

√
3

2 , α2 =
1−i

√
3

2 , α3 =
1+i

√
15

4 , α4 =
1−i

√
15

4 , α5 =
1+2i

√
2

3 , α6 =
1−2i

√
2

3 ,

Therefore, a splitting field can be obtained as the degree 8 extensionK = Q(
√
−2,
√
−3,
√
5).

16This is the genus 2 curve 2880.c.368640.1 given on the LMFDB
https://www.lmfdb.org/Genus2Curve/ Q/2880/c/368640/1

https://www.lmfdb.org/Genus2Curve/Q/2880/c/368640/1
https://www.lmfdb.org/Genus2Curve/Q/2880/c/368640/1
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We note that the ideals (2), (3), (5) ramify over K into two prime factors each:

(2) = p22 · q22, (3) = p23 · q23, (5) = p25 · q25

Let’s now consider calculating the cluster picture at the prime p = 3. We can
therefore without loss of generality extend the 3-adic valuation to K using q3. We
therefore notice the following valuations between the roots αi: Note that (α1−α2) =

(i
√
3) = p3q3, and thus v3(α1 − α2) =

1
2 .

Similarly, we note (α3−α4) = ( i
√
15
2 ), which also has 3-adic valuation of 1/2.

Indeed, we can tabulate the the differences between each of the roots a1, . . . , a6:

Table 1.3: Factorisation of the ideals (αi − αj) (i.e. up to units)

α1 α2 α3 α4 α5 α6

α1 0 p3q3 p−2
2 q−2

2 p−2
3 q−2

3

α2 0 p−2
2 q−2

2 p−2
3 q−2

3

α3 0 p−2
2 q−2

2 p3q3p5q5 p−2
2 p−2

3 p−2
2 q−2

3

α4 0 q−2
2 p−2

3 q−2
2 q−2

3

α5 0 p52q
5
2p

−2
3 q−2

3

α6 0

From the above table, we note that 3-adic valuation, is at least −1 for any
difference αi−αj , thus the depth of the cluster around all roots is −1. Furthermore,
we’ll have a cluster of size 5 around all the roots except a6, and finally we’ll have two
twin clusters around {α1, α2}, and {α3, α4} of depth 1/2. This yields the following
cluster picture Σ3:

a1 a2 a3 a4 a5 a6

−1
01

2
1
2

Figure 1.1: Cluster picture Σ3 for the genus 2 curve C given in (1.13).

Note that, if we chose to extend the 3-adic valuation to p3 instead of q3, this
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would yield an isomorphic cluster with α5 and α6 swapped.

One of the downsides to cluster pictures is that it only works for odd primes
p. In particular, there’s no easy criterion to determine whether a genus g ≥ 3

hyperelliptic curve C/Q or its Jacobian has (potential) good reduction at p = 2.
However, we do mention some recent progress on extending these methods to even
primes p by Dokchitser–Morgan [141], Fiore–Yelton [161], and Gehrunger–Pink [178].
It’s also worth mentioning that analogous definitions of cluster pictures also exist
for superelliptic curves (e.g. see [310, Section 2] or [255]).

1.5 Invariants of hyperelliptic curves

When characterising hyperelliptic curves C over number fields K, it is often useful to
work with a set of invariants corresponding to the K-isomorphism class of C. This
area of study has its roots in 19th century mathematics, where a good treatment of
some results from that time can be found in Elliott [147] and Hilbert [208].

Let K be a field with char(K) ̸= 2 and let C/K be a hyperelliptic curve in
the simplified form y2 = c(x − α1) · · · (x − αn). For some positive even integer m,
we define the invariant Im(C) by

Im(C) := (4c)m
∑︂

(αi − αj) · · · (αk − αℓ) (1.14)

where the expression under the sum contains each root αi m times, and where
the sum runs over all permutations of the index set {1, . . . , n} which yield distinct
expressions (i.e. over all Sn-Galois orbits of the given expression).

We can then characterise K-isomorphism classes of hyperelliptic curves by
noting the following proposition:

Proposition 13. [263, Proposition 1.3] Let C,D be two hyperelliptic curves of genus
g over a field K with char(K) ̸= 2. Then C is isomorphic to D over K if and only
if there exists some λ ∈ K× such that

Im(C) = λmIm(D)

for all positive m.

In practice, one need only compute finitely many of the Igusa invariants Im
to determine whether two hyperelliptic curves C,D are K-isomorphic, by a famous
result of Gordan [185] and Hilbert [208] which states that the dimension of the space
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of invariants is finite. Although an explicit basis for this space is known only for
degrees n ≤ 10 (e.g. see [65, 64, 376, 27]).

1.5.1 Invariants for genus 2 curves

In our case, we shall be interested in the invariants characterising theK-isomorphism
classes for genus 2 curves. Let K be a field with char(K) ̸= 2, and let C/K : y2 =

c(x−α1) · · · (x−α6) be a genus 2 hyperelliptic curve. Using (1.14), we can therefore
explicitly define the following set of Igusa-Clebsch invariants [215, p. 620]:

I2 := (4c)2
∑︂

(α1 − α2)
2(α3 − α4)

2(α5 − α6)
2

I4 := (4c)4
∑︂

(α1 − α2)
2(α2 − α3)

2(α3 − α1)
2(α4 − α5)

2(α5 − α6)
2(α6 − α4)

2

I6 := (4c)6
∑︂

(α1 − α2)
2(α2 − α3)

2(α3 − α1)
2(α4 − α5)

2(α5 − α6)
2(α6 − α4)

2

(α1 − α4)
2(α2 − α5)

2(α3 − α6)
2

I10 := (4c)10
∏︂

(αi − αj)2

where, as before, each sum/product runs over the permutations of {1, . . . , 6}
which yield different expressions.

To work in addition to the case where char(K) = 2, we can furthermore
define the Igusa invariants [215, p. 621-622] (or J-invariants), as follows:

J2 := I2/8,

J4 := (4J2
2 − I4)/96,

J6 := (8J3
2 − 160J2J4 − I6)/576,

J8 := (J2J6 − J2
4 )/4,

J10 := I10/4096.

whereby we also that, for any two genus 2 curves C,D, then C is isomorphic to D
over K if and only if Jm(C) = λmJm(D) for some λ ∈ K×.

One advantage of the Igusa invariants is that we can read off when a curve
C has potential good reduction at any prime p (including at p = 2).

Theorem 14. [266, Theorem 1] Let C/Q be a smooth genus 2 curve with Igusa
invairants (J2, J4, J6, J8, J10) defined above. Then C has potential good reduction at
a prime p if and only if J5

2i/J
i
10 ∈ Zp for all i = 1, . . . , 5.

To give a simpler description of the K-isomorphism classes of genus 2 curves,
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we also consider the G2 invariants, defined by Cardona-Quer-Nart-Pujolás [88, 89],
defined in terms of the Igusa invariants Ji, as follows:

(g1, g2, g3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(J5

2/J10, J
3
2J4/J10, J

2
2J6/J10), if J2 ̸= 0

(0, J5
4/J

2
10, J4J6/J10) if J2 = 0, J4 ̸= 0

(0, 0, J5
6/J

3
10), otherwise

(1.15)

This time, we have that two genus 2 curves C,D are K-isomorphic if and
only if their G2-invariants are the same. We also remark that, if any prime p divides
any of the denominators of g1, g2, g3, then C will not have potentially good reduction
at p (however, the converse is not true).

For completeness, we note that a set of explicit formulae for the Igusa invari-
ants I2, I4, I6 and I10 in terms of λ1, λ2, λ3 for a curve C in Rosenhain norm form
C : y2 = x(x− 1)(x− λ1)(x− λ2)(x− λ3) is given in the appendix of Malmendier-
Shaska [274, p. 20].

1.6 L-functions

One of the most important isogeny invariants of abelian varieties A/K is its L-
function L(A/K, s).

Definition 1.16 (L-function of abelian variety [230]). Let A be an abelian variety
over some number field K. The L-function of A/K is given by the following Euler
product:

L(A/K, s) :=
∏︂

p◁OK

Lp(N(p)−s)−1

where N(p) denotes the norm (over Q) of p, and where the product is taken over all
prime ideals p of OK (or equivalently finite places of K).

Each of the local Euler factors Lp(T ) essentially depends on the reduction
type of A at p. It can be defined generally in terms of the geometric Frobenius in a
decomposition group at p, as follows: [57] Let Dp ⊂ Gal(K/K) be a decomposition
group at p, and let Ip ⊂ Dp denote the inertia group at p. We pick an arithmetic
Frobenius element σp ∈ Dp (i.e. σp(α) ≡ αN(p)(mod p)).

Then we define the local Euler factor Lp(T ) at p as

Lp(T ) := det
(︁
1− Tσ−1

p

⃓⃓
V Ip
)︁

where V := H1
ét(A ⊗K K, Qℓ) is the first étale cohomology group of A, for some
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prime ℓ different from the residue characteristic of p.17 It’s known that L(A/K, s)
converges on Re(s) > 3

2 and that each of the local Euler factors Lp(T ) is a polynomial
with integer coefficients and is independent from the choice of ℓ [294, Theorem 19.1].

Given that we have the isomorphism H1
ét(C ⊗K K, Qℓ) ∼= H1

ét(Jac(C) ⊗K
K, Qℓ), we can define the L-function of a smooth projective curve C/K simply
as the L-function of its Jacobian, i.e. L(C/K, s) := L(Jac(C)/K, s). Note that by
Faltings isogeny theorem [153], two abelian varieties A/K and B/K are K-isogenous
if and only if L(A/K, s) = L(B/K, s).

In order to do full justice to a section on L-functions, we must mention one
of the most notable conjectures on the subject: the Birch and Swinnerton-Dyer
conjecture. First conjectured for elliptic curves in [42], this was generalised by Tate
[408] to abelian varieties, and quite miraculously predicts how global information
about A/K can be read off from L(A/K, s)!

Conjecture (Birch–Swinnerton-Dyer). [194, p. 224] Let A be a dimension d abelian
variety over a number field K of discriminant ∆K , and assume that L(A/K, s) has
an analytic continuation to C. Then

(i) (Weak BSD) The order of vanishing r of L(A/K, s) at s = 1 is equal to the
rank of A/K.

(ii) (Strong BSD) Let XA/K be the Tate-Shafarevich group of A/K. Then XA/K

is finite and

lim
s→1

L(A/K, s)

(s− 1)r
=

ΩA/K · |XA/K | ·RA/K ·
∏︁

p cp

|A(K)tors| · | ˆ︁A(K)tors| · |∆K |d/2
,

where ˆ︁A is the dual of A, A(K)tors (resp. ˆ︁A(K)tors) is the torsion subgroup of
A(K) (resp. ˆ︁A(K)), RA/K is the regulator, ΩA/K is the product of its real and
complex periods, and cp is the Tamagawa number of A at p.

Whilst the BSD conjecture has been proven in some cases (e.g. for elliptic
curves E/Q of analytic rank at most 1 [251], and certain abelian surfaces of analytic
rank 0 [269]), this is still a highly open problem in general!18

17We note the Galois equivariant isomorphism H1
ét(A⊗K K, Qℓ) ∼= Vℓ(A)∨, hence some authors

choose to replace H1
ét(A ⊗K K, Qℓ) in the definition with Vℓ(A)∨, i.e. the dual of Tℓ(A) ⊗Zℓ Qℓ,

where Tℓ(A) is the ℓ-adic Tate module of A (e.g. see Commelin [107, p. 13] or Morgan [297, p. 4]).
18At this point, it also seems customary nowadays that any text introducing the BSD conjecture

also gives the following quote from John Tate in 1974: “This remarkable conjecture relates the
behavior of a function L at a point where it is not at present known to be defined to the order of a
group X which is not known to be finite! ” [409, p. 198]. We do remark that L(E/Q, s) has been
proven to be defined at s = 1 for elliptic curves E/Q, although the finiteness of X is still an open
problem in general.
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1.6.1 Primes p of good reduction for C

Whilst Definition 1.16 gives a fully general definition of the local Euler factors for
any prime p, its not as easy to explicitly compute Lp(T ) directly from the definition.

Indeed, if p is a prime of good reduction for a genus g curve C/K, then we
can compute Lp(T ) in a simpler way than given above. Here, the local Euler factor
Lp(T ) is simply given by the zeta function:

Lp(T ) = Zp(T )(1− T )(1−N(p)T ) (1.17)

In order to define Zp(T ), we let #C(Fpk) denote the number of points in the reduction
of C to the residue field Fpk , where Fpk is a finite degree k extension of Fp := OK/p.
We can then give Zp(T ) as

Zp(T ) = exp
(︂ ∞∑︂
k=1

#C(Fpk)

k
T k
)︂

where the above is interpreted as a formal power series with coefficients in Q. Whilst
it might seem that we need to evaluate #C(Fpk) for infinitely many k to evaluate
Lp(T ), it has been shown by Weil [441] that Zp(T ) is a rational function and that
Lp(T ) is a degree 2g polynomial. If we let Lp(T ) =

∏︁2g
i=1(1− αiT ) for some αi ∈ C,

then we can evaluate Lp(T ) by taking logarithms of (1.17) and subsequently using
the power series for log, to obtain

#C(Fpk) = N(p)k + 1−
2g∑︂
i=1

αki (1.18)

for all positive k [102, p. 135]. Therefore, by utilising Newton relations between the
roots and coefficients of Lp(T ), we can calculate any good Euler factor by simply
counting points on C(Fpk) for k = 1, . . . , g.

It’s worth also mentioning that an alternative method to computing Lp(T )

for hyperelliptic curves directly from Jac(C) if g ≤ 3 involves first calculating
#Jac(C)(Fp) = Lp(1), and #Jac( ˜︁C)(Fp) = Lp(−1), where ˜︁C denotes a non-isomorphic
quadratic twist of C mod p.19 We can then use Lemma 4 from [399] to compute
Lp(T ) for sufficienfly large p. Kedlaya and Sutherland [239] gives a nice overview of
computing L-functions of hyperelliptic curves in the genus g ≤ 3 case.

19Given a hyperelliptic curve C : y2 = f(x), the unique non-isomorphic quadratic twist can be
given by ˜︁C : αy2 = f(x) where α ∈ Fp is any quadratic non-residue.
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1.6.2 Primes p of bad reduction for C

If p is a prime of bad reduction of C, then it’s usually not as simple to calculate the
Euler factor Lp(T ). In general, the standard way to compute such Euler factors is
to construct a regular model for C at p, which is the default implementation given
in Magma [52]. Bouw and Wewers [57] give an alternate way to compute Lp(T ) by
computing the semistable reduction of C at p.

For most of our curves, particularly for even primes p, usually the simplest
and quickest way to compute such Euler factors is to just make a guess for the
local factor Lp(T ), and then verify whether the L-function L(C/K, s) satisfies its
conjectural Hasse-Weil functional equation, given in (1.20). As for each p, there are
only finitely many possible bad Euler factors Lp(T ), and only finitely many primes
p of bad reduction, this yields an effective procedure to heuristically calculate both
the conductor N and all the Euler factors Lp(T ) at all primes.

Finally, we should remark that some recent results of Maistret and Sutherland
[273] uses cluster pictures to give a fast approach to compute Euler factors Lp(T )

for primes p where C has bad reduction, but where Jac(C) has good reduction.

1.6.3 Genus 2 case

To make some computations explicit, let’s consider the genus 2 case: Let C/K
be a genus 2 curve with good reduction at p. We define the trace at p as ap :=

N(p) + 1−#C(Fp), and similarly define ap2 := N(p)2 + 1−#C(Fp2).
Now, by using (1.18) and Newton relations between the roots and coefficients

of Lp(T ), we obtain the following formula for all good Euler factors

Lp(T ) = 1− apT + (a2p − ap2)T 2 − apN(p)T 3 +N(p)2T 4 (1.19)

For primes p of bad reduction for Jac(C), we simply make a guess of the
Euler factor, which we know will be of the form

Lp(T ) = 1 +A1T +A2T
2 +A3T

3

for some Ai ∈ Z. Now, using that the roots of Lp(T ) must have size no greater than√︁
N(p), this yields a bound on the coefficients Ai; namely that |A1| ≤ 3

√︁
N(p),

|A2| ≤ 6N(p), and |A3| ≤ 4N(p)3/2. This therefore implies there are only finitely
many possible bad Euler factors to check. For example, if C/Q is a genus 2 curve
whose Jacobian has bad reduction at p = 2, then there are only at most 27 possible
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bad Euler factors for L2(T ), given below:

1, 1− T, 1 + T, 1− 2T 2, (1− T )(1 + T ), (1− T )2, 1− T + T 2, 1 + T 2,

1 + T + T 2, (1 + T )2, 1− 2T + 2T 2, 1− T + 2T 2, 1 + 2T 2, 1 + T + 2T 2,

1 + 2T + 2T 2, (1 + T )(1− 2T 2), (1− T )(1 + 2T + 2T 2), (1− T )(1 + T + 2T 2),

(1− T )(1 + 2T 2), (1− T )(1− T + 2T 2), (1− T )(1− 2T + 2T 2),

(1− T )(1− 2T 2), (1 + T )(1− 2T + 2T 2), (1 + T )(1− T + 2T 2),

(1 + T )(1 + 2T 2), (1 + T )(1 + T + 2T 2), (1 + T )(1 + 2T + 2T 2).

1.7 Modularity results and conjectures

We’ll conclude our introduction by giving a very brief overview on what’s been prov-
ing regarding modularity of abelian varieties. One primary motivation for proving
such results is that it allows us to classify abelian varieties A/K with good reduc-
tion outside S by computing suitable modular forms (or more generally automorphic
forms) of level N , for finitely many N .

Another motivation for these modularity results is to prove the Hasse-Weil
conjecture [205, 442] for a wide family of abelian varieties:

Conjecture 15 (Hasse-Weil conjecture). Let K be a number field of conductor
fK and discriminant ∆K . Let A/K be an abelian variety of dimension d. Then
L(A/K, s) has an analytic continuation to all of C and the completed L-function
(e.g. see [50, p. 396])

Λ(A/K, s) :=
(︁
N(fK)∆2d

K

)︁s/2 (︁
(2π)−sΓ(s)

)︁d[K:Q]
L(A/K, s) (1.20)

satisfies the functional equation

Λ(A/K, s) = wA/K · Λ(A/K, 2− s)

where wA/K ∈ {−1,+1} is the global root number of A/K.

Whilst the case of dimension 0 was proven classically by Riemann [334] (equiv-
alent to proving the functional equation for the usual zeta function ζQ(s)), proving
this for higher dimensions is far more difficult! Usually, the main strategy is showing
some modularity (or potential modularity) statement, which we give a very brief
discussion of:
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1.7.1 Elliptic curves

Thorne [413] has given an excellent recent survey of the modularity of elliptic curves,
although we’ll present a short summary here of what’s been proven to date. In the
1950s, Taniyama first proposed some problems which suggested connections between
rational elliptic curves E/Q and modular forms, with a more precise conjecture for-
mulated by Shimura. Weil [443] then provided further evidence for this conjecture
in the 1960s. Thus the conjecture that all rational elliptic curves are modular be-
came known as the Taniyama-Shimura-Weil conjecture for the latter half of the 20th
century.20 This was eventually proven for semistable elliptic curves by Wiles [446]
and Taylor–Wiles [411] and finally for all elliptic curves E/Q by Breuil–Conrad–
Diamond–Taylor [62].

Theorem 16 (Modularity for elliptic curves E/Q [410, 411, 62]). Let E be an elliptic
curve over Q of conductor N . Then there exists a cusp form f ∈ S2(Γ0(N)) such
that L(E, s) = L(f, s).

There are various equivalent statements of this theorem. This theorem is
equivalent to the statement that the associated Galois representation ρE,p : Gal(Q/Q)→
GL2(Qp) for a suitable prime p, is isomorphic to the Galois representation ρf asso-
ciated to a cusp form f ∈ S2(Γ0(N)), as defined by Eichler and Shimura [129], or
that there exists a nonconstant morphism from X0(N) → E (see Carayol [86] for
proofs of their equivalence). The modularity of elliptic curves over Q (together with
a theorem of Ribet [332]) was most famously used to prove Fermat’s Last Theorem;
a problem which requires no introduction given the immense wealth of literature on
the topic [6, 121, 144, 250, 331, 384, 392]!

As modularity relates the L-function L(E, s) of an elliptic curve E/Q to that
a weight cusp form f ∈ S2(Γ0(N)), this therefore implies the Hasse-Weil conjecture
for E/Q.

Proving analogous modularity theorems for elliptic curves over arbitrary num-
ber fields F is still very open. Generally speaking, we say that an elliptic curve E
over some number field F is modular either if E has complex multiplication (CM)
or if there exists some regular algebraic automorphic representation π of GL2(AF )
whose L-function coincides with L(E/F, s) (e.g. see [85, p. 2]). However giving
an explicit description of such a π is far from trivial for arbitrary number fields F ,
indeed for most non totally-real number fields F , we don’t even have an adequate
construction for attaching an elliptic curve E/F to modular forms for F !

20An excellent summary of the history of the Taniyama-Shimura-Weil conjecture is given by Lang
[257].
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In the case of totally real fields K, we have the following conjectured corre-
spondence between E/K and Hilbert newforms.

Conjecture. Let E be an elliptic curve over a totally real number field K of con-
ductor N . Then there exists a Hilbert newform f of parallel weight 2 and level N
such that L(E, s) = L(f, s)

Whilst this conjecture is still open in general for all totally real number field
K, it has been proven in many cases, starting with the case of semistable elliptic
curves over Q(

√
2) and Q(

√
17) being done by Jarvis and Manoharmayum [220].

Modularity for all elliptic curves over real quadratic fields were proven by Freitas, Le
Hung, and Siksek [174], for totally real cubic fields by Derickx, Najman, and Siksek
[128], for some totally real quartic fields by Box [58], and even for all but finitely
many quintic fields, by [219]. and for Zp-cyclotomic extensions of Q by Thorne [412].

Often if one cannot modulariity, its easier to prove potential modularity,
originally proven by Taylor for all elliptic curves E over totally real fields K.

Theorem (Potential modularity of elliptic curves). [410] Let E be an elliptic curve
over a totally real number field K. Then E/K is potentially modular, i.e. there
exists a finite extension L/K of number fields such that E/L is modular. In particular
L(E/K, s) has meromorphic continuation to C and satisfies its conjectured functional
equation given by the Hasse-Weil conjecture.

Buzzard [80] gives an excellent survey on some of the main ideas behind
proving (potential) modularity. Recently, potential modularity has also been proven
for elliptic curves over all CM fields [8], and arbitrary quadratic extensions of totally
real fields [60].

Establishing modularity for elliptic curves over fields which are not totally
real has been far more challenging. For elliptic curves E over imaginary quadratic
fields K, it is conjectured that L(E/K, s) = L(f, s) for some Bianchi modular form
f . We should mention some early computations by Cremona [113, 114] investigating
such correspondences between elliptic curves and Bianchi modular forms.

Nonetheless, significant progress has been made recently, with Allan, Khare,
Thorne [9] have proven that a positive proportion of elliptic curves over certain CM
fields are modular, Very recently, Caraiani and Newton have established modularity
(under some technical assumptions) for elliptic curves over imaginary quadratic fields
[85], and Whitmore [445] proving modularity for a positive proportion of elliptic
curves over arbitrary quadratic extensions of totally real fields.
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1.7.2 Higher dimensions

For abelian varieties A/K of higher dimensions, giving a modularity statement is
somewhat more non-trivial, where stating an explicit modularity conjecture depends
heavily on the dimension of A, the number field K, and the structure of the endo-
morphism ring EndK(A).

For abelian varieties over Q of GL2-type (i.e. where EndQ(A) is a number
field of degree dim(A)), Ribet showed that all such abelian varieties occur as a
quotient of J1(N) assuming Serre’s modularity conjecture [364] over Q of GL2-type
are modular [333]. This has since been proven by Khare, Wintenberger, and Kisin
[240, 241, 249], thus proving Ribet’s result unconditionally. In particular, for atypical
abelian surfaces A/Q of GL2-type, one can relate its L-function to those of classical,
Hilbert, or Bianchi modular forms [48].

For abelian varieties not of GL2-type, far less is known. Yoshida [449] first
conjectured that for any abelian surface A/Q, there exists a weight 2 Siegel modular
form f such that L(A, s) = L(f, s).

This conjecture was made precise by Brumer and Kramer, proposing an ex-
plicit 1-to-1 correspondence between isogeny classes of abelian surfaces A/Q with
EndQ(A) = Z and suitable paramodular newforms. By defining a suitable paramod-
ular groupK(N) ⊂ Sp4(Q) of levelN , we denote S(2)

2 (K(N)) as the space of weight 2
degree 2 Siegel modular cusp forms with respect to K(N). Gritsenko [191, 192] gave
a map Grit : Jcusp

2,N → S
(2)
2 (K(N)) which constructs level N paramodular forms from

Jacobi forms of level N . Such forms are excluded from the conjecture by Brumer–
Kramer. Brumer–Kramer then define a nonlift weight two paramodular cuspidal
newform f ∈ S(2)

2 (Γpara(N)) as an element of S(2)
2 (K(N)) which is perpendicular to

the space of Gritsenko lifts Grit(Jcusp
2,N ).

Conjecture (Paramodular conjecture). [73] Let A be an abelian surface over Q
of conductor N such that EndQA = Z. Then there exists a cuspidal nonlift Siegel
paramodular newform f ∈ S(2)

2 (Γpara(N)) of degree 2 and weight 2, such that L(A, s) =
L(f, s, spin).

Brumer and Kramer further conjecture (including a correction from Calegari
[83]) that the union of all isogeny classes of abelian surfaces A/Q of conductor N
with EndQA = Z and all QM abelian fourfolds B/Q of conductorN2, are in bijection
with the set of suitable paramodular forms of level N (up to scaling) [75].

Strong evidence for this conjecture was shown by Poor, Shurman, and Yuen
[327, 325, 326] and Brumer–Kramer [73] who explicitly computed the dimension
of the space S(2)

2 (Γpara(N)) for small levels N . However a provably complete list
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of paramodular forms of level N is only known for N ≤ 353; indeed, the set
S
(2)
2 (Γpara(N)) is trivial for all N ≤ 353 unless N is 249, 277, 295, 349, or 353.

Some recent tables of Poor and Yuen [328] give a heuristic computation of the di-
mension of level N paramodular newforms S(2)

2 (Γpara(N)) for N ≤ 1000 (which
include computations from [326, 193, 400]).

Proving the paramodular conjecture would provide one method to effectively
classify abelian surfaces of small conductor N ; indeed we should mention the follow-
ing provisional result by Sutherland and Booker [401]:

Theorem (Sutherland–Booker WIP [401]). Assume the paramodular conjecture.
Then there are 456 L-functions of abelian surfaces A/Q with conductor N ≤ 1000.

The main theorem which will be the most useful to us in Chapter 5 is the
proof by Boxer, Calegari, Gee, Pilloni of potential modularity for abelian surfaces:

Theorem. [60] Let A be an abelian surface over a totally real field K. Then A is
potentially automorphic. In particular, L(A/K, s) has meromorphic continuation to
C and satisfies its conjectured functional equation given by the Hasse-Weil conjecture.

Whilst proving the full modularity of abelian surfaces A/Q is still out of
reach, we do briefly mention some current work in progress by Boxer, Calegari, Gee,
Pilloni [61] which states that if C/Q is a genus 2 curve with a rational Weierstrass
point, then C is modular assuming the mod-3 Galois image is maximal and that C
has good ordinary reduction at 2 and 3.
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Chapter 2

Potential good reduction of
hyperelliptic curves

In this chapter, we shall be interested in the reduction of hyperelliptic curves C/K
with all of its Weierstrass points lying in K, and shall prove various results regarding
the existence of infinitely many genus g hyperelliptic curves with potential good
reduction outside a fixed number of primes in K. An earlier draft of this chapter is
publicly available as a preprint [430] and is currently under review.

Compared to the preprint version, we have rewritten and adapted most of the
introduction, have added Section 2.1.2 consisting of three new theorems (Theorems
26, 28, and 29), and added a new Corollary 37 to Section 2.3.

We first recall that a prime p in K is considered odd if it lies above an
odd rational prime (or equivalently has odd absolute norm NK/Q(p)), and define
πK,odd(n) as the number of odd primes in K with norm no greater than n. We also
define Bodd(C/K) as the set of odd primes p in K for which a curve C/K does not
have potential good reduction at p, sometimes denoted as primes of geometric bad
reduction.

A summary of the main results of this chapter are the following:

Theorem 17. (Theorem 30, Theorem 31) Let K be a number field, and let C/K
be a genus g hyperelliptic curve C/K with all its Weierstrass points in K. Then
p ∈ Bodd(C/K) for all odd primes p satisfying NK/Q(p) < 2g. Furthermore, there
are only finitely many K-isomorphism classes of genus g hyperelliptic curves C/K
with all Weierstrass points in K satisfying #Bodd(C/K) ≤ πK,odd(2g) + 1.

This gives us the lower bound cK(g) > πK,odd(2g) + 1, where cK(g) denotes
the smallest positive integer such that there exist infinitely many K-isomorphism

39
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classes of genus g hyperelliptic curves C/K with all Weierstrass points in K having
potentially good reduction outside cK(g) primes in K. Applying Theorem 17 to
K = Q gives the following corollaries:

Corollary 18. (Corollary 35 ) Let C/Q be a genus g hyperelliptic curve with rational
Weierstrass points. Then C cannot have potentially good reduction at any odd prime
p ≤ 2g.

This allows us to prove the following extension of a theorem of Box and Le
Fourn [59, Corollary 2]:

Theorem 19. (Corollary 36, Corollary 37) There are no genus 2 hyperelliptic curves
C/Q with all rational Weierstrass points and with potential good reduction outside
one prime. Furthermore, there are no genus 3 hyperelliptic curves C/Q with all
rational Weierstrass points and with potential good reduction outside two primes.

Finally, in Section 2.4, we also prove the following various conditional and
unconditional upper bounds for cK(g).

Theorem 20. (Theorem 38, Theorem 39, Theorem 40) Let K be a number field of
degree n. Then cK(g) ≤ ( 2

log 2 + o(1))ng log g. Furthermore, under the assumption
of the Hardy-Littlewood prime k-tuples conjecture for K, we have cK(g) ≤ 2g −
1 + nπ(2g), and under the assumption of Schinzel’s hypothesis H for K, we have
moreover that

cK(g) ≤
∑︂

1≤d<g, or
d<2g, d even

n

[K(ζd) : Q(ζd)]
+ 1 + nπ(2g).

Precise statements of the Hardy–Littlewood prime k-tuples conjecture and
the Schinzel hypothesis H are provided in section 2.4. This hence gives rise to the
following corollaries:

Corollary 21. (Corollary 41, Corollary 42) Let K be a number field of degree n
with no non-trivial abelian subfields, and suppose that Schinzel’s hypothesis H holds
for K. Then if K is abelian (and hence of prime degree) with conductor fK , then

cK(g) ≤

⎧⎪⎨⎪⎩
3
2g
(︁
1 + n−1

fK

)︁
+ 1 + nπ(2g) if fK odd,

3
2g
(︁
1 + 4(n−1)

3fK

)︁
+ 1 + nπ(2g) if fK even,

otherwise cK(g) ≤ 3
2g + nπ(2g) if K is non-abelian.
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2.1 Preliminaries

We’ll begin by recalling a few standard results regarding the reduction of hyperelliptic
curves. Whilst these results are certainly not new, they can be proven very easily
using the machinery of cluster pictures. To illustrate the versatility of this approach,
we’ll provide brief proofs.

2.1.1 Potential good reduction for hyperelliptic curves C

Proposition 22. Let K be a number field, and let C/K be a genus g hyperelliptic
curve with Weierstrass points in K, given in Rosenhain normal form

y2 = cx(x− 1)(x− λ1) . . . (x− λ2g−1), c, λi ∈ K.

Let p be an odd prime of K. Then C has potentially good reduction at p if and only
if we have vp(λi) = vp(λi − 1) = 0 for all i ∈ 1, . . . , 2g − 1, and vp(λi − λj) = 0 for
all distinct i, j ∈ {1, . . . , 2g − 1}. (i.e. the values λi, λi − 1, λi − λj are all p-units)

Proof. Let C/K be given in the above form, and let R denote the Weierstrass points,
i.e. R := {0, 1, λ1, . . . , λ2g−1}. Then by Theorem 11, since |R| = 2g + 1, we have
that C has potentially good reduction at p if and only if Σp is trivial.

Note that Σp is trivial if and only if vp(ri−rj) is constant over all distinct pairs
ri, rj ∈ R. However, since vp(1 − 0) = 0, this implies that vp(λi) = vp(λi − 1) = 0

for all i, and that vp(λi − λj) = 0 for all i, j, which yields the result.

This immediately implies the following corollary:

Corollary 23. Let K be a number field, and let S be a finite set of primes of K, and
assume that S consists of all even primes of K. Let O×

S denote the set of S-units in
K. Then for a given hyperelliptic curve C/K of the above form, C has potentially
good reduction outside S if and only if λi, λi − 1 and λi − λj are in O×

S for all i, j.

This therefore gives us an effective procedure to list the Rosenhain normal
forms of all hyperelliptic curves C over a given number field K, with potentially
good reduction outside a finite set of primes S. It relies purely on (i) determining all
number fields having bounded degree and discriminant, as well as (ii) solving S-unit
equations over these fields:

1. Compute a list F of all fields L/K which are unramified outside S, with degree
d = [L : K] at most (2g + 1)! as follows:
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(a) Use [305, p. 203] to show that any such field L/K must have discriminant
dL/K dividing the ideal

∏︂
p∈S

pd(d+1). This yields a finite number of possible

discriminants for L/K.

(b) For each possible discriminant dL/K , perform a Hunter search [101, p. 445]
to compute all possible number fields L/K with degree d and discriminant
dL/K .

2. For each field L in F , do the following:

(a) Enumerate all solutions (λ1, . . . , λ2g+1) to the 2g − 1 S-unit equations:

λ1 + µ1 = 1, . . . , λ2g−1 + µ2g+1 = 1, λi, µi ∈ O×
L,S

such that λi − λj ∈ O×
L,S for all i, j ∈ {1, . . . , 2g − 1}.

(b) For each solution (λ1, . . . , λ2g+1), construct the curve C/L of the form
C : y2 = x(x− 1)(x− λ1) . . . (x− λ2g−1).1

This therefore gives an effective procedure to find all possible Rosenhain
normal forms of hyperelliptic curves, and thus all possible K-isomorphism classes.
Given that there are only finitely many solutions to any given S-unit equation, this
gives the following corollary:

Corollary 24. For a given number field K, finite set of primes S, and genus g ≥ 2,
there are only finitely many K-isomorphism classes of hyperelliptic curves C/K of
genus g with potentially good reduction outside S. Moreover, these curves can be
effectively computed, as given in the above algorithm.

To translate theseK-isomorphism classes into a complete list ofK-isomorphism
classes, we can use the following identities of Evertse-Győry and Smart relating the
cross-ratios λi to the roots αi.

Recall that, if y2 = c(x−α1) · · · (x−α2g+1), then λi = (αi+2−α1)/(α2−α1).
One can recover the roots α1, . . . , α2g+1 from the cross-ratios λi via the identity

(αi − αj)2(g+1)(2g+1) = ∆
(︂ ∏︂

1≤k<ℓ≤n

λi − λj
λk − λℓ

)︂2
(2.1)

1We note that not all such curves C/L have a model over K. An obvious necessary condition
is that Cσ is L-isomorphic to C for all σ ∈ Gal(L/K), however this is not a sufficient condition
in general, as noted by Shimura [375, Theorem 3]. See Mestre [293] for a necessary and sufficient
criterion for genus 2 curves C/K.
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where ∆ is the discriminant of C/K [152, p. 82]. Since ∆ can be effectively bounded
(e.g. see [370, Lemma 2]), this gives finitely many possible values of αi−αj for each
pair i, j.

Similarly, if deg(f) = 2g+2, then we have λi = (α3−α2)(αi+3−α1)/((α2−
α1)(α3 − αi+3)). Again one can recover the roots α1, . . . , α2g+2 from the expression

(αi − αj)2g(2g+1) = ± (ΩiΩj)
2g+1

Ω1Ω2 · · ·Ω2g+2

∏︂
1≤k<ℓ≤n
k ̸=i,ℓ ̸=j

(λi − λj)(λk − λℓ)
(λi − λk)(λj − λℓ)

(2.2)

where Ωi :=
∏︁
i ̸=k(αi − αk) [386, p. 276]. As with the discriminant ∆, one can

also show that Ωi arise from an effectively computable finite set, as we will prove
in Lemma 111 in Chapter 5. Thus, we have that the pairs αi − αj arise from an
effectively computable finite set.

Finally, note that shifting x ↦→ x+ β for some β ∈ OK changes α1 + · · ·+αn

by nβ. Thus, we can further assume that α1 + · · · + αn arise from an effectively
computable set OK/nOK . Finally, one can uniquely recover the roots α1, . . . , αn

using the expression

αi =
1

n

(︂ n∑︂
k=1

αk −
n∑︂
j=1
j ̸=i

(αi − αj)
)︂

(2.3)

which thus yields a finite number of cases for the roots α1, . . . , αn.2

This proves the effective Shafarevich conjecture for hyperelliptic curves:

Corollary 25. For a given number field K, finite set of primes S, and genus g ≥ 2,
there are only finitely many (K-isomorphism classes of) hyperelliptic curves C/K
of genus g with good reduction outside S. Moreover, these curves can be effectively
computed, as given in the above algorithm.

We remark that an explicit bound on the height of Weierstrass models for
genus g hyperelliptic curves C/K with good reduction outside S is given by von
Känel [433].

2.1.2 Potential good reduction for Jac(C)

We now shift our attention to studying the Jacobian Jac(C) of hyperelliptic curves.
We can prove the following condition for when the Jacobian itself has good reduction:

2Alternatively, we could assume that S contains all primes dividing n, thus allowing us to assume
α1 + · · ·+ αn = 0.
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Theorem 26. Let C/K be a genus g hyperelliptic curve with Weierstrass points in
K, given in Rosenhain normal form

y2 = cx(x− 1)(x− λ1) · · · (x− λ2g−1)

Then Jac(C) has good reduction at an odd prime p if and only if Jac(C) has poten-
tially good reduction at p, and if vp(λi), vp(λi− 1) and vp(λi−λj) all have the same
parity as vp(c).

Proof. Let Σp be the cluster picture of C at p. First assume that vp(λi), vp(λi − 1)

and vp(λi − λj) all have the same parity as vp(c). By Theorem 11, to show that
Jac(C) has good reduction at p, it suffices to show that νs is even, for all principal
clusters s.

Firstly, we note that since vp(λi), vp(λi−1) and vp(λi−λj) all have the same
parity as vp(c), this implies the depths ds of all principal clusters have the same
parity as vp(c).

We can proceed by a standard inductive approach. Let s be a principal cluster
of Σp. Let C1 denote the parent of s, C2 denote the parent of C1, and so on, until
we have Cn = R, as shown in Figure 2.1. This therefore yields the following chain
of clusters:

s ⊊ C1 ⊊ C2 ⊊ · · · ⊊ Cn = R.

The calculation of νs can therefore be given as

νs = vp(c) +
∑︂
r∈R

dr∧s = vp(c) +
∑︂
r∈s

ds +
∑︂
r∈C1
r ̸∈s

dC1 +
∑︂
r∈C2
r ̸∈C1

dC2 + · · ·+
∑︂
r∈Cn
r ̸∈Cn−1

dCn

Now as Jac(C) has potentially good reduction at p, this implies that all
clusters s have odd size. Therefore, we note that, except for the first vp(c) and∑︁

r∈s ds, each of the remaining sums contains an even number of terms, and therefore
has even parity.

Furthermore, as |s| odd, this implies the parity of the first sum is simply ds.
Finally, as ds has the same parity as vp(c), this gives us

νs ≡ vp(c) + ds ≡ 0 (mod 2)

which proves that Jac(C) has good reduction at p. Conversely, if Jac(C) has good
reduction at p, then νs is even for all clusters s (noting that every cluster s is principal
as all clusters are odd). Given any pair i, j, let s be the smallest cluster containing
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both λi and λj . Then vp(λi − λj) = ds ≡ vp(c) (mod 2), where a similar argument
also shows that vp(λi) = vp(λi − 1) ≡ vp(c) (mod 2), thus concluding the proof.

. . . . . . . . . . . . . . .

s C1 C2
Cn

Figure 2.1: A chain of clusters s ⊊ C1 ⊊ C2 ⊊ · · · ⊊ Cn.

Applying this to all odd primes p, we get the following immediate corollary:

Corollary 27. Let C/K be a hyperelliptic curve given as above. Then Jac(C) has
good reduction outside S if and only if Jac(C) has potentially good reduction outside
S, and such that λi, λi− 1 and λi− λj are in cO×

S ·A, where A := {α ∈ K× : (α) =

m2 for some fractional ideal m in K}.

In contrast to the effective Shafarevich problem for hyperelliptic curves, we
remark that no known algorithm exists to effectively classify genus g hyperelliptic
curves over K whose Jacobian has good reduction outside a finite set of primes
S. If we were to attempt to prove this using the cluster picture criterion, then if
we specialise to genus 2 curves, we remark that by [138], there are essentially four
possible cluster pictures Σp for a prime p of almost good reduction for a genus 2
curve C/K, shown in Figure 2.2.

Figure 2.2: The four possible cluster pictures Σp for a prime p of bad reduction for
C but good reduction for Jac(C) for a genus 2 curve C/K

Thus, for a genus 2 curve C/K whose Jacobian Jac(C) has good reduction
outside S, an a priori arbitrary number of primes p outside S could have any one
of the four above cluster pictures, with different pictures for different primes p of
almost good reduction. One of the fundamental difficulties of this problem is that
there’s no obvious way of reducing this problem to that of solving S-unit equations.
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We now show that, in general, there are far more curves with Jacobian having
potentially good reduction outside a given set S, than curves themselves having
potentially good reduction outside S.

Theorem 28. There are infinitely many (non-isomorphic over Q) genus 2 hyperel-
liptic curves C over Q with rational Weierstrass points with Jac(C) having potentially
good reduction outside {2}.

We note that this is in contrast to the elliptic case, where the above is not
true.

Proof. Let r ≥ 1 be any positive integer, and consider the genus 2 curve C/Q given
by Rosenhain normal form λ1 = 2r + 1, λ2 =

2r+1
2 , λ3 = 2r., i.e.

C : y2 = x(x− 1)(x− 2r − 1)(x− 2r+1
2 )(x− 2r)

We now consider a few cases depending on each odd prime p.

• Case 1: p divides 2r + 1. Let d := vp(λ1) ≥ 1. We clearly note that
vp(λ2) = d and vp(λ1 − λ2) = vp(2

r + 1) = d, with all other valuations be-
ing 0. (noting that 2r+1 doesn’t have any odd primes in common with 2r−1).

Therefore, the only non-trivial cluster is the cluster of size 3 formed by {0, λ1, λ2}.

0 λ1 λ2 λ3 1

d
0

Figure 2.3: Cluster picture Σp for primes p dividing 2r + 1.

• Case 2: p divides 2r − 1. Similarly, we let d := vp(2
r − 1) ≥ 1. Note that

vp(λ3 − 1) = vp(2
r − 1) = d and vp(λ2 − λ3) = d, with all other valuations

being 0.

Therefore, the non-trivial cluster is the cluster of size 3 formed by {1, λ2, λ3}.

0 λ1 λ2 λ3 1

d
0

Figure 2.4: Cluster picture Σp for primes p dividing 2r − 1.
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• Case 3: All other odd p. Clearly, vp(λi) = vp(λi−1) = 0, and vp(λi−λj) = 0,
and thus the cluster picture Σp is trivial.

Therefore, in all cases, the cluster picture Σp only contains odd clusters, which
proves that Jac(C) has potentially good reduction at all primes outside {2}.

We’ll end this section by going one step futher and giving an infinite family
of genus 3 hyperelliptic curves C/Q with rational Weierstrass points where Jac(C)
has potential good reduction outside {2}.

Theorem 29. There are infinitely many (non-isomorphic over Q) genus 3 hyperel-
liptic curves C over Q with rational Weierstrass points with Jac(C) having potentially
good reduction outside {2}.

Proof. Let k, ℓ,m be three distinct pairwise coprime positive integers such that k2+
ℓ2 = 2m2. We consider the genus 3 hyperelliptic curve C/Q given in Weierstrass
form:

C : y2 = x(x− k)(x+ k)(x− ℓ)(x+ ℓ)(x−m)(x+m).

As before, we check that Jac(C) has potential good reduction at every odd prime p
using cluster pictures.

• Case 1: p divides k. As ℓ and m are coprime to k, clearly p doesn’t divide
any of ±ℓ, ±m, k± ℓ or k±m. Now assume for contradiction p divides either
ℓ +m or ℓ −m. Then p divides ℓ2 −m2 = m2 − k2 implying p divides m; a
contradiction. Therefore the cluster picture Σp has a single non-trivial cluster
of size 3 formed by {0, k,−k}.

0 k −k ℓ −ℓ m −m

1
0

Figure 2.5: Cluster picture Σp for primes p dividing k.

• Case 2: p divides ℓ or p divides m. This is done similarly to Case 1, where
Σp consists of a single size 3 cluster formed either by {0, ℓ,−ell} or {0,m,−m}
respectively.

• Case 3: p divides k2− ℓ2. Thus p divides either k+ ℓ or k− ℓ, but not both,
as then p = 2, a contradiction. Noting that k2− ℓ2 = 2(m2− ℓ2) = 2(k2−m2),
this therefore implies p divides exactly one of m+ ℓ or m− ℓ, and exactly one
of k +m or k −m. Also, note that p cannot divide any of k, ℓ, or m as that



Dra
ft

Draft of 0:21 am, Wednesday, November 13, 2024 48

contradicts k, ℓ,m being pairwise coprime. Thus, in all cases, we have that Σp
consists of two distinct non-trivial clusters each of size 3. The four possibilities
for the non-trivial clusters of Σℓ are

{{k, ℓ,m}, {−k,−ℓ,−m}}, {{k, ℓ,−m}, {−k,−ℓ,m}},

{{k,−ℓ,m}, {−k, ℓ,−m}}, {{k,−ℓ,−m}, {−k, ℓ,m}}

0 k −ℓ m −k ℓ −m

d d
0

Figure 2.6: One of the four possible cluster pictures Σp for primes p dividing k2− ℓ2.

• Case 4: All other odd primes p. Clearly, the cluster picture Σp is trivial.

As before, in all cases, the cluster picture Σp only contains odd clusters, which proves
that Jac(C) has potentially good reduction at all primes outside {2}.

It remains to note that there exist infinitely many such pairwise coprime
k, ℓ,m such that k2 + ℓ2 = 2m2. Indeed, one easily checks that the plane conic
x2+y2 = 2 has infinitely many rational solutions, parametrised by ( t

2−2t−1
t2+1

, t
2+2t−1
t2+1

)

for t ∈ Q. In particular, one can take the infinite family (k, ℓ,m) = (u2−2u−1, u2+

2u− 1, u2 + 1) for any even integer u ≥ 2.

We remark that hyperelliptic curves also of genus 4 and 5 with potentially
good reduction outside {2} can easily be found, however we are still unsure if any
such curves exist with genus ≥ 6. It’s possible that similar constructions to those
given in Theorems 28 and 29 exist for genus g ≥ 4 hyperelliptic curves, however we
have been unable to find any.

2.2 Potential good reduction of hyperelliptic curves

We can now begin to prove our main theorem. We start with the following observa-
tion, which easily follows from cluster pictures:

Theorem 30. Let C/K be a hyperelliptic curve with Weierstrass points in K. Then
C cannot have potentially good reduction at any odd prime p such that NK/Q(p) ≤ 2g.

Proof. Let C be given by its Rosenhain normal form:

y2 = cx(x− 1)(x− λ1) · · · (x− λ2g−1)
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and assume for contradiction that C has potentially good reduction at p, where p is
an odd prime ideal of K such that N(p) ≤ 2g.

We have by Theorem 22 that λ1, . . . , λ2g−1 must all be p-units. Furthermore,
note that each of the roots 0, 1, λ1, . . . , λ2g−1 must yield distinct values under the
reduction map OK → OK/p. However, this is a contradiction if 2g + 1 > N(p),
noting that #OK/p = N(p).

We remark that the above inequality is tight, since given any odd prime p

with N(p) > 2g, we can simply let 0, 1, λ1, . . . , λ2g−1 be some distinct representative
elements in the residue field to yield an example of a curve C with good reduction
at p.

This result immediately implies that there are only finitely manyK-isomorphism
classes of genus g hyperelliptic curves C/K with Weierstrass points in K having po-
tentially good reduction outside at most πK,odd(2g) odd primes. However, remark-
ably we can go one step further:

Theorem 31. There are only finitely many K-isomorphism classes of genus g hy-
perelliptic curves C/K with rational Weierstrass points in K having potentially good
reduction outside at most πK,odd(2g) + 1 primes.

In order to prove the above theorem, we shall make use of the following
elementary (albeit technical) lemma:

Lemma 32. Let K be a number field and S a fixed finite set of primes of K. Then
there exist only finitely many odd primes p such that there exist distinct T -units
x, y, z ∈ O×

T where T = S ∪ {p} such that x − y, x − z, and y − z are all T -units,
and such that vp(x), vp(y), vp(z), vp(x− y), vp(x− z), vp(y − z) are not all equal.

The proof of this lemma proceeds by analysing various three-term S-unit
equations, and thus we shall make essential use of the following finiteness result for
general term S-unit equations, first conjectured by Mahler.

Theorem. [151, p. 131] Let K be a number field and S a fixed finite set of primes
of K. Let n ≥ 2 and a1, . . . , an ∈ K be non-zero elements in K. Then there are only
finitely many tuples (x1, . . . , xn), xi ∈ O×

S such that

a1x1 + · · ·+ anxn = 1

and such that
∑︁

i∈I aixi ̸= 0 for every non-empty subset I of {1, . . . , n}.

This was first proven (under some stronger assumptions) in the case K = Q
independently by Dubois–Rhin [143] and Schlickewei [348], after which it was proven
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for arbitrary number fields K independently by Evertse [149] and van der Poorten
and Schlickewei [425]. These proofs used the famous subspace theorem of Schmidt
[350].3 Unlike two-term S-unit equations, we don’t have an explicit algorithm to
effectively compute all such non-degenerate solutions, although an explicit bound on
the number of solutions can be derived, e.g. see [349].

Restating the above theorem in the case n = 3 and a1 = a2 = a3 = 1 yields
the following theorem:

Theorem 33. [151, p. 131] Let K be a number field and S a fixed finite set of
primes of K. Then the equation u + v + w = 1 has only finitely many solutions in
u, v, w ∈ O×

S , such that u, v, w ̸= 1 (i.e. only finitely many non-degenerate solutions).

With the above theorem under our belt, we can now prove Lemma 32.

Proof of Lemma 32. Let P be the set of odd primes p in K such that there exist
distinct T -units x, y, z ∈ O×

T where T = S ∪{p} such that x− y, x− z, and y− z are
all T -units, and such that vp(x), vp(y), vp(z), vp(x − y), vp(x − z), vp(y − z) are not
all equal. In summary, we shall prove that P is finite by the following the procedure
outlined below:

1. Let p ∈ P be such a prime, and let T = S ∪ {p}.

2. By assumption, there exists distinct T -units x, y, z ∈ O×
T satisfying the above

conditions.

3. Let s := x
z and t := y

z . By then considering various cases depending on
the signs of vp(s) and vp(t), we show that s and t must arise explicitly from
solutions to the three term S-unit equation u + v + w = 1 (we crucially note
here that S, and hence u, v, w, does not depend on T ).

4. For each case, we check the possible degenerate solutions. We then apply
Theorem 33 to conclude that there exist only finitely many such u, v, w ∈ O×

S

and thus finitely many s, t ∈ O×
T

5. By the assumption that vp(x), vp(y), vp(z), vp(x−y), vp(x−z), vp(y−z) are not
all equal, this implies at least one of s, t, s− 1, t− 1, s− t must have non-zero
p-adic valuation. Therefore, the finiteness of the pairs (s, t) implies finitely
many possible primes p ∈ P.

3Schmidt’s subspace theorem is a higher-dimensional analogue of Roth’s theorem [338], and has
several rather surprising applications (see Bilu [38] for an excellent survey of the subspace theorem)!
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We thus proceed by first letting p ∈ P. We can assume without loss of
generality that vp(x) ≥ vp(y) ≥ vp(z). For brevity we denote s := x

z and t := y
z and

define a := vp(s) and b := vp(t), noting that a, b are non-negative integers where
a ≥ b. We also define c := vp(s − 1), d := vp(t − 1) and e := vp(s − t), noting that
s, t and s− t are all T -units.

The proof now proceeds by considering the various cases for a and b. In each
case, the main idea is to obtain a three term S-unit equation from which we will
obtain only finitely many solutions.

• Case 1: a, b > 0 and a > b. This implies c = d = 0 and e = b, and thus we
have

s− 1 = u, and t− 1 = v,

for some u, v ∈ O×
S . As vp(u− v) = vp(t), we have that t/(u− v) is an S-unit,

and thus by rearranging, we obtain the three term S-unit equation:

t

u− v
u− t

u− v
v − v = 1. (2.4)

At this stage, we would like to apply Theorem 33 in order to conclude that
there are only finitely many solutions to the above equation. We must therefore
check that we do not obtain (or only obtain finitely many) degenerate solutions
where one of the above terms equals 1:

(i) If the first term of (2.4) is 1, then t = v − u which implies x = 0,
contradiction.

(ii) If the second term of (2.4) is 1, then tv = v−u, which implies s = t(1−v)
and hence 1 − v has positive p-adic valuation. But v − 1 = t − 2 which
yields a contradiction, since p is odd.

(iii) If the third term of (2.4) is 1, then t = 0, contradiction.

Therefore, we have a three-term S-unit equation with no degenerate solutions.
Thus, there are only finitely many solutions to (2.4), and thus only finitely
many v, and thus clearly only finitely many p, noting that b is positive.

• Case 2: a, b > 0 and a = b. As before, we have

s− 1 = u, and t− 1 = v

for some u, v ∈ O×
S . Noting that vp(t/s) = 0, by rearranging, we obtain the
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three term S-unit equation:

t

s
u+

t

s
− v = 1 (2.5)

Once again, we check the three cases:

(i) If the first term of (2.5) is 1, then tu = s and t = vs which implies uv = 1.
Now by multiplying the first two equations we get

st− (s+ t) + 1 = (s− 1)(t− 1) = uv = 1

which implies vp(s+ t) = vp(st) = 2a > a, and thus vp(s− t) = vp(s+ t−
2t) = a as p odd. This thus yields the following two-term S-unit equation:

s

t
− s− t

t
= 1

which implies finitely many values for s
t and thus for u, and so only finitely

many values for p.

(ii) If the second term of (2.5) is 1, then x = y, contradiction.

(iii) If the third term of (2.5) is 1, then u = 1 and thus x/z = 2, contradiction.

Therefore, as before, only finitely many solutions.

• Case 3: a > 0 and b = 0. We therefore have c = 0 and e = 0. This yields

s− 1 = u, s− t = w

for some u,w ∈ O×
S , which yields the three term S-unit equation:

w + t− u = 1 (2.6)

(i) If w = 1, then vp(t− 1) = vp(s− 2) = 0, as p odd. Therefore t− 1 = v for
some v ∈ O×

S . This yields a 2-term S-unit equation, of which there are
only finitely many solutions for t, v, and thus for u, hence only finitely
many for p.

(ii) If t = 1, then y = z, contradiction.

(iii) If u = −1. then x = 0, contradiction.

• Case 4: a = b = 0 and c > d. This implies e = d which yields the three term



Dra
ft

Draft of 0:21 am, Wednesday, November 13, 2024 53

S-unit equation:
t− 1

s− t
t− t− 1

s− t
s+ t = 1 (2.7)

Firstly, if d = 0, then vp(t− 1) = 0 which yields a two term S-unit equation of
which there are only finitely many solutions. Thus, we may assume d > 0.

(i) If the first of (2.7) is 1, then s − t = t(t − 1) which implies s = t2. This
yields

s− 1 = (t− 1)(t+ 1)

which implies t+ 1 has positive p-adic valuation. But t+ 1 = (t− 1) + 2

which yields a contradiction as p odd.

(ii) If the second term of (2.7) is 1, then t − 1 = t − s and so s = 1, contra-
diction.

(iii) If the third term of (2.7) is 1, then y = z, contradiction.

• Case 5: a = b = 0 and c = d. Again, note that if c = d = 0, then
s and t satisfy two-term S-unit equations, of which there are only finitely
many solutions. This thus implies only finitely many p, since we’d then have
vp(s− t) > 0 by assumption.

Now assume c, d ̸= 0, and note that c, e must necessarily be positive. We
obtain the three term S-unit equation:

s− 1

t− 1
− s− 1

t− 1
t+ s = 1 (2.8)

(i) If the first term of (2.8) is 1, then s = t, contradiction.

(ii) If the second term of (2.8) is 1, then (s − 1)t = −(t − 1) and (s − 1) =

−s(t− 1) which implies st = 1. By a similar argument to the above case
4(i), we have vp(t+ 1) = 0. This implies

e = vp(s− t) = vp(1− t2) = vp(1− t) = c

This implies that we have the following two term S-unit equation:

s− 1

t− 1
− s− t
t− 1

= 1

which implies only finitely many solutions for s−1
t−1 . Therefore, this gives

finitely many t, and thus finitely many p.
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(iii) If s = 1, then x = z, contradiction.

• Case 6: a = b = 0 and c < d. Done analogously to case 4.

Therefore, in each case, we obtain only finitely many valid primes p, which
concludes the proof.

We note that effectively obtaining a list of all possible primes p depends
entirely on the effectiveness of solving the above three term S-unit equations. From
the results of [151], no finite algorithm has been found to determine all possible
solutions, however one can obtain an explicit bound on the number of possible p,
which for a fixed number of terms, is exponential in |S| [151, p. 132].

We are now finally ready to prove Theorem 31:

Proof of Theorem 31. Let C/K be a hyperelliptic curve of genus g given in Rosen-
hain normal form C : y2 = x(x− 1)(x− λ1) · · · (x− λ2g−1) with Weierstrass points
in K. By Theorem 30, C cannot have potentially good reduction at any odd primes
with norm less than 2g. Now assume C has potentially good reduction outside
exactly πK,odd(2g) + 1 odd primes T .

Thus, T must consist of all πK,odd(2g) odd primes with norm below 2g, plus
one additional prime p. Now by Corollary 23, we must have that λ1, λ2, λ1−1, λ2−1

and λ1 − λ2 are all T -units. Therefore, by Lemma 32, there are only finitely many
possible primes p, and thus by either applying Faltings’ theorem [110, p. 25] or
by the finiteness of solutions to T -unit equations, we obtain only finitely many K-
isomorphism classes of hyperelliptic curves with potentially good reduction outside
T .

We do remark that only the Weierstrass points 0, 1, λ1, and λ2 were used in
the proof above, whilst Corollary 23 does include constraints on all the Weierstrass
points λi. Indeed, if we were to use all λi, we would expect to prove a significantly
stronger lower bound for cK(g).

A heuristic argument suggests that if we generalise Lemma 32 where we adjoin
an additional k primes T := S ∪{p1, . . . , pk}, then assuming we don’t encounter any
degenerate solutions, this could yield a potential linear lower bound of g+πK,odd(2g)

for cK(g). It’s reasonable to therefore make the following conjecture:

Conjecture 34. Let K be a number field and g a positive integer. Then any positive
integer k < g, we have cK(g) > πK,odd(2g) + k, and so in particular, cK(g) ≥
g + πK,odd(2g).
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In principle, for any fixed positive integer k < g, one could check all the
necessary cases, and assuming no degeneracy occurs, prove Conjecture 34 for that
value of k, as was shown in Lemma 32 for k = 1. However, besides extending the
case bash analysis for particular small values of k, we do not know at this stage how
to produce such a proof for arbitrary k.

We shall now restrict our attention to the specific case where C is a hyperel-
liptic curve over Q, with all of its Weierstrass points in Q.

2.3 Hyperelliptic curves with rational Weierstrass points

Firstly, although this is already well-known, it’s worth stating the application of
Theorem 30 to the case of rational Weierstrass points:

Corollary 35. Let C/Q be a genus g hyperelliptic curve with rational Weierstrass
points. Then C cannot have potentially good reduction at any odd prime p ≤ 2g.

Remarks.

• We remark that the above is not true for genus 2 curves over Q with non-
rational Weierstrass points. For example the curve y2 = x(x − 1)(x + 1)(x −
i)(x+ i) has minimal discriminant ∆min = −216 and so does have good reduc-
tion at p = 3.

• We note that p being odd is essential here, e.g. the genus 2 curve y2 = x(x−
3)(x−4)(x−16)(x−20) with all rational Weierstrass points has minimal model
y2+(x2+x)y = x5−6x4+3x3+13x2+3x with discriminant ∆min = 3452132172

and so has good reduction at 2!4

• We also note that this only applies to the curve C and not its Jacobian Jac(C).
For example, the genus 2 curve C/Q : y2 = x(x− 1)(x− 2)(x− 9)(x− 18) has
bad reduction at 3, but its Jacobian has good reduction at 3.

Note that this clearly implies that no genus 2 hyperelliptic curve with rational
Weierstrass points has potentially good reduction at 3. This corollary can be applied
to give a short proof of the following result from Box and Le Fourn [59], which was
originally proven using a two-dimensional analogue of Baker’s and Runge’s method
applied to the Siegel variety A2(2) (i.e. the moduli space of principally polarised
abelian surfaces with full 2-torsion). We also remark that similar statements have
been shown by Dabrowski and Sadek (e.g. see [134, Theorem 4.1]).

4It’s reasonable to conjecture that there may exist similar examples for higher genus hyperelliptic
curves with potential good reduction at 2, although a quick computer search failed to find such
explicit examples for genus 3.
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Corollary 36. [59, Corollary 2] There is no genus 2 hyperelliptic curve C over Q
such that all Weierstrass points of C are rational and C has potentially good reduction
at all but one of the primes.

Proof. As shown above, such a curve C cannot have potentially good reduction
at 3. Now assume for contradiction such a curve has potentially good reduction
outside 3. By applying Corollary 23, we can now effectively compute all genus
2 curves C/Q with rational Weierstrass points having potentially good reduction
outside S = {2, 3}.

By Corollary 23, we proceed by solving the S-unit equation x+ y = 1, where
x, y ∈ O×

S . These solutions can be computed using existing algorithms, such as those
described by von Känel and Matschke [435]. Using their Sage [342] implementation,
we obtained the following 21 solutions for x ∈ O×

S :

−8, −3, −2, −1, −1
2 , −

1
3 , −

1
8 ,

1
9 ,

1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

8
9 ,

9
8 ,

4
3 ,

3
2 , 2, 3, 4, 9,

and can conclude that any such curve must be Q-isomorphic to one of the following
two curves:

C1 : y
2 = x(x− 1)(x− 2)(x− 3)(x− 4), with ∆min = 21834

C2 : y
2 = x(x− 2)(x− 3)(x− 4)(x− 6), with ∆min = 21436

We can use Theorem 14 to verify that neither of the two curves above have
potential good reduction at 2. Indeed, computing (J5

2/J10, J
5
4/J

2
10, J

5
6/J

3
10, J

5
8/J

4
10)

for each curve, we find that 2 divides at least one of the denominators, thus showing
both C1 and C2 do not have potential good reduction at 2. This gives us our
contradiction, and thus the result holds.

We can go one step further and prove a similar result for genus 3 hyperelliptic
curves:

Corollary 37. There is no genus 3 hyperelliptic curve C over Q such that all Weier-
strass points of C are rational and C has potentially good reduction at all but two of
the primes.

Proof. Again, we have that C cannot have potential good reduction at 3 and 5.
Assume for contradiction such a curve has potential good reduction outside {3, 5}.
As before, we can effectively compute all such curves by solving the S-unit equation
x + y = 1, where x, y ∈ O×

S for S = {2, 3, 5}. This time, we obtain 99 solutions for
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x ∈ O×
S , and can conclude that any such curve must be Q-isomorphic to one of the

following ten curves:

C1 : y
2 = x(x− 1)(x− 2)(x− 3)(x− 4)(x− 5)(x− 6), with ∆min = 23631054

C2 : y
2 = x(x− 2)(x− 3)(x− 4)(x− 5)(x− 6)(x− 8), with ∆min = 24431254

C3 : y
2 = x(x− 1)(x− 3)(x− 4)(x− 5)(x− 6)(x− 9), with ∆min = 24031656

C4 : y
2 = x(x− 1)(x− 2)(x− 4)(x− 5)(x− 6)(x− 10), with ∆min = 24631258

C5 : y
2 = x(x− 2)(x− 4)(x− 5)(x− 6)(x− 8)(x− 10), with ∆min = 23031056

C6 : y
2 = x(x− 1)(x− 4)(x− 5)(x− 6)(x− 9)(x− 10), with ∆min = 242316510

C7 : y
2 = x(x− 2)(x− 3)(x− 4)(x− 6)(x− 8)(x− 12), with ∆min = 23231654

C8 : y
2 = x(x− 2)(x− 4)(x− 5)(x− 8)(x− 10)(x− 20), with ∆min = 236316512

C9 : y
2 = x(x− 6)(x− 10)(x− 12)(x− 15)(x− 18)(x− 30), with ∆min = 23238512

C10 : y
2 = x(x− 4)(x− 6)(x− 9)(x− 24)(x− 36)(x− 54), with ∆min = 240320516

Unlike genus 2 curves, we do not currently have a set of invariants analogous
to the Igusa invariants for genus 3 hyperelliptic curves from which potential good
reduction at 2 can be read off.

However, in principle, one can directly check whether any particular curve
C/K has (potential) good reduction at p by computing a stable reduction model C
for C/K, and counting the components of positive genus for C. In principle, this
can always be done for an arbitrary curve C/K by repeatedly applying a suitable
sequence of blow-ups, normalisations, and blow-downs, although in practice this is
often a highly non-trivial computation, e.g. see Harris–Morrison [204, Chapter 3.C]
for an outline of such an algorithm.

For our purposes, we used the MCLF [341] Sage package to compute stable
reduction models for each of the 10 curves Ci/Q above.5 In each case, we found that
C contained three positive genus components (each of genus 1), thus proving that
Ci/Q does not have potential good reduction at 2 for each i = 1, . . . , 10.6

Finally, whilst we acknowledge no effective height bounds are known for solu-
tions to general term S-unit equations, in principle one can give an effective bound on
the number of possible primes p in Lemma 32. By nothing more than computational
evidence, we make the following conjecture:

5We note that similar functionality also exists in Magma, using the RegularModel function,
however Magma was unable to compute regular models at p = 2 for some of the above curves.

6We furthermore checked that the graph of components of C contained a cycle for some of our
curves C/Q, thereby proving in these cases that Jac(C) does not have potential good reduction at
2 (e.g. see [55, Remark 1.4]).
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Conjecture. Let C/Q be a hyperelliptic curve with rational Weierstrass points.

1. If C has genus 2 and has geometric bad reduction exactly at {2, 3, p} for some
prime p ≥ 5, then p ∈ {5, 7, 11, 13, 17, 73}.

2. C has genus 3 and has geometric bad reduction exactly at {2, 3, 5, p} for some
prime p ≥ 7, then p ∈ {7, 11, 13, 17, 19, 23, 29, 41, 43, 53}.

2.4 Upper bounds for cK(g)

It’s worth mentioning some of the results we can obtain regarding upper bounds for
cK(g). Most of the more interesting results are conditional on various conjectures
concerning the distribution of primes.

For a given number field K, we recall that a k-tuple (h1, . . . , hk) of distinct
elements in OK is admissible if, for every prime p in K, the set {h1, . . . , hk} does not
consist of all residues mod p. We also say that an element x ∈ OK is prime if the
principal ideal generated by x is prime. We now first recall the Hardy-Littlewood
prime k-tuples conjecture for K [203]:

Conjecture. (Hardy-Littlewood prime k-tuples conjecture for number fields) Let K
be a number field and (h1, . . . , hk) an admissible k-tuple in OK . Then there exist
infinitely many x ∈ OK such that each of x+ h1, . . . , x+ hk is prime.

Notably, one can therefore prove the following result, conditional on the as-
sumption of the above conjecture.

Theorem 38. Let K be a number field of degree n. Under the assumption of the
Hardy-Littlewood prime k-tuples conjecture for K, then cK(g) ≤ 2g − 1 + nπ(2g).

Proof. For a given genus g ≥ 2, we consider the following admissible prime 2g − 1

tuple (h1, . . . , h2g−1):

(0, (2g)!, 2 · (2g)!, 3 · (2g)!, . . . , (2g − 2) · (2g)!) (2.9)

Now by the prime k-tuples conjecture, there exist infinitely many primes p
in K such that p+ h1, . . . , p+ h2g−1 are all prime. Thus, for each such prime p, we
can construct the genus g hyperelliptic curve Cp/K as

Cp : y
2 = x(x− p− h1)(x− p− h2) · · · (x− p− h2g−1)(x− 2p− 2g · (2g)!).

As the only possible primes of bad reduction are those which divide the
differences between Weierstrass points, it’s clear that the only possible primes of



Dra
ft

Draft of 0:21 am, Wednesday, November 13, 2024 59

bad reduction are either the primes p + h1, . . . , p + h2g−1 or the primes dividing
(2g)!, of which there are at most nπ(2g).

This therefore yields the existence of infinitely many genus g hyperelliptic
curves C/K satisfying #Bodd(C/K) ≤ 2g − 1 + nπ(2g). Furthermore, as this yields
infinitely many different sets of bad primes Bodd(C/K), this gives rise to infinitely
many K-isomorphism classes of such curves. This therefore yields the conditional
bound cK(g) ≤ 2g − 1 + nπ(2g).

Whilst the above result gives a conditional linear upper bound for cK(g), it’s
worth noting that we can also give an unconditional linearithmic bound for cK(g).

Theorem 39. Let K be a number field of degree n. We have cK(g) ≤ ( 2
log 2 +

o(1))ng log g.

Proof. Let (h1, . . . , h2g−1) be the same admissible prime tuple as given in (2.9).
We shall apply the result of Murty and Vatwani [303, p. 183], which asserts the
existence of infinitely many integers k such that (k+ h1) · · · (k+ h2g−1) has at most
( 2
log 2 + o(1))g log g prime divisors in Q. By therefore considering the set of genus g

hyperelliptic curves

Ck : y
2 = x(x− k − h1) · · · (x− k − h2g)(x− 2k − 2g · (2g)!)

this yields the desired upper bound.

It’s tempting to ask how far we can push our conditional upper bounds.
Whilst a sublinear bound is almost certainly out of reach, we can sharpen the
above theorem if we furthermore assume the following generalisation to the Hardy-
Littlewood prime k-tuples conjecture. This goes by various different names, often
called Schinzel’s hypothesis H [347], generalised Dickson’s conjecture, or the gener-
alised Bunyakovsky conjecture.

Conjecture. (Schinzel’s hypothesis H for number fields) Let K be a number field and
(f1, . . . , fk) a collection of k distinct nonconstant irreducible polynomials in OK [x],
such that for all primes p in K, there exists an n ∈ OK where vp(f1(n)f2(n) · · · fk(n)) =
0. There there exist infinitely many x ∈ OK such that each of f1(x), . . . , fk(x) is
prime.

Under the assumption of the above conjecture, we can prove the following
sharpened upper bound for cK(g).
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Theorem 40. Let K be a number field of degree n. Assuming Schinzel’s hypothesis
H for K, we have that

cK(g) ≤
∑︂

1≤d<g, or
d<2g, d even

n

[K(ζd) : Q(ζd)]
+ 1 + nπ(2g) (2.10)

Proof. For brevity, we shall denote α := (2g)!. The idea is to consider, for infinitely
many k, genus g hyperelliptic curves of the form

Ck : y
2 = x(x−1)(x+1)(x−αk)(x+αk)(x−(αk)2)(x+(αk)2) · · · (x−(αk)g−1)(x+(αk)g−1)

We note that the only possible primes of bad reduction are those which divide 2αk,
(αk)d−1, or (αk)d+1 for some d < g. Under the assumption of Schinzel’s hypothesis
H, it thus suffices to count the number of irreducible factors of (αx)d ± 1 over K.

We know that (αx)d ± 1 factorises over Q as

(αx)d − 1 =
∏︂
i|d

Φi(αx), and (αx)d + 1 =
∏︂
i|2d
i∤d

Φi(αx),

where Φi(x) denotes the i-th cyclotomic polynomial. Furthermore, the factorisation
of Φi(x) over K can be given as Φi(αx) = fi,1(αx) · · · fi,ℓi(αx) where each fi,j(x)

has degree [K(ζi) : K], and hence ℓi =
φ(i)

[K(ζi):K] =
n

[K(ζd):Q(ζd)]
by tower law.

Now Schinzel’s hypothesis H states that we can find infinitely many primes
p in K such that fi,j(αp) are all prime, noting that the factor of α ensures we have
no local obstructions to primality. By thus counting the primes dividing (αp)d ± 1,
the prime p, and the primes dividing 2α, this therefore yields the conditional bound

cK(g) ≤
∑︂

1≤d<g, or
d<2g, d even

n

[K(ζd) : Q(ζd)]
+ 1 + nπ(2g)

which yields our result.

Whilst the above construction does not necessarily improve upon the result
given in Theorem 38 for all fields K, one can obtain the following two corollaries:

Corollary 41. Let K be a primitive abelian number field of (necessarily prime)
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degree n and conductor fK . Then assuming Schinzel’s hypothesis H for K, we have

cK(g) ≤

⎧⎪⎨⎪⎩
3
2g
(︁
1 + n−1

fK

)︁
+ 1 + nπ(2g) if fK odd,

3
2g
(︁
1 + 4(n−1)

3fK

)︁
+ 1 + nπ(2g) if fK even.

Proof. Since K has conductor fK , this implies [K(ζd) : Q(ζd)] = 1 if fK divides d,
and [K(ζd) : Q(ζd)] = n otherwise, noting that K is primitive. We can therefore
easily evaluate the bound given in (2.10) as

cK(g) ≤
∑︂

1≤d<g, or
d<2g, d even

fK |d

n +
∑︂

1≤d<g, or
d<2g, d even

fK ∤d

1 + 1 + nπ(2g)

If fK is odd, this evaluates to

cK(g) ≤ 3

2

gn

fK
+
(︁3
2
g − 3

2

g

fK

)︁
+ 1 + nπ(2g)

whilst if fK is even, this yields

cK(g) ≤ 2gn

fK
+
(︁3
2
g − 2g

fK

)︁
+ 1 + nπ(2g)

which proves the result.

Corollary 42. Let K be a number field such that its maximal abelian subfield is Q.
Then assuming Schinzel’s hypothesis H for K, we have cK(g) ≤ 3

2g + nπ(2g).

Proof. The above condition implies that K∩Q(ζd) = Q for all d, and thus the bound
given in (2.10) implies our result.

Finally, it’s worth mentioning that the bound given in (2.10) does not nec-
essarily represent the optimal conditional bound for all genera g, even over Q. For
example, under the assumption of Schinzel’s hypothesis H, there exist infinitely many
integers k such that k, αk−1, αk+1, (αk)2+1, (αk)2−2(αk)−1, and (αk)2−2(αk)+1

are all prime, where α := 7!.
From this, one can therefore conditionally construct infinitely many genus 5
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curves C/Q of the form:

Ck : y
2 = x ·

(︁
x− (αk)2(αk − 1)(αk + 1)

)︁
·
(︁
x+ (αk)2(αk − 1)(αk + 1)

)︁
·
(︁
x− αk(αk − 1)(αk + 1)

)︁
·
(︁
x+ αk(αk − 1)(αk + 1)

)︁
·
(︁
x− (αk − 1)(αk + 1)

)︁
·
(︁
x+ (αk − 1)(αk + 1)

)︁
·
(︁
x− αk(αk − 1)2

)︁
·
(︁
x+ αk(αk − 1)2

)︁
·
(︁
x− αk(αk + 1)2

)︁
·
(︁
x+ αk(αk + 1)2

)︁
which yields a conditional bound of cQ(5) ≤ 10, and thus one better than the bound
of 11 given by (2.10).

Besides the above example, we should mention however that we haven’t found
any better examples for higher genera over Q, noting that a naive computational
search quickly becomes unmanageable for large genus hyperelliptic curves.
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Chapter 3

Elliptic and hyperelliptic curves
over Zℓ-cyclotomic extensions

Whilst Falting’s proof laid the Shafarevich conjecture to rest for curves over number
fields, one can ask whether Shafarevich holds over certain larger subfields of Q. In
this chapter, we prove that an analogous version of the Shafarevich conjecture does
not hold over Zℓ-cyclotomic extensions of number fields K. In particular, we show
that the S-unit equation ε+ δ = 1, with ε, δ ∈ O×

Q∞,ℓ,S
has infinitely many solutions

for ℓ ∈ {2, 3, 5, 7}, where S consists only of the totally ramified prime above ℓ.
We use this to give various explicit constructions of infinite families of elliptic and
hyperelliptic curves defined over Q∞,ℓ with good reduction away from 2 and ℓ.

This chapter was written jointly with Samir Siksek and is due to be published
in Algebra & Number Theory [381]. Compared to the preprint version, we have added
some further remarks in Sections 3.4, 3.5 and 3.7, added a new Lemma 70 and added
a new Section 3.10 investigating the possible endomorphism rings arising from our
constructions.

Let ℓ be a rational prime and r a positive integer. Write Qr,ℓ for the unique
degree ℓr totally real subfield of ∪∞n=1Q(µn), where µn denotes the set of ℓn-th roots
of 1. We let Q∞,ℓ = ∪rQr,ℓ; this is the Zℓ-cyclotomic extension of Q, and Qr,ℓ is called
the r-th layer of Q∞,ℓ. Now let K be a number field, and write K∞,ℓ = K ·Q∞,ℓ and
Kr,ℓ = K ·Qr,ℓ. To ease notation we shall sometimes write K∞ for K∞,ℓ. We write
O∞ (or O∞,ℓ) for the integers in K∞ (i.e. the integral closure of Z in K∞), and write
Or (or Or,ℓ) for the integers of Kr,ℓ. Clearly O∞,ℓ = ∪rOr,ℓ. The motivation for this
chapter is a series of conjectures and theorems that suggest that the arithmetic of
curves (respectively abelian varieties) over K∞ is similar to the arithmetic of curves
(respectively abelian varieties) over K. One of these is the following conjecture of

63
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Mazur [285], which in essence says that the Mordell–Weil theorem continues to hold
over K∞.

Conjecture (Mazur). Let A/K∞ be an abelian variety. Then A(K∞) is finitely
generated.

Another is a conjecture of Parshin and Zarhin [452, page 91] which is the
analogue of Faltings’ theorem (Mordell conjecture) over K∞.

Conjecture (Parshin and Zarhin). Let X/K∞ be a curve of genus ≥ 2. Then
X(K∞) is finite.

A third is the following theorem of Zarhin [453, Corollary 4.2], which as-
serts that the Tate homomorphism conjecture (also a theorem of Faltings [153] over
number fields) continues to hold over K∞.

Theorem (Zarhin). Let A, B be abelian varieties defined over K∞,ℓ, and denote
their respective ℓ-adic Tate modules by Tℓ(A), Tℓ(B).Then the natural embedding

HomK∞(A,B)⊗ Zℓ ↪→ HomGal(K∞/K∞)(Tℓ(A), Tℓ(B))

is a bijection.

Mazur’s conjecture is now known to hold for certain elliptic curves. For
example, if E is an elliptic curve defined over Q then E(Q∞) is finitely generated
thanks to theorems of Kato, Ribet and Rohrlich [188, Theorem 1.5]. From this one
can deduce [188, Theorem 1.24] that X(Q∞) is finite for curves X/Q of genus ≥ 2

equipped with a non-constant morphism to an elliptic curve X → E defined over Q.
We also note that the conjecture of Parshin and Zarhin follows easily from Mazur’s
conjecture and Faltings’ theorem. Indeed, using the Abel-Jacobi map we can deduce
from Mazur’s conjecture that X(K∞) = X(Kr) for suitably large r, and we know
that X(Kr) is finite by Faltings’ theorem.

It is natural to wonder whether other standard conjectures and theorems
concerning the arithmetic of curves and abelian varieties over number fields continue
to hold over K∞. The purpose of this chapter is to give counterexamples to potential
generalizations of certain theorems of Siegel–Mahler and Shafarevich to K∞. A
classical theorem of Siegel [377] and Mahler [271] (e.g. see [1, Theorem 0.2.8]) asserts
that (P1\{0, 1,∞})(OK,S) is finite for any number fieldK and any finite set of primes
S (modern proofs can be found in [248], [262], [323]).

We show that the corresponding statement over Q∞,ℓ is false, at least for
ℓ = 2, 3, 5, 7. We denote by υℓ the totally ramified prime of Q∞,ℓ above ℓ (the
precise meaning of primes in infinite extensions of Q is clarified in Section 3.1).
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Theorem 43. Let ℓ = 2, 3, 5 or 7. Let

S =

⎧⎨⎩{υℓ} if ℓ = 2, 5, 7

∅ if ℓ = 3.
(3.1)

Let OS denote the S-integers of Q∞,ℓ. Then (P1 \ {0, 1,∞})(OS) is infinite.

Remarks.

• There have been several recent papers showing that P1 \ {0, 1,∞} and other
punctured curves have no or few integral points over various infinite families of
number fields e.g. [171], [172], [173], [380], [418]. In particular, it is shown in
[171] that (P1 \ {0, 1,∞})(O∞) = ∅ for ℓ ̸= 3. The obstruction given in [171]
for ℓ ̸= 3 is local in nature. In essence, Theorem 43 complements this result,
showing that we can obtain infinitely many integral or S-integral points in the
absence of the local obstruction. The proof of Theorem 43 is constructive.

• Theorem 43 strongly suggests that the conjecture of Parshin and Zarhin does
not admit a straightforward generalization to the broader context of integral
points on hyperbolic curves. We also remark that there is a critical difference
over K∞ between complete curves X of genus ≥ 2 and P1 \ {0, 1,∞}. For
the former, the group of K∞-points of the Jacobian is expected to be finitely
generated by Mazur’s conjecture. For the latter, the analogue of the Jacobian
is the generalized Jacobian which is Gm ×Gm, and its group of K∞-points is
(Gm ×Gm)(K∞) = O×

∞ ×O×
∞, which is infinitely generated.

Variants of the proof of Theorem 43 give the following.

Theorem 44. Let ℓ = 2, 3 or 5. Let S = {υℓ} and write OS for the S-integers of
Q∞,ℓ. Let

k ∈

⎧⎨⎩{1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 24} if ℓ = 2, 3,

{1, 2, 4} if ℓ = 5.

Then (P1 \ {0, k,∞})(OS) is infinite.

Let ζℓn denote a primitive ℓn-th root of 1, and write Ωn,ℓ = Q(ζℓn), and
Ω+
n,ℓ = Q(ζℓn + ζ−1

ℓn ). Let

Ω∞,ℓ =

∞⋃︂
n=1

Ωn,ℓ, Ω+
∞,ℓ =

∞⋃︂
n=1

Ω+
n,ℓ.
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We note the inclusions Ω∞,ℓ ⊃ Ω+
∞,ℓ ⊃ Q∞,ℓ. Nagell [304, page 181] points out

that 1 + ζℓn is a unit for ℓ odd, and that therefore the equation ε + δ = 1 has the
solution ε = −ζℓn , δ = 1+ζℓn in units belonging to Ωn,ℓ. It follows straightforwardly
from this (see the beginning of Section 3.2) that P1 \ {0, 1,∞} has infinitely many
integral points defined over Ω∞,ℓ. Many of our constructions of S-integral points
on P1 \ {0, 1,∞} apply in greater generality to the fields Ω∞,ℓ and Ω+

∞,ℓ, where the
statements are in fact much cleaner. For example, we prove the following theorem.

Theorem 45. Let ℓ be an odd prime. Then (P1 \ {0, 1,∞})(O(Ω+
∞,ℓ)) is infinite.

Here O(Ω+
∞,ℓ) denotes the integers of Ω+

∞,ℓ.

Shafarevich’s conjecture asserts that for a number field K, a dimension n,
a degree d, and a finite set of places S, there are only finitely many isomorphism
classes of polarized abelian varieties defined over K of dimension n with degree d
polarization and with good reduction away from S. This conjecture was proved
by Shafarevich for elliptic curves (i.e. n = 1) and by Faltings [153] in complete
generality. If we replace K by Q∞,ℓ then the Shafarevich conjecture no longer holds.
For example, consider

Eε : εY 2 = X3 −X

where ε ∈ O×
∞. This elliptic curve has good reduction away from the primes above

2. Moreover, Eε, Eδ are isomorphic over Q∞ if and only if ε/δ is a square in O×
∞. As

O×
∞/(O×

∞)2 is infinite, we deduce that there are infinitely many isomorphism classes
of elliptic curves over Q∞ with good reduction away from the primes above 2. It is
however natural to wonder if a sufficiently weakened version of the Shafarevich con-
jecture continues to hold over Q∞. Indeed, the curves Eε in the above construction
form a single Q-isomorphism class. This it is natural to ask if, for suitable ℓ and
finite set of primes S, does the set of elliptic curves over Q∞ with good reduction
outside S form infinitely many Q-isomorphism classes?

Theorem 46. Let ℓ = 2, 3, 5, or 7. Let S be given by (3.1) and let S′ = S ∪ {υ2}
where υ2 is the unique prime of Q∞,ℓ above 2. Then, there are infinitely many Q-
isomorphism classes of elliptic curves defined over Q∞,ℓ with good reduction away
from S′ and with full 2-torsion in Q∞,ℓ. Moreover, these elliptic curves form in-
finitely many distinct Q∞,ℓ-isogeny classes.

Remarks

• By [171, Lemma 2.1], a rational prime p ̸= ℓ is inert in Q∞,ℓ if and only if
pℓ−1 ̸≡ 1 (mod ℓ2). It follows from this that 2 is inert in Q∞,ℓ for ℓ = 3, 5, 7
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and 11.

• Faltings’ proof [153] of the Mordell conjecture can be considered to have three
major steps. In the first step, Faltings proves the Tate homomorphism con-
jecture. In the second step, Faltings derives the Shafarevich conjecture from
the Tate homomorphism conjecture, and in the final step Faltings uses the
‘Parshin trick’ to deduce the Mordell conjecture from the Shafarevich conjec-
ture. Although Zarhin has extended the Tate homomorphism conjecture to
K∞, Theorem 46 suggests that there is no plausible strategy for proving the
conjecture of Parshin and Zarhin by mimicking Faltings’ proof of the Mordell
conjecture.

It is natural to wonder if the isogeny classes appearing in the proof of Theo-
rem 46 are finite or infinite. Rather reassuringly they turn out to be finite.

Theorem 47. Let E be an elliptic curve over Q∞,ℓ without potential complex mul-
tiplication. Then the Q∞,ℓ-isogeny class of E is finite.

The original version of Shafarevich’s conjecture [437], (also proved by Faltings
[153, Korollar 1]) states that for a given number field K, a genus g and a finite set
of places S, there are only finitely many isomorphism classes of genus g curves C/K
with good reduction away from S. Again this statement becomes false if we replace
K by Q∞,ℓ, for any prime ℓ.

Theorem 48. Let g ≥ 2 and let ℓ = 3, 5, 7, 11 or 13. There are infinitely many
Q-isomorphism classes of genus g hyperelliptic curves over Q∞,ℓ with good reduction
away from {υ2, υℓ}.

Theorem 49. Let ℓ ≥ 11 be an odd prime and let g = ⌊ ℓ−3
4 ⌋. There are infinitely

many Q-isomorphism classes of genus g hyperelliptic curves over Q∞,ℓ with good
reduction away from {υ2, υℓ}. Moreover, if

ℓ ∈ {11, 23, 59, 107, 167, 263, 347, 359},

then the Jacobians of these curves form infinitely many distinct Q∞,ℓ-isogeny classes.

The chapter is structured as follows. In Section 3.1 we recall basic results on
units and S-units of the cyclotomic field Q(ζℓn). In Sections 3.2–3.5 we employ iden-
tities between cyclotomic polynomials to give constructive proofs of Theorems 43, 44
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and 45. Section 3.6 gives a proof of Theorem 47, making use of a deep theorem of
Kato to control the Q∞,ℓ-points on certain modular curves. Section 3.7 uses the in-
tegral and S-integral points on P1 \ {0, 1,∞} furnished by Theorem 43 to construct
infinite families of elliptic curves over Q∞,ℓ for ℓ = 2, 3, 5, 7, with good reduction
away from {υ2, υℓ}, which are used to give a proof of Theorem 46. Sections 3.8
and 3.9 give proofs of Theorems 48 and 49, making use of the relation, due to Kum-
mer, between the class number of Q(ζℓn)

+, and the index of cyclotomic units in the
full group of units.

We are grateful to Minhyong Kim for drawing our attention to the conjecture
of Parshin and Zarhin, and to Alain Kraus and David Loeffler for useful discussions.
We thank the referee for many useful comments.

3.1 Units and S-units of Q(ζ)

Let K be a subfield of Q. We denote the integers of K (i.e. the integral closure of Z
in K) by O(K). Let p be a rational prime. By a prime of K above p we mean a
map υ : K → Q ∪ {∞} satisfying the following

• υ(p) = 1, υ(0) =∞;

• υ|K× : K× → Q is a homomorphism;

• υ(1 + b) = 0 whenever υ(b) > 0.

Suppose K = ∪Kn where K0 ⊂ K1 ⊂ K2 ⊂ · · · is a tower of number fields (i.e.
finite extensions of Q), with K0 = Q. One sees that the primes of K above p are in
1–1 correspondence with sequences {pn} where

• pn is a prime ideal of O(Kn);

• pn+1 | pnO(Kn+1);

• p0 = pZ.

Indeed, from υ one obtains the corresponding sequence {pn} via the formula pn =

{α ∈ O(Kn) : υ(α) > 0}. Given a sequence {pn}, we can recover the corresponding
υ by letting

υ(α) = ordpn(α)/ ordpn(p)

whenever α ∈ K×
n . Given a finite set of primes S of K, we define the S-integers of

K to be the set O(K,S) of all α ∈ K such that υ(α) ≥ 0 for every prime υ /∈ S.
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We let O(K,S)× be the unit group of O(K,S); this is precisely the set of α ∈ K×

such that υ(α) = 0 for every prime υ /∈ S. If S = ∅ then O(K,S) = O(K) are the
integers of K and O(K,S)× = O(K)× are the units of K.

Fix a rational prime ℓ. For a positive integer n, let ζℓn denote a primitive
ℓn-th root of 1 which is chosen so that

ζℓℓn+1 = ζℓn .

Let Ωn,ℓ = Q(ζℓn); this has degree φ(ℓn) where φ is the Euler totient function. Let

Ω∞,ℓ =
∞⋃︂
n=1

Ωn,ℓ.

The prime ℓ is totally ramified in each Ωn,ℓ, and we denote by λn the unique prime
ideal of O(Ωn,ℓ) above ℓ. Thus

ℓ · O(Ωn,ℓ) = λφ(ℓ
n)

n . (3.2)

We write υℓ for the unique prime of Ω∞,ℓ above ℓ. For now fix n ≥ 1 if ℓ ̸= 2 and n ≥ 2

if ℓ = 2. We recall that λn = (1− ζℓn) ·O(Ωn,ℓ). If ℓ ∤ s then (1− ζsℓn) ·O(Ωn,ℓ) = λn;
we can see this by applying the automorphism ζℓn ↦→ ζsℓn to (3.2).

Lemma 50. Let s be an integer and let t = ordℓ(s). Suppose t < n. Then

(1− ζsℓn) · O(Ωn,ℓ) = λℓ
t

n .

Moreover,

υℓ(1− ζsℓn) =
1

ℓn−1−t(ℓ− 1)
.

Proof. Write ζ = ζℓn . Note that ζs is a primitive ℓn−t-th root of 1. Thus

(1− ζs) · O(Ωn−t,ℓ) = λn−t.

As ℓ is totally ramified in Ωn,ℓ, we have

(1− ζs) · O(Ωn,ℓ) = λ
[Ωn,ℓ : Ωn−t,ℓ]
n = λℓ

t

n .

For the final part of the lemma,

υℓ(1− ζs) =
ordλn(1− ζs)

ordλn(ℓ)
=

ℓt

φ(ℓn)
=

1

ℓn−1−t(ℓ− 1)
.
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3.1.1 Cyclotomic units and S-units

Write Vn for the subgroup of O(Ωn, {υℓ})× generated by{︂
±ζℓn , 1− ζkℓn : 1 ≤ k < ℓn

}︂
and let

Cn = Vn ∩ O(Ωn)×.

The group Cn is called [439, Chapter 8] the group of cyclotomic units in Ωn. We
will often find it more convenient to work with the group Vn.

Lemma 51. The abelian group Vn/⟨±ζℓn⟩ is free with basis{︂
1− ζkℓn : 1 ≤ k < ℓn/2, ℓ ∤ k

}︂
. (3.3)

Proof. The torsion subgroup of Vn is the torsion subgroup of Ω×
n which is ⟨±ζℓn⟩.

Thus Vn/⟨±ζℓn⟩ is torsion free. By definition of Vn, the group Vn/⟨±ζℓn⟩ is generated
by 1− ζkℓn with ℓn ∤ k. Write k = ℓrd with ℓ ∤ d; thus r < n. Suppose r ≥ 1. Then,

1− ζkℓn = 1− ζℓrdℓn

=
ℓr−1∏︂
i=0

(1− ζdℓnζiℓr) using 1−Xℓr =
ℓr−1∏︂
i=0

(1− ζiℓrX)

=
ℓ−1∏︂
i=0

(1− ζd+iℓn−r

ℓn ).

It follows that Vn/⟨±ζℓn⟩ is generated by 1 − ζkℓn with ℓ ∤ k. If ℓn/2 < k < ℓn and
ℓ ∤ k then

1− ζkℓn = −ζkℓn(1− ζℓ
n−k
ℓn ). (3.4)

Thus (3.3) certainly generates Vn/⟨±ζnℓ ⟩. Note that (3.3) has cardinality φ(ℓn)/2

where φ is the Euler totient function. It therefore suffices to show that Vn has rank
φ(ℓn)/2. A well-known theorem [439, Theorem 8.3] states that Cn has finite index
in O(Ωn)× and thus, by Dirichlet’s unit theorem, Cn has rank −1 + φ(ℓn)/2. We
note that Cn is the kernel of the surjective homomorphism Vn → Z, sending µ to
ordλn(µ). Thus Vn has rank φ(ℓn)/2 completing the proof.
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Lemma 52. Let n ≥ 2 if ℓ ̸= 2 and n ≥ 3 if ℓ = 2. Then Vn−1 ⊂ Vn. Moreover,∏︂
1≤k<ℓn/2

ℓ∤k

(1− ζkℓn)ck ∈ ⟨±ζℓn , Vn−1⟩

if and only if ck = cm whenever k ≡ m (mod ℓn−1).

Proof. The group Vn−1 is generated, modulo roots of unity, by 1− ζdℓn−1 with ℓ ∤ d.
By the proof of Lemma 51,

1− ζdℓn−1 = 1− ζℓdℓn =
ℓ−1∏︂
i=0

(1− ζd+iℓn−1

ℓn ).

The lemma follows from Lemma 51.

Given a ∈ Zℓ, it makes sense to reduce a modulo ℓn and therefore it makes
sense to write ζaℓn . We write {a}n for the unique integer satisfying

0 ≤ {a}n < ℓn/2, {a}n ≡ ±a (mod ℓn).

Lemma 53. Let a1, . . . , ar ∈ Zℓ and c1, . . . , cr ∈ Z. Suppose

(i) c1 ̸= 0.

(ii) a1 ̸≡ 0 (mod ℓ).

(iii) a1 ̸= ±a2,±a3, · · · ± ar (mod ℓn).

Write
εn =

∏︂
1≤i≤r

(1− ζaiℓn)
ci . (3.5)

Then, εn /∈ ⟨±ζℓn , Vn−1⟩ for all sufficiently large n.

Proof. If aj ≡ 0 (mod ℓ) then (1 − ζajℓn ) ∈ Vn−1. We may therefore suppose aj ̸≡ 0

(mod ℓ) for all j. Write

δn =
∏︂

1≤i≤r

(︂
1− ζ{ai}nℓn

)︂ci
.

In view of the identity (3.4) it will be sufficient to show that δn /∈ ⟨±ζℓn , Vn−1⟩ for n
sufficiently large. Also, in view of Lemma 52, it is sufficient to show for sufficiently
large n that {a1}n ̸≡ {aj}n (mod ℓn) for all 2 ≤ j ≤ n. This is equivalent to
a1 ̸= ±aj for 2 ≤ j ≤ n which is hypothesis (iii). This completes the proof.
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The following corollary easily follows from Lemma 53.

Corollary 54. Let a1, . . . , ar ∈ Zℓ and c1, . . . , cr ∈ Z. Suppose

(i) c1 ≡ 1 (mod 2).

(ii) a1 ̸≡ 0 (mod ℓ).

(iii) a1 ̸= ±a2,±a3, · · · ± ar (mod ℓn).

Let εn be as in (3.5). Then, εn /∈ ⟨±ζℓn , Vn−1, V
2
n ⟩ for all sufficiently large n.

3.1.2 Units and S-units from cyclotomic polynomials

For m ≥ 1, let Φm(X) ∈ Z[X] be the m-th cyclotomic polynomial defined by

Φm(X) =
∏︂

1≤i≤m
(i,m)=1

(X − ζim).

These satisfy the identity [439, Chapter 2]

Xm − 1 =
∏︂
d|m

Φd(X). (3.6)

It follows from the Möbius inversion formula that

Φm(X) =
∏︂
d|m

(Xd − 1)µ(m/d) (3.7)

where µ denotes the Möbius function.

Lemma 55. Let ℓ be a prime and n ≥ 1. Let m ≥ 1, and suppose ℓn ∤ m.

(a) Φm(ζℓn) ∈ Vn ⊆ O(Ωn,ℓ, S)×, where S = {υℓ}.

(b) If m ̸= ℓu for all u ≥ 0, then Φm(ζℓn) ∈ Cn ⊆ O(Ωn,ℓ)×.

Moreover,

υℓ(Φℓt(ζℓn)) =

⎧⎨⎩ 1
ℓn−1(ℓ−1)

t = 0

1
ℓn−t 1 ≤ t ≤ n− 1.

Proof. Let t = ordℓ(m) < n. Observe that Φm(X) | (Xm − 1). Hence Φm(ζℓn) ·
O(Ωn,ℓ) divides (1− ζmℓn) · O(Ωn,ℓ). By Lemma 50 we have (1− ζmℓn) · O(Ωn,ℓ) = λℓ

t

n ,
giving (a).
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For (b), write m = ℓtk where k > 1. Then Φm(X) divides the polynomial
(Xm − 1)/(Xℓt − 1). Therefore Φm(ζℓn) · O(Ωn,ℓ) divides

(1− ζmℓn)
(1− ζℓtℓn)

· O(Ωn,ℓ) =
λℓ

t

n

λℓtn
= 1 · O(Ωn,ℓ).

Thus Φm(ζℓn) is a unit, giving (b).
The final part of the Lemma follows from Lemma 50, and the formulae

Φℓt(X) =

⎧⎨⎩X − 1 t = 0

(Xℓt − 1)/(Xℓt−1 − 1) t ≥ 1.

Lemma 56. Let n ≥ 2 if ℓ ̸= 2 and n ≥ 3 if ℓ = 2. Then Vn/⟨±ζℓn⟩ is free with
basis

{Φm(ζℓn) : 1 ≤ m < ℓn/2, ℓ ∤ m}.

Proof. This follows from Lemma 51 thanks to identities (3.6) and (3.7).

3.2 The S-unit equation over Q(ζℓn)
+

We continue with the notation of the previous section. In particular, let K be a
subfield of Q and S be a finite set of primes of K. Let k be a non-zero rational
integer. We shall make frequent use of the correspondence between elements of
(P1 \ {0, k,∞})(O(K,S)) and the set of solutions to the S-unit equation

ε+ δ = k, ε, δ ∈ O(K,S)×,

sending ε ∈ (P1 \ {0, k,∞})(O(K,S)) to (ε, δ) = (ε, k − ε).
Now, as before, let ℓ be a rational prime and n a positive integer. If ℓ = 2

suppose n ≥ 2. Let ζ = ζℓn , and write Ω+
n,ℓ = Q(ζ +1/ζ) for the index 2 totally real

subfield of Ωn,ℓ. Let

Ω+
∞,ℓ =

∞⋃︂
n=1

Ω+
n,ℓ.

In this section, for suitable S, we produce solutions to S-unit equations over Ω+
∞,ℓ.

As before, Φm denotes the m-th cyclotomic polynomial. It is convenient to
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record the first few Φm:

Φ1 = X − 1, Φ2 = X + 1, Φ3 = X2 +X + 1,

Φ4 = X2 + 1, Φ5 = X4 +X3 +X2 +X + 1,

Φ6 = X2 −X + 1, Φ7 = X6 +X5 +X4 +X3 +X2 +X + 1,

Φ8 = X4 + 1, Φ9 = X6 +X3 + 1, Φ10 = X4 −X3 +X2 −X + 1.

A monic polynomial F ∈ Z[X] having all their roots in the unit disc is called
a Kronecker polynomial. These were studied by Kronecker [253] who proved that
such polynomials have all their non-zero roots on the unit circle. Damianou [120]
further proved that all Kronecker polynomials are of the form Xmf1f2 · · · fk where
each fi(X) is a cyclotomic polynomial.

We know, thanks to Lemma 55, that if F is Kronecker and ℓ is a prime, then
F (ζℓn) ∈ O(Ωn, {υℓ})× for n sufficiently large. We wrote a short computer program
that lists all Kronecker polynomials of degree at most 20 and searches for ternary
relations of the form F − G = kH with F , G, H Kronecker, gcd(F,G,H) = 1

and k is a positive integer. Note that any such relation F − G = kH gives points
εn = F (ζℓn)/H(ζℓn) ∈ (P1 \ {0, k,∞})(O(Ωn, {υℓ})), for n sufficiently large. We
found the following ternary relations between Kronecker polynomials.

Φ2(X)2 − Φ3(X) = X; (3.8)

Φ2(X)2 − Φ4(X) = 2X; (3.9)

Φ2(X)2 − Φ6(X) = 3X; (3.10)

Φ2(X)2 − Φ1(X)2 = 4X; (3.11)

Φ2(X)4 − Φ10(X) = 5XΦ3(X); (3.12)

Φ2
2(X)Φ3(X)− Φ1(X)2Φ6(X) = 6XΦ4(X); (3.13)

Φ7(X)− Φ1(X)6 = 7XΦ6(X)2; (3.14)

Φ2(X)4 − Φ1(X)4 = 8XΦ4(X); (3.15)

Φ2(X)4Φ5(X)− Φ1(X)4Φ10(X) = 10XΦ4(X)3. (3.16)

From the identities (3.6) and (3.7) one easily sees that F (Xk) is Kronecker for any
Kronecker polynomial F and any positive integer k, thus each of the nine identities
above in fact yields an infinite family of identities. We pose the following open
problems:

• Are there ternary linear relations F −G = kH between Kronecker polynomials
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for values of k not equal to 1, 2, 3, 4, 5, 6, 7, 8, or 10?

• Classify all ternary linear relations between Kronecker polynomials.

Lemma 57. Let c : Ωℓ → Ωℓ denote complex conjugation. Let n ≥ 1 and let ζ = ζℓn

be an ℓn-th root of 1. Let m ≥ 1 and suppose ℓn ∤ m. Then

Φm(ζ)
c

Φm(ζ)
=

⎧⎨⎩ζ−φ(m) m ≥ 2

−ζ−1 m = 1.

Proof. Note that ζc = ζ−1. So

Φ1(ζ)
c

Φ1(ζ)
=
ζ−1 − 1

ζ − 1
= −ζ−1,

Φ2(ζ)
c

Φ2(ζ)
=
ζ−1 + 1

ζ + 1
= ζ−1.

Let m ≥ 3. The polynomial Φm is monic of degree φ(m), and its roots are the
primitive m-th roots of 1 which come in distinct pairs η, η−1. Thus the trailing
coefficient is 1. It follows that Xφ(m)Φm(X

−1) is monic and has the same roots as
Φm, therefore

Φm(X) = Xφ(m)Φm(X
−1).

Hence
Φm(ζ)

c

Φm(ζ)
=

Φm(ζ
−1)

Φm(ζ)
= ζ−φ(m).

Lemma 58. Let ℓ be a prime. Let F ∈ Z[X] be a product of powers of cyclotomic
polynomials. Suppose that the exponents of Φ1(X) and Φ2(X) in the factorization
of F are both even. Then F has even degree and, for suitably large n, we have

ζ− deg(F )/2F (ζ) ∈ O(Ω+
n,ℓ, S)

×

where ζ = ζℓn and S = {υℓ}.

Proof. We note that Φm has degree φ(m) which is even for m ≥ 3. It follows from
this that F has even degree. From Lemma 55 we have ζ− deg(F )/2F (ζ) ∈ O(Ωn,ℓ, S)×

for suitably large n. To prove the lemma we need to show that ζ− deg(F )/2F (ζ) is
fixed by complex conjugation. Let G be either Φ2

1, or Φ2
2, or Φm with m ≥ 3. We

claim that ζ− deg(G)/2G(ζ) is fixed by complex conjugation. Since F is a product of
such G, the lemma follows from our claim. The claim is trivially true for G = Φ2

1

and G = Φ2
2, and follows immediately from Lemma 57 for G = Φm with m ≥ 3.
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Lemma 59. Let S = {υℓ}. Let

k ∈ {1, 2, 3, 4, 5, 6, 7, 8, 10}.

Then (P1 \ {0, k,∞})(O(Ω+
∞,ℓ, S)) is infinite.

Proof. The proof makes use of identities (3.8)–(3.16). Each identity has the form
P − Q = kXR where P , Q, and R are super-cyclotomic polynomials. Let n be
sufficiently large so that ζℓn is not a root of PQR, and write

εn =
P (ζℓn)

ζℓnR(ζℓn)
, δn =

−Q(ζℓn)

ζℓnR(ζℓn)
.

From the identity P − Q = kXR we see that εn + δn = k. We note the following
features of the triples (P,Q,R) common to all the identities (3.8)–(3.16):

• In every case, P , Q, R are products of powers of cyclotomic polynomials where
the exponents of Φ1 and Φ2 are both even.

• Write d = deg(P ). Then deg(Q) = d and deg(R) = d − 2. Indeed as super-
cyclotomic polynomials are monic, the relation P −Q = kXR forces P and Q
to have the same degree as soon as k ≥ 2.

We may rewrite εn as

εn =
ζ
−d/2
ℓn P (ζℓn)

ζ
−(d−2)/2
ℓn R(ζℓn)

, δn =
−ζ−d/2ℓn Q(ζℓn)

ζ
−(d−2)/2
ℓn R(ζℓn)

.

By Lemma 58, we have εn, δn ∈ O(Ω+
n,ℓ, S)

× for n suitably large, and therefore εn is
an O(Ω+

∞,, S)-point on P1 \ {0, k,∞}. To complete the proof we need to show that
we obtain infinitely many distinct points as we vary n. We will do this for k = 10.
The other cases are similar. Note that

εn =
Φ2(ζℓn)

4Φ5(ζℓn)

ζℓnΦ4(ζℓn)3
=

(1− ζ2ℓn)7(1− ζ5ℓn)
ζℓn(1− ζℓn)5(1− ζ4ℓn)3

∈ Vn.

To show that we obtain infinitely many distinct εn it is enough to show that εn /∈
Vn−1 for n sufficiently large. This follows by an easy application of Lemma 52; to
illustrate this let ℓ = 5 and suppose εn ∈ Vn−1. Note that 1− ζ55n ∈ Vn−1. It follows
that

(1− ζ5n)−5(1− ζ25n)7(1− ζ45n)−3 ∈ ⟨±ζℓn , Vn−1⟩.

Now in the product on the left the exponent of 1−ζ5n is −5 whereas the exponent of
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1−ζ1+5n−1

5n is 0, contradicting Lemma 52. The proof is similar for ℓ = 2, and for ℓ ̸= 2,
5. It follows that we have infinitely many O(Ω+

∞,ℓ, S)-points on P1 \ {0, 10,∞}.

3.2.1 Proof of Theorem 44 for ℓ = 2 and 3

For ℓ = 2, 3, we have Ω+
∞,ℓ = Q∞,ℓ. Indeed, if ℓ = 2 then Qn,2 = Ω+

n+2,2 and if ℓ = 3

then Qn,3 = Ω+
n+1,3. Therefore Theorem 44 with ℓ = 2 and 3 follows immediately

from Lemma 59 for k ∈ {1, 2, 3, 4, 5, 6, 7, 8, 10}.
Also, if ℓ = 2, then the infinitely many solutions ε + δ = 6 yields infinitely

many solutions for 2ε+ 2δ = 12 and 4ε+ 4δ = 24. And if ℓ = 3, then the infinitely
many solutions ε+ δ = 4 yields infinitely many solutions 3ε+3δ = 12, and similarly
infinitely many solutions ε + δ = 8 yields infinitely many solutions 3ε + 3δ = 24.
This proves Theorem 44 for ℓ = 2, 3 and k ∈ {12, 24}.

3.2.2 Proof of Theorem 43 for ℓ = 2

Theorem 43 for ℓ = 2 is simply a special case of Theorem 44.

3.3 The unit equation over Q(ζℓn)
+

For roots of unity α, β, we let

E(α, β) =
α2 + α−2

(αβ−1 + α−1β) (αβ + α−1β−1)
=

Φ8(α)

Φ4(αβ)Φ4(α/β)
,

F (α, β) =
β2 + β−2

(αβ−1 + α−1β) (αβ + α−1β−1)
=

Φ8(β)

Φ4(αβ)Φ4(β/α)
.

We easily check that
E(α, β) + F (α, β) = 1. (3.17)

Lemma 60. Suppose ℓ is odd and n ≥ 1. Let ζ = ζℓn. Let i, j be integers satisfying
i, j, i+ j, i− j ̸≡ 0 (mod ℓn). Then E(ζi, ζj), F (ζi, ζj) ∈ O(Ω+

n,ℓ)
×, and satisfy the

unit equation
ε+ δ = 1, ε, δ ∈ O(Ω+

n,ℓ)
×. (3.18)

Moreover,

υℓ(E(ζi, ζj)− F (ζi, ζj)) = ℓordℓ(i+j) + ℓordℓ(i−j)

ℓn−1(ℓ− 1)
(3.19)

Proof. It is clear that E(ζi, ζj), F (ζi, ζj) are fixed by complex conjugation ζ ↦→ ζ−1

and so belong to Ω+
n,ℓ. By Lemma 55, E(ζi, ζj) and F (ζi, ζj) are units. It remains
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to check (3.19). We observe

E(ζi, ζj)− F (ζi, ζj) = (ζi−j − ζj−i)(ζi+j − ζ−i−j)
(ζi−j + ζj−i)(ζi+j + ζ−i−j)

=
(ζ2(i−j) − 1)(ζ2(i+j) − 1)

Φ4(ζi−j)Φ4(ζi+j)
.

The denominator is a unit by Lemma 55. Now (3.19) follows from Lemma 50.

Proof of Theorem 45. We deduce this from Lemma 60. Let us take for example i = 2

and j = 1. Let n ≥ 2 and let

εn = E(ζ2ℓn , ζℓn), δn = F (ζ2ℓn , ζℓn).

By Lemma 60, εn, δn ∈ O(Ω+
∞,ℓ)

× and satisfy εn + δn = 1. Thus εn ∈ (P1 \
{0, 1,∞})(O(Ω+

∞,ℓ)). Moreover,

υℓ(2εn − 1) = υℓ(εn − δn) =

⎧⎨⎩ 2
ℓn−1(ℓ−1)

ℓ > 3

2
3n−1 ℓ = 3,

by (3.19). Thus εn ̸= εm whenever n ̸= m. Hence (P1 \ {0, 1,∞})(O(Ω+
∞,ℓ)) is

infinite.

Remark. Theorem 45 applies only for ℓ odd; for ℓ = 2 it is easy to show that
the statement is false. Indeed, let ηn be the prime ideal of O(Ω+

n,2) above 2. Then
O(Ω+

n,2)/ηn
∼= F2, and a solution to ε+ δ = 1 with ε, δ ∈ O(Ω+

n,2)
× reduced modulo

ηn gives 1 + 1 ≡ 1 (mod 2) which is impossible.

Proof of Theorem 43 for ℓ = 3

We recall that Q∞,3 = Ω+
∞,3. Therefore Theorem 43 for ℓ = 3 follows immediately

from Theorem 45.

3.4 The S-unit equation over Q∞,5

The purpose of the is section is to prove Theorems 43 and 44 for ℓ = 5. These in
fact follow immediately from the following lemma.

Lemma 61. Let υ5 be the unique prime of Q∞,5 above 5, and write S = {υ5}. Then

(i) (P1 \ {0, k,∞})(O(Q∞,5, S)) is infinite for k = 1, 4;

(ii) (P1 \ {0, 2,∞})(O(Q∞,5)) is infinite.
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Proof. Let a ∈ Z×
5 be the element satisfying

a2 = −1, a ≡ 2 (mod 5);

such an element exists and is unique by Hensel’s Lemma. Let σ : Ω∞,5 → Ω∞,5 be
the field automorphism satisfying

σ(ζ5n) = ζa5n

for n ≥ 1. Note that σ is an automorphism of order 4, and fixes a subfield of Ω∞,5

of index 4. This subfield is precisely Q∞,5.
Let

F = (x1x
2
2 + x3x

2
4)(x

2
1x4 + x2x

2
3),

G = (x21x2 + x23x4)(x1x
2
4 + x22x3),

H = (x1 − x3)(x2 − x4)(x1x2 − x3x4)(x1x4 − x2x3).

Observe F , G, H are invariant under the 4-cycle (x1, x2, x3, x4). One can check that
F −G = H. Let n ≥ 2 and write ζ = ζ5n . Let

εn =
F (ζ, ζa, ζa

2
, ζa

3
)

H(ζ, ζa, ζa2 , ζa3)
, δn = −G(ζ, ζ

a, ζa
2
, ζa

3
)

H(ζ, ζa, ζa2 , ζa3)
.

From the identity F − G = H we have εn + δn = 1. We shall show that εn,
δn ∈ O(Q∞,5, S)

×.
Since σ cyclically permutes ζ, ζa, ζ−1, ζ−a we conclude that f(ζ, ζa, ζ−1, ζ−a) ∈

Q∞,5 for f = F , G, H. Thus εn, δn ∈ Q∞,5. Moreover,

F = x2x
3
3x

2
4 · Φ2(x1x

2
2/x3x

2
4)Φ2(x

2
1x4/x2x

2
3),

G = x22x
3
3x4 · Φ2(x

2
1x2/x

2
3x4)Φ2(x1x

2
4/x

2
2x3),

H = x2x
3
3x

2
4 · Φ1(x1/x3) · Φ1(x2/x4) · Φ1(x1x2/x3x4) · Φ1(x1x4/x2x3).

Hence

εn =
Φ2(ζ

2+4a)Φ2(ζ
4−2a)

Φ1(ζ2)Φ1(ζ2a)Φ1(ζ2+2a)Φ1(ζ2−2a)

=
(1− ζ4+8a)(1− ζ8−4a)

(1− ζ2)(1− ζ2a)(1− ζ2+2a)(1− ζ2−2a)(1− ζ2+4a)(1− ζ4−2a)
.
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and

δn =
−ζ2aΦ2(ζ

4+2a)Φ2(ζ
2−4a)

Φ1(ζ2)Φ1(ζ2a)Φ1(ζ2+2a)Φ1(ζ2−2a)

=
−ζ2a(1− ζ8+4a)(1− ζ4−8a)

(1− ζ2)(1− ζ2a)(1− ζ2+2a)(1− ζ2−2a)(1− ζ4+2a)(1− ζ2−4a)
.

We checked, using the fact that a ≡ 7 (mod 25), that the exponents of ζ in the above
expressions for εn and δn all have 5-adic valuation 0 or 1. It follows from this that εn,
δn ∈ Vn ⊆ O(Ωn, S)× for n ≥ 2. Hence εn, δn ∈ Q∞,5 ∩ O(Ωn, S)× = O(Q∞,5, S)

×

for n ≥ 2. To complete the proof of the lemma for k = 1 it is enough to show that
εn ̸= εm for n > m, and for this it is enough to show that εn /∈ ⟨±ζ5n , Vn−1⟩ for
n ≥ 2. Since a ≡ 7 (mod 25) we see that

4 + 8a ≡ 10, 8− 4a ≡ 5, 2 + 4a ≡ 5, 4− 2a ≡ 15 (mod 25).

Thus the factors

1− ζ4+8a, 1− ζ8−4a, 1− ζ2+4a, 1− ζ4−2a

all belong to Vn−1. Hence it is enough to show that

(1− ζ2)(1− ζ2a)(1− ζ2+2a)(1− ζ2−2a) (3.20)

does not belong to ⟨±ζ5n , Vn−1⟩. However, the exponents 2, 2a, 2 + 2a, 2 − 2a are
respectively 2, 4, 1, 3 modulo 5, and hence certainly distinct modulo 5n−1. It follows
from Lemma 52 that the product (3.20) does not belong to ⟨±ζ5n , Vn−1⟩ completing
the proof for k = 1.

The proof for k = 2 is similar, and is based on the identity F − G = 2H

where

F = (x21 + x1x3 + x23)(x
2
2 + x2x4 + x24) = x23x

2
4 · Φ3(x1/x3) · Φ3(x2/x4),

G = (x21 − x1x3 + x23)(x
2
2 − x2x4 + x24) = x23x

2
4 · Φ6(x1/x3) · Φ6(x2/x4),

H = (x1x4 + x2x3)(x1x2 + x3x4) = x2x
2
3x4 · Φ2(x1x4/x2x3) · Φ2(x1x2/x3x4),

and likewise the proof for k = 4 is based on the identity F −G = 4H where

F = (x1 + x3)
2(x2 + x4)

2 = x23x
2
4 · Φ2(x1/x3)

2Φ2(x2/x4)
2,

G = (x1 − x3)2(x2 − x4)2 = x23x
2
4 · Φ1(x1/x3)

2Φ1(x2/x4)
2,

H = (x1x2 + x3x4)(x1x4 + x2x3) = x2x
2
3x4 · Φ2(x1x2/x3x4)Φ2(x1x4/x2x3).
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Remark. It is appropriate to remark on how the identities in the above proof were
found. Write

Ψm(X,Y ) = Y φ(m)Φm(X/Y )

for the homogenization of the m-th cyclotomic polynomial. Now consider

f(x1, x2, x3, x4) = Ψm(u, v)

where u, v are monomials in variables x1, x2, x3, x4. Let ℓ be a prime. We see that
evaluating any such f at (ζα, ζβ, ζγ , ζδ) gives an element of Vn (provided that it does
not vanish). We considered products of such f of total degree up to 20 and picked
out ones that are invariant under the 4-cycle (x1, x2, x3, x4), and searched for ternary
relations between them. This yielded the identities used in the above proof.

Proof of Theorems 43 and 44 for ℓ = 5. Theorems 43 and 44 for ℓ = 5 follow imme-
diately from Lemma 61.

Remark. Another (equivalent) way to think about constructing infinitely
many S-units in Q∞,5 is, for each n ≥ 1, constructing a suitable S-unit in Ω+

n,5 and
then taking its relative norm over Qn−1,5. In particular, for the case k = 1, one can
take the construction

εn := NmΩ+
n,5/Qn−1,5

(︂ζ2a−1 + ζ1−2a

ζ2−a + ζa−2

)︂
Noting that Gal(Ω+

n,5/Qn−1,5) is generated by the order 2 map ζ + ζ−1 ↦→ ζa + ζ−a,
a direct computation (e.g. using Sage) shows that

εn − 1 = NmΩ+
n,5/Qn−1,5

(︂(ζ1−a − ζa−1)(ζa − ζ−a)
ζ2−a + ζa−2

)︂
which proves εn, εn − 1 ∈ O(Q∞,5, S)

×.

3.5 The S-unit equation over Q∞,7

Lemma 62. Let υ7 be the unique prime of Q∞,7 above 7, and write S = {υ7}. Then
(P1 \ {0, 1,∞})(O(Q∞,7, S)) is infinite.

Proof. In view of the proof of Lemma 61, it would be natural to seek polynomials
F , G, H in variables x1, . . . , x6 satisfying the following properties
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• F ±G = H;

• F , G, H are invariant under the 6-cycle (x1, x2, . . . , x6);

• each is a product of polynomials

f(x1, x2, . . . , x6) = Ψm(u, v)

with u, v monomials in x1, . . . , x6.

Unfortunately, an extensive search has failed to produce any such triple of polyno-
mials. We therefore need to proceed a little differently.

Let a ∈ Z7 be the element satisfying

a2 + a+ 1 = 0, a ≡ 2 (mod 7);

such an element exists and is unique by Hensel’s Lemma. Let σ, c : Ω∞,7 → Ω∞,7

be the field automorphisms satisfying

σ(ζ7n) = ζa7n , c(ζ7n) = ζ−1
7n

for n ≥ 1. Then Q∞,7 is the field fixed by the subgroup of Gal(Ω∞,7/Q) generated
by σ and c. We work with polynomials in variables x1, x2, x3. Let

F = (x1x
2
2 + x33)(x2x

2
3 + x31)(x3x

2
1 + x32)

G = (x1 − x2)(x2 − x3)(x3 − x1)(x1x2 − x23)(x2x3 − x21)(x3x1 − x22)

H = (x21x2 + x33)(x
2
2x3 + x31)(x

2
3x1 + x32).

These satisfy the identity F−G = H. Moreover, they are invariant under the 3-cycle
(x1, x2, x3) and all the factors are of the form Ψm(u, v) where m = 1 or 2, and where
u, v are suitable monomials in x1, x2, x3. Evaluating any of F , G, H at (ζ, ζa, ζa

2
)

yields an S-unit belonging to Ω
⟨σ⟩
n,7. Now we let

F ′ =
F (x21, x

2
2, x

2
3)

x61x
6
2x

6
3

, G′ =
G(x21, x

2
2, x

2
3)

x61x
6
2x

6
3

, H ′ =
H(x21, x

2
2, x

2
3)

x61x
6
2x

6
3

.

Observe that the rational functions F ′, G′, H ′ satisfy F ′−G′ = H ′ and are moreover
invariant under the 3-cycle (x1, x2, x3). Moreover, F ′, G′, H ′ evaluated at (ζ, ζa, ζa2)
yield S-units belonging to Ω

⟨σ⟩
n,7. We need to check that these in fact belong to

Qn−1,7 = Ω
⟨σ,c⟩
n,7 and so we need to check that these expressions are invariant under
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c. This follows immediately on observing that F ′, G′, H ′ may be rewritten as

F ′ =

(︃
x1x

2
2

x33
+

x33
x1x22

)︃(︃
x2x

2
3

x31
+

x31
x2x23

)︃(︃
x3x

2
1

x32
+

x32
x3x21

)︃
G′ =

(︃
x1
x2
− x2
x1

)︃(︃
x2
x3
− x3
x2

)︃(︃
x3
x1
− x1
x3

)︃(︃
x1x2
x23
− x23
x1x2

)︃(︃
x2x3
x21
− x21
x2x3

)︃(︃
x3x1
x22
− x22
x3x1

)︃
H ′ =

(︃
x21x2
x33

+
x33
x21x2

)︃(︃
x22x3
x31

+
x31
x22x3

)︃(︃
x23x1
x32

+
x32
x33x1

)︃
.

Thus F ′, G′, H ′ evaluated at (ζ, ζa, ζa
2
) yield elements of O(Q∞,7, S)

×. We write

εn =
F ′(ζ, ζa, ζa

2
)

H ′(ζ, ζa, ζa2)
, δn = −G

′(ζ, ζa, ζa
2
)

H ′(ζ, ζa, ζa2)
.

Then εn, δn belong to O(Q∞,7, S)
× and satisfy εn+ δn = 1. In fact it is straightfor-

ward to check that εn /∈ ⟨±ζ7n , Vn−1⟩, from which it follows that εn ̸= εm for n > m.
The details are similar to those of the proof of Lemma 61 and we omit them.

Remark. As with the ℓ = 5 case, one can also alternatively think of the
above construction in terms of taking relative norms over Qn−1,7. In particular, we
can take

εn := NmΩ+
n,7/Qn−1,7

(︂ ζa+3 + ζ−a−3

ζ3a+1 + ζ−3a−1

)︂
. (3.21)

Noting that Gal(Ω+
n,7/Qn−1,7) is generated by the order 3 map ζ + ζ−1 ↦→ ζa + ζ−a,

a similar direct computation shows that

εn − 1 = −NmΩ+
n,7/Qn−1,7

(︂(ζ−a−2 − ζa+2)(ζ − ζ−1)

ζ3a+1 + ζ−3a−1

)︂
which proves εn, εn − 1 ∈ O(Q∞,7, S)

×.
In a similar spirit to asking whether other ternary relations between Kro-

necker polynomials exist, it’s natural to also ask whether similar constructions to
(3.21) exist for larger primes ℓ. In particular, given a prime ℓ ≥ 11 we can ask if
there exist integers k,m ∈ Z such that

εn := NmΩ+
n,ℓ/Qn−1,ℓ

(︂ ζk + ζ−k

ζm + ζ−m

)︂
is in (P1 \{0, 1,∞})(O(Q∞,ℓ, {υℓ})) for all n ≥ 1? A brute force check has confirmed
that no such integers k,m exist for ℓ ∈ {11, 13} and 1 ≤ n ≤ 5. At this point,
we must also mention a beautiful recent project of Li and Otgonbayar [264] which
gives some heuristic evidence to suggest why solutions are harder to find for primes
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ℓ ≥ 11.

3.6 Isogeny classes of elliptic curves over Q∞,ℓ

The purpose of this section is to prove Theorem 47. Since isogenous elliptic curves
share the same set of bad primes, the corresponding theorem over number fields is
an immediate consequence of Shafarevich’s theorem. However, as we intend to show
in the following section, Shafarevich’s theorem does not generalize to elliptic curves
over Q∞,ℓ. We shall instead rely on a theorem of Kato to control Q∞,ℓ-points on
certain modular Jacobians.

Our first lemma shows that there are only finitely many primes that can
divide the degree of a cyclic isogeny of E.

Lemma 63. Let ℓ be a prime and let E/Q∞,ℓ be an elliptic curve without potential
complex multiplication. Then there is a constant B, depending on E, such that for
primes p ≥ B, the elliptic curve E has no p-isogenies defined over Q∞,ℓ.

Proof. Let n be the least positive integer such that E admits a model defined over
Qn,ℓ. By a famous theorem of Serre [362], there is a constant B, depending on E,
such that for p ≥ B the mod p representation

ρE,p : Gal(Q/Qn,ℓ)→ GL2(Fp)

is surjective. We may suppose that B ≥ 5. Thus, for p ≥ B, the Galois group
Gal(Qn,ℓ(E[p])/Qn,ℓ) is isomorphic to GL2(Fp) which is non-solvable. We will show
that E has no p-isogeny defined over Q∞,ℓ. Suppose otherwise. Then such an
isogeny is in fact defined over Qm,ℓ for some m ≥ n. It follows that the extension
Qm,ℓ(E[p])/Qm,ℓ has Galois group isomorphic to a subgroup of a Borel subgroup of
GL2(Fp), with is solvable. As the extension Qm,ℓ/Qn,ℓ is cyclic, we conclude that
Qm,ℓ(E[p])/Qn,ℓ is solvable. However, this contains the non-solvable subextension
Qn,ℓ(E[p])/Qn,ℓ, giving a contradiction.

We shall make use of the following theorem of Kato [237, Theorem 14.4]
building on work of Rohrlich [336].

Theorem 64 (Kato). Let ℓ be a prime. Let A be an abelian variety defined over
Q and admitting a surjective map J1(N) → A for some N ≥ 1. Then A(Q∞,ℓ) is
finitely generated.
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Lemma 65. Let p, ℓ be primes. Let E be an elliptic curve defined over Q∞,ℓ with-
out potential complex multiplication. Then, for m sufficiently large, E has no pm-
isogenies defined over Q∞,ℓ.

Proof. Let r be the least positive integer such that the modular curve X = X0(p
r)

has genus at least 2, and write J = J0(p
r) for the corresponding modular Jacobian.

It follows from Kato’s theorem that J(Q∞,ℓ) is finitely generated, and therefore that
J(Q∞,ℓ) = J(Qn,ℓ) for some n ≥ 1. Consider the Abel-Jacobi map

X ↪→ J, P ↦→ [P −∞]

where ∞ ∈ X(Q) denotes the infinity cusp. It follows from this embedding that
X(Q∞,ℓ) = X(Qn,ℓ). By Faltings’ theorem, this set is finite.

Let k = #X(Q∞,ℓ) and let s = kr. To prove the lemma we in fact show that
E has no cyclic isogenies of degree ps defined over Q∞,ℓ. Suppose otherwise, and let
ψ : E → E′ be a cyclic isogeny of degree ps defined over Q∞,ℓ. Then, we may factor
ψ into a sequence of cyclic isogenies defined over Q∞,ℓ

E = E0
ψ1−→ E1

ψ2−→ E2 · · ·
ψk−→ Ek = E′

where ψi is of degree pr. Note that Ei and Ej are non-isomorphic over Q for i ̸= j;
indeed they are related by a cyclic isogeny and E does not have potential complex
multiplication. Thus the elliptic curves E0, E1, . . . , Ek support distinct Q∞,ℓ-points
on X = X0(p

r). This contradicts the fact that #X(Q∞,ℓ) = k.

Remark. A famous theorem of Serre [361, Section 2.1] asserts that the p-adic Tate
module of a non-CM elliptic curve defined over a number field is irreducible. It is in
fact possible to deduce Lemma 65 from Serre’s theorem for ℓ ̸= p, but we have been
unable to do this for ℓ = p.

Proof of Theorem 47. Let E′ belong to the Q∞,ℓ-isogeny class of E. Let ψ : E → E′

be an isogeny defined over Q∞,ℓ. This has kernel of the form Z/a×Z/ab where a, b
are positive integers, and so it can be factored into a composition

E → E/E[a] ∼= E → E′

where the final morphism is cyclic of degree b. Thus to prove the proposition, it is
enough to show that E has finitely many cyclic isogenies defined over Q∞,ℓ. The
degree of any such isogeny is divisible by primes p < B where B is as in Lemma 63.
Also, for any p < B, we know the exponent of p in the degree of a cyclic isogeny
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E → E′ is bounded by Lemma 65. Thus there are finitely many cyclic isogenies of
E defined over Q∞,ℓ.

3.7 From S-unit equations to elliptic curves

The aim of this section is to prove Theorem 46. We start by recalling a few facts
about Legendre elliptic curves (Proposition III.1.7 of [383] and its proof). Let K be
a field of characteristic ̸= 2 and let λ ∈ (P1 \ {0, 1,∞})(K). Associated to λ is the
Legendre elliptic curve

Eλ : Y 2 = X(X − 1)(X − λ).

This model respectively has discriminant and j-invariant

∆ = 16λ2(1− λ)2, j =
64(λ2 − λ+ 1)3

λ2(1− λ)2
. (3.22)

Moreover, for λ, µ ∈ (P1 \{0, 1,∞})(K), the Legendre elliptic curves Eλ and Eµ are
isomorphic over K (or over K) if and only if

µ ∈
{︃
λ,

1

λ
, 1− λ, 1

1− λ
,

λ

λ− 1
,
λ− 1

λ

}︃
.

Now let K be a number field and S a finite set of non-archimedean places. We let
S′ be the set of non-archimedean places which are either in S or above 2. We let
λ ∈ (P1 \ {0, 1,∞})(O(K,S)). Then λ, 1 − λ ∈ O(K,S)×. It follows from the
expression for the discriminant that Eλ has good reduction away from S′.

Proof of Theorem 46

Let ℓ = 2, 3, 5 or 7. Let S be given by (3.1) and let S′ = S∪{υ2} as in the statement
of Theorem 46. In proving Theorem 43 we constructed, for each positive integer n,
elements εn, δn = 1−εn, belonging Q∞,ℓ∩Vn ⊆ O(Q∞,ℓ, S)

×, and moreover verified,
for n ≥ 2, that εn /∈ ⟨ζℓn , Vn−1⟩. We let

En : Y 2 = X(X − 1)(X − εn). (3.23)

Then En is defined over Q∞,ℓ and has good reduction away from S′. We claim, for
n > m, that En and Em are not isomorphic, even over Q. To see this, suppose En
and Em are isomorphic. Then εn equals one of ε±1

m , δ±1
m , (−εmδm)±1. This gives a

contradiction as all of these belong to ⟨±ζℓn , Vn−1⟩. This proves the claim.
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It remains to show that the En form infinitely many isogeny classes over Q∞,ℓ.
However, this immediately follows from Theorem 47 and the following lemma.

Lemma 66. For n sufficiently large, En does not have potential complex multipli-
cation.

Proof. Suppose En has potential complex multiplication by an order R in an imag-
inary quadratic field K. Write j = j(En). We claim that Q(j)/Q is a cyclic Galois
extension of order ℓn for some n. Note that Q(j) is a subextension of Q∞,ℓ of fi-
nite degree, and is thus contained in Qm,ℓ for some m. Hence Q(j) is the fixed
field of some subgroup H (say) of G = Gal(Qm,ℓ/Q). As G is cyclic, the group
H is a normal subgroup, and therefore Q(j)/Q is a Galois extension. Moreover,
Gal(Q(j)/Q) ∼= G/H which is cyclic of order ℓn for some n, proving our claim.

By standard CM theory [374, Theorem 5.7], we know that Gal(K(j)/K) ∼=
Pic(R) and [Q(j) : Q] = [K(j) : K]. Since in our case Q(j)/Q is Galois, Gal(Q(j)/Q) ∼=
Gal(K(j)/K) ∼= Pic(R). However, Q(j) ⊂ Q∞,ℓ is totally real. It follows [374, page
124] that Pic(R) is an elementary abelian 2-group. However Q(j)/Q is cyclic of order
ℓn. Thus, j ∈ Q if ℓ ̸= 2, and j ∈ Q1,2 = Q(

√
2) if ℓ = 2. However, from the expres-

sion for j in (3.22) we know that [Q(εn) : Q(j)] ≤ 6. Thus εn belongs to a subfield
of Q∞,ℓ of degree at most 12. The lemma follows since, by Siegel–Mahler’s theorem,
the S-unit equation has only finitely many solutions in any number field.

Remark. It’s worth mentioning that an earlier draft of this chapter gave a different
method to proving {En}n≥1 form infinitely many isogeny classes over Q∞,ℓ (without
showing En does not have potential CM for sufficiently large n, albeit with more
technical computations). To sketch the original proof, fix some prime ℓ = 2, 3, 5 or
7, and an elliptic curve Ei as given in (3.23), and as before assume there exists an
isogeny ψ : Ei → Ej over Q∞,ℓ. We aim to show there exists only finitely such Ej .
Here, we factor ψ into two isogenies ψeven and ψodd, where ψeven is an isogeny of
degree 2k (and thus splits into k 2-isogenies) and ψodd is an isogeny of odd degree
(and thus splits into isogenies of odd prime degree).

ψ : Ei
ψeven−−−→ E′ ψodd−−−→ Ej .

We can then proceed in two steps: (i) computing the possible set of elliptic curves
E′ (and their discriminants ∆E′) which are 2k-isogenous to Ei, and (ii) computing
the possible set of elliptic curves Ej which are isogenous of odd degree to E′.

For step (i), as Q∞,ℓ(Ei[2]) = Q∞,ℓ, there exist three elliptic curves Ei,1, Ei,2
and Ei,3 which are 2-isogenous to Ei with discriminants 256εi(εi−1)4, −256(εi−1)ε4i ,
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and 256εi(εi − 1) respectively. One can then prove that none of these are squares
in Q∞,ℓ by writing these in terms of a multiplicative basis for Vn. This proves
E′ ∈ {Ei, Ei,1, Ei,2, Ei,3}.

For step (ii), we can use the main theorem of Dokchitser-Dokchitser [136,
Theorem 1.1] which states that if ϕ : E → E′ is a p-isogeny (over K) for p ≥ 3, then
∆p
E/∆E′ is a 4th-power in K. This implies that if E′ is isogenous of odd degree to Ej ,

then either ∆E′/∆Ej or ∆E′∆Ej is a 4th power in Q∞,ℓ. By computing discriminants,
one can show that either ±εiεj(εi−1)(εj−1) or ±εiε−1

j (εi−1)(εj−1)−1 is a square
in Q∞,ℓ. By again writing these expressions in terms of a multiplicative basis for
Vn, one obtains that only finitely many j fit the criterion, thereby proving that the
family of elliptic curves {En}n≥1 form infinitely many Q∞,ℓ-isogeny classes.

3.8 Hyperelliptic curves over Q∞,ℓ with few bad primes

Let ℓ be an odd prime. Let g ≥ 2 be an integer satisfying⎧⎨⎩g ≡ (ℓ− 3)/4 or −1 (mod (ℓ− 1)/2) if ℓ ≡ 3 (mod 4)

g ≡ −1 (mod (ℓ− 1)/4) if ℓ ≡ 1 (mod 4).
(3.24)

Then there is a positive integer k such that

k ·
(︃
ℓ− 1

2

)︃
=

⎧⎨⎩2g + 1 or 2g + 2 if ℓ ≡ 3 (mod 4)

2g + 2 if ℓ ≡ 1 (mod 4).
(3.25)

Let n ≥ 2 be a positive integer satisfying

ℓn−1 ≥ k. (3.26)

In this section we construct a hyperelliptic Dn curve of genus g defined over Qn−1,ℓ

with good reduction away from the primes above 2, ℓ.
Write

Zn = {ζ ∈ Ωn,ℓ : ζℓ
n
= 1, ζℓ

i ̸= 1 if i < n}

for the set of primitive ℓn-th roots of 1. Write

Z+
n = {ζ + ζ−1 : ζ ∈ Zn} ⊂ Ω+

n,ℓ.

We note that any element of Z+
n generates Ω+

n,ℓ.

Lemma 67. #Z+
n = ℓn−1(ℓ− 1)/2.
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Proof. We note that #Zn = φ(ℓn) = ℓn−1(ℓ− 1). Suppose α, β ∈ Zn. Then

(α+ α−1)− (β + β−1) = α−1 · (1− αβ) · (1− αβ−1). (3.27)

Thus α+ α−1 = β + β−1 if and only if α = β or α = β−1. The lemma follows.

Write

Gn = Gal(Ω+
n,ℓ/Qn−1,ℓ), Hn = Gal(Ω+

n,ℓ/Ω
+
n−1,ℓ).

We note that these are both cyclic subgroups of Gal(Ω+
n,ℓ/Q) having orders

#Gn = (ℓ− 1)/2, #Hn = ℓ.

Lemma 68. Fix ζ ∈ Zn. Let

ηi = ζ1+ℓ
n−1(i−1) + ζ−1−ℓn−1(i−1), 1 ≤ i ≤ ℓ. (3.28)

Then η1, . . . , ηℓ ∈ Z+
n form a single orbit under the action of Hn, but have pairwise

disjoint orbits under the action of Gn.

Proof. Let κ ∈ Gal(Ωn,ℓ/Q) be given by κ(ζ) = ζ1+ℓ
n−1 . We note that κ has order ℓ

and fixes Ωn−1,ℓ. We denote the restriction of κ to Ω+
n,ℓ by τ ; this is a cyclic generator

of Hn. Note that
ηi = τ i−1(ζ + ζ−1), 1 ≤ i ≤ ℓ.

Let σ1, σ2 ∈ Gn. Let 1 ≤ i < j ≤ ℓ and suppose σ1(ηi) = σ2(ηj). Thus
σ1τ

i−1(η1) = σ2τ
j−1(η1), so τ1−jσ−1

2 σ1τ
i−1 fixes η1. As η1 generates Ω+

n,ℓ, we have
τ1−jσ−1

2 σ1τ
i−1 = 1 is the identity element in Gal(Ω+

n,ℓ/Q). However, Gal(Ω+
n,ℓ/Q)

is abelian, so
τ i−j = σ−1

1 σ2 ∈ Gn ∩Hn = {1}.

Since 1 ≤ i ≤ j ≤ ℓ and τ has order ℓ we have i = j.

The Galois group Gn acts faithfully on Z+
n . This action has ℓn−1 orbits.

Assumption (3.26) ensures that the number of orbits is at least k. If k > ℓ, then we
extend the list η1, . . . , ηℓ ∈ Z+

n to η1, . . . , ηk ∈ Z+
n , so that the ηi continue to have

disjoint orbits under the action of Gn; if ℓ = 3 the choice of η4 will be important
later, and we choose η4 = ζ2 + ζ−2. Consider the curve

Dn : Y 2 =

k∏︂
j=1

∏︂
σ∈Gn

(X − ησj ). (3.29)
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Lemma 69. The curve Dn is hyperelliptic of genus g, is defined over Qn−1,ℓ, and
has good reduction away from the primes above 2 and ℓ.

Proof. Our assumption on the orbits ensures that the polynomial on the right hand-
side of (3.29) is separable. By (3.25), the degree of the polynomial is either 2g + 1

or 2g + 2. Thus Dn is a hyperelliptic curve of genus g. A priori, Dn is defined over
Ω+
n,ℓ. However, the roots of the hyperelliptic polynomial are permuted by the action

of Gn = Gal(Ω+
n,ℓ/Qn−1,ℓ) and so the polynomial belongs to Qn−1,ℓ[X]. Hence Dn is

defined over Qn−1,ℓ.
Let u1, . . . , ud be the roots of the hyperelliptic polynomial. Then the discrim-

inant of the hyperelliptic polynomial is∏︂
1≤i<j≤d

(ui − uj)2.

However, ui, uj are distinct elements of Z+
n . Thus there are α, β ∈ Zn with α ̸= β,

β−1 such that ui = α+ α−1, uj = β + β−1. From the identity (3.27),

ui − uj = α−1(1− αβ−1)(1− αβ).

Since αβ and αβ−1 are non-trivial ℓ-power roots of 1, we see that ui − uj is a
{υℓ}-unit, and hence the discriminant of the hyperelliptic polynomial of Dn is a
{υℓ}-unit.

Furthermore, by explicitly computing the valuations υℓ(ui−uj) over all pairs
of roots ui, uj , we can prove that Dn has potential good reduction at υℓ in the case
where g = ⌊(ℓ− 3)/4⌋ (equivalently k = 1, in the notation of Section 3.8).

Lemma 70. Let g = ⌊(ℓ − 3)/4⌋, and let Dn/Qn−1,ℓ be the genus g hyperelliptic
curve

Dn : Y 2 =
∏︂
σ∈Gn

(X − ησ1 ), η1 = ζℓn + ζ−1
ℓn

as defined in Section 3.8. Then Dn has potential good reduction away from the primes
above 2.

Proof. The claim follows by Lemma 69 and using Theorem 11 to show that the cluster
picture Συℓ is trivial. Let µ be a generator of Gn of order (ℓ−1)/2, where the action
of µ is given by ζ + ζ−1 ↦→ ζa + ζ−a for some a ∈ Z. We denote u0, . . . , u(ℓ−3)/2 as
the roots of the hyperelliptic polynomial of Dn, where ui = σi(η1) = ζa

i
+ ζ−a

i .
If i < j, then note that ai + aj = ai(1 + aj−i). As j − i < (ℓ − 1)/2

and µ has order (ℓ − 1)/2, this implies that ℓ cannot divide (1 + am−k), and thus
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ordℓ(a
i + aj) = 0.
By a similar argument, we also have that ai − aj = ai(1 − aj−i) cannot be

divisible by ℓ, and thus ordℓ(a
i − aj) = 0. Therefore, using Lemma 50 we have

vℓ(ui − uj) = vℓ
(︁
ζ−a

i
(1− ζai−aj (1− ζai+aj )

)︁
=

1

ℓ− 1

(︁
ℓ1+ordℓ(a

i−aj)−n + ℓ1+ordℓ(a
i+aj)−n)︁

=
2ℓ1−n

ℓ− 1
.

Therefore, we have that υℓ(ui − uj) is constant across all pairs i, j (0 ≤ i < j ≤
(ℓ− 3)/2). Thus, as the cluster picture Συℓ is trivial, this implies Dn has potential
good reduction at the primes above ℓ.

Given four pairwise distinct elements z1, z2, z3, z4 of a field K, we shall
employ the notation (z1, z2 ; z3, z4) to denote the cross ratio

(z1, z2 ; z3, z4) =
(z1 − z3)(z2 − z4)
(z1 − z4)(z2 − z3)

.

We extend the cross ratio to four distinct elements z1, z2, z3, z4 of P1(K) in the usual
way. We let GL2(K) act on P1(K) via fractional linear transformations

γ(z) =
az + b

cz + d
, γ =

(︄
a b

c d

)︄
.

It is well-known and easy to check that these fractional linear transformations leave
the cross ratio unchanged:

(γ(z1), γ(z2) ; γ(z3), γ(z4)) = (z1, z2 ; z3, z4).

Lemma 71. Let K be an algebraically closed field of characteristic 0. Let

D : Y 2 =
d∏︂
i=1

(X − ai), D′ : Y 2 =
d∏︂
i=1

(X − bi),

be genus g curves defined over K where the polynomials on the right are separable.
If D, D′ are isomorphic then there is some permutation µ ∈ Sd such that for all
quadruples of pairwise distinct indices 1 ≤ r, s, t, u ≤ d

(ar, as ; at, au) = (bµ(r), bµ(s) ; bµ(t), bµ(u)).
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Proof. We shall make use of the following standard description (e.g. [19, Proposition
6.11]) of isomorphisms of hyperelliptic curves: every isomorphism π : D → D′ is of
the form

π(X,Y ) =

(︃
aX + b

cX + d
,

eY

(cX + d)g+1

)︃
for some

γ =

(︄
a b

c d

)︄
∈ GL2(K), e ∈ K×

.

Observe that π(ai, 0) has Y -coordinate 0; thus

{γ(a1), . . . , γ(ad)} = {b1, . . . , bd}.

Hence there is a permutation µ ∈ Sd such that γ(ai) = bµ(i). The lemma follows
from the invariance of the cross ratio under the action of GL2(K).

Lemma 72. Let ℓ ≥ 11 be prime. Then there is some a ∈ Z×
ℓ of order ℓ − 1 such

that

1 + a2 ̸≡ 0, ±(1− a2), ±(a+ a3), ±(a− a3),

± (1 + a3), ±(1− a3), ±(a+ a2), ±(a− a2) (mod ℓ). (3.30)

Proof. Making use of the fact that a polynomial of degree n has at most n roots, we
see that the number of a ∈ Fℓ that do not satisfy (3.30) is (very crudely) bounded
by 37. An element a ∈ Z×

ℓ of order ℓ − 1 is the unique Hensel lift of an element
a ∈ F×

ℓ of order ℓ − 1. There are precisely φ(ℓ − 1) elements of order ℓ − 1 in F×
ℓ .

A theorem of Shapiro [369, page 23], asserts that φ(n) > nlog 2/ log 3 for n ≥ 30. We
note that if ℓ ≥ 317 then φ(ℓ− 1) ≥ 316log 2/ log 3 ≈ 37.8, and so the lemma holds for
ℓ ≥ 317. For the range 11 ≤ ℓ ≤ 317 we checked the lemma by brute force computer
enumeration.

Lemma 73. Let n > m be sufficiently large. Then Dn and Dm are non-isomorphic,
even over Q.

Proof. Note that all roots of the hyperelliptic polynomial for Dn in (3.29) belong to
Z+
n . It follows from (3.27) that the cross ratio of any four of them belongs to Vn.

Suppose Dn and Dm are isomorphic. Let u1, u2, u3, u4 be any distinct roots of the
hyperelliptic polynomial for Dn given in (3.29). Then, by Lemma 71,

(u1, u2 ; u3, u4) ∈ Vm ⊆ Vn−1.
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We shall obtain a contradiction through a careful choice of the four roots u1, . . . , u4.
We first suppose that k ≥ 2 and ℓ ≥ 5. Let ζ = ζℓn and b = 1 + ℓn−1. Then,

by Lemma 68, η1 = ζ + ζ−1 and η2 = ζb + ζ−b. Let a ∈ Z×
ℓ have order ℓ − 1.

Let κ ∈ Gal(Ωn,ℓ/Qn−1,ℓ) be given by κ(ζ) = ζa. Then κ is a cyclic generator for
Gal(Ωn,ℓ/Qn−1,ℓ). We shall denote the restriction of κ to Ω+

n,ℓ by µ. Then µ is a
cyclic generator for Gn = Gal(Ω+

n,ℓ/Qn−1,ℓ) having order (ℓ− 1)/2. We shall take

u1 = η1 = ζ + ζ−1, u2 = µ(η1) = ζa + ζ−a,

u3 = η2 = ζb + ζ−b, u4 = µ(η2) = ζab + ζ−ab.

We compute the cross ratio with the help of identity (3.27), finding

(u1, u2 ; u3, u4) =
(1− ζ1+b)(1− ζ1−b)(1− ζa+ab)(1− ζa−ab)
(1− ζ1+ab)(1− ζ1−ab)(1− ζa+b)(1− ζa−b)

.

As b ≡ 1 (mod ℓ), and clearly a ̸≡ ±1 (mod ℓ), it is easy to check that 1 + b is the
only one out of the eight exponents of ζ above that is ±2 (mod ℓ). Therefore by
Lemma 53, the cross ratio is not an element of ⟨±ζℓn , Vn−1⟩ for n sufficiently large,
giving a contradiction for the case k ≥ 2 and ℓ ≥ 5.

Next we suppose that k = 1. It follows from (3.25) that ℓ ≥ 11. We choose
a ∈ Z×

ℓ as in Lemma 72, and, as above, take µ to be the corresponding generator of
Gn of order (ℓ− 1)/2 ≥ 5. We take

ui = µi−1(η1) = ζa
i−1

+ ζ−a
i−1
, 1 ≤ i ≤ 4;

observe that these are four roots of the hyperelliptic polynomial ofDn given in (3.29).
The assumption that ℓ ≥ 11 ensures that a has order ≥ 10 and so u1, u2, u3, u4 are
indeed pairwise distinct. We compute the cross ratio with the help of identity (3.27),
finding

(u1, u2 ; u3, u4) =
(1− ζ1+a2)(1− ζ1−a2)(1− ζa+a3)(1− ζa−a3)
(1− ζ1+a3)(1− ζ1−a3)(1− ζa+a2)(1− ζa−a2)

.

Using Lemma 52 and our choice of a given by Lemma 72 we conclude that this
cross ratio does not belong to ⟨±ζℓn , Vn−1⟩ for n sufficiently large. This gives a
contradiction for the case k = 1.

Finally, we consider ℓ = 3. It follows from (3.25) that k ≥ 5. Recall our
choices of η1, η2, η3 in Lemma 68, and our choice of η4 = ζ2 + ζ−2 in the particular
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case ℓ = 3. We choose the four roots ui = ηi for i = 1, . . . , 4, and obtain,

(u1, u2 ; u3, u4) =
(1− ζ2+2×3n−1

)(1− ζ−2×3n−1
)(1− ζ3+3n−1

)(1− ζ−1+3n−1
)

(1− ζ3)(1− ζ−1)(1− ζ2)(1− ζ−3n−1)
.

As before, with the help of Lemma 53, we easily verify that the cross ratio is not an
element of ⟨±ζℓn , Vn−1⟩ for n sufficiently large. This completes the proof.

Proof of Theorem 48

If ℓ = 3 or 5 then (3.24) does not impose any restriction on the genus. Therefore
we obtain, as above, for every genus g ≥ 2, infinitely many Q-isomorphism classes
of genus g hyperelliptic curves, defined over Q∞,ℓ, with good reduction away from
{υ2, υℓ}.

It remains to deal with ℓ = 7, 11 and 13. Here, (3.24) imposes the restriction

g ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 or 2 mod 3 if ℓ = 7

2 or 4 mod 5 if ℓ = 11

2 mod 3 if ℓ = 13.

We very briefly sketch how to remove the restriction. Instead of Dn defined as in
(3.29), we consider the more general

Dn : Y 2 = h(X) ·
k∏︂
j=1

∏︂
σ∈Gn

(X − ησj )

where

• h is a monic divisor of X(X − 1)(X + 1);

• k and h are chosen to obtain the desired genus;

• ηj ∈ Z+
n are chosen as before.

These Dn are clearly defined over Qn−1,ℓ. To check that they have good reduction
away from S′ = {υ2, υℓ}, we need to verify that the difference of any two distinct roots
u, v of the hyperelliptic polynomial belongs to O(Ωn, S′)×. The proof of Lemma 69
shows this if u, v ∈ Z+

n . For the remaining possible differences it is enough to note
that

α+ α−1 = α−1Φ4(α), α+ α−1 + 1 = α−1Φ3(α), α+ α−1 − 1 = α−1Φ6(α)
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which are all units by Lemma 55. We omit the remaining details.

3.9 Isogeny classes of hyperelliptic curves over Q∞,ℓ

A beautiful theorem of Kummer asserts that the index of the cyclotomic units Cn
in the full unit group O(Ωn,ℓ)× equals the class number h+n of Ω+

n,ℓ. In this section,
with the help of Kummer’s theorem, we prove for certain primes ℓ the existence
of infinitely many isogeny classes of hyperelliptic Jacobians over Q∞,ℓ with good
reduction away from ℓ. We first prove a few elementary lemmas.

Lemma 74. Let K be a field of characteristic not 2, and let L = K(
√
α1, . . . ,

√
αr)

where αi ∈ K×. Then for any x ∈ K such that
√
x ∈ L, we have

x = αe11 · · ·α
er
r q

2

for some integers ei ∈ Z and q ∈ K.

Proof. Let M be a field of characteristic not 2, and let d ∈ M be a non-square.
Let x ∈ M and suppose

√
x ∈ M(

√
d). Then

√
x = y + z

√
d for some y, z ∈ M .

Squaring, we deduce that yz = 0. Thus x = y2 or x = dz2.
We now prove the lemma by induction on r. The above establishes the case

r = 1. Let r ≥ 2, and let x ∈ K satisfy
√
x ∈ L. Letting M = K(

√
α1, . . . ,

√
αr−1)

we see that x ∈M and
√
x ∈M(

√
αr). Thus, by the above,

√
x ∈M or

√
xαr ∈M .

In other words, √︁
x · αer ∈ M = K(

√
α1, . . . ,

√
αr−1)

for some e ∈ {0, 1}. By the inductive hypothesis, there are e1, . . . , er−1 ∈ Z and
q ∈ K such that

x · αer = αe11 · · ·α
er−1

r−1 q
2.

The proof is complete on taking er = −e.

Lemma 75. Let ℓ be an odd prime. Let q ∈ Ω∞,ℓ satisfy q2 ∈ Vn. If the class
number h+n of Ω+

n,ℓ is odd, then q ∈ Vn.

Proof. Let q ∈ Ω∞,ℓ satisfy q2 ∈ Vn ⊂ Ωn,ℓ. As the extension Ω∞,ℓ/Ωn,ℓ is pro-ℓ, we
conclude that q ∈ Ωn,ℓ. However, Vn ⊆ O(Ωn,ℓ, {υℓ})×, where, as usual, υℓ denotes
the prime above ℓ. Thus q ∈ O(Ωn,ℓ, {υℓ})×. We claim that

[O(Ωn,ℓ, {υℓ})× : Vn] = h+n .
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The lemma follows immediately from the claim. To prove the claim, consider the
commutative diagram with exact rows

1 Cn Vn Z 1

1 O(Ωn,ℓ)× O(Ωn,ℓ, {υℓ})× Z 1

κ

κ

where κ(α) = ord(1−ζ)(α). By the snake lemma,

O(Ωn,ℓ, {υℓ})×/Vn ∼= O(Ωn,ℓ)×/Cn.

Write C+
n = Cn ∩ Ω+

n,ℓ. The aforementioned theorem of Kummer asserts that

[O(Ωn,ℓ)× : Cn] = [O(Ω+
n,ℓ)

× : C+
n ] = h+n ;

see, for example, [439, Exercise 8.5] for the first equality, and [439, Theorem 8.2] for
the second. This proves the claim.

Lemma 76. Let K be a field of characteristic ̸= 2. Let f ∈ K[X] be a monic
separable polynomial of odd degree d ≥ 5. Write f =

∏︁d
i=1(X − αi) with αi ∈ K.

Let C/K be a hyperelliptic curve given by Y 2 = f(X) with Jacobian J . Then

K(J [2]) = K(α1, . . . , αd), K(J [4]) = K(J [2])
(︂{︁√︁

αi − αj
}︁
1≤i,j≤d

)︂
.

Proof. Write ∞ for the point at infinity on the given model for C. The expression
given for K(J [2]) is proven in Theorem 8; recall that it follows by noting that the
classes of degree 0 divisors [(αi, 0)−∞] with i = 1, . . . , d generate J [2] (e.g. see also
[346]).

Yelton [448, Theorem 1.2.2] gives a high-powered proof of the given expression
for K(J [4]). For the convenience of the reader we give a more elementary argument.
Let L = K(J [2]). The theory of 2-descent on hyperelliptic Jacobians furnishes, for
any field M ⊇ L, an injective homomorphism [346], [395]

J(M)/2J(M) ↪→
d∏︂
i=1

M∗/(M∗)2

known as the X −Θ-map. This in particular sends the 2-torsion point [(αi, 0)−∞]
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to ⎛⎝(αi − α1) , . . . , (αi − αi−1) ,
∏︂
j ̸=i

(αi − αj) , (αi − αi+1) , . . . , (αi − αd)

⎞⎠ .

The field K(J [4]) is the smallest extension of M of L such that all the images of the
2-torsion generators [(αi, 0)−∞] are trivial in

∏︁d
i=1M

∗/(M∗)2. This is plainly the
extension

M = L
(︂{︁√︁

αi − αj
}︁
1≤i,j≤d

)︂
.

Lemma 77. Let p be a prime for which 2 is a primitive root (i.e. 2 is a generator
for F×

p ). Let G be a cyclic group of order p, and let V be an F2[G]-module with
dimF2(V ) = p − 1. Suppose that the action of G on V \ {0} is free. Then V is
irreducible.

Proof. Let W be a F2[G]-submodule of V , and write d = dimF2(W ). Since the
action of G on V \ {0} is free, the set W \ {0} consists of G-orbits, all having size p.
However, #(W \ {0}) = 2d − 1, and so p | (2d − 1). By assumption, 2 is a primitive
root modulo p, therefore (p − 1) | d. Since W is an F2-subspace of V which has
dimension p− 1, we see that W = 0 or W = V .

Lemma 78. Let ℓ = 2p+1, where ℓ and p are odd primes. Suppose 2 is a primitive
root modulo p. Let g = (ℓ − 3)/4. Let n ≥ 2 and let Dn/Qn−1,ℓ be the hyperelliptic
curve defined in Section 3.8. Let A/Q∞,ℓ be an abelian variety and let ϕ : J(Dn)→ A

be an isogeny defined over Q∞,ℓ. Then ϕ = 2rϕodd where ϕodd : J(Dn) → A is an
isogeny of odd degree.

We remark if ℓ and p are primes with ℓ = 2p + 1 then p is called a Sophie-
Germain prime, and ℓ is called as safe prime.

Proof of Lemma 78. Note that, in the notation of Section 3.8, k = 1, and the hy-
perelliptic polynomial for Dn has odd degree 2g+1 = (ℓ− 1)/2 = p, and consists of
a single orbit under action of Gn = Gal(Ω+

n /Qn−1,ℓ):

Dn : Y 2 =
∏︂
σ∈Gn

(X − ησ1 ), η1 = ζℓn + ζ−1
ℓn .

In particular, the hyperelliptic polynomial is irreducible over Q∞,ℓ. It follows from
this (e.g. [395, Lemma 4.3]) that J(Q∞,ℓ)[2] = 0, where J denotes J(Dn) for conve-
nience. We note, by Lemma 76, that Q∞,ℓ(J [2]) = Q∞,ℓ(η1) = Ω+

∞,ℓ. We consider
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the action of G∞ := Gal(Ω+
∞,ℓ/Q∞,ℓ) on J [2]. The group G∞ is cyclic of order

(ℓ − 1)/2 = p. Any element fixed by this action belongs to J(Q∞,ℓ)[2] = 0. Thus
G∞ acts freely on V \ {0}, where V := J [2].

Now let ϕ : J → A be an isogeny defined over Q∞,ℓ. Then W := ker(ϕ) ∩
J [2] is a subgroup of V stable under the action of G∞, and therefore an F2[G∞]-
submodule of the F2[G∞]-module V . Observe that dimF2(V ) = 2g = p − 1. By
hypothesis, 2 is a primitive root modulo p. We apply Lemma 77 to deduce that
W = 0 or W = V . Therefore, either ϕ already has odd degree, or J [2] ⊆ ker(ϕ). In
the latter case, observe that ϕ = 2ϕ′ where ϕ′ : J → A is an isogeny defined over
Q∞,ℓ of degree deg(ϕ)/22g. As ϕ has finite degree, by repeating the argument we
eventually arrive at ϕ = 2rϕodd.

Lemma 79. Let ℓ = 2p+1, where ℓ and p are odd primes. Suppose 2 is a primitive
root modulo p. Suppose that the class number h+n of Ω+

n,ℓ is odd for all n. Let
g = (ℓ− 3)/4. For n ≥ 2 let Dn/Qn−1,ℓ be the genus g hyperelliptic curve defined in
Section 3.8. Let n > m be sufficiently large. Then there are no isogenies J(Dn) →
J(Dm) defined over Q∞,ℓ.

The assumption that h+n is odd for all n may seem at first sight very restric-
tive. However, it is conjectured [79] that h+n+1 = h+n for all but finitely many pairs
(ℓ, n). Moreover, Washington [438] has shown that ordp(hn) remains bounded as
n→∞, for any fixed prime p.

Proof of Lemma 79. Write Jn for J(Dn). Suppose there is an isogeny ϕ : Jn →
Jm defined over Q∞,ℓ. By Lemma 78 we may suppose that ϕ has odd degree,
and so ker(ϕ) ∩ Jn[4] = 0. Thus ϕ restricted to Jn[4] induces an isomorphism of
Gal(Q/Q∞,ℓ)-modules Jn[4] ∼= Jm[4]. In particular, Q∞,ℓ(Jn[4]) = Q∞,ℓ(Jm[4]). As
in the proof of Lemma 78 we have Q∞,ℓ(Jn[2]) = Q∞,ℓ(Jm[2]) = Ω+

∞,ℓ. Thus, by
Lemma 76, the equality Q∞,ℓ(Jn[4]) = Q∞,ℓ(Jm[4]) may be rewritten as

Ω+
∞,ℓ

(︂{︁√︁
ϑn,i − ϑn,j

}︁
1≤i,j≤(ℓ−1)/2

)︂
= Ω+

∞,ℓ

(︂{︁√︁
ϑm,i − ϑm,j

}︁
1≤i,j≤(ℓ−1)/2

)︂
where ϑr,i := µi−1

r (ζℓr+ζ
−1
ℓr ) where µr is a cyclic generator of Gr. This, in particular,

implies that

√︁
ϑn,2 − ϑn,1 ∈ Ω+

∞,ℓ

(︂{︁√︁
ϑm,i − ϑm,j

}︁
1≤i,j≤(ℓ−1)/2

)︂



Dra
ft

Draft of 0:21 am, Wednesday, November 13, 2024 99

We apply Lemma 74 to obtain

ϑn,2 − ϑn,1 = ±
∏︂

1≤i<j≤ ℓ−1
2

(ϑm,i − ϑm,j)ei,j · q2

for some integers ei,j ∈ Z and q ∈ Ω+
∞,ℓ. By Lemma 75, we have q ∈ Vn. The

generator µn of Gn is given by µn(ζℓn + ζ−1
ℓn ) = ζaℓn + ζ−aℓn where a ∈ Z×

ℓ has order
(ℓ− 1). Note

ϑn,2 − ϑn,1 = ζaℓn + ζ−aℓn − ζℓn − ζ
−1
ℓn = ζ−aℓn (1− ζa+1

ℓn )(1− ζa−1
ℓn ).

Thus,
(1− ζa+1

ℓn )(1− ζa−1
ℓn ) ∈ ⟨±ζℓn , Vm, V 2

n ⟩.

However, (a+ 1) ̸≡ ±(a− 1) (mod ℓ). Now Corollary 54 gives a contradiction.

Proof of Theorem 49

Let ℓ ≥ 11. Let

g = ⌊(ℓ− 3)/4⌋ =

⎧⎨⎩(ℓ− 3)/4 ℓ ≡ 3 (mod 4)

(ℓ− 5)/4 ℓ ≡ 1 (mod 4).

Thus g satisfies (3.24). Let Dn be as in Section 3.8. By Lemma 69, the hyperelliptic
curve Dn/Qn−1,ℓ has genus g, and good reduction away from {υ2, υℓ}. Moreover,
by Lemma 73, we have Dn and Dm are non-isomorphic, even over Q, for n > m

sufficiently large.
Now suppose

(i) ℓ = 2p+ 1 where p is also an odd prime;

(ii) 2 as a primitive root modulo p.

It then follows from Lemma 79 that J(Dn) and J(Dm) are non-isogenous over Q∞,ℓ

provided h+n is odd for all n, where h+n denotes the class number of Ω+
n,ℓ. Write hn

for the class number of Ωn,ℓ. It is known thanks to the work of Estes [148] that h1
is odd for all primes ℓ satisfying (i) and (ii) (a simplified proof of this result is given
Stevenhagen [391, Corollary 2.3]). Moreover, Ichimura and Nakajima [214] show, for
primes ℓ ≤ 509, that the ratio hn/h1 is odd for all n. The primes 11 ≤ ℓ ≤ 509

satisfying both (i) and (ii) are 11, 23, 59, 107, 167, 263, 347, 359. Thus for these
primes hn is odd for all n. As h+n | hn (see for example [439, Theorem 4.10]), we
know for these primes that h+n is odd for all n. This completes the proof.
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Remarks.

• A key step in our proof of Theorem 49 is showing that J(Dn)[2] is irreducible
as an F2[G∞]-module whenever ℓ = 2p + 1 where p is a prime having 2 as
a primitive root. It can be shown for all other ℓ that the F2[G∞]-module
J(Dn)[2] is in fact reducible.

• Another key step is the argument in the proof of Lemma 79 showing that for
n > m sufficiently large, the Jacobians J(Dn) and J(Dm) are not related via
odd degree isogenies defined over Q∞,ℓ. This step can be made to work, with
very minor modifications to the argument, for all ℓ ≥ 11, and all choices of
genus g given in (3.24).

3.10 Endomorphism rings

To conclude this chapter, we study the possible endomorphism rings of the Jacobians
of our elliptic curve and hyperelliptic curve constructions. We begin by stating a
trivial corollary of Lemma 66.

Corollary 80. Let ℓ = 2, 3, 5, or 7, and let S = {υ2, υℓ}. There are infinitely many
Q-isomorphism classes of elliptic curves defined over Q∞,ℓ with good reduction away
from S whose geometric endomorphism ring End(EQ) is Z.

Proof. This follows immediately from Lemma 66 as an elliptic curve E/K has po-
tential CM if and only if End(EQ) ̸= Z.

This naturally motivates the question of whether similar statements for higher
genus hyperelliptic curves exist. We thus conjecture the following strengthening of
Theorem 48.

Conjecture. Let g ≥ 2 and let ℓ = 3, 5, 7, 11 or 13. There are infinitely many Q-
isomorphism classes of genus g hyperelliptic curves C over Q∞,ℓ with good reduction
away from {υ2, υℓ}, such that its Jacobian J = Jac(C) satisfies End(JQ) = Z.

Whilst this seems out of reach with current methods, we can show the fol-
lowing weaker results.

Theorem 81. Let ℓ = 2p + 1, where ℓ and p are odd primes. Suppose 2 is a
primitive root modulo p. Let g = (ℓ − 3)/4. Let n ≥ 2 and let Dn/Qn−1,ℓ be the
genus g hyperelliptic curve

Dn : Y 2 =
∏︂
σ∈Gn

(X − ησ1 ), η1 = ζℓn + ζ−1
ℓn (3.31)
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as defined in Section 3.8. Then the Jacobian J of Dn is Q∞,ℓ-simple.

Proof. Noting that G∞ is cyclic of order p and that dimF2 J(Dn)[2] = p − 1, we
can apply Lemma 77 to get that J(Dn)[2] is irreducible as an F2[G∞]-module. This
proves the claim.

To obtain results on the possible geometric endomorphism rings End(JQ) that
can occur for the Jacobians J = Jac(Dn), we can state the following two theorems,
applying some recent work of Pip Goodman [183, 184].

Theorem 82. Let ℓ = 2p + 1, where ℓ and p are odd primes. Suppose 2 is a
primitive root modulo p. Let g = (ℓ − 3)/4. Let n ≥ 2, let Dn/Qn−1,ℓ be the genus
g hyperelliptic curve as given in (3.31), and let J = Jac(Dn) denote the Jacobian of
Dn. Then one of the following two things is true:

1. The geometric endomorpism algebra E := End(JQ)⊗Q is a number field (and
where 2 is totally inert in E/Q and the order End(JQ) is 2-maximal in E; i.e.
the index of End(JQ) in OE is odd)

2. J isogenous over Q to the power of an absolutely simple abelian variety with
CM by a proper subfield of Q(ζp).

Proof. This follows from the main theorem of Goodman [184, Theorem 1.1].

In the particular case where ℓ = 11 and Dn is a genus 2 curve, we can show
that the second case above never occurs:

Theorem 83. Let ℓ = 11 and g = 2 and let Dn/Qn−1,11 be the genus 2 hyperelliptic
curve

Y 2 =
∏︂
σ∈Gn

(X − ησ1 ), η1 = ζ11n + ζ−1
11n .

Then Jac(Dn) is absolutely simple and does not have CM.

Proof. Recall thatDn has genus 2 and is defined over Qn−1,11. Note that Gal(Qn−1,11(J [2])/Qn−1,11) =

Gal(Ω+
n,11/Qn−1,11) ∼= C5. We can therefore apply a theorem of Goodman [184, The-

orem 2.10] to deduce that J(Dn) is absolutely simple.
Furthermore, using [183, Corollary 2.3.15], if J(Dn) has CM, then Qn−1,11

must contain a real quadratic field, which is impossible as the degree of Qn−1,11 is
11n−1 which is odd. Thus J(Dn) does not have CM.

Remark. Goodman’s results [184, Theorem 2.10] furthermore show that,
for ℓ = 11 and g = 2, the geometric endomorphism ring End(JQ) is either Z, or
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Z[1+r
√
D

2 ] for some positive integer D ≡ 5 (mod 8) and odd integer r, or is a 2-
maximal order in a degree 4 CM field which is totally inert at 2. It seems reasonable
to conjecture that End(JQ) is always Z for the Jacobians J of all our curves {Dn}n≥1

defined in (3.31), although we have been unable to prove this.
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Chapter 4

Abelian surfaces A/Q with full
rational 2-torsion

Recall Faltings’ [153] celebrated proof that, given any number field K, dimension
d, and finite set of places S in K, there are only finitely many isomorphism classes
of dimension d abelian varieties A/K with good reduction away from S. However,
other than some cases where either d = 1 or S = ∅, effectively determining all such
abelian varieties A/K with good reduction away from S remains a hard problem!

In this chapter, we shall take the first step towards solving the effective Sha-
farevich conjecture (Conjecture 5) in the case where d = 2, K = Q and S = {2}. In
particular, we shall classify all isogeny classes of principally polarised abelian sur-
faces A/Q with good reduction away from 2 and satisfying Q(A[2]) = Q. To our
knowledge, this is one of the first cases of the effective Shafarevich conjecture being
partially solved for some (d,K, S) where d ≥ 2 and S ̸= ∅ with no condition on the
conductor N , albeit with a condition on the field of 2-torsion Q(A[2]).

As a warm-up, let’s begin by considering the dimension 1 (elliptic curve) case:

Theorem 84 (Ogg). Let E/Q be an elliptic curve with good reduction away from 2,
and with full rational 2-torsion. Then E is isomorphic to either E1 : y

2 = x3 − x or
E2 : y

2 = x3 − 4x.

While Ogg [308] gave a full classification of all 24 elliptic curves E/Q with
good reduction away from 2, we can give a very short elementary proof in the case
where E has full rational 2-torsion:

Proof. Since Q(E[2]) = Q, we note that E/Q can be given by some globally minimal
model y2 = x(x− a)(x− b) for some distinct a, b ∈ Z. As E/Q has good reduction

103
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away from 2, this implies ∆ = 16a2b2(a − b)2 is a power of two, and thus a, b and
a− b are all powers of 2 (up to a sign). If a = ±2α for some integer α ≥ 0, an easy
check yields just three possibilities for b, namely b ∈ {±2α−1,∓2α,±2α+1}, with all
cases being Q-isomorphic to either E1 or E2.

Generalising the above proof to abelian surfaces A/Q is far more non-trivial.
Whilst elliptic curves have very simple models that allow for elementary arguments
such as those given above, equations describing abelian surfaces are highly non-
elementary, e.g. in general, models for abelian surfaces A/Q require 72 equations in
P15, as shown by Cassels–Flynn [91]. This is not a particularly pleasant thing to do.
We therefore require techniques to classify abelian surfaces which avoid using any
specific models.

We make the following conjecture.

Conjecture 85. Let A/Q be an abelian surface with good reduction away from 2,
and with full rational 2-torsion. Then A is isomorphic to either E1 × E1, E1 × E2,
or E2 ×E2, where E1 and E2 are the elliptic curves E1 : y

2 = x3 − x and E2 : y
2 =

x3 − 4x.

Whilst the the conjecture is still open, our main result in this chapter is
successfully proving that any principally polarised abelian surfaces A/Q such that
Q(A[2]) = Q and with good reduction away from 2 must be isogenous to one of the
three abelian surfaces above.

Theorem 86. (Theorem 102) There are exactly three isogeny classes of principally
polarised abelian surfaces A/Q with good reduction away from 2 which contain sur-
faces with full rational 2-torsion. These are given by E1×E1, E1×E2 and E2×E2,
where E1 and E2 are the elliptic curves E1 : y

2 = x3 − x and E2 : y
2 = x3 − 4x.

It’s worth remarking that one advantage to dealing with the specific case of
principally polarised abelian surfaces, compared to arbitrary abelian surface, is the
following classification theorem:

Theorem. [181, Theorem 3.1] Let K be a number field, and let A/K be a principally
polarised abelian surface. Then A/K (as a polarised abelian variety) is isomorphic
to one of the following three cases:

1. A ∼= Jac(C) where C/K is smooth genus 2 curve.

2. A ∼= E1 × E2 where E1, E2 are elliptic curves over K.
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3. A ∼= ResL/KE, is the Weil restriction of an elliptic curve E/L where L is a
quadratic extension of K. (note A ∼=L E × Eσ where Gal(L/K) = ⟨σ⟩)

We note that classifying principally polarised abelian surfaces with good re-
duction away from 2 which fall in the second or third case above, can be reduced to
essentially classifying elliptic curves over K with good reduction away from 2, where
K is either Q,Q(i),Q(

√
2) or Q(

√
−2). Since all these cases have been dealt with by

previous authors [308, 317, 229], a full classification of principally polarised abelian
surfaces A/Q with good reduction away from 2 would thus follow from resolving the
following problem, first proposed by Poonen [322, p. 301]:

Problem 4.1 (Poonen 1996). List all genus 2 curves C/Q whose Jacobians Jac(C)
have good reduction away from 2.

So far, we have found 512 such genus 2 curves C/Q via various methods
(including 366 found by Smart [386]) divided into 175 isogeny classes, although so
far we have only been able to prove completeness in certain particular cases where
either the bad primes for C are bounded, or the field of 2-torsion for C is bounded.
We will describe further computational methods to explicitly compute such genus 2
curves in Chapter 5 and give a list of all such known curves in Chapter 6.

The remainder of this chapter will now focus on setting up the necessary
theoretical and computational prerequisites to prove Theorem 86.

4.1 Fields of 2-power torsion

Theorem 87. Let A/Q be an abelian surface. Then Q(A[2]) is a 2-extension of Q
of degree at most 26, unramified away from 2.

Proof. Let Ω2 be the maximal extension of Q unramified away from 2, and let ρ :

Gal(Ω2/Q) → GL4(F2) be the induced Galois representation on A[2]. We have
that Gal(Q(A[2])/Q) is isomorphic to the image of ρ. By a result of Rasmussen–
Tamagawa [329, Proposition 4.1], the image of ρ in GL4(F2) is a 2-group, and so
Q(A[2]) is a 2-extension of Q unramified away from 2.

To bound the degree, we note that |GL4(F2)| =
∏︁3
i=0(2

4− 2i) = 26 · 315, and
thus im(ρ) must have order at most 26.

Remark. It’s worth mentioning that one cannot extend the above result to abelian
varities A/Q of arbitrary large dimensions, as Rasmussen–Tamagawa [329] give an
example of a dimension 272 abelian variety A/Q with good reduction away from 2
where Q(A[2]) contains a degree 272 field unramified away from 2.
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By using classical Hermite-Minkowski bounds, Theorem 87 implies we have
only finitely many possibilities for Q(A[2]). Indeed, if A is a principally polarised
abelian surfaces, then it is known that Q(A[2]) is some compositum of the following
ten fields

Q, Q
(︁√
−1
)︁
, Q
(︁√

2
)︁
, Q
(︁√
−2
)︁
,Q
(︁√︁

1 +
√
−1
)︁
, Q
(︁√︁

1 +
√
2
)︁
,

Q
(︁

4
√
2
)︁
, Q
(︁

4
√
−2
)︁
, Q
(︁√︁
−2−

√
2
)︁
, Q
(︁√︁

2 +
√
2
)︁
.

as shown in Table 5.4.
Whilst it may be possible to classify all such 2-torsion fields, for now we shall

simply restrict our attention to the case where we have full rational 2-torsion (i.e.
Q(A[2]) = Q). In this case, we can uniquely determine the 4-torsion field Q(A[4])

and the 8-torsion field Q(A[8]) for any such abelian surface A/Q with good reduction
away from 2.

Theorem 88. Let A/Q be a principally polarised abelian variety of dimension d

with good reduction away from 2 and with full rational 2-torsion (i.e. Q(A[2]) = Q).
Then A has field of 4-torsion Q(ζ8) and moreover, if dimA ≤ 2, then A has field of
8-torsion Q(ζ16,

4
√
2).

Proof. As A/Q has good reduction away from 2, this implies Q(A[2n]) is unramified
away from 2 for all n ≥ 1. Furthermore, as each element of Gal(Q(A[2n+1])/Q(A[2n]))

has order at most 2, we obtain that the field Q(A[2n+1]) is some compositum of de-
gree 2 extensions of Q(A[2n]) unramified away from 2. This allows us to inductively
compute the possible fields for Q(A[2n+1]) from Q(A[2n]).

By classical Hermite-Minkowski bounds, for each number field K, there are
only finitely such bounded degree extensions of K unramified away from 2. Thus,
for small n, we can classify all possibilities:

• Case n = 1. Note that the only quadratic extensions of Q unramified away
from 2 are Q(i), Q(

√
2), and Q(

√
−2). The compositum of these three fields

is Q(i,
√
2) = Q(ζ8), and thus Q(A[4]) ⊂ Q(ζ8).

However, for the 4-torsion field K = Q(A[4]), by a theorem of Katz [238,
p. 502] and by Weil’s inequality (e.g. see [15, p. 201]), we must have

|A(K)tors| ≤ |A(Fp)| ≤
(︁
N(p) + 1 + 2

√︁
N(p)

)︁d
for every odd prime p in K, noting that A has good reduction at p and K is
unramified at p. Thus, for K = Q(A[4]), we must have |A(K)tors| ≥ 42d, and
thus N(p) ≥ 9 for all odd primes in K.
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This eliminates the possibility that Q(A[4]) is one of the three quadratic num-
ber fields, and thus the only remaining possibility is Q(A[4]) = Q(ζ8).

• Case n = 2. Computing the quadratic extensions of Q(ζ8) unramified away
from 2, we get four (non-isomorphic) possible fields: Q(ζ16), Q(ζ8,

4
√
2), Q(ζ8,

√
i+ 1),

and Q(
√
ζ8 + 1).

As with the previous case, we have that Q(A[8]) must lie within the com-
positum of all four fields (i.e. the degree 32 field Q(ζ16,

4
√
2,
√
ζ8 + 1)), and

additionally the Weil inequalities imply that N(p) ≥ 49 for all odd primes p in
Q(A[8]).

Checking each case, this leaves us with only two possibilities for the field
of 8-torsion: either the degree 16 field Q(ζ16,

4
√
2), or the degree 32 field

Q(ζ16,
4
√
2,
√
ζ8 + 1).

Assuming d ≤ 2, we can now eliminate the latter case by considering the image
of the mod 8 Galois representations ρA,8 : Gal(Q(A[8])/Q) → GSp4(Z/8Z).
As Q(A[2]) = Q, this implies that Gal(Q(A[8])/Q) must be isomorphic to a
subgroup of R where

R := {M ∈ GSp4(Z/8Z) :M ≡ I mod 2}

Calculating Gal(K/Q) for each of the two fields above gives the Galois groups
16T10 (C2

2 ⋊ C4) and 32T19 (C3
2 ⋊ C4) respectively, given as LMFDB labels.

A brute force computer search tells us the latter is not a subgroup of R, and
thus we must have Q(A[8]) = Q(ζ16,

4
√
2).

Remarks.

• For elliptic curves E/Q with good reduction away from 2 and with full 2-
torsion, a further computational calculation shows that Q(E[16]) is a particular
degree 64 number field, whose Galois group has GAP ID ⟨64, 6⟩. Furthermore,
a similar (albeit longer) computation to the above, shows that any principally
polarised abelian surface A/Q with good reduction away from 2 and with full
2-torsion has at most three possibilities for the Galois group Gal(Q(A[16])/Q),
as shown in Theorem 101.

• In principle, one can effectively repeat the above procedure to obtain a finite
list of possible fields for Q(A[32]), Q(A[64]), Q(A[128]), etc. However, as shown

https://www.lmfdb.org/GaloisGroup/16T10
https://www.lmfdb.org/GaloisGroup/32T19
https://beta.lmfdb.org/Groups/Abstract/64.6
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Q(A[2]) = Q

Q(i) Q(
√
2) Q(

√
−2)

Q(A[4]) = Q(i,
√
2) = Q(ζ8)

Q(ζ16)) Q(ζ8,
4
√
2)) Q(ζ8,

√
i+ 1)) Q(

√
ζ8 + 1))

Q(A[8]) =Q(ζ16,
4
√
2)) Q(ζ16,

√
ζ8 + 1)) Q( 4

√
2,
√
ζ8 + 1)) Q(

√
i+ 1,

√
ζ8 + 1))

Q
(︁
ζ16,

4
√
2,
√
ζ8 + 1

)︁
≥ 52 fields

Figure 4.1: Field diagram of various 2-extensions of Q unramified away from 2. In
the case of Theorem 88, we have that Q(A[4]) = Q(ζ8) and Q(A[8]) = Q(ζ16,

4
√
2).

in Figure 4.1, the rank of {2}-units grows very quickly as we increase the field
of 2n-torsion, and so we obtain many more quadratic extensions to compute.
E.g. Doing a computation in Sage shows there are (at least) 53 non-isomorphic
quadratic extensions of Q(ζ16,

4
√
2) unramified away from 2. Computing all the

possible compositums and checking if their Galois group can be embedded in
GL2d(Z/16Z) would not be feasible computationally.

• If dimA ≤ 2, then one can show that A[2∞] lies in the maximal pro-2 extension
of Q(ζ2∞) := ∪n≥1Q(ζ2n), without any condition on the field of 2-torsion
(shown by Rasmussen–Tamagawa [329] in the dimension 2 case).

4.2 The Faltings–Serre method

Whilst Faltings’ proof of the Shafarevich conjecture is not fully effective, one can at
least obtain an explicit upper bound on the number of isogeny classes of dimension d
abelian varieties A/K with good reduction outside S. At the heart of this process lies
the Faltings–Serre method. This was outlined by Serre [365] in a letter to Tate, with
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many recent surveys and applications of the method given by Livné [267, Section
4], Boston [54], Schütt [359, Section 5], Grenié [189], Chênevert [93, Chapter 5],
Dieulefait–Guerberoff–Pacetti [130, Section 4] Duan [142], and Sánchez Rodríguez
[344]. We must also thank Ignasi Sánchez Rodríguez for many useful discussions on
the Faltings-Serre method. We shall give a brief overview of the method below.

Let A/K be an abelian variety of dimension d. Recall that A[n] ∼= (Z/nZ)2d.
In order to study the ℓn torsion A[ℓn] for some prime ℓ and various n, we define the
ℓ-adic Tate module

Tℓ(A) := lim←−
m

A[ℓm].

We have that Tℓ(A) is a free Zℓ-module of rank 2d. We are interested in how the
absolute Galois group G := Gal(K/K) acts on Tℓ(A), and so we define the map ρA,ℓ:

ρA,ℓ : Gal(K/K)→ AutZℓ
(Tℓ(A))

where σ ∈ Gal(K/K) is sent to its natural action on Tℓ(A). We note that, for any
particular n ≥ 1, we can factor this map as:

ρA,ℓ : Gal(K/K)→ Gal(K(A[ℓn])/K)→ AutA[ℓn] ∼= GL2d(Z/ℓnZ)

Our methods will rely on the key observation that knowing information about
the possible fields K(A[ℓn]/A) could narrow down possibilities for ρA.ℓ(Frobp) and
thus narrow down the possible characteristic polynomials Lp(T ).

4.2.1 Deviation groups

To set up the basic construction in the Faltings-Serre method, we first introduce the
notion of the deviation group attached to a pair of representations (ρ1, ρ2). Here,
we’ll closely follow the constructions and exposition as given in Chênevert [93] (who
himself followed the methods outlined in Serre [365]).

Definition 4.2 (Deviation group). [93, p. 106] Let G be a group, and let ρ1, ρ2 :

G→ GLn(Z2) be two representations of G. Let ρ denote the product homomorphism
ρ1 × ρ2 extended to a Z2-algebra, i.e.

ρ : Z2[G]→ Mn(Z2)⊕Mn(Z2)∑︂
g∈G

agg ↦→
(︂∑︂
g∈G

agρ1(g),
∑︂
g∈G

agρ2(g)
)︂
.

where ag ∈ Z2 and ag = 0 for all but finitely many elements g ∈ G. Let M be the
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image of ρ in Mn(Z2)⊕Mn(Z2), and consider the composition

δ : G→M× → (M/2M)×

We define the image of δ in (M/2M)× as the deviation group of the pair of
representations (ρ1, ρ2). We denote this group as δ(G).

Remark. We note that one can more generally define deviation groups for any two
representations ρ1, ρ2 : G→ GLn(O) where O is the ring of integers in any local field
E, however it suffices for our purposes to only consider representations in GLn(Z2).
It’s also worth repeating the caution mentioned in Chênevert [93, p. 107] that δ(G)
is in general not a subgroup of GLn(F2)×GLn(F2).

Classifying the possibilities for the deviation group δ(G) lies at the heart of
the Faltings-Serre method. It can be shown that δ(G) is always a finite group (in
particular |δ(G)| < 22n

2). Moreover, one can prove the following important proposi-
tion which allows us to read off a finite set of primes p ∈ T such that {tr(Frobp)}p∈T
uniquely determines ρ up to semi-simplification.

Proposition 89. [93, Proposition 5.2.3] Let ρ1, ρ2 : G → GLn(Z2) be two repre-
sentations. Let Σ be a finite subset of G surjecting onto δ(G) (i.e. δ(Σ) = δ(G)),
such that tr(ρ1(g)) = tr(ρ1(g)) for all g ∈ Σ. Then ρ1 and ρ2 are isomorphic up to
semi-simplification.

Proof. [93, p. 108] Assume for contradiction that ρ1 is not isomorphic (up to semisim-
plification) to ρ2. By the Brauer–Nesbitt theorem (e.g. see [258, p. 650]) we have
that trρ1 ̸= trρ2. Let α be the largest integer such that trρ1 ≡ trρ2 (mod 2α). Note
that we can define a Z2-linear map f : Z2[G]→ Z2 given by

f : Z2[G]→ Z2,
∑︂
g∈G

agg ↦→
∑︂
g∈G

ag2
−α(trρ1(g)− trρ2(g))

where, by definition of α, the image of f is not contained in 2Z2. This descends to
a Z2-linear map on M :

θ :M → Z2, (A,B) ↦→ 2−α(trA− trB)

where again we note θ(M) ̸⊆ 2Z2. This further descends to a nonzero F2-linear map
M/2M → F2 and thus to a function

Θ : δ(G)→ F2
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By the definition of M , we note that δ(G) spans M/2M and thus Θ is nonzero..
Therefore there exists some g ∈ Σ such that Θ(δ(g)) ̸= 0. In particular, this implies

2−α(trρ1(g)− trρ2(g)) ̸∈ 2Z2

and so trρ1(g) ̸= trρ2(g), which gives us a contradiction.

This proposition therefore allows us to determine whether two semisimple
representations ρ1 and ρ2 are isomorphic by comparing their traces for finitely many
elements in G. By classifying all the possible deviation groups δ(G), this gives an
effective algorithm to determine whether two representations ρ1 and ρ2 are isomor-
phic.

Applying this to the case of Galois representations G = Gal(K/K), this al-
lows us to prove the following key theorem, which Faltings used to prove finiteness of
the number isogeny classes of dimension d abelian varieties A/K with good reduction
outside S.

Theorem 90. [447, Proposition 2.7] Let K be a number field and S a finite set of
places of K, Suppose ρ1, ρ2 : Gal(K/K)→ GLn(Q2) are continuous representations
unramified outside S. Then there exists an effectively computable finite set of primes
T , disjoint from S, such that if

tr(ρ1(Frobp)) = tr(ρ2(Frobp))

for all p ∈ T , then ρ1 and ρ2 are isomorphism up to semi-simplification.

Proof. We can explicitly construct such a set T . Using classical Hermite-Minkowski
bounds, we recall there are only a finite number of Galois extensions L/K unramified
outside S with degree at most 22n

2 . As remarked in Chapter 2, such fields can
explicitly be computed by doing a Hunter search [101, p. 445]. Let ˜︁K be a finite
Galois extension of K containing all such extensions L.

Thus, by the Chebotarov density theorem, there exists a finite set of primes T
such that the Frobenius elements {Frobp}p∈T cover all conjugacy classes of Gal( ˜︁K/K).

As the representations ρ1 and ρ2 are unramified outside S, they factor over
Gal( ˜︁K/K). Since |δ(G)| < 22n

2 , this implies that the set {Frobp}p∈T surjects onto
the deviation group δ(G). We can therefore apply Proposition 89 to obtain that this
set S works, concluding the proof.

Whilst the set T can in principle always be effectively computed given any
(K,S, n), e.g. see Achter [5] for explicit bounds on Nm(p) for p ∈ T , doing the
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above procedure usually gives a set T which is far too large to be of practical use,
unless some further conditions on either the characteristic polynomials Lp(T ) or the
residual representations ρ1 and ρ2 are assumed.

To therefore get the best effective result, we need to study the deviation
group more closely for particular cases. In the next section, we’ll prove some specific
results in the cases where our representations satisfy ρ1 = ρ2 = I (mod 2)

4.2.2 The case where ρi is trivial

The following theorem is essentially a simplification of the proposition of Chênevert
[93, Proposition 5.3.1] in the case where the residual representations ρ2 and ρ2 are
trivial.

Proposition 91. Let ρ1, ρ2 : G → GLn(Z2) be two non-isomorphic represenations.
Assume that ρ1 ≡ ρ2 ≡ I (mod 2) and let β be the largest integer such that ρ1 ≡
ρ2 (mod 2β). Define the function

φ : Gal(Q/Q)→ Mn(F2)

given by g ↦→ 2−β(ρ1(g)− ρ2(g)) (mod 2). Then φ is a group homomorphism which
factors through the deviation group δ (i.e. ker δ ⊂ kerφ).

Proof. We can easily show that φ is an (additive) group homomorphism by a direct
computation. Indeed, let g, h ∈ G. Then using that

ρ1(g) = ρ2(g) + 2βφ(g) (mod 2β+1)

and ρ1(h) = ρ2(h) + 2βφ(h) (mod 2β+1),

we get
ρ1(gh) =

(︁
ρ2(g) + 2βφ(g)

)︁(︁
ρ2(h) + 2βφ(h)

)︁
(mod 2β+1).

Equating this with ρ1(gh) = ρ2(gh) + 2βφ(gh) (mod 2β+1) and dividing out by 2β ,
we get

φ(gh) = φ(g)ρ2(h) + ρ2(g)φ(h) + 2βφ(g)φ(h) (mod 2).

Since ρ1 ≡ ρ2 ≡ I (mod 2) by assumption (and thus also β ≥ 1), this implies

φ(gh) = φ(g) + φ(h),

which proves φ is a group homomorphism.
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We now show that ker δ ⊂ ker φ. Let g ∈ ker δ. By definition of δ this
implies that ρ1(g), ρ2(g) ∈ I + 2M , where we recall M as the image of ρ : Z2[G] →
Mn(Z2)⊕Mn(Z2) where ρ is the extension of ρ1 × ρ2 to Z2[G]. Thus, we can write

ρ(g) = 1 + 2
∑︂
h∈G

ahρ(h)

for some ah ∈ Z2, where ah = 0 for all but finitely many h ∈ G. This implies

ρ1(g) = 1 + 2
∑︂
h∈G

ahρ1(h) and ρ2(g) = 1 + 2
∑︂
h∈G

ahρ2(h)

Thus,

1 + 2
∑︂
h∈G

ahρ1(h) = ρ1(g) = ρ2(g) + 2βφ(g)

= 1 + 2
∑︂
h∈G

ahρ2(h) + 2βφ(g) (mod 2β+1)

which implies
φ(g) = 2

∑︂
h∈G

ahφ(h) ≡ 0 (mod 2)

and thus g ∈ ker φ.

Remarks.

• One can more generally show that, even if we assume that the mod 2 repre-
sentations ρ1 and ρ2 are non-trivial (but still assuming β ≥ 1), then the more
general map φ : G→ Mn(F2)⋊ GLn(F2) given by

g ↦→
(︁
2−β(ρ2(g)ρ

−1
1 (g)− I) mod 2, ρ1 mod 2

)︁
is also a group homomorphism which factors through δ.

• If one also assumes that detρ1 = detρ2, then one can show that the image of
φ is contained in M0

n(F2) (the set of n× n matrices of trace 0 over F2).

• From the proof of Theorem 91, the fact that kerδ ⊂ kerφ implies we have a
surjective map δ(G) ↠ φ(G), however this is not in general an isomorphism;
indeed δ(G) can be a lot bigger than φ(G).

Other than some trivial cases, computing the deviation group δ(G), even for a
single non-trivial pair of representations (ρ1, ρ2), seems to be a very difficult problem,
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whereas computing the possibilities for φ(G) is more doable. To give some examples,
one can show that the only possibilities for φ(G) in the case of representations
ρ1, ρ2 : Gal(Q/Q)→ GL2(Z2) satisfying det(ρ1) = det(ρ2) and ρ1 = ρ2 surjective in
GL2(F2), are the following three groups [93, p. 115]:

{±1} × S3, V4 ⋊ S3 ∼= S4, and (F2 ⊕ V4)⋊ S3 ∼= {±1} × S4.

Purely out of interest, we note the following proposition of Chênevert which
gives a simple description of the deviation group δ(G) and φ(G) in the case of
representations from G = Z2:

Proposition 92. [93, Proposition 5.3.2] Let ρ1, ρ2 : Z2 → GLn(Z2) be two contin-
uous representations such that ρ1 = ρ2 = 1. Then we have that φ(Z2) ∼= F2. If
furthermore ρ1 = 1, then δ(Z2) ∼= F2.

Proof. For any n ∈ Z, as φ is a group homomorphism, we have φ(n) = nφ(1) (mod
2). As ρ1, ρ2 continuous, this implies φ continuous and thus we have φ(n) = nφ(1)

(mod 2) for all n ∈ Z2. As φ is non-trivial by definition, in particular this implies
φ(1) nonzero, and thus we have kerφ = 2Z2. Therefore φ(G) ∼= F2.

By furthermore assuming that ρ1 is trivial (identically constant), then [93,
Proposition 5.3.2] proves that δ(Z2) ∼= F2.

Remarks. It’s worth mentioning some remarks about how the integers α
(as given in the proof of Proposition 89) and β (given in Proposition 91) compare.
Since ρ1 ≡ ρ2 (mod 2β) clearly implies trρ1 ≡ trρ1 (mod 2β), its obvious that α ≥ β,
however equality need not necessarily hold in general.

However, we note that it’s a theorem of Carayol [87, Theoreme 1] that α = β

if ρ1 ≡ ρ2 is an absolutely irreducible subgroup of GLn(F2). In this case, an explicit
algorithm to compute a suitable set of primes T is given by Brumer–Pacetti–Poor–
Tornaria–Voight–Yuen [77, Algorithm 2.4.1]. Whilst there are some generalisations
of this result by Urban [420] and Brown [66] where ρ1, ρ2 are certain reducible sub-
groups of GLn(F2), it can in general happen that α > β .

Although in the case where α = β, one can instead use φ(G) instead of the
deviation group δ(G) in the proof of Proposition 89, which can allow for a much
easier classification of the set T of primes that can one take in Theorem 90 (e.g. see
[93, p. 115]).

Motivated by this, we pose the following problem:



Dra
ft

Draft of 0:21 am, Wednesday, November 13, 2024 115

Problem 4.3. Given two representations ρ1, ρ2 : G→ GLn(Z2), give necessary and
sufficient conditions for when α = β.

4.2.3 Livné’s criterion

We now consider the special case of 2-dimensional Galois representations ρ1, ρ2 :

Gal(K/K) → GL2(Q2); these are the representations attached to elliptic curves
E/K. In the GL2 case, we have the following criterion by Livné [267] which gives a
strong bound on the set of primes T we can take in Theorem 90.

Theorem 93 (Livné’s criterion). [267, Theorem 4.3] Let K be a number field, and
S a finite set of primes of K. Let KS be the compositum of all quadratic extensions
of K unramified outside S. Suppose ρ1, ρ2 : Gal(K/K) → GL2(Q2) are continuous
representations unramified outside S such that

trρ1 ≡ trρ2 ≡ 0 (mod 2) and detρ1 ≡ detρ2 ≡ 1 (mod 2).

Let T be a finite set of primes of K disjoint from S for which

(i) The image of {Frobp}p∈T in Gal(KS/K) is non-cubic (i.e. if U denotes the
image {Frobp}p∈T in Gal(KS/K), then every degree 3 homogenous polynomial
which vanishes on U vanishes on Gal(KS/S), considered as a F2-vector space).

(ii) trρ1(Frobp) = trρ2(Frobp) and detρ1(Frobp) = detρ2(Frobp) for all p ∈ T .

Then ρ1 and ρ2 have isomorphic semi-simplifications.

Remark. We note that Livné’s criterion was generalised by Chênevert [93, Theorem
5.5.15] to only require the weaker condition that trρ1 ≡ trρ2 (mod 2).

To illustrate the effectiveness of this criterion, we can apply Livné’s criterion
to deduce the following classification for elliptic curves:

Corollary 94. Let E1/Q and E2/Q be elliptic curves with full rational 2-torsion
and good reduction outside 2. Let ρ1 and ρ2 : Gal(Q/Q) → GL2(Q2) be the Galois
representations associated to E1 and E2 respectively. Then if

tr(ρ1(Frobp)) = tr(ρ2(Frobp))

for all p ∈ {3, 5, 7}, then E1 is isogenous to E2.

Proof. If E/Q has full rational 2-torsion, then this implies ρ1 ≡ ρ2 ≡ I (mod 2), and
so clearly trρ1 ≡ trρ2 ≡ 0 (mod 2) and detρ1 ≡ detρ2 ≡ 0 (mod 2), allowing us to
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apply Livné’s criterion. As shown in Theorem 88, we have that Q{2} is the composi-
tum of Q(

√
−1), Q(

√
−2) and Q(

√
2) and so Q{2} = Q(ζ8), thus Gal(Q{2}/Q) ∼= C2

2 .
By Livné’s criterion, it suffices to find a set of odd primes T such that the image of
{Frobp}p∈T in Gal(Q(ζ8)/Q) gives all three non-identity elements in Gal(Q(ζ8)/Q)

(noting that this is a non-cubic subset of Gal(Q(ζ8)/Q)). We can easily check that
the Frobenius automorphisms Frob3, Frob5, and Frob7 suffice, indeed we can com-
pute the action on ζ8 as follows (also giving the action on i and

√
2 for reference):

Frob3 : ζ8 ↦→ ζ38 (i ↦→ −i,
√
2 ↦→ −

√
2),

Frob5 : ζ8 ↦→ −ζ8 (i ↦→ i,
√
2 ↦→ −

√
2),

Frob7 : ζ8 ↦→ −ζ38 (i ↦→ −i
√
2 ↦→

√
2).

Therefore, we can take T = {3, 5, 7}.1

Whilst the above result is not particularly useful in the dimension 1 case,
given that numerous other methods (e.g. solving S-unit or Mordell equations) have
been developed to effectively classify elliptic curves, we do observe that the main
advantage of this method is not requiring the use of any particular mode of elliptic
curves, and thus is far more adaptable to classify isogeny classes of higher dimension
abelian varieties, compared to the methods in Section 1.1.1.

4.2.4 Grenié’s criterion

We would like to deduce a similar criterion to Livné for higher dimensions n. Unfortu-
nately, it’s no longer sufficient to simply take a set of primes T such that {Frobp}p∈T
covers the compositum KS of all quadratic extension of K unramified away from S.
Instead, as we’ll see, we’ll need to iterate this construction several times to ensure we
have a sufficient number of primes to cover the deviation group δ(G). We therefore
give a theorem of Grenié (in the case of GLn(Q2)) which use the theory of pro-p
groups to generalise Livné’s criterion. Much of this section is taken from Grenié
[189] and specialised to the case of representations ρ1, ρ2 : Gal(K/K)→ GLn(Q2).

We begin by first defining a necessary condition required to apply Grenié’s
main theorem.

Definition 4.4. [189, Definition 1] Let M1 and M2 be two matrices in Mn(Q2),
and let F be a finite extension of Q2 containing the eigenvalues of M1 and M2.
Let pF be the maximal ideal of F and ωF a uniformiser. We say that M1 and M2

1If we want the stronger condition that {Frobp}p∈T surjects onto Q(ζ8), then an easy check shows
that Frob17 induces the identity in Q(ζ8), and hence one can take the set of primes T = {3, 5, 7, 17}.
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have congruent eigenvalues if there exists some λ ∈ O×
F and v ∈ Z such that

the charactersitic polynomials of ωvFM1 and ωvFM2 are in OF [x] and congruent to
(X − λ)n modulo pF .

Remark. Note that in particular, if ρ1, ρ2 : Gal(K/K) → GLn(Z2) are represen-
tations such that ρ1 ≡ ρ2 ≡ I (mod 2), then the characteristic polynomials of ρ1
and ρ2 are simply (X − 1)n (mod 2), and hence have congruent eigenvalues. In fact,
one can more generally show that, if ρA,2 is the 2-adic representation attached to an
abelian variety A/Q where Q(A[2]) has degree a power of 2, then the characteristic
polynomials of ρA,2 are (X − 1)n (mod 2).

We can now state Grenié’s main theorem (in the case p = 2).

Theorem 95 (Grenié’s criterion [189, Theorem 3]). Let K be a number field, and
S a finite set of primes of K, and n ≥ 2 an integer. We define a chain of number
fields K = K0 ⊂ K1 ⊂ K2 ⊂ . . . inductively as follows: For each i ≥ 0, let Ki+1 be
the maximal abelian extension of Ki unramified outside S such that Gal(Ki+1/Ki)

is an elementary 2-group. Define KS as the number field

KS := K⌈log2(n5(n−1))⌉+⌈log2 n⌉.

Suppose ρ1, ρ2 : Gal(K/K) → GLn(Q2) are continuous representations unrami-
fied outside S such that ρ1(σ) and ρ2(σ) have congruent eigenvalues, for all σ ∈
Gal(K/K).

Let T be a finite set of primes of K, disjoint from S for which

1. Each maximal cyclic subgroup of Gal(KS/K) has a generator of the form Frobt
for some t ∈ T and some prime t above t in KS.

2. ρ1(Frobt) and ρ2(Frobt) have equal characteristic polynomials (where Frobt is
any Frobenius element above t)

Then ρ1 and ρ2 have isomorphic semi-simplifications.

To classify abelian surfaces A/Q, we would like to apply this criterion in the
case where n = 4. If we do so, this yields r = 1536, and thus KS = K12+2 = K14.
Even in the case where K1 = Q and S = {2}, this is far beyond what we can
practically compute; indeed we were unable to compute even just K4.

To therefore obtain a construction for KS which is more computationally
feasible, one needs to impose some further conditions on what the possible extensions
Ki+1/Ki can be. This was done implicitly in Grenié’s work [189, Section 4], but
stated more explicitly in the work of Duan [142, Section 6.2].
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Theorem 96 (Optimised Grenié–Duan’s criterion [142, Section 6.2]). Let K,S, n, ρ1, ρ2
be as stated above in Theorem 95. Let KS now be defined as follows: Take K0 = K.
For each i ≥ 0, list all quadratic extensions L/Ki which satisfy the following two
conditions:

(i) L/Ki is unramified outside S.

(ii) For every odd prime p in K and for every prime P in L above p, the cor-
responding local field extension LP/Kp has Galois group of exponent at most
4.

Let Ki+1 be the compositum of all such quadratic extensions L/Ki satisfying condi-
tions (i) and (ii). Repeat this process for Ki+2 etc. until either

1. There are no such quadratic extensions L/Ki satisfying conditions (i) and (ii),
or;

2. i = ⌈log2(n5(n− 1))⌉+ ⌈log2 n⌉, as given in Theorem 95.

Let KS := Ki be the number field at which this algorithm terminates. Then the
statement of Theorem 95 is correct for this choice of KS.

Proposition 97. [189, Proposition 14] Let K,S, n, ρ1, ρ2 be as stated in Theorem
95. Let K ′ be the compositum of all odd degree d extensions of K unramified outside
S, over all odd d ≤ 2n − 1 such that d divides

∏︁n
i=2(2

i − 1).
Let ρ′1 and ρ′2 denote the restriction of ρ1 and ρ2 to Gal(K/K ′). Then ρ′1(σ)

and ρ′2(σ) have congruent eigenvalues for all σ ∈ Gal(K/K ′).

Proof. This is simply the statement of [189, Proposition 14] in the case of p = 2,
E = Q2, and k = F2 (and thus q = 2).

Theorem 98. [189, p. 617] Let n = 2, 3 or 4, and let ρ1 and ρ2 : Gal(Q/Q) →
GLn(Q2) be two representations unramified away from {2,∞}. Then if either

• tr(ρ1(Frobp)) = tr(ρ2(Frobp)) for all p ∈ {5, 7, 11, 13, 17, 19, 23, 31, 73, 137, 257, 337},
or

• χ(ρ1(Frobp)) = χ(ρ2(Frobp)) for all p ∈ {5, 7, 11, 17, 23, 31}, (where χ(M)

denotes the characteristic polynomial of M),

then ρ1 and ρ2 have isomorphic semi-simplifications.
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Whilst this is already stated and implicitly proven in Grenié [189, Section 4],
due to its importance in this chapter, we’ll provide a brief sketch proof here. We
thank Ignasi Sánchez Rodríguez [345] for very generously providing Magma code to
compute the field KS as defined in Theorem 96.

Proof sketch. [189, Section 4.2] Let n = 2, 3 or 4, and let ρ1 and ρ2 : Gal(Q/Q) →
GLn(Q2) be two representations unramified away from {2,∞}. We first use Propo-
sition 97 to show that ρ1 and ρ2 satisfy the conditions required to apply Theorem
95. Indeed, by the work of Tate [407] and Jones [224, Theorem 2.1], there does not
exist any odd degree d ≤ 15 number field L unramified away from {2,∞}, therefore
proving that ρ1(σ) and ρ2(σ) have congruent eigenvalues for all σ ∈ Gal(Q/Q).

We now construct the field KS by running the algorithm described in Theo-
rem 96. We have K0 = Q. Using similar arguments to those given in Theorem 88, we
compute K1 as the degree 8 field Q(ζ8) (the compositum of all quadratic extensions
of Q unramified away from 2), and K2 as the degree 32 field Q(ζ16,

4
√
2,
√
ζ8 + 1)

(the compositum of all quadratic extensions of Q(ζ8) unramified away from 2).
We then found that K3 is a degree 64 field (an explicit defining polynomial

is given in [189, p. 617]) and verified that no quadratic extensions of K3 unramified
outside {2,∞} satisfy condition (ii) of Theorem 96. This proves that KS = K3. A
standard computation shows that the order 64 group Gal(KS/K), which has GAP ID
⟨64, 34⟩, has 6 maximal cyclic subgroups, up to conjugacy, and each such subgroup
is generated by Frob5, Frob7, Frob11, Frob17, Frob23, and Frob31 respectively. This
proves the second assertion.

Finally, as ρ1 and ρ2 have dimension at most 4, we can alternatively compute
the characteristic polynomial of a matrix M ∈ GLn(Q2) by instead computing the
traces tr(M), tr(M2), tr(M3), and tr(M4). This proves the first assertion.

Remark. It’s worth noting that Theorem 98 does not hold for n ≥ 8, as there does
exist a degree 17 field unramified away from 2 [202], and 17 divides 28 − 1.

Therefore, in the case of n = 4, we can apply the above Theorem to the 2-adic
Galois representations ρ1, ρ2 : Gal(Q/Q) → GL4(Q2) attached to abelian surfaces
A/Q and B/Q respectively, both with good reduction away from 2. By Faltings’
isogeny theorem, this gives our desired result.

Corollary 99. [189, p. 617] Let A/Q and B/Q be two abelian surfaces with good
reduction outside 2. For each odd prime p, let ap(E) and ap(B) denote the trace
of Frobenius at the prime p for A and B respectively. Similarly, let Lp(A, T ) and
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Lp(B, T ) denote the local Euler factor at the prime p for A and B respectively. Then
if either

• ap(A) = ap(B) for all p ∈ {5, 7, 11, 13, 17, 19, 23, 31, 73, 137, 257, 337}, or

• Lp(A, T ) = Lp(B, T ) for all p ∈ {5, 7, 11, 17, 23, 31},

then A is Q-isogenous to B.

4.3 Computational results

Taking inspiration from the recent algorithm of Alpöge–Lawrence [10], the above
criterion suggests one attempt to give a general approach to classify dimension d

abelian varieties A/K with good reduction outside S:

1. Given some finite set of primes S of bad reduction, use Theorem 90 (the
Faltings-Serre method) to compute a finite set of primes R for which the set
of local Euler factors {Lp(T ) : p ∈ R} uniquely determines the L-function
L(A/K, s) of A/K.

2. For each p ∈ R, use the Weil inequalities to compute a finite set of possible
characteristic polynomials Lp(T ) (This already gives an effective, albeit weak,
upper bound on the number of isogeny classes).

3. For a suitable prime ℓ and positive integer n ≥ 1, classify the possible ℓ-
torsion fields A[ℓn] and use that Gal(K(A[ℓn])/K) ↪→ GL2d(Z/ℓnZ) is injective
homomorphism to narrow down possibilities for Lp(T ). Here, a larger value
for n narrows down the possibilities for Lp(T ) further, but at the cost of being
more computationally intensive.

4. For each remaining set of characteristic polynomials {Lp(T ) : p ∈ R} which
correspond to a valid embedding of Gal(K(A[ℓn])/K) in GL2d(Z/ℓnZ), search
for an abelian variety corresponding to this set.

5. After computing all the information we can about the possibilities for Gal(K(A[ℓn])/K)

and its image in GL2d(Z/ℓnZ), we hope that the only remaining possible Eu-
ler factors Lp(T ) correspond to explicit examples of abelian varieties already
found.

This approach does seem rather ambitious, and is almost certainly not compu-
tationally feasible for all but the most simplest of cases. Unlike the Alpöge–Lawrence
algorithm, we make no claim that this will (even conjecturally) terminate for most
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choices of (K,S, d). We summarise our results in the case that K = Q and S = {2}
with the condition Q(A[2]) = Q in the next two sections, first for d = 1 and then
d = 2.

4.3.1 Elliptic curves

To illustrate the above method, we shall first compute all elliptic curves E over Q
with good reduction away from 2 and with full rational 2-torsion. Of course, this
clearly has a very elemenetary solution, as shown in the proof of Theorem 84, but
let’s for a moment assume we know nothing about models of elliptic curves. By
Theorem 94, it suffices to compute the possibilities for the local Euler factors at the
first three odd primes: L3(T ), L5(T ) and L7(T ). As these are degree 2 polynomials,
they are each uniquely determined by the trace ap at p = 3, 5, 7 respectively.

Our first attempt is to do a brute force search for matrices M in GL2(Z2)

such that M ≡ I (mod 2) and compute the possible values for the trace of M . Of
course, as GL2(Z2) is infinite, we instead search modulo some sufficiently large power
of 2, where in Table 1 we’ve taken mod 210. We also use the Hasse-Weil bounds to
restrict to values of M where |tr(M)| ≤ 2

√
p.

Table 4.1: A list of the possible values for tr(M), where M ∈ GL2(Z/210Z) such
that M ≡ I mod 2, det(M) = p, and |tr(M)| ≤ 2

√
p.

Prime p Possible values for tr(Frobp)

3 0
5 2, −2
7 −4, 0, 4
11 −4, 0, 4
13 −6, −2, 2, 6
17 −6, −2, 2, 6
19 −8, −4, 0, 4, 8

Table 4.1 shows that, for any elliptic curve E/Q with full rational 2-torsion
and with good reduction outside 2, we must have tr(Frob3) = 0, tr(Frob5) ∈ {2,−2}
and tr(Frob7) = {−4, 0, 4}. This already gives an upper bound of 6 possible distinct
isogeny classes for E.
Remark. For p = 17, since Frob17 fixes ζ8, this implies by Theorem 88 that Frob17

fixes all 4-torsion, and thus ρE,2(Frob17) ≡ I (mod 4). Using this stronger condi-
tion for ρE,2(Frob17), we can prove that the only possibility for the trace at 17 is
tr(Frob17) = 2.
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In order to further narrow down the possible values for tr(Frob7), we must
make use of Theorem 88. This implies that the Galois group of Q(E[8]) = Q(ζ16,

4
√
2)

is a subgroup of {M ∈ GL2(Z/8Z) :M ≡ I (mod 2)}
We therefore run a brute force search computing all possible embeddings of

Gal(Q(E[8])/Q) = C2
2 ⋊ C4 in {M ∈ GL2(Z/8Z) : M ≡ I (mod 2)} and computing

the possible traces of the matrices M such that det(M) = 7 (mod 8).
By doing this, we obtain that tr(Frob7) ≡ 0 (mod 8). By combining this with

the results from Table 4.1, this proves that tr(Frob7) = 0, and therefore there are
exactly two isogeny classes of elliptic curves E over Q good away from 2 with full
rational 2-torsion.

Whilst it is certainly not necessary to use the Faltings-Serre to classify elliptic
curves, given Theorem 84 and the numerous other methods available, the major
advantage of the above method is that one can apply the same methods to classify
abelian surfaces, whereby we simply replace GL2 with GL4, or GSp4 if we assume
principal polarisation.

4.3.2 Abelian surfaces

We now look at the d = 2 case. We first compute the possible local Euler factors
Lp(T ) for the first few odd primes p. This can be obtained by using known bounds on
the roots of Lp(T ) to obtain a bound on the coefficients, and thus one can proceed by
a standard finite brute computational search to compute all possibilities, as shown
in Algorithm 7.

Table 4.2: For each odd prime p = 3, 5, . . . , 31, we tabulate the number of good
Euler factors Lp(T ) for dimension 2 abelian varieties A/Q.

Prime p 3 5 7 11 13 17 19 23 29 31

Num good Lp(T ) 63 129 207 401 513 765 897 1193 1683 1861

From Table 4.2, if we naively apply Corollary 99 to compute an upper bound
for the number of isogeny classes of abelian surfaces over Q with good reduction
outside 2, we get 129 · 207 · 401 · 765 · 1193 · 1861 which yields a very weak (albeit
effective) upper bound of ≈ 1.8 · 1016 distinct isogeny classes.

By a similar argument to the elliptic case, if we instead use that these matrices
must be elements in GSp4(Z/16Z) with certain properties, then this gives us a tighter
bound of at most 4 ·6 ·9 ·15 ·22 ·32 ≈ 2.3 ·106 distinct isogeny classes, as summarised
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in Table 4.3. This is an improvement, but still far from the true number of such
isogeny classes.

Table 4.3: For each odd prime p, we tabulate the number of possible Euler factors
Lp(T ) of good reduction which correspond to some matrix M ∈ GSp4(Z/2nZ) such
that M ≡ I (mod 2) and det(M) ≡ p2 (mod 2n).

Prime p n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

3 17 6 2 1 1 1
5 35 12 5 4 4 4
7 53 16 8 6 6 6
11 103 30 14 9 9 9
13 129 36 19 12 12 12
17 195 54 25 15 15 15
19 227 62 32 19 19 19
23 301 80 40 22 22 22
29 425 112 57 32 32 32
31 467 122 60 32 32 32

Unlike the elliptic case, it is not sufficient to check matrices mod 8, but rather
must instead work mod 64 here. The last column of Table 4.3 also illustrates that
it is not sufficient to consider each Euler factor individually, but rather its necessary
to consider precisely how Gal(Q(A[64])/Q) embeds inside GSp4(Z/64Z).

To achieve this goal, we first need the following theorem which allows us to
inductively compute the 2n-torsion Galois groups Gal(Q(A[2n])/Q) based off the
possibilities for Gal(Q(A[2n−1])/Q).

Theorem 100. Let A/Q be an abelian variety with good reduction away from 2.
Then for any n ≥ 2, Gal(Q(A[2n])/Q) is a central Ck2 -extension of Gal(Q(A[2n−1])/Q)

for some k ≥ 0, and is a quotient of ⟨a, b | a2 = 1⟩.

Proof. For any n ≥ 2, we note that we have the following short exact sequence

1→ Gal(Q(A[2n])/Q(A[2n−1]))→ Gal(Q(A[2n])/Q)→ Gal(Q(A[2n−1])/Q)→ 1

Since every element in Gal(Q(A[2n])/Q)/Gal(Q(A[2n−1])/Q) has order 2, this im-
plies Gal(Q(A[2n])/Q)/Gal(Q(A[2n−1])/Q) ∼= Ck2 for some k ≥ 0. Furthermore, as
A has good reduction away from 2, this implies Q(A[2n]) is a subfield of Ω2; the
maximal pro-2 extension of Q unramified away from 2, By a well-known result of
Marksaitis [277], this has Galois group ⟨a, b | a2 = 1⟩; i.e. the free product of Z and
C2.
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This therefore reduces the problem of classifying the possible groups Gal(Q(A[2n])/Q)

to computing Ck2 -extensions of Gal(Q(A[2n−1])/Q) which are quotients of ⟨a, b | a2 =
1⟩.

We therefore require the following theorem which extends Theorem 88 to give
an explicit finite list of possible Galois groups Gal(Q(A[2n])/Q) for abelian surfaces
A/Q with good reduction away from 2 and with full rational 2-torsion, for all n ≤ 6.

Theorem 101. Let A/Q be a principally polarised abelian surface with good reduc-
tion away from 2 and with full rational 2-torsion. Then Q(A[16]) has degree either
32, 64, or 128, with the first two cases corresponding to two particular degree 32 and
degree 64 fields. In particular, the Galois group Gal(Q(A[16])/Q) is (as an abstract
group) one of the following three groups (given with GAP IDs):

C2
2 ⋊ C8 ⟨32, 5⟩, D4 ⋊ C8 ⟨64, 6⟩, C2

2 .C4 ≀ C2 ⟨128, 2⟩.

Furthermore, Gal(Q(A[32])/Q) is one of 118 possible groups of order at most 211,
and Gal(Q(A[64])/Q) is one of 521 possible groups of order at most 215.

Proof. We proceed in a similar fashion to that of Theorem 88. Since explicitly com-
puting field extensions (unramified away from 2) of degree 32 or more, quickly be-
comes computationally unfeasable, we instead use properties of Gal(Q(A[2n+1])/Q(A[2n])

to directly construct group extensions to obtain the possibilities for Gal(Q(A[2n+1])/Q)

(as abstract groups).
Since we know that Q(A[8]) is the degree 16 field Q(ζ16,

4
√
2), thus Gal(Q(A[8])/Q) =

C2
2⋊C4. We now compute (using Algorithm 3) all central 2-extensions C2

2⋊C4 which
are quotients of the group ⟨a, b | a2 = 1⟩. By a standard Magma implementation,
this gives 13 possibilities, for which the GAP IDs are

Gal(Q(A[16])/Q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⟨32, 5⟩, ⟨32, 6⟩, ⟨32, 7⟩, ⟨32, 9⟩, or ⟨32, 11⟩ if deg Q(A[16]) = 25,

⟨64, 4⟩, ⟨64, 6⟩, ⟨64, 8⟩, ⟨64, 10⟩,

⟨64, 12⟩, ⟨64, 29⟩, or ⟨64, 38⟩ if deg Q(A[16]) = 26,

⟨128, 2⟩ if deg Q(A[16]) = 27.

By checking which of these can occur both as Galois groups of 2-extensions of
Q(ζ16,

4
√
2) unramified away from 2, and as subgroups of {M ∈ GSp4(Z/16Z) :M ≡

I (mod 2)}, we obtain the only three remaining possible groups are ⟨32, 5⟩, ⟨64, 6⟩
and ⟨128, 2⟩.

We can proceed with a similar such inductive computation to compute the
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possible groups Gal(Q(A[32])/Q) and Gal(Q(A[64])/Q). We again ran Algorithm
3 for each of the three groups given for Gal(Q(A[16])/Q) where we obtain many
possible candidate groups Gal(Q(A[32])/Q), all of order at most 2048. We’ve listed
the first few GAP IDs of the groups below, although to save space, we left out
descriptions of the groups of order ≥ 29:

⟨64, 4⟩, ⟨64, 6⟩, ⟨64, 29⟩, ⟨64, 30⟩, ⟨64, 31⟩ if deg Q(A[32]) = 26,

⟨128, 2⟩, ⟨128, 46⟩, ⟨128, 47⟩, ⟨128, 48⟩, ⟨128, 50⟩, ⟨128, 61⟩,

⟨128, 62⟩, ⟨128, 63⟩, ⟨128, 65⟩, ⟨128, 67⟩, ⟨128, 68⟩ if deg Q(A[32]) = 27,

⟨256, 56⟩, ⟨256, 58⟩, ⟨256, 62⟩, ⟨256, 90⟩, ⟨256, 91⟩, ⟨256, 93⟩,

⟨256, 94⟩, ⟨256, 95⟩, ⟨256, 98⟩, ⟨256, 100⟩, ⟨256, 102⟩, ⟨256, 103⟩,

⟨256, 104⟩, ⟨256, 367⟩, ⟨256, 368⟩, ⟨256, 371⟩, ⟨256, 373⟩ if deg Q(A[32]) = 28,

(51 possible groups) if deg Q(A[32]) = 29, ,

(31 possible groups) if deg Q(A[32]) = 210,

(3 possible groups) if deg Q(A[32]) = 211.

By again running Algorithm 3 to compute the possible groups Gal(Q(A[64])/Q)

from the above possibilities for Gal(Q(A[32])/Q), we obtain a total of 521 possibili-
ties groups, the largest one having order 215.

This result finally allows to prove our main theorem:

Theorem 102. There are exactly 3 isogeny classes of principally polarised abelian
surfaces A/Q with good reduction away from 2 which contain surfaces with full ra-
tional 2-torsion. These are given by E1 × E1, E1 × E2 and E2 × E2, where E1, E2

are the elliptic curves E1 : y
2 = x3 − x and E2 : y

2 = x3 − 4x.

Proof. We first apply Corollary 99 to obtain that any abelian surface A/Q with
good reduction away from 2 is uniquely determined up to Q-isogeny by the six Euler
factors L5(T ), L7(T ), L11(T ), L17(T ), L23(T ), and L31(T ).

In a similar method done in Section 4.3.1, we therefore compute the possible
such Euler factors by brute forcing all possible ways that the group Gal(Q(A[64])/Q)

can embed inside R = {M ∈ GSp4(Z/64Z) : M ≡ I (mod 2)} and computing the
characteristic polynomials of the relevant matrices in GSp4(Z/64Z). We provide
pseudocode for such an implementation in Algorithm 6.
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In summary, we ran Algorithm 6 for d = 2, n ≤ 6, and for each p ∈ {5, 7,
11, 17, 23, 31}. For p = 5, we obtained three possible Euler factors for L5(T ) which
were (5T 2+2T +1)2, (5T 2−2T +1)2 and (5T 2+2T +1)(5T 2−2T +1). We obtained
only one Euler factor for each of L7(T ), L11(T ), L17(T ), L23(T ), and L31(T ).

A summary of our results modulo successively larger powers of 2 up to 64 is
given in Table 4.4.

Table 4.4: For each n ≤ 6, we tabulate the possibilities for the 2n-torsion field
Q(A[2n]) (if known), its Galois group Gal(Q(A[2n])/Q), and the corresponding num-
ber of valid Euler factors obtained for Lp(T ) obtained from GSp4(Z/2nZ) using Al-
gorithm 6.

n Q(A[2n]) Gal(Q(A[2n])/Q) #L5(T ) #L7(T ) #L11(T ) #L17(T ) #L23(T ) #L31(T )

0 Q C1 129 207 401 765 1193 1861

1 Q C1 35 53 103 195 301 467

2 Q(ζ8) C2 × C2 12 16 30 53 77 119

3 Q(ζ16,
4
√
2) C2

2 ⋊ C4 5 6 8 8 22 34

4 ?
C2
2 ⋊ C8,

D4 ⋊ C8,
C2
2 .C4 ≀ C2

4 2 2 3 7 9

5 ? (many) 3 1 1 2 2 3

6 ? (many) 3 1 1 1 1 1

This therefore proves there are at most three isogeny classes of abelian sur-
faces good away from 2 with full rational 2-torsion. However, we can easily find
three such non-isogenous surfaces, namely the product surfaces E1×E1, E1×E2 and
E2×E2, where E1, E2 are the elliptic curves E1 : y

2 = x3−x and E2 : y
2 = x3−4x,

as shown in Table 4.5. This proves the theorem!

Remarks.

• It should in principle be possible to remove the principal polarisation assump-
tion in the proof of Theorem 102 by running the exact same computations
within GL4 instead of GSp4. Although running Algorithm 6 for all of GL4

would’ve taken too long, as least with our implementation.

• It should also be possible to extend this result to classifying all isomorphism
classes of such principally polarised abelian surfaces (instead of only isogeny
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Table 4.5: A summary of the Euler factors Lp(T ) for the three isogeny classes of
principally polarised abelian surfaces A/Q with good reduction away from 2 and
with Q(A[2]) = Q

Lp(A/Q, T ) A = E1 × E1 A = E1 × E2 A = E2 × E2

L5(A/Q, T ) (5T 2 + 2T + 1)2 (5T 2 + 2T + 1)(5T 2 − 2T + 1) (5T 2 − 2T + 1)2

L7(A/Q, T ) (7T 2 + 1)2 (7T 2 + 1)2 (7T 2 + 1)2

L11(A/Q, T ) (11T 2 + 1)2 (11T 2 + 1)2 (11T 2 + 1)2

L17(A/Q, T ) (17T 2 − 2T + 1)2 (17T 2 − 2T + 1)2 (17T 2 − 2T + 1)2

L23(A/Q, T ) (23T 2 + 1)2 (23T 2 + 1)2 (23T 2 + 1)2

L31(A/Q, T ) (31T 2 + 1)2 (31T 2 + 1)2 (31T 2 + 1)2

classes). This would follow by computing all genus 2 curves C/Q such that
Jac(C) is isogenous to E1 × E1, E1 × E2, or E2 × E2. A further discussion of
this is given in Section 5.3.

• Furthermore, it is not even clear if one can give a clear description of all (not
necessarily principally polarised) isomorphism classes of abelian surfaces A/Q.
Although if we restrict to principally polarised abelian surfaces, then it seems
reasonable to conjecture that E1×E1, E1×E2, and E2×E2 are the only such
abelian surfaces A/Q with good reduction away from 2 and with full rational
2-torsion (Conjecture 85).

We now give an overview of some of the algorithms used for our computations.

4.3.3 Solving the conjugacy problem for GL2d(Z/ℓnZ)

One of our main computational obstacles doing this approach is having to consider
all possible subgroups of GSp2d(Z/ℓnZ). Doing this via a naive brute force search
would be far too impractical, even for d = ℓ = 2. One immediate observation is that,
since we only care about the characteristic polynomials of matrices in GSp2d(Z/ℓnZ),
we only need to consider our subgroups up to conjugacy in GL2d(Z/ℓnZ).

Whilst Magma does already have a rather sophisticated implementation of
computing conjugacy class representatives (e.g. see [124, 123]), we found that it
was still best to implement our own probabilistic conjugacy algorithm based on a
randomised approach. Since we didn’t need an exact set of conjugacy class represen-
tatives, we contented ourselves with an algorithm which takes as input two matrices
A,B ∈ GLn(Z/ℓnZ) and always returns false if A,B are not conjugate, and returns



Dra
ft

Draft of 0:21 am, Wednesday, November 13, 2024 128

true in almost all cases where A,B are conjugate. Here, we first solve the linear
system AP = PB modulo ℓn, and then do a random search over such solutions P
which are invertible mod ℓ. r is a parameter denoting the number of attempts to
search for such a matrix. A value of r = ‘100 seemed to do well in practice for the
case GL4(Z/32Z). This algorithm is implemented as given in Algorithm 1.

Algorithm 1 Probabilistic algorithm to compute whether A,B ∈ GL2d(Z/ℓnZ) are
conjugate
1: procedure IsStrongConjugate(A,B, r)
2: Let R be the set of all matrices P ∈ M2d(Z/ℓnZ) such that AP = PB (using

a linear algebra solver)..
3: for i = 1 to r do
4: Let P be a random element in R.
5: if det(P ) is not divisible by ℓ then
6: return true (A,B definitely conjugate)
7: end if
8: end for
9: return false (A,B probably not conjugate)

10: end procedure

We can therefore use Algorithm 1 to obtain a list of matricesM in GLn(Z/ℓnZ)
for which we can guarantee that every conjugacy class is represented at least once. To
do this efficiently, we perform a lifting algorithm modulo successively higher powers
of ℓ.

To summarise the method, we let R1 be a set of conjugacy class represen-
tatives for GL2d(Z/ℓZ) (e.g. using the default Magma implementation). Then, for
each R ∈ R1, we consider each of its ℓ4d2 possible lifts in GL2d(Z/ℓ2Z) and run Al-
gorithm 1 to determine a set of conjugacy class representatives R2 for GL2d(Z/ℓ2Z).
We the repeat the process until we get to GL2d(Z/ℓnZ). This is implemented as
shown in Algorithm 2.

4.3.4 Computing the possible Galois groups Gal(Q(A[2n])/Q)

Recall that a key ingredient in our proof of Theorem 102 is obtaining a finite list
of possible Galois groups Gal(Q(A[2n])/Q) for n ≥ 6. Recall that Theorem 100
states that such Gal(Q(A[2n])/Q) is a quotient of ⟨a, b | a2 = 1⟩ and is a central
Ck2=extension of Gal(Q(A[2n−1])/Q).

To determine such groups up to order 512, we can directly look these up in
the GAP SmallGroups database [30], distributed with Magma. However, for the
2-groups of order beyond 512, we must compute these ourselves. Recall that central
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Algorithm 2 Probabilistic algorithm to compute a set of conjugacy class represen-
tatives in GL2d(Z/ℓnZ)
1: procedure ConjugacyClassReps(d, n, ℓ)
2: Let Rold be a set of conjugacy class representatives for GL2d(Z/ℓZ).
3: for i = 1 to n− 1 do
4: Let Rnew = ∅.
5: for R in Rold do
6: Let C := ∅.
7: for N in M2d(Z/ℓZ) do
8: Let M := R+ ℓiN (mod ℓi+1)
9: for C in C do

10: if M definitely conjugate to C with (using Algorithm 1) then
11: break
12: end if
13: end for
14: Else, add M to C.
15: end for
16: Add all elements of C to Rnew
17: end for
18: Let Rold = Rnew
19: end for
20: return Rnew
21: end procedure

extensions of a group G by Ck2 are in one-to-one correspondence with elements of the
2nd cohomology group H2(G,Ck2 ) (e.g. see [358, Remark 3.27]).2 Here, we can make
use of the Magma functions CohomologyModule, CohomologyGroup and Extension

developed by Derek Holt [209] to explicitly compute such central extensions. This
is implemented as shown in Algorithm 3, where we compute a Ck2 -extension by
successively computing C2-extensions until we no longer find such extensions which
are quotients of ⟨a, b | a2 = 1⟩.

4.3.5 Searching for rank 2 subgroups of GL2d(Z/ℓnZ)

Finally, once we’ve obtained a finite list of candidate ℓn-torsion groups Gal(Q(A[ℓn])/Q),
we run Algorithm 6 to compute the possible embeddings of these groups in GSp2d(Z/ℓnZ)
and hence the possible candidate Euler factors Lp(T ).

Note that by Theorem 100, every candidate subgroup will be generated by
some order 2 element C and one other element D. As we need to consider all

2Of course it’s possible that two distinct elements in H2(G,Ck
2 ) might yield inequivalent exten-

sions, but isomorphic groups.
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Algorithm 3 Computing all central Ck2 -extensions H of a finite group G such that
H is a quotient of ⟨a, b | a2 = 1⟩.
1: procedure Compute2Extensions(Group G)
2: Let G = {G}
3: Let H = ∅.
4: Let k := 1.
5: while G not empty do
6: Let Gnew = ∅
7: for H in G do
8: for all central 2-extensions H ′ of H do
9: if H ′ is quotient of ⟨a, b | a2 = 1⟩ then

10: if H ′ has a central subgroup isomorphic to Ck2 then
11: Add H ′ to Gnew.
12: Add H ′ to H
13: end if
14: end if
15: end for
16: end for
17: Let G = Gnew
18: k := k + 1;
19: end while
20: return H.
21: end procedure

such subgroup up to conjugacy, we may assume without loss of generality that C
is one of our conjugacy class representatives of order 2, found using Algorithm 2.
Furthermore, by conjugating by a matrix P ∈ GLn(Z/ℓnZ) which keeps C constant
(i.e. such that C = P−1CP ), we can also assume that D is a representative of one
of these “restricted” conjugacy classes.

To make this explicit, we define the following stronger notion of conjugacy.

Definition 4.5. Let n, d ≥ 1, and fix a prime ℓ and a matrix C ∈ GL2d(Z/ℓnZ). We
say that two matrices A,B ∈ GL2d(Z/ℓnZ) are C-stable conjugate if there exists
some P ∈ GL2d(Z/2nZ) such that A = P−1BP and C = P−1CP . We denote this
as A ∼C B.

It’s clear that ∼C is an equivalence relation on GL2d(Z/ℓnZ). Let D ⊂
GLn(Z/ℓnZ) be a set of representative elements containing at least one element from
each C-stable conjugacy class in GL2d(Z/ℓnZ) induced by ∼C . Then we may assume
that D ∈ D. We give pseudocode to compute such a set D in Algorithm 5; this is
essentially the same as Algorithm 2 with the extra condition that C = P−1CP .

Most of the above algorithms were implemented using Magma [52] and Sage
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Algorithm 4 Probabilistic algorithm to compute whether two matrices A,B ∈
GL2d(Z/ℓnZ) are C-stable conjugate.

1: procedure IsCStableStrongConjugate(A,B, r, C)
2: Let R be the set of all matrices P ∈ M2d(Z/ℓnZ) such that AP = PB and
PC = CP (using a linear algebra solver).

3: for i = 1 to r do
4: Let P be a random element in R.
5: if det(P ) is not divisible by ℓ then
6: return true (A,B definitely C-stable conjugate)
7: end if
8: end for
9: return false (A,B probably not C-stable conjugate)

10: end procedure

Algorithm 5 Probabilistic algorithm to compute C-stable conjugacy class repre-
sentatives in GL2d(Z/ℓnZ).
1: procedure CStableConjugacyClassReps(d, n, ℓ, C)
2: Let Rold be a set of conjugacy class representatives (stable with respect to
C) for GL2d(Z/ℓZ) (e.g. using a brute force algorithm).

3: for i = 1 to n− 1 do
4: Let Rnew = ∅.
5: for R in Rold do
6: Let C := ∅.
7: for N in M2d(Z/ℓZ) do
8: Let M := R+ ℓiN (mod ℓi+1)
9: for D in C do

10: if M definitely C-stable conjugate to D (using Algorithm 4)
then

11: break
12: end if
13: end for
14: Else, add M to C.
15: end for
16: Add all elements of C to Rnew
17: end for
18: Let Rold = Rnew
19: end for
20: return Rnew
21: end procedure

[342] with the exception of the mod 64 case for Algorithm 6 which was implemented
in C++ for maximum efficiency. By distributing the workload across several of
the outer for-loops into separate threads, most of the above algorithms were easily
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Algorithm 6 Compute the possible Euler factors Lp(T ) at an odd prime p
for a dimension d abelian variety A/Q with good reduction away from 2 (using
GSp2d(Z/2nZ))
1: procedure ComputePossibleLFactors(d, n, p)
2: Let G be a list of the possible Galois groups Gal(Q(A[2n])/Q) (using Algo-

rithm 3).
3: Let C be a set of conjugacy class representatives of order 2 elements in

GSp2d(Z/2nZ) (using Algorithm 2).
4: Let Lall be the set of all possible good Euler factors at p (using Algorithm

7).
5: Let L := ∅.
6: for C in C do
7: Let D be a list of C-stable conjugacy class representatives in

GSp2d(Z/2nZ) (using Algorithm 5).
8: for D in D do
9: Let H be the rank 2 subgroup of GL2d(Z/2nZ) generated by the ma-

trices C and D.
10: for G in G do
11: if H is isomorphic to G then
12: if ∀primes p, ∃M ∈ H such that det(M) ≡ pd (mod 2n) then
13: for M in H do
14: if det(M) ≡ pd (mod 2n) then
15: for all Lp(T ) in Lall do
16: if χ(M) ≡ Lp(T ) (mod 2n) then
17: Add Lp(T ) to L.
18: end if
19: end for
20: end if
21: end for
22: end if
23: end if
24: end for
25: end for
26: end for
27: return A list L of possible Euler factors at p for A/Q.
28: end procedure

parallelisable, and so extensive use was made of GNU Parallel [406].
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Chapter 5

Computing abelian surfaces A/Q
with good reduction outside 2

Recall that Faltings’ theorem of the Shafarevich conjecture implies that there are only
finitely many abelian surfaces A/Q with good reduction away from 2. In this chapter,
we shall describe our various attempts to compute such abelian surfaces. That is,
our ideal (but not yet achieved) goal would be to solve Conjecture 5 (Effective
Shafarevich II) in the case where K = Q, d = 2 and S = {2}. This was originally
posed as a problem by Bjorn Poonen [322, p. 301] and still remains unsolved to this
day!

Whilst a provably complete classification of all abelian surfaces A/Q with
good reduction away from 2 still unfortunately appears out of reach, we have em-
ployed various methods and algorithms to compute as many such abelian surfaces
as we can. In this spirit, we present the following theorem which gives some partial
progress towards answering Poonen’s question.

Theorem 103. There are at least 234 Q-isogeny classes of abelian surfaces A/Q
with good reduction away from 2, presented in Table 6.20. In particular, there are
at least 512 Q-isomorphism classes of genus 2 curves C/Q whose Jacobian has good
reduction away from 2 (divided amongst 175 Q-isogeny classes), presented in Table
6.21. Our Table 6.21 contains all such genus 2 curves C/Q such that C and its
Jacobian J satisfy at least one of the following conditions:

• C/Q has good reduction away from {2, 3}, {2, 5}, or {2, 7}.

• C/Q has good reduction away from {2, 3, 5} and Q(J [2]) ⊆ Q(ζ16).

• C/Q has good reduction away from {2, 3, 7} and Q(J [2]) ⊆ Q(ζ16) or Q(J [2]) ⊆
Q(

4
√︁

2
√
2− 3).

133
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• C/Q has good reduction away from {2, 5, 7} and Q(J [2]) ⊆ Q(ζ16) or Q(J [2]) ⊆
Q(ζ8,

4
√
2).

• C/Q has good reduction away from {2, 3, 5, 7} and either Q(J [2]) ⊆ Q(i),
Q(J [2]) ⊆ Q(

√
−2) or Q(J [2]) ⊆ Q(

√
2).

• C/Q has good reduction away from {2, 3, 5, 7, 11, 13} and Q(J [2]) = Q.

• C/Q has trivial geometric endomorphism ring and is Q-isogenous to one of the
512 curves in Table 6.21.

• C/Q is Q-isogenous of 2-power degree to one of the 512 curves in Table 6.21.

• C/Q satisfies the Hasse-Weil conjecture and has conductor at most 27 or con-
ductor 29.

• C/Q has absolute minimal discriminant |∆min| at most 1014.

• There exist elliptic curves E1/Q and E2/Q with good reduction away from 2,
and elliptic subcovers C → E1 and C → E2 each of degree n, for some n ≤ 7.

Furthermore, assuming the paramodular conjecture, Table 6.21 contains at
least one representative genus 2 curve C/Q from all isogeny classes which have con-
ductor at most 29, and all isogeny classes of conductor 210 which contain at least one
abelian surface A/Q satisfying #A(Q)[2] ≥ 8.

Recall that Faltings’ theorem implies there are only finitely many principally
polarised abelian surfaces A/Q with good reduction away from 2. Given that a
genus 2 curve C/Q is uniquely determined by its Jacobian Jac(C) (as a principally
polarised abelian surface), this implies there are only finitely genus 2 curves C/Q
(up to Q-isomorphism) whose Jacobians have good reduction away from 2.1

At this stage, we unfortunately don’t yet have an unconditional effective
algorithm to yield all such genus 2 curves C/Q. We therefore focus our efforts on
rather giving as complete a list of possible, by considering three possible approaches:
(i) directly computing L-functions of conductor 2n, (ii) computing genus 2 curves
C/Q with good reduction outside a small finite set S of primes, and (iii) gluing
elliptic curves E/Q with good reduction away from 2. These are described in the
following three sections.

1Given that there are 29 known genus 2 curves C/Q whose Jacobians have good reduction outside
2, Barinder Banwait has recently (and somewhat amusingly) posed the question of whether, for any
prime p, the number of genus p curves X/Q whose Jacobians have good reduction away from p is
a power of p [454, Problem 9].
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5.1 Computing L-functions of 2-power conductor

Here we prove the following theorem, extending a result of Farmer–Koutsoliotas–
Lemurell [155].

Theorem 104. Assume the paramodular conjecture. Then there are no abelian
surfaces A/Q of conductor 2n for all n ≤ 7 and n = 9. Moreover, there is only
one isogeny class of abelian surfaces A/Q of conductor 28 and only one isogeny
class of abelian surfaces A/Q of conductor 210 consisting of a surface A/Q such that
(Z/2Z)3 ⊆ A(Q).

It’s worth mentioning that Mestre [292] showed that any dimension d abelian
variety A/Q whose L-function satisfies the Hasse-Weil conjecture has conductor
greater than 10d, thus proving already that no modular abelian surface has con-
ductor ≤ 26. We should mention that this theorem will be mostly superseded by a
more general classification of abelian surfaces A/Q of small conductor N ≤ 1000,
which is currently work in progress by Sutherland and Booker [401].

There are many axiomatic definitions of L-functions, e.g. see Selberg [360],
Piatetski-Shapiro [316], or Carletti-Monti Bragadin-Perelli [90], but here we’ll follow
the definitions given in Farmer–Pitale–Ryan–Schmidt [157] for tempered balanced
analytic L-functions.

Definition 5.1 (L-function). [157, p. 263] A (tempered balanced) analytic L-function
is a Dirichlet series

L(s) =
∞∑︂
n=1

an
ns
, an ∈ C

satisfying the following five axioms:

1. (Analyticity) L(s) converges absolutely for Re(s) > 1 and has a meromorphic
continuation to C such that all poles with positive real part lie on the line
Re(s) = 1.

2. (Functional equation) There exists a positive integer N (the conductor), a
positive integer d (the degree), a pair of non-negative integers (d1, d2) (the sig-
nature) satisfying d1+2d2 = d and complex numbers {µj} and {νj} (spectral
parameters) such that the completed L-function

Λ(s) = N s/2
d1∏︂
j=1

ΓR(s+ µj)

d2∏︂
k=1

ΓC(s+ νj) · L(s)
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satisfies the following two properties: (i) Away from the poles of the L-function,
Λ(s) is bounded in vertical strips σ1 < Re(s) < σ2, and (ii), there exists ε ∈ C
such that Λ(s) = εΛ(1− s).2

We denote the quadruple (d,N, (µ1, . . . , µd1 : ν1, . . . , νd2), ε) as the Selberg
data of L(s).

3. (Euler product) There is a product formula

L(s) =
∏︂

p prime

Fp(p
−s)−1

which absolutely converges for Re(s) > 1, and such that Fp is a degree dp
polynomial such that Fp(0) = 1 and dp ≤ d with equality if and only if p ∤ N .

4. (Temperedness) (4a) The spectral parameters satisfy Re(µj) ∈ {0, 1} and
Re(νj) ∈ {12 , 1,

3
2 , 2, . . . } for all j. (4b) Let Fp(z) = (1− α1,pz) · · · (1− αdp,pz)

with αj,p ̸= 0. Then if p ∤ N , then |αj,p| = 1 for all j, and if p|N then
|αj,p| = p−mj/2 for some mj ∈ {0, 1, 2, . . . }, and

∑︁
mj ≤ d− dp.

5. (Central character) There exists a Dirichlet character χ mod N (the cen-
tral character) such that: (i) For every prime p, Fp(z) = 1 − apz + · · · +
(−1)dχ(p)zd, (ii) Im(

∑︁
µj+

∑︁
(2νk+1)) = 0, and (iii) χ(−1) = (−1)

∑︁
µj+

∑︁
(2νk+1).

We say that an analytic L-function L(s) is primitive if L(s) cannot be written
non-trivially as L(s) = L1(s)L2(s) for some analytic L-functions L1(s) and
L2(s), neither of which are the constant function 1.

An important subset of analytic L-functions are L-functions of arithmetic
type. We thus also state the following definition of Farmer–Pitale–Ryan–Schmidt
[157].

Definition 5.2 (Arithmetic L-functions). [157, Definition 4.2] Let L(s) =
∑︁
ann

−s

be a (tempered balanced) analytic L-function. We say that L is of arithmetic type
if there exists some integer w ∈ Z and a number field F such that annw/2 ∈ OF for
all n. The smallest such F is called the field of coefficients of L, and the smallest
such w is called the arithmetic weight (or motivic weight) of L.

In particular, a rational analytic L-function is an L-function whose field of
coefficients is Q.

Given an analytic L-function L(s) =
∑︁
ann

−s of arithmetic type and weight
w, we denote the arithmetic normalisation of L as the function Lar(s) := L(s−w

2 ).

2Here, Λ denotes the Schwartz reflection of Λ, i.e. Λ(z) = Λ(z) is the dual of Λ.
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(equivalently, the L-function with Dirichlet coefficients annw/2). This moves the line
of symmetry of Lar to Re(s) = w+1

2 , where the functional equation of Lar relates
s to 1 + w − s. Conversely, given an arithmetic L-function L(s) whose functional
equation relates s with w + 1 − s we can define its analytic normalisation as
Lan(s) := L(s+ w

2 ). This moves the critical line (the line of symmetry) of Lan(s) to
Re(s) = 1

2 where the functional equation of Lan(s) now relates s to 1− s.
We note that the Hasse-Weil conjecture implies that our definition of L-

functions of abelian varieties, as given in Definition 1.16, is the arithmetic normali-
sation of a (tempered balanced) analytic L-function of motive weight 1. Therefore,
given an abelian variety A/K, we refer to its analytically normalised L-function as
the analytic L-function Lan(A/K, s) := L(A/K, s+ 1

2).
We remark that the above definition is a priori stronger than the axioms

given by Selberg; e.g. the Selberg axioms allow for non-integral degrees, and has no
condition on the (half)-integrality of Re(µj) and Re(νj). However, its conjectured
that any L-function satisfying the Selberg axioms also satisfies the Farmer–Pitale–
Ryan–Schmidt axioms.

Proving that every such L-function satisfying the above axioms arises from a
suitable automorphic form or motive is still far from done. However some progress
has been done in small degree cases. One of the first such converse results was a
theorem by Hamburger [199] showing that the only L-function of degree d = 1,
conductor N = 1, and spectral parameter µ1 = 0 is the Riemann zeta function ζ(s).

Conrey-Ghosh [109] showed the constant 1 L-functions are the only degree 0

L-functions. A full classification of degree 1 L-functions was done by Kaczorowski–
Perelli [225] proving that the only degree d = 1 L-functions are the Riemann zeta
function ζ(s) and Dirichlet L-functions of primitive characters χ.

For larger degrees, a full classification has not been provided, although many
partial results have been shown for degree d = 2, originating with Hecke [207] and
Weil [443], with more results converse theorems done by Booker [47], Farmer [158],
Conrey–Farmer [108], Kaczorowski–Perelli [226, 227, 228], and Dimitrov [132]. This
assume some further conditions either on the conductor N , the poles of L(s), the
spectral parameters {µj}, {νj}, integrality of the coefficients an, or that the twisted
L-functions

∑︁
anχ(n)n

−s over primitive Dirichlet characters χ have meromorphic
continuation and satisfy analogous functional equations. Not as much has been
proven regarding converse theorems for degree ≥ 3, however we should mention
some recent computations in the case of degree d = 3 and conductor N = 1 have
been done by Farmer–Koutsoliotas–Lemurell–Roberts [156].

With the above axiomatic definition of Farmer–Pitale–Ryan–Schmidt [157]
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in mind, we mention the following conjecture,

Conjecture 105. Let d,N ≥ 1 be positive integers and ε ∈ {−1,+1}. Then every
rational (tempered balanced) analytic L-function of motive weight 1, degree 2d, con-
ductor N , signature (0, d), sign ε, and spectral parameters ν1 = ν2 = · · · = νd = 1

2

is the analytically normalised L-function of some dimension d conductor N abelian
variety A/Q.

This still very far from being proven; indeed this is essentially a vastly simpli-
fied example of far more general conjectures arising from the Langlands programme,
e.g. see some conjectures described by Clozel [96, 97] and Buzzard–Gee [81].3

By computing Jacobians of genus 2 curves, products of elliptic curves over Q,
and Weil restrictions of elliptic curves over quadratic fields K unramified away from
2, we have found a total of 234 known degree 4 rational motive weight 1 L-functions
of 2-power conductor, listed in Table 5.1. Using the LMFDB, we also verified our
list contained all L-functions of dimension 2 isogeny factors of J1(N) for N a power
of 2.

Remark: By a result of Brumer and Kramer [71], one can check that the
highest exponent of 2 in the conductor of a genus 2 curve over Q is 20.

We can thus state the following strengthening of Conjecture 105 for degree
d = 4 and conductor 2n:

Conjecture 106. There are exactly 234 degree 4 rational motivic weight 1 L-
functions of 2-power conductor. In particular, every such primitive L-function arises
from either one of Smart’s list of 366 genus 2 curves C/Q with good reduction away
from 2, or from a Weil restriction of an elliptic curve over a quadratic field K un-
ramified away from 2.

We are still very far from proving anything close to Conjecture 106, however
we can at least make some partial progress towards a conditional classification of
L-functions with small conductor N .

5.1.1 Computing L-functions of 2-power conductor

One of the first approaches to classifying isogeny classes of abelian surfaces of con-
ductor N is to note that the Hasse-Weil L-function of an abelian surface A/Q is
an arithmetically normalised degree 4 motive weight 1 L-function of conductor N ,

3A beautiful diagram showing connections between L-functions, automorphic forms, motives,
and Galois representations is given on the L-functions and modular forms database (LMFDB) [268,
LMFDB Universe].

https://www.lmfdb.org/universe
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Table 5.1: List of all 234 known degree 4 rational motivic weight 1 L-functions of
conductor 2n, each corresponding to an isogeny class of abelian surfaces A/Q of
conductor 2n. The set of L-functions for N ≤ 29 is conditionally complete, assuming
the paramodular conjecture.

Conductor Rank Split Simple Totals
N 0 1 2 (over Q)

≤ 27 0 0 0 0 0 0
28 1 0 0 1 0 1
29 0 0 0 0 0 0
210 1 0 0 1 0 1
211 1 0 0 1 0 1
212 6 1 0 7 0 7
213 7 3 0 10 0 10
214 13 5 1 19 0 19
215 10 10 2 22 0 22
216 11 7 3 21 0 21
217 11 12 1 16 8 24
218 16 8 6 24 6 30
219 17 22 5 24 20 44
220 23 22 9 40 14 54

Total: 117 90 27 186 48 234

as defined in 5.1. Using the above axioms, one can attempt to classify all possible
L-functions with good Euler factors outside 2.

In order to do this, we follow the procedure done by Farmer-Koutsoliotas-
Lemurell [155], where they generate L-functions purely from the assumption of its
functional equation, without any prior knowledge of the coefficients. We note that
similar methods for determining unknown Dirichlet coefficients an were also done by
Booker [46] and Bian [35].

In summary, the procedure is as follows: We fix some small conductor N and
sign ε which is either +1 or −1. We then consider an L-function

L(s) =
∞∑︂
n=1

an
ns

for some coefficients an ∈ Z satisfying a Ramanujan bound an = O(n1/2+ε). By the
results of Boxer–Gee–Calegari–Pilloni [60], we may also assume that the completed
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L-function
Λ(s) := N s/2ΓC(s)

2L(s)

satisfies the functional equation

Λ(s) = εΛ(2− s).

Note that here we take the arithmetic normalisation convention for L(s); that is, the
functional equation relates Λ(s) with Λ(2−s). We remark that Farmer–Koutsoliotas–
Lemurell [155] adopts the analytic normalisation convention for L(s), as given in the
axiomatic definition. This allows one to relate Λ(s) with Λ(1 − s) at the cost of
having non-rational coefficients an, although the method is essentially still the same.

At this stage, we form a system of linear inequalities, from which we hope to
at least solve for the first few Dirichlet coefficients an. To do this, we shall use the
following approximate functional equation:

Theorem 107. [340, p. 444] Let L(s) =
∑︁
ann

−s be a degree 4 L-function as
described above, with completed L-function Λ(s), and assume that Λ(s) has analytic
continutation to C. Let g : C→ C be an entire function such that, for a fixed s, we
have

|Λ(z + s)g(z + s)z−1| → 0 (5.3)

as |Im(z)| → ∞ in vertical strips where −x0 ≤ Re(z) ≤ x0 for some x0 ∈ R+. Also
define Q :=

√
N/π2. Then for any s for which Λ(s) well-defined, we have

Λ(s)g(s) =

∞∑︂
n=1

an

(︄(︂Q
n

)︂s
f1(s, n) + ε

(︂Q
n

)︂2−s
f2(s, n)

)︄
(5.4)

where f1(s, n) and f2(s, n) are defined to be

f1(s, n) :=
1

2πi

∫︂ ν+i∞

ν−i∞
ΓC(s)

2z−1g(s+ z)(Q/n)zdz, and

f2(s, n) :=
1

2πi

∫︂ ν+i∞

ν−i∞
ΓC(2− s)2z−1g(s− z)(Q/n)zdz

such that ν > max(0,−Re(s)).

Proof sketch. [340, p. 445] The result follows by the standard argument of computing
a suitable contour integral and a straightforward application of Cauchy’s Theorem.
Choose some sufficiently large α and T , and let C be the rectangle with vertices
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(−α,−iT ), (α,−iT ), (α, iT ), (−α, iT ). Given any s ∈ C, we evaluate the integral

1

2πi

∫︂
C
Λ(z + s)g(z + s)z−1dz. (5.5)

By Cauchy’s theorem, (5.5) evaluates to Λ(s)g(s). Also, we can directly compute
the integral in (5.5) by individually computing the integral over each edge of the
rectangle C: ∫︂

C
=

∫︂ α+iT

α−iT
+

∫︂ −α+iT

α+iT
+

∫︂ −α−iT

−α+iT
+

∫︂ α−iT

−α−iT
.

The second and fourth integrals above go to 0 as T → ∞, given condition (5.3).
The first and third integrals together give the right hand side in (5.4) as T → ∞,
by applying the functional equation Λ(s) = εΛ(2− s) and a standard computation.
Further details of the calculations (for an analytic normalisation of Λ(s)) are given
in Rubinstein [340, p. 445–446].

By thus using the approximate functional equation for various points s ∈ Z
and functions g, we can divide through by g(s) to yield several equations of the form

Λ(s) = cg,s,1a1 + cg,s,2a2 + · · ·+ cg,s,iai + . . .

where cg,s,i are explicitly calculated coefficients depending on the weight function g
and the point s, given by

cg,s,n :=
N s/2f1(s, n)

nsπ2sg(s)
+ ε

N1−s/2f2(s, n)

n2−sπ4−2sg(s)
(5.6)

We can therefore generate an arbitrary number of these equations by simply
choosing different points s ∈ Z and functions g. By comparing two different weight
functions g and h at the same point s, we obtain the following linear constraints on
the Dirichlet coefficients a1, a2, . . . :

0 = (cg,s,1 − ch,s,1)a1 + (cg,s,2 − ch,s,2)a2 + . . .

Whilst this is a single equation with infinitely many variables, by making
a careful choice of g and h to be exponetially decaying, we can make this into an
effective constraint on the first few coefficients a1, a2, . . . , aM .

By choosing the weight function g(s) = ecs for various real values of c be-
tween −2 and 2, we obtain that the coefficients cg,s,i decay exponentially. By then
truncating the equation at M we obtain the following linear inequality giving an
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effective constraint:

|(cg,s,1 − ch,s,1)a1 + · · ·+ (cg,s,M − ch,s,M )aM | < Cϵ
M1/2+ϵ

eM
(5.7)

where C is some effectively computable constant. By setting up a system of such
linear inequalities, this allows us to rule out certain choices of the first few coeffi-
cients a1, a2, . . . , aM , and thus allows us to effectively solve for the first few Dirichlet
coefficients an.

This procedure is done by performing a breadth first search; for each prime
p from 2 to 149, we try each of the possible Euler factors Lp(T ), whilst pruning the
branches which yield no solutions. The idea is that this eventually whittles down the
number of possible candidate L-functions to just a handful of candidate solutions for
L(s), at which stage we can do a brute force search for genus 2 curves C/Q having
the L-function L(s).

For our purposes, we do this for all possible Euler factors Lp(T ) for all primes
p < 150. We can thus summarise the general algorithm as follows:

1. First generate a list of all bad Euler factors L2,i for p = 2, and a list of all good
Euler factors Lp,i for odd primes p < 150.

2. Choose a list of various points s, and weight functions g, and calculate the
values cg,s,n for sufficiently many n. This generates a system of equations for
the Dirichlet coefficients an to satisfy.

3. Initialise a list of possible L-functions L (where each element in L consists of
a tuple of Euler factors (L2,j1 , L3,j2 , . . . )).

4. For each prime p from 2 to 149, do the following:

(a) For each candidate L-function L in L, and for each Euler factor Lp,i,
append Lp,i to L.

(b) Check if the tuple of Euler factors L is consistent with our system of
equations.

(c) If so, update L to include Lp,i. Otherwise, if the system is not consistent
for any Euler factor Lp,i, remove L from L.

After doing the above breadth-first search, our hope is that either at some
stage, no possible candidate L-functions are left, in which case we have proven that
no L-function of conductor N exists. Or alternatively we are left with just a few



Dra
ft

Draft of 0:21 am, Wednesday, November 13, 2024 143

candidate L-functions, from which for each one we can hopefully find an explicit
abelian surface that gives the desired L-function.

First, we present a algorithm to compute all possible Euler factors at a prime
p, with Algorithm 7 computing the good Euler factors and Algorithm 8 computing
the bad Euler factors. We note that Note that Sage can already list all possible good
factors using the WeilPolynomial method, so it is only necessary for us to code-up
in the case of bad reduction at p.

Algorithm 7 Compute all possible rational degree 2g good Euler factors at p
1: procedure ComputeGoodEulerFactors(g, p)
2: Initialise a list Lp := {} of possible Euler factors for p.
3: for all a1, . . . , ag ∈ Z such that |ai| ≤

(︁
2g
i

)︁
pi/2 do

4: Let F (T ) := 1 + a1T + · · ·+ agT
g + pag−1T

g+1 + · · ·+ pgT 2g.
5: IsValid := True
6: for all roots α1, . . . , α2g−1 of F (T ) do
7: if |αi| ≠

√
p then

8: IsValid := False
9: end if

10: end for
11: if IsValid then
12: Add F (T ) to Lp.
13: end if
14: end for
15: return A list of possible good degree 2g Euler factors Lp for the prime p.
16: end procedure

We can now give the breadth-first search algorithm as done by Farmer–
Koutsoliotas-Lemurell [155] in Algorithm 9.

5.1.2 Results

We ran Algorithm 9 for conductors N = 2a for powers a = 1, . . . , 10, and ε ∈
{−1,+1}, implemented with Sage [342] using complex ball arithmetic. This allowed
us to rigorously compute the constant cg,s,n to an arbitrary amount of precision and
thus check unconditionally whether the inequalities hold for a choice of weights g, h
and point s.

We verified Farmer–Koutsoliotas–Lemurell’s [155] reults that no rational de-
gree 4 motive weight 1 L-functions of conductor N ≤ 27 exist, and that there exists
exactly one such L-function of conductor N = 28, corresponding to the square of
the elliptic curve isogeny class 4.4.2048.1-1.1-a.

We furthermore obtained that no such L-function exists with conductor 29,

https://www.lmfdb.org/EllipticCurve/4.4.2048.1/1.1/a/
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Algorithm 8 Compute all possible rational degree 2g bad Euler factors at p
1: procedure ComputeBadEulerFactors(g, p)
2: Initialise a list Lp := {} of possible Euler factors for p.
3: for all a1, . . . , a2g−1 ∈ Z such that |ai| ≤

(︁
2g
i

)︁
pi/2 do

4: Let F (T ) := 1 + a1T + . . . a2g−1T
2g−1.

5: IsValid := True
6: for all roots α1, . . . , α2g−1 of F (T ) do
7: if 2 log |αi|/ log p not in N then
8: IsValid := False
9: end if

10: end for
11: if IsValid then
12: Add F (T ) to Lp.
13: end if
14: end for
15: return A list of possible bad degree 2g Euler factors Lp for the prime p.
16: end procedure

yielding a small extension to their results. However, without imposing any further
constraints or optimisations, the above algorithm as is tends to break down beyond
conductor N ≈ 600. As an example, for conductor N = 210 and sign ε = +1, even
if we assume the first Euler factor L2(T ) is 1, after searching through the first four
odd primes, no pruning occurs and all 63 · 129 · 207 · 401 = 674 597 889 branches are
still possible, which makes the breadth first search quickly become unbearably slow.

Whilst Algorithm 9 is in principle effective for any conductor N , to extend
these results further in a practical way, one needs to either optimise the above algo-
rithm, e.g. by choosing better weight functions g(s) ,or otherwise impose additional
constraints on these possible Dirichlet coefficients an.

5.1.3 Further constraining the Jacobian 2-torsion

Whilst we were unable to unconditionally prove that there is only one conductor
210 rational L-function of degree 4, we can get a partial result by assuming some
conditions on the Euler factors Lp(T ).

We first show that, for every prime p of good reduction, we have that #Jac(C)(Q)[2]

divides both Lp(1) and Lp(−1).

Proposition 108. Let A/Q be an abelian surface with good reduction away from 2.
Then for every odd prime p, #A(Q)[2] divides both Lp(1) and Lp(−1).

Proof. We first recall that, for an abelian variety A/Q with good reduction at p, we
have #A(Fp) = Lp(1) (e.g. see [15, p. 203] or [270, Corollary 8.6.3]). We also note
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Algorithm 9 A breadth-first search algorithm to compute all possible tuples of the
first few Dirichlet coefficients (a1, a2, . . . , apk) of a rational degree 4 motivic weight
1 L-functions of conductor N and sign ε
1: procedure ComputeLFunction(N, ε)
2: for k from 1 to 60 do
3: Initialise a list Lpk of all possible degree 4 Euler factors for pk.
4: end for
5: Initialise a list S0 := [1] of (partial) L-functions
6: Initialise a list of candidate weight functions G := {e−2s, e−3s/2, e−s, e−s/2,
es/2, es, e3s/2. e2s}.

7: for k from 1 to 60 do
8: Initialise a list Sk := {} of valid tuples of the first k Euler factors.
9: for L′ in Sk−1 do

10: for Fpk in Lpk do
11: Define L := L′ · Fpk
12: Compute the Dirichlet coefficients a1, a2, . . . , apk of L.
13: IsValid := True
14: for s in [1 + i, 1 + 2i, 1 + 3i] do
15: for (g, h) in G × G do
16: Compute cg,s,i − ch,s,i for all i = 1, 2, . . . , pk given in (5.6)
17: if Dirichlet coefficients a1, a2, . . . , apk don’t satisfy inequal-

ity (5.7) then
18: IsValid := False
19: end if
20: end for
21: end for
22: if IsValid then
23: Add L to Sk.
24: end if
25: end for
26: end for
27: end for
28: return A list S60 of (possibly empty) partial candidate L-functions.
29: end procedure

that the torsion subgroup A(Q)tors injects into A(Fp) for a prime p of good reduction
(e.g. see [238, p. 502]). Thus, we have that the number of rational 2-torsion points
#A(Q)[2] divides #A(Fp) = Lp(1).

Now, we consider a non-trivial quadratic twist of Aχ/Fp of A/Fp.4 We note
that one has a Galois equivariant isomorphism A[2]

∼−→ Aχ[2] (e.g. see [298, p. 854]),
and also note that the local Euler factor of Aχ/Fp is Lp(−T ). Together this implies

4To illustrate an example, if A is the Jacobian of the hyperelliptic curve y2 = f(x), then one
can take Aχ as the Jacobian of y2 = df(x) where d is some quadratic non-residue mod p.
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that #A(Q)[2] divides #Aχ(Fp) = Lp(−1) and thus proves the proposition.

Therefore, if we introduce a lower bound on the number of rational 2-torsion
points that such an abelian surface A/Q has, then Proposition 108 allows us to
reduce the number of possible Euler factors Lp(T ) we have to consider for primes p
of good reduction.

Table 5.2: Number of Euler factors Lp(T ) such that both Lp(1) and Lp(−1) are
divisible by #Jac(C)(Q)[2]

#Jac(C)(Q)[2] 3 5 7 11 13 17 19 23 29 31

16 1 4 14 17 12 15 33 82 32 122
8 6 11 28 54 37 53 118 156 113 240
4 18 36 58 108 134 198 232 308 430 474
2 33 67 107 205 259 387 453 603 847 937
1 63 129 207 401 513 765 897 1193 1683 1861

Using this condition, if one assumes that 8 divides #Jac(C)(Q)[2], then the
number of possible Euler factors for Lp(T ) for odd primes p go down to 6, 11, 28, 54, . . . .
This significantly speeds up the breadth first search.

We can go one step further. We can furthermore use the fact that Lp(T ) is
the characteristic polynomial of a matrix Mp in GL4(Z2) such that Mp fixes at least
8 points over F2. As shown in Table 5.3 we get apply the condition that Mp fixes 8
points over F2 to further constrain the possibilities for Lp(T ).

Table 5.3: For each odd prime p ≤ 31, we tabulate the number of possible degree
4 Euler factors Lp(T ) of good reduction which are the characteristic polynomial of
some matrix M ∈ GL4(Z/2nZ) such that M fixes at least 8 points (mod 2).

Prime p GL4(Z/2Z) GL4(Z/4Z) GL4(Z/8Z) GL4(Z/16Z) GL4(Z/32Z)

3 17 10 4 4 4
5 35 20 11 11 11
7 53 30 16 16 16
11 103 56 28 28 28
13 129 68 37 37 37
17 195 102 53 53 53
19 227 118 62 62 62
23 301 156 80 80 80
29 425 218 113 113 113
31 467 240 122 122 122

We can now run Algorithm 9 again, but with a single change in line 3; this
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time initialising Lp to only be the Euler factors Lp(T ) allowed by the above con-
straints. By therefore repeating the breath first search using these fewer number of
possible Euler factors as constrained by the above table, this allows us to prove the
following theorem for conductor 210:

Theorem 109. Assuming the paramodular conjecture, there is exactly one Q-isogeny
class of abelian surfaces of conductor 210 which contain at least one abelian surface
A/Q satisfying #A(Q)[2] ≥ 8; in particular this is the isogeny class of the Q-split
abelian surface E × E, where E is the conductor 25 elliptic curve y2 = x3 − x.

5.2 Computing genus 2 curves with good reduction out-
side S.

In this section, we now aim to explicitly compute all genus 2 curves C/Q whose
Jacobians have good reduction away from 2 and such that C has good reduction
away from some fixed small finite set of primes S. Throughout this section, we’ll
assume that 2 ∈ S. We note that such a list must contain all 366 Q-isomorphism
classes of genus 2 curves with good reduction outside 2, given by Smart [386].

We’ll first recall the effective approach taken by Evertse–Győry, as sketched
in Chapter 2. Let C/Q : y2 = c(x−α1)(x−α2) · · · (x−α6) be a genus 2 curve whose
Jacobian has good reduction away from 2 and such that C has good reduction away
from S. We can effectively compute the possible roots α1, . . . , α6 as follows:

1. Classify all possible 2-torsion fields Q(J [2]) by computing number fields of
degree ≤ 6 unramified away from 2 (e.g. using a Hunter search [101, p. 445]).

2. For each possible 2-torsion field L = Q(J [2]), compute the set of S-units
x, y ∈ O×

L,S such that x + y = 1 (e.g. using the methods of von Känel and
Matschke [435]).

3. For every combination of a triple of S-units (λ1, λ2, λ3) and the possible dis-
criminant ∆, use either the Evertse-Győry identity (2.1) or Smart’s identity
(2.2) to compute the possible values of αi − αj .

4. For each β ∈ Z/6Z, add the constraint α1 + · · · + α6 = β and then solve for
the roots α1, . . . , α6 using (2.3).

Whilst this does give a fully effective algorithm to compute all possible genus
2 curves C/Q whose Jacobian is good outide 2 and such that C is good outside S,
the above algorithm is not very practical once S gets sufficiently large. Indeed, even
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in the simplest case of S = {2}, Smart [386] needed to employ further optimisations
to compute his list of 366 genus 2 curves C/Q good away from 2. In particular, the
vast majority of the possible triples of S-units (λ1, λ2, λ3) in step 3 above get thrown
out as they either do not yield a genus 2 curve C defined over Q or give a model for
which the Jacobian has bad reduction at some odd prime p.

In order to therefore present an algorithm which is practical for our purposes,
we employ a combination of some further optimisations both from Smart [386] and
our own to solve this problem for larger sets S.

A summary of our approach for this section is as follows: As before, let
C/Q : y2 = c(x − α1) · · · (x − α6) be a genus 2 curve whose Jacobian has good
reduction away from 2 and C has good reduction away from S.

1. As before, classify all possible 2-torsion fields Q(J [2]) by computing number
fields of degree ≤ 6 unramified away from 2.

2. For each possible field L = Q(J [2]), let ψ1, ψ2, . . . , ψt ∈ O×
L,S be a generating

set for the group of S-units in L.

3. For each pair 1 ≤ i < j ≤ 6 and 1 ≤ k ≤ t, let ai,j,k ∈ Z be given by
αi − αj = ψ

a1,i,j
1 ψ

a2,i,j
2 · · ·ψat,i,jt .

4. Impose as many linear constraints on the variables ak,i,j as we can, e.g. us-
ing Galois symmetries, cluster pictures for odd primes p, solutions to S-unit
equations etc.

5. Solve the resulting linear system (e.g. via brute force, closest vector problem,
integer programming, etc.) to obtain a possible solution for ak,i,j and thus for
αi − αj .

For the remainder of this section, we shall go through each of the steps above,
concluding with an implementation to solve for ai,j,k using both the closest vector
method and an integer programming method.

The first step is to compute all number fields of small degree unramified away
from 2.

5.2.1 Number fields unramified away from 2

Let C/Q be a genus 2 curve whose Jacobian Jac(C) has good reduction outside 2.
Then if R denotes the Weierstrass points of C, then by Theorem 11, we have that
Q(R)/Q is unramified outside 2. Thus, our first task is to classify all such number
fields Q(R).
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Fortunately, this has already been well-studied for small degrees. By using an
algorithm of Pohst [320] to classify number fields of small discriminant, Merriman-
Smart [290] gave the following classification:

Theorem 110. [290, Proposition 1] Let K be a number field with [K : Q] ≤ 6 and
K/Q unramified outside 2. Then [K : Q] ∈ {1, 2, 4}, and the 11 possibilities for K
(up to Galois conjugation) are:5

Q if [K : Q] = 1

Q
(︁√
−1
)︁
, Q
(︁√

2
)︁
, Q
(︁√
−2
)︁
, if [K : Q] = 2

Q
(︁

4
√
−1
)︁
, Q
(︁√︁

1 +
√
−1
)︁
, Q
(︁√︁

1 +
√
2
)︁
,

Q
(︁

4
√
2
)︁
, Q
(︁

4
√
−2
)︁
, Q
(︁√︁
−2−

√
2
)︁
, Q
(︁√︁

2 +
√
2
)︁
, if [K : Q] = 4

Therefore, if α is a Weierstrass point of C, then Q(α) must be one of the
above extensions, and thus Q(R) is some compositum of the above fields of degree
no more than 8.6

For brevity, we shall adopt the same notation as Smart [386, p. 290] for
number fields unramified away from 2, That is, we let K1,K2,K3 denote the three
quadratic fields Q(

√
−1), Q(

√
−2), Q(

√
2) respectively, and L1, L2, . . . , L7 denote

the seven quartic fields Q( 4
√
−1), Q( 4

√
2), Q( 4

√
−2), Q(

√︁
2 +
√
2), Q(

√︁
−2−

√
2),

Q(
√︁
1 +
√
2), Q(

√︁
1 +
√
−1) respectively. We summarise these fields below in Table

5.4.
From a technical standpoint, it’s perhaps also worth noting that all possible

extensions Q(R) will have class number 1 in the case of genus 2 curves C/Q whose
Jacobian has good reduction away from 2, however this need not be true in the
general case.

We now introduce the notion of field system for a hyperelliptic curve C.

Definition 5.8. [386, p. 273] Let C/K be a genus g hyperelliptic curve, and let
y2 = f(x) be a simplified model for C where deg(f) = 2g + 2. Let f(x) factor over
K as

f(x) = cf1(x)f2(x) · · · fm(x)
5We remark that the quartic number field Q(i,

√
2) (i.e. the compositum of the quadratic number

fields unramified away from 2) is the same as L1 = Q
(︁

4
√
−1

)︁
.

6At this stage, it would be reasonable to conjecture that any number field K unramified outside
2 has degree a power of 2. Whilst this is true if [K : Q] ≤ 16, remarkably there is a degree 17
field unramified outside 2 which gives a counterexample to this conjecture, found by Harbater [202,
p. 57] (e.g. see the OEIS sequence A368056).
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Table 5.4: Summary of the number fields of degree at most 6 unramified away from
2

Label Field LMFDB Defining polynomial Galois group

K1 Q(
√
−1) 2.0.4.1 x2 + 1 C2

K2 Q(
√
−2) 2.0.8.1 x2 + 2 C2

K3 Q(
√
2) 2.2.8.1 x2 − 2 C2

L1 Q( 4
√
−1) 4.0.256.1 x4 + 1 C2 × C2

L2 Q( 4
√
2) 4.2.2048.1 x4 − 2 D4

L3 Q( 4
√
−2) 4.0.2048.1 x4 + 2 D4

L4 Q(
√︁
2 +
√
2) 4.4.2048.1 x4 − 4x2 + 2 C4

L5 Q(
√︁
−2−

√
2) 4.0.2048.2 x4 + 4x2 + 2 C4

L6 Q(
√︁

1 +
√
2) 4.2.1024.1 x4 − 2x2 − 1 D4

L7 Q(
√︁

1 +
√
−1) 4.0.512.1 x4 − 2x2 + 2 D4

where fi(x) are irreducible polynomials over K. Let Mi be the root field of fi; i.e.
the field K(αi) where fi(αi) = 0. The tuple of fields (M1,M2, . . . ,Mm) is the field
system for C/K.

As any K-isomorphism between two hyperelliptic curves is given by fractional
linear transformation, it’s easy to see that field systems are invariant (up to ordering)
under K-isomorphism [386, p. 273].

From Theorem 110, it’s not hard to observe that there are only a finite number
of possible field systems for curves C where Jac(C) has good reduction outside 2. A
summary of the types of fields systems are given in Table 5.5 with a full list of all 48
possible field systems given in Table A.1 in the appendix. We can also use Theorem
8 to deduce the number of rational 2-torsion points on Jac(C) from the field system
of C.

5.2.2 Solving the S-unit equations

We now focus on solving the S-unit equation x+ y = 1 for S-units x, y ∈ O×
L,S over

the possible 2-torsion fields L = Q(J [2]), following the procedure laid out by Smart
[386, Section 8].

From the list of possible field systems for C, we note that Q(R) is a subfield
of one of the three following Galois octic fields, as shown in Table 5.6.

For future reference, we remark that all four fields K1,K2,K3, L1 lie in the
three fields M1,M2,M3. Furthermore, the field M1 also contains L4 and L5; the

https://www.lmfdb.org/NumberField/2.0.4.1
https://www.lmfdb.org/NumberField/2.0.8.1
https://www.lmfdb.org/NumberField/2.2.8.1
https://www.lmfdb.org/NumberField/4.0.256.1
https://www.lmfdb.org/NumberField/4.2.2048.1
https://www.lmfdb.org/NumberField/4.0.2048.1
https://www.lmfdb.org/NumberField/4.4.2048.1
https://www.lmfdb.org/NumberField/4.0.2048.2
https://www.lmfdb.org/NumberField/4.2.1024.1
https://www.lmfdb.org/NumberField/4.0.512.1
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Table 5.5: List of possible types of field systems for genus 2 curves C : y2 = f(x)
with Q(R) unramified outside 2. Here K∗ (resp. L∗) denotes an arbitrary number
field of degree 2 (resp. 4) unramified away from 2. The number of rational 2-torsion
points on Jac(C) corresopnding to each field system is also tabulated.

Field system #Jac(C)[2](Q)

[Q,Q,Q,Q,Q,Q] 16
[Q,Q,Q,Q,Ki] 8
[Q,Q,Ki,Kj ] 4
[Q,Q, Li] 2

[Ki,Kj ,Kk] 4
[Ki, Lj ] 2

Table 5.6: Summary of the three possible octic fields which contain Q(R).

Label Field LMFDB Defining polynomial Galois group

M1 Q( 8
√
−1) 8.0.16777216.1 x8 + 1 C4 × C2

M2 Q(ζ8,
4
√
2) 8.0.16777216.2 x8 − 4x6 + 8x4 − 4x2 + 1 D4

M3 Q(
4
√︁
2
√
2− 3) 8.0.4194304.1 x8 + 6x4 + 1 D4

field M2 contains L2 and L3, and the field M3 contains L6 and L7.
Our primary goal is to solve the S-unit equation τ1+τ2 = 1 in the three above

fields for S being the primes above {2, 3}, {2, 5} and {2, 7}. Matschke [283] very
kindly ran these computations and provided all S-unit solutions, described below:

1. We first consider the octic field M1. Solving the S-unit equation

τ1 + τ2 = 1

for τ1, τ2 S-units where S denotes all primes in OM1 above {2, 3}, {2, 5} and
{2, 7}, yields a total of 2019, 1155, and 7881 solutions respectively.

2. For the octic fieldM2, the number of solutions to the S-unit equation τ1+τ2 = 1

where S denotes all primes in OM2 above above {2, 3}, {2, 5} and {2, 7}, yields
a total of 59 595, 807, 7197 respectively.

3. Finally, for the octic field M3, the number of solutions obtained was 3723,
33 387, and 18 501 respectively.

The S-unit equation τ1 + τ2 = 1 was also solved for S being just the primes

https://www.lmfdb.org/NumberField/8.0.16777216.1
https://www.lmfdb.org/NumberField/8.0.16777216.2
https://www.lmfdb.org/NumberField/8.0.4194304.1
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above 2, for each of the above octic fields. We note that the number of solutions
obtained agreed with the totals given by Smart [386, Sec. 8].

We note that the times taken to run these solutions varied from just a few
minutes to several weeks. To see how far we could extend these result, Matschke fur-
thermore computed the above S-unit equations for various other subsets of {2, 3, 5, 7}
of size 3. A summary of these S-unit solutions is given in Table 5.7.

Table 5.7: Number of S-unit solutions to τ1+τ2 = 1 where τi ∈ O×
S over the field K.

All computations were run by Matschke [283]. For each S-unit equation, the total
CPU time in seconds (rounded to the nearest second) is also given.

Field Set S = all primes above:
K {2} {2, 3} {2, 5} {2, 7} {2, 3, 5} {2, 3, 7} {2, 5, 7}

M1
795
(81s)

2019
(453s)

1155
(355s)

7881
(8822s)

4653
(4925s)

21 927
(769 586s)

13 401
(388 501s)

M2
459
(62s)

59 595
(54 061s)

807
(304s)

7197
(8528s)

? ? 11 877
(380 463s)

M3
1335
(88s)

3723
(766s)

33 387
(37 920s)

18 501
(18 853s)

? 52 563
(1 986 021s)

?

We note that, even in the case where |S| = 3, some of the above S-unit
solutions were not able to be computed in a reasonable time-frame. Furthermore,
one also obtains a large amount of variability between different fields with the same
rational primes below S, due to the fact that different rational primes will have
different splitting behaviour over differing fields, thus changing the rank of S, and
therefore affecting the CPU time.

Therefore, to obtain results in these cases and furthermore when |S| > 3, we
need to employ some further optimisations. We shall give an overview of several
strategies: (i) using Galois symmetries, (ii) using cluster pictures, (iii) rephrasing in
terms of the closest vector problem, and (iv) using integer linear programming. The
first optimisation was used by Smart to practically obtain all 366 genus 2 curves with
good reduction away from 2, however we are not aware of the latter three strategies
being used yet to classify genus 2 curves.

5.2.3 S-unit Galois constraints

To speed up the computation of our S-unit solutions τ1 + τ2 = 1, we now consider
making essential use of the fact that τ1, τ2 arise from roots from polynomials, which
are in one of the fields listed in Theorem 110.

To illustrate this idea, consider the example where we have a curve C : y2 =
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f(x), where the roots of f(x) are given by f(x) = c(x − α1)(x − α2) · · · (x − α6).
As shown on page 16, we can write f(x) in Rosenhain normal form as x(x− 1)(x−
λ1)(x− λ2)(x− λ3) where

λ1 =
(α3 − α2)(α4 − α1)

(α2 − α1)(α3 − α4)
, λ2 =

(α3 − α2)(α5 − α1)

(α2 − α1)(α3 − α5)
, λ3 =

(α3 − α2)(α6 − α1)

(α2 − α1)(α3 − α6)

Now, assume that four of the roots α1, α2, α3, α4 of f(x) arise from one of the
fields Li given in Theorem 110. Let σ ∈ Gal(Li/Q) be an automorphism of order 4
which permutes the roots in the order α1 ↦→ α3 ↦→ α2 ↦→ α4 ↦→ α1. Then we have

σ(λ1) =
(σ(α3)− σ(α2))(σ(α4)− σ(α1))

(σ(α2)− σ(α1))(σ(α3)− σ(α4))
=

(α2 − α4)(α3 − α1)

(α2 − α1)(α3 − α4)
= 1− λ1

This therefore yields the constraint that σ(λ1) = 1 − λ1, which heavily con-
strains the number of S-unit solutions. In general, by a standard computation, one
can show that, for any permutation σ ∈ S4 of the roots a1, a2, a3, a4, then σ(λ1) will
be one of the six values

λ1, 1− λ1,
1

λ1
,

1

1− λ1
,

λ1 − 1

λ1
,

λ1
λ1 − 1

depending on the choice of σ ∈ Gal(Li/Q). This is summarised in Table 5.8.

Table 5.8: Summary of all possible values of σ(λ) for the cross-ratio λ = (αi −
αj)(αk − αℓ)/((αi − αk)(αj − αℓ)) for all 24 possible permutations σ ∈ S4

Permutation Cross-ratio

σ
(ασ(i)−ασ(j))(ασ(k)−ασ(ℓ))

(ασ(i)−ασ(k))(ασ(j)−ασ(ℓ))

id, (i j)(k ℓ), (i k)(j ℓ), (i ℓ)(j k) λ

(k ℓ), (i k), (i j k ℓ), (i ℓ k j) 1− λ

(j k), (i, ℓ), (i j ℓ k), (i k ℓ j)
1

λ

(j k ℓ), (i j ℓ), (i k j), (i ℓ k)
1

1− λ

(j ℓ k) (i j k) (i k ℓ) (i ℓ j)
λ− 1

λ

(k ℓ), (i j), (i k j ℓ), (i ℓ j k)
λ

λ− 1

We note that there are faster algorithms (e.g. see Smart [385]) to solve S-unit
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equations of the form
τ + σ(τ) = 1

These are called simple S-unit equations [386, p. 278], and we can therefore solve
the equation τ +σ(τ) = 1 for S-units τ ∈ O×

L,S for larger sets S than shown in Table
5.7.

Recall from Table 5.4 that the Galois group Gal(M/Q) for M being any of
the three quadratic fields K1,K2,K3 is simply C2. Furthermore, the Galois group
for the Galois quartic fields are Gal(L1/Q) = C2

2 , and Gal(Li/Q) = C4 for i = 4, 5.
Note that the quartic fields L2, L3, L5, L6 are not Galois but do have automorphism
group Aut(Li/Q) = C2 (where Cn denotes the cyclic group of order n ).

Therefore, with the exception of the quartic field L1, for all others M listed in
Table 5.4, we have the existence of a unique order 2 automorphism σ ∈ Aut(M/Q),
noting that Gal(L1/Q) contains three such order 2 automorphisms. With the above
Galois constraints in mind, we therefore aim to solve τ1 + τ2 = 1 such that σ(τ1) =
1 − τ1 for some order 2 automorphism σ. A summary of the computations, all run
by Matschke [283], are given in Table 5.9.

5.2.4 Equivalence classes of polynomials

Once we’ve solved the S-unit solutions, recall that our aim is to solve for the roots
α1, . . . , α6 of f(x). Unlike S-unit solutions to x + y = 1, if we impose no further
constraints, we note that we will obtain infinitely many possibilities for the roots αi,
as by applying any fractional linear transformation x ↦→ ax+b

cx+d to f(x), one will obtain
infinitely many models y2 = f(x) for a given Q-isomorphism class of genus 2 curves
C/Q. We must therefore introduce the notion of equivalence classes of polynomials.

Definition 5.9. Let f(x), g(x) ∈ OS [x]. We’ll say that f and g are weakly
equivalent if there exist a, b, c, d ∈ OS and λ ∈ Q× such that ad − bc = 1 and
g(x) = λ(cx+d)deg(f)f((ax+ b)/(cx+d)). We’ll say that f(x), g(x) are equivalent
if such a choice exists where ad− bc ̸= 0 and λ ∈ O×

S .

It was shown by Birch and Merriman [41] that there are only finitely many
equivalence classes of polynomials of given degree n and discriminant ∆, with effec-
tive results given by Evertse and Győry [150].

The following lemma is essentially a small modification of a result of Smart
[386, Lemma 2].

Lemma 111. Fix a number field K, a positive integer n ≥ 3 and a finite set of primes
S of K. Let f(x) = c(x−β1) . . . (x−βn) ∈ OS [x] be a degree n polynomial over K and
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Table 5.9: The number of S-unit solutions to τ1 + τ2 = 1 where τi ∈ O×
S such that

σ(τ1) = 1 − τ1 for an order 2 automorphism σ ∈ Gal(M/Q), and where S denotes
all primes in M above the first N rational primes. All computations were run by
Matschke [283]. Note that σ is uniquely determined in almost all cases, except
for M = L1 for which the number of solutions are given for the automorphisms
σ1 : ζ8 ↦→ −ζ8, σ2 : ζ8 ↦→ −ζ38 , and σ3 : ζ8 ↦→ ζ38 respectively.

Field M N
1 2 3 4 5 6 7 8

K1 9 9 75 93 105 441 1455 1731

K2 3 45 57 69 321 375 1293 3831

K3 21 33 39 213 279 333 1119 1311

75 225 351 825 1479 . . .
L1 21 99 249 471 999 . . .

51 99 255 615 981 . . .

L2 33 111 123 843 1539 . . .

L3 9 147 159 351 1797 . . .

L4 99 123 135 243 243 . . .

L5 3 3 3 279 279 . . .

L6 39 45 129 879 927 . . .

L7 27 27 243 447 483 . . .

assume that ∆f ∈ O×
S . Then f(x) is equivalent to a form g(x) = c(x−α1) · · · (x−αn),

such that the values Ωi :=
∏︁
i ̸=k(αi−αk) comes from an effectively computable finite

set (depending only on K,n, S).

Proof. Let M be a splitting field for f , and let Λi :=
∏︁
i ̸=k(βi − βk). By scaling x,

we may assume βi are integral in M , and thus Λi ∈ O×
M,S . Let ψ1, ψ2, . . . , ψt be a

set of generators for the group of S-units in M . We therefore have that

Λi = ψ
a1,i
1 ψ

a2,i
2 · · ·ψat,it

for some integers aj,i ∈ Z. By the remainder theorem, we can write aj,i = (n −
2)(2n − 2)bj,i + cj,i for some bj,i, cj,i ∈ Z such that |cj,i| ≤ (n − 2)(n − 1). Now for
each i = 1, . . . , n, define

εi := ψ
−b1,i
1 ψ

−b2,i
2 . . . ψ

−bt,i
t .
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where we have that εi ∈ O×
S . Now if we define αi as

αi :=
ε2n−2
i

ε1 . . . εr
βi

then f(x) is equivalent to the polynomial g(x) := c(x − α1) · · · (x − αn) . By a
standard computation, we obtain that

Ωi =
∏︂
i ̸=k

(αi − αk) = Λi

(︂ ε2n−2
i

ε1 · · · εn

)︂n−2
n∏︂
k=1

ε2n−2
k

ε1 · · · εn
= ε

(n−2)(2n−2)
i Λi =

t∏︂
j=1

ψ
cj,i
j

As |cj,i| ≤ (n− 1)(n− 2), this implies there are at most ((n− 2)(2n− 2))t possible
values for each Ωi, and thus Ωi arises from an effectively computable finite set.

5.2.5 Initialising the linear system

Let C : y2 = c(x− α1)(x− α2) · · · (x− α6) be a genus 2 curve with good reduction
outside S and whose Jacobian has good reduction outside 2. Recall that our goal is
compute the possible integers ak,i,j ∈ Z where αi − αj = ψ

a1,i,j
1 ψ

a2,i,j
2 · · ·ψat,i,jt . We

assume that C has field system [M1,M2, . . . ,Mu] with 2-torsion field M . We now
list all the constraints that we impose on the integers ak,i,j . We remark that many
of these constraints will not be independent from each other, although this doesn’t
particularly matter, and in fact serves as a useful sanity check to make sure our code
is correct.

1. Galois constraints: For each automorphism σ ∈ Gal(M/Q), this acts
naturally on the set of roots α1, . . . , α6. By a slight abuse of notation, we will
also denote by σ ∈ S6 the corresponding permutation on the roots induced by
σ; that is ασ(i) := σ(αi). Note that σ also acts on the set of S-unit generators
ψ1, ψ2, . . . , ψt in the natural way; similarly, we denote ψσ(i) := σ(ψi). Thus,
for each pair i, j we have that

ψ
a1,i,j
σ(1) ψ

a2,i,j
σ(2) · · ·ψ

at,i,j
σ(t) = σ(ψ

a1,i,j
1 ψ

a2,i,j
2 · · ·ψat,i,jt )

= σ(αi − αj) = ασ(i) − ασ(j)
= ψ

a1,σ(i),σ(j)

1 ψ
a2,σ(i),σ(j)

2 · · ·ψat,σ(i),σ(j)

t .

Therefore, for each σ ∈ Gal(M/Q), 1 ≤ i < j ≤ 6 and 1 ≤ k ≤ t, we have the
linear constraint:

ak,i,j = aσ(k),σ(i),σ(j)



Dra
ft

Draft of 0:21 am, Wednesday, November 13, 2024 157

2. Field system constraints: For each pair αi, αj , we can determine a field
Mi,j which both roots lie in, which in general may be smaller than the whole
2-torsion field M . Thus, for all σ ∈ Gal(M/Mi,j) we have σ(αi−αj) = αi−αj ,
which gives the constraint

aσ(k),i,j = ak,i,j

3. S-unit solutions: Now let λ1, λ2, λ3 be three solutions to the S-unit equation
x+y = 1 found using methods described in the previous section. Let λk,i ∈ Z be
the corresponding exponents of λi with respective to the generators ψ1, . . . , ψt;
i.e.

λ1 = ψ
λ1,1
1 · · ·ψλt,1t , λ2 = ψ

λ1,2
1 · · ·ψλt,2t , λ3 = ψ

λ1,3
1 · · ·ψλt,3t .

We now impose the constraint:

λ1 =
(α3 − α2)(α4 − α1)

(α2 − α1)(α3 − α4)
, λ2 =

(α3 − α2)(α5 − α1)

(α2 − α1)(α3 − α5)
, λ3 =

(α3 − α2)(α6 − α1)

(α2 − α1)(α3 − α6)

By therefore equating the exponents of ψk for each k = 1, . . . , t, we thus have
these linear constraints:

ak,3,2 + ak,4,1 − ak,2,1 − ak,3,4 = λk,1

ak,3,2 + ak,5,1 − ak,2,1 − ak,3,5 = λk,2

ak,3,2 + ak,6,1 − ak,2,1 − ak,3,6 = λk,3

We also note that all the cross-ratios (αi−αj)(αk−αℓ)/((αi−αk)(αj−αℓ)) are
determined from just three. Thus, by computing the integers λh,i,j,k,ℓ defined
by

(λi − λj)(λk − λℓ)
(λi − λk)(λj − λℓ)

= ψ
λ1,i,j,k,ℓ
1 ψ

λ2,i,j,k,ℓ
2 · · ·ψλt,i,j,k,ℓt

for every subset i, j, k, ℓ of {1, . . . , 6} where i ̸= k, j ̸= ℓ and h = 1, . . . , t, we
can more generally also add the following linear constraints:

ah,i,j + ah,k,ℓ − ah,i,k − ah,j,ℓ = λh,i,j,k,ℓ.

We remark that for certain cross-ratios of roots αi, αj , αk, αℓ corresponding to
certain field systems, we can make use of the set of simple S-unit solutions
computed in Table 5.9.

4. Jacobian cluster picture constraints: Recall that, for a genus 2 curve
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C/Q, the cluster picture Σp at all odd primes p of good reduction for Jac(C)
and bad reduction for C must be one of the following four pictures:

Each cluster s ∈ Σp gives a constraint on the valuations vp(αi − αj) across
all pairs of roots αi, αj ∈ s which are not contained in any children of s. In
particular, let ψip be an S-unit generator lying above p. Then for each s ∈ Σp,
we have

aip,i,j = aip,k,ℓ

for all i, j, k, ℓ such that αi, αj , αk, αℓ lie in s and such that there is no child
s′ ⊊ s such that αi, αj ∈ s′ or αk, αℓ ∈ s′.

By therefore considering all the relevant cases, we can thus implement these
cases as a further linear constraint on ak,i,j . Such constraints are summarised
below in Table 5.10.

Table 5.10: The system of linear constraints corresponding to each possible cluster
picture Σp of an odd prime p of almost good reduction for a genus 2 curve C : y2 =
f(x) where deg(f) = 6. Here ψip denotes an S-unit generator lying above the prime
p.

Cluster picture Σp Linear constraints

aip,1,2 = aip,1,3 = aip,2,3, and
aip,1,4 = aip,1,5 = aip,1,6 = aip,2,4

= aip,2,5 = aip,2,6 = aip,3,4 = aip,3,5
= aip,3,6 = aip,4,5 = aip,4,6 = aip,5,6

aip,1,2 = aip,1,3 = aip,2,3, and
aip,4,5 = aip,4,6 = aip,5,6, and

aip,1,4 = aip,1,5 = aip,1,6 = aip,2,4
= aip,2,5 = aip,2,6 = aip,3,4 = aip,3,5

= aip,3,6
aip,1,2 = aip,1,3 = aip,2,3, and

aip,1,4 = aip,1,5 = aip,2,4 = aip,2,5
= aip,3,4 = aip,3,5 = aip,4,5, and aip,1,6
= aip,2,6 = aip,3,6 = aip,4,6 = aip,5,6

In the case where S contains at least two odd primes, we must take care to note
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that the the possible cluster pictures may differ (both in shape and ordering
of the roots ai) between different odd primes p. Thus, as |S| increases, the
number of possible combinations of cluster pictures increase exponentially. Its
thus only feasible (at least in our implementation) to add these constraints for
one or two odd primes at most, for large S.

5. Restrictions from Lemma 111: Recall that we can assume that the values
Ωi =

∏︁
i ̸=k(αi−αk) comes from an effectively computable finite set; in partic-

ular we have Ωi = ψ
c1,i
1 ψ

c2,i
2 · · ·ψct,it where |ck,i| ≤ (6 − 2)(6 − 1) = 20. Thus,

by again equating exponents of ψk, we have the following constraints:

ak,1,2 + ak,1,3 + · · ·+ ak,1,6 = ck,1

ak,2,1 + ak,2,3 + · · ·+ ak,2,6 = ck,2

...

ak,6,1 + ak,6,2 + · · ·+ ak,6,5 = ck,6

where the ck,i are integers with absolute value at most 20.

Now one possible method to solve to above system would be to take all 406t

different combinations for the 6t-tuple of integers (c1,1, . . . , ck,i, . . . , ct,6) and solve
the corresponding linear system using the above constraints. This does give a fully
effective algorithm to determine all genus 2 curves with good reduction outside S,
however, this would not be very practical once t becomes moderately big.

One alternative would be to use a closest vector solver:

5.2.6 Closest Vector Problem

Note that, to find representatives for equivalence classes of degree n polynomials,
Lemma 111 proves that it’s sufficient to take Ωi such that |cj,i| ≤ (n − 1)(n − 2),
i.e. Ωi can be thought of as an nt-dimensional vector in a box bounded in absolute
value by (n− 1)(n− 2).

If we put this bounding box inside a ball, this gives us the bound c21,i +

· · · + c2t,i ≤ t(n − 1)2(n − 2)2. We can therefore interpret this condition in terms of
finding all vectors v in a given lattice L ⊂ R6t such that v is within a prescribed
distance from a given vector w ∈ R6t This is classically known as the closest vector
problem (CVP), for which some of the earliest algorithms were developed by Fincke–
Pohst [159, 160] and Kannan [235, 236]. Whilst lattice problems (in particular CVP)
are generally NP-hard, in practice there are many efficient modern algorithms (e.g.
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fplll [170]) which perform well, e.g. see Hanrot–Pujol–Stehlé [200] for an excellent
survey on algorithms to solve the shortest vector problem (SVP) and closest vector
problem (CVP). For our purposes, the default implementation provided in Magma
(developed by Damien Stehlë) seems to work well in practice as long as t is not too
large.

Let a be the vector (a1,1,2 . . . , ak,i,j , . . . , at,5,6) for which we want to solve. We
encode the first four linear constraints given above in Section 5.2.5 as a big matrix
equation

Aa = b.

Here, the matrix A consists only of zeros and ones, with each row containing only a
small number of non-zero coefficients.

We can solve this systems using Magma’s Solution(A, b) function to get a
particular solution p and a set of independent vectors a1, . . . ,am such that

a ∈ Za1 + · · ·+ Zam + p

Now encode the final constraint in Section 5.2.5 as Ca = c where C is another
0-1 matrix and where c = (c1,1, c1,2, . . . , ct,6) is a vector where each integer ck,i
satisfies |ck,i| ≤ 20. This gives the bound |Ca| = |c| = (c21,1 + · · ·+ c2t,6)

1/2 ≤ 20
√
6t.

Therefore, we wish to find integers m1,m2, . . . ,mm ∈ Z such that

|m1Ca1 +m2Ca2 + · · ·+mmCam − (−Cp)| ≤ 20
√
6t.

By therefore defining the lattice L spanned by {Ca1,Ca2, . . . ,Cam}, we now use
Magma’s CloseVectors function to easily find all lattice points in L which are
within a distance of 20

√
6t to the fixed point −Cp, and thus all possible solutions

a = (a1,1,2, . . . , at,5,6).
We note that, for the vast majority of choices of tuples (λ1, λ2, λ3) of S-unit

solutions, the linear system Aa = b won’t have any solution, which can easily be
checked with Magma. In the cases where Aa = b does have a solution, we can first
use Magma’s ClosestVector function to determine the closest vector in L to −Cp.
If this already has distance greater than 20

√
6t, this avoids needing to compute

all possible vectors. This therefore allows us to run CloseVectors only in a small
reasonable number of cases. Pseudocode for this algorithm is given in Algorithm 10.

Using Matschke’s S-unit solutions, we were able to successfully run Algorithm
10 for the following pairs of the primes (S,L) where S is the set of primes of bad
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Algorithm 10 Algorithm to compute all genus 2 curves C/Q with good reduction
outside S and such that Jac(C) has good reduction outside 2 (using the Closest
Vector approach)

1: procedure ComputeGenus2(S)
2: for all 2-torsion fields M do
3: Compute the set SM of S-unit solutions to x+ y = 1 for x, y ∈ O×

S over
M .

4: end for
5: for all field systems [M1,M2, . . . ,Mm] do
6: for all λ1, λ2, λ3 in SM do
7: Initialise the linear system Aa = b described in Section 5.2.5.
8: Let p be a particular solution, and compute ker(A) = Za1 + Za2 +
· · ·+ Zam.

9: Let L be the integer lattice with basis Ca1,Ca2, . . . ,Cam.
10: Use Magma’s CloseVectors function to compute all vectors

(m1, . . . ,mm) in L of distance at most 20
√
6t from −Cp.

11: for vectors (m1, . . . ,mm) found do
12: Construct the vector a = m1a1 + · · ·+mmam + p.
13: Construct the curve C/Q : y2 = f(x) corresponding to the values

ak,i,j from a.
14: if C has 2-power conductor then
15: Add C (and all twists) to C
16: end if
17: end for
18: end for
19: end for
20: return A list of genus 2 curves C.
21: end procedure

reduction for C/Q and L is the largest 2-torsion field Q(J [2]):

({2, 3},M1), ({2, 3},M2), ({2, 3},M3), ({2, 5},M1), ({2, 5},M2), ({2, 5},M3),

({2, 7},M1), ({2, 7},M2), ({2, 7},M3), ({2, 3, 5},M1), ({2, 3, 7},M1), ({2, 3, 7},M3),

({2, 5, 7},M1), ({2, 5, 7},M2), ({2, 3, 5, 7},K1), ({2, 3, 5, 7},K2), ({2, 3, 5, 7},K3)

({2, 3, 5, 7, 11, 13},Q).

Finally, we should mention that we also ran Algorithm 10 for many other
larger sets S and 2-torsion fields Q(J [2]), even if we were unable to completely solve
for all S-unit solutions to x+y = 1 over Q(J [2]). In these cases, we can still set up the
linear system as a matrix equation Aa = b described in Section 5.2.5, whilst leaving
out the S-unit constraints, Whilst this gives us infinitely many potential solutions,
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we did a brute force run iterating through the possible values of (a1, . . . , am) which
allowed us to find a few new curves; e.g. this is how we found the genus 2 curve
y2 = (3x2 + 2x + 1)(x4 − 4x3 − 254x2 − 252x − 2047) which has bad reduction at
S = {2, 3, 11} and has 2-torsion field Q(J [2]) =M2.

5.2.7 Integer Linear Programming

We also give an alternative method to finding all solutions to the corresponding
linear system, noting that all values for ak,i,j must be integers. Given that we wish
to thus find all integer solutions within a bounded region, this also suggests trying
an integer linear programming (ILP) approach. Like the CVP method, ILPs are
also NP-hard in general, although similarly many cases can be practically solved if
t is not too big; e.g. see Padberg [311] or Beasley [26] for an overview of various
algorithms in linear programming.

One hopeful advantage of this method is that this uses the stronger “bounding
box” condition |c1,1|, |c1,2|, . . . , |ct,6| ≤ 20 instead of the weaker “bounding ball” condi-
tion |c| ≤ 20

√
6t used in the CVP method. Here, we used Sage’s MixedIntegerLinearProgram

functionality [342]. There are a number of various integer solvers one can use in Sage;
for our implementation we stuck with the default GLPK (GNU Linear Programming
Kit) solver [180].

As with the closest vector problem, we begin by initialising a linear system
of equations Aa = b, and solving for the solution space a ∈ Za1 + . . .Zam + p. We
also impose the constraint that each element of the vector Ca has absolute value at
most 20. Now recall that we wish to find all possible integers m1, . . . ,mm ∈ Z such
that the vector a = m1a1 + . . .mmam + p satisfies the above linear constraints and
inequalities.

Using the GLPK solver in Sage, we can compute the minimum possible integer
value for m1 and the maximum possible integer value for m1. We can then loop
through each integer k1 from min(m1) to max(m1), and add the constraint that
m1 = k1. We then repeat the process by using GLPK to compute min(m2) and
max(m2), looping through each possible integer k2 from min(m2) to max(m2), and
adding the constraint m2 = k2. By iterating this procedure m times, this would in
principle hit all possible solutions for a. We give pseudocode for this procedure in
Algorithm 11.

It’s difficult to predict in advance how long Algorithm 11 would take to run,
as this depends heavily on the values for min(ai) and max(ai) computed by the
GLPK solver.

Note that in our implementation, we used GLPK to compute the minimum
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Algorithm 11 Algorithm to compute all genus 2 curves C/Q with good reduction
outside S and such that Jac(C) has good reduction outside 2 (using the integer linear
programming (ILP) method)

1: procedure ComputeGenus2(S)
2: for all 2-torsion fields M do
3: Compute the set SM of S-unit solutions to x+ y = 1 for x, y ∈ O×

S over
M .

4: end for
5: for all field systems [M1,M2, . . . ,Mm] do
6: for all λ1, λ2, λ3 in SM do
7: Initialise the linear system Aa = b described in Section 5.2.5.
8: Compute a basis a1, . . . ,am for ker(A) and a particular solution p.
9: Run the GLPK solver with the constraint on Ca to compute min(m1)

and max(m1)
10: for k1 from min(m1) to max(m1) do
11: Add the linear constraint m1 = k1.
12: Run the GLPK solver to compute min(m2) and max(m2)
13: for k2 from min(m2) to max(m2) do
14: Add the linear constraint m2 = k2.
15: Run the GLPK solver to compute min(m3) and max(m3)
16: for k3 from min(m3) to max(m3) do

17:
. . .

18: for km from min(mm) to max(mm) do
19: Construct the vector a = k1a1 + · · ·+ kmam + p.
20: Construct the curve C/Q : y2 = f(x) corresponding to

the values ak,i,j from a.
21: if C has 2-power conductor then
22: Add C (and all twists) to C
23: end if
24: end for

25: . .
.

26: end for
27: end for
28: end for
29: end for
30: end for
31: return A list of genus 2 curves C.
32: end procedure

and maximum of the possible integers a1, a2, . . . , am. It’s however very likely that
the most optimal approach is to instead find the minimum and maximum of suitably
chosen linear combinations of a1, . . . , am; i.e. we iteratively compute the minimum
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and maximum of the m linear combinations:

w1,1a1 + w1,2a2+ · · ·+ w1,mam,

w2,1a1 + w2,2a2+ · · ·+ w2,mam,

...

wm,1a1 + wm,2a2+ · · ·+ wm,mam,

where wi,j ∈ Z are some suitably chosen integers (in Algorithm 11, this is chosen as
wi,j = δi,j). It seems reasonable to conjecture that a suitable choice of wi,j could be
much faster in practice than the default choice of wi,j = δi,j as shown in Algorithm
11.

We should remark that, in least in our cases, the above implementation of Al-
gorithm 11 didn’t seem to yield much faster results than the closest vector approach
and didn’t find any new curves which couldn’t be found with the CVP method; al-
though we should remark that we didn’t make much effort to further optimise the
above implementation.

It seems likely that a carefully optimised implementation which combines the
closest vector method together with the integer linear programming method (with
optimally chosen integers wi,j) would by far yield the best results, however we did
not consider this for this thesis and will be left for future projects.

5.3 Gluing elliptic curves

One particular case of interest for us is to construct genus 2 curves C/Q whose
Jacobians Jac(C) are isogenous to a product of elliptic curves E1×E2. We’ll therefore
conclude this chapter by summarising some methods on how one can construct such
genus 2 curves C whose Jacobian has good reduction away from 2 by gluing together
elliptic curves E1 and E2 with good reduction away from 2. We first briefly review
what it means to glue elliptic curves.

Let K be a field and C/K be a genus 2 curve such that there exists a non-
constant morphism ϕ1 : C → E1 to an elliptic curve E1 such that ϕ1 does not factor
over a non-trivial isogeny of E; i.e. ϕ1 is an elliptic subcover of C. Assuming ϕ1 has
minimal degree n, one obtains a complementary elliptic subcover ϕ2 : C → E2 also
of degree n and thus an isogeny

Φ : E1 × E2 → Jac(C).
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of degree n2. This construction is referred to as gluing E1 and E2 along their n-
torsion and we say that Jac(C) is (n, n)-decomposable. A natural question is thus
to ask whether, given any two elliptic curves E1, E2 over K and an integer n ≥ 2,
does there exist a genus 2 curve C/K which admits two degree n elliptic subcovers
ϕ1 : C → E1 and ϕ2 : C → E2 ? 7

This question was considered by Frey and Kani [175], who gave a positive
answer in the case where K is algebraically closed, char(K) ∤ n, and E1 is not K-
isogenous to E2. In particular, Kani [232, 231] (based on the work of Frey–Kani
[175]) showed that the existence of such a genus 2 curve C/K follows from the
existence of an irreducible anti-symplectic isomorphism E1[n]

∼−→ E2[n]:

Theorem 112. [232] Let K be an algebraically closed field. Let E1/K and E2/K

be two elliptic curves over K and let n ≥ 2. Let ψ : E1[n]
∼−→ E2[n] be an irreducible

anti-symplectic isomorphism. Then there exists a genus 2 curve C/K which admits
two elliptic subcovers C → E1 and C → E2 of degree n, and in particular Jac(C) is
K-isogenous to E1 × E2 of degree n2.

Here, anti-symplectic means an isomorphism ψ : E1[n]
∼−→ E2[n] which inverts

the Weil pairing; i.e. e2,n(ψ(x), ψ(y)) = e1,n(x, y)
−1 for all x, y ∈ E1[n], where

e1,n : E1[n] × E1[n] → µn and e2,n : E2[n] × E2[n] → µn are the Weil pairings on
E1[n] and E2[n] respectively. In the case where n is prime, the irreducible condition
is equivalent to the statement that, for all 1 ≤ k < n, there does not exist any isogeny
h : E1 → E2 of degree k(n − k) such that ψ ◦ [k] = h|E1[n] [232, Theorem 3]. A
complete definition of an irreducible anti-symplectic isomorphism ψ : E1[n]

∼−→ E2[n]

for all n is given by Kani [232].8 In the special case of n = 2, one can show that such a
genus 2 curve C/K exists if and only if there exists an isomorphism ψ : E1[2]

∼−→ E2[2]

which is not the restriction of an isomorphism E1/K
∼−→ E2/K [211, Prop. 3].

5.3.1 Gluing elliptic curves E/Q with good reduction away from 2

For our purposes, we considered all 55 isogeny classes of abelian surfaces over Q
which are isogenous to a product of two elliptic curves E/Q with good reduction
away from 2.

There are exactly 10 such isogeny classes of elliptic curves E/Q with good
reduction outside 2, classified by Ogg [308]. We tabulate a list of these classes, shown

7It’s worth mentioning that the related question of the existence of genus 2 curves C/K such
that Jac(C) is isomorphic to E1 × E2 has also been well-studied, e.g. see Hayashida–Nishi [206],
Ibukiyama–Katsura–Oort [213], and Kani [233, 234].

8It’s worth mentioning that Frey–Kani [175, p. 155] remarked that their construction “seems
to be known in principle” (e.g. see Serre [363], Ibukiyama–Katsura–Oort [213]) although to their
knowledge doesn’t appear explicitly in the literature prior to their work.
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in Table 5.11 (note that the Cremona labels agree with the LMFDB labels (up to a
period) in these cases).

Table 5.11: List of the 10 Q-isogeny classes of elliptic curves E/Q with good reduction
outside 2, as classified by Ogg [308]. Here N denotes the conductor, End(EQ) ⊗ Q
the geometric endomorphism algebra, ST(E) the Sato-Tate group, and #E/Q the
number of elliptic curves E/Q in this isogeny class.

Cremona label N Rank End(EQ)⊗Q ST(E) #E/Q

32a 25 0 Q(
√
−1) N(U(1)) 4

64a 26 0 Q(
√
−1) N(U(1)) 4

128a 27 1 Q SU(2) 2
128b 27 0 Q SU(2) 2
128c 27 0 Q SU(2) 2
128d 27 0 Q SU(2) 2
256a 28 1 Q(

√
−2) N(U(1)) 2

256b 28 1 Q(
√
−1) N(U(1)) 2

256c 28 0 Q(
√
−1) N(U(1)) 2

256d 28 0 Q(
√
−2) N(U(1)) 2

First let E1/Q and E2/Q be non-isogenous elliptic curves with good reduction
away from 2. Whilst Theorem 112 can produce many examples of genus 2 curves
C/Q which are Q-isogenous to E1 × E2, most of these curves C will not admit a
model over Q.

We thus wish to find all integers n ≥ 2 such that there exists an irreducible
Galois-equivariant anti-symplectic isomorphism ψ : E1[n] → E2[n]. In particular,
the existence of such an Galois-equivaraint isomorphism ψ implies that the mod
n Galois representations ρE1,n and ρE2,n attached to E1 and E2 respectively, are
isomorphic up to semisimplification (e.g. see [210, p. 128] or [117, p. 20]). We can
therefore eliminate many possibilities for n by thus comparing ap(E1) and ap(E2)

mod p for sufficiently many odd primes p. 9

We thus computed gcd{ap(E1) − ap(E2) : p odd, p < 1000} over all pairs of
non-isogenous elliptic curves E1/Q and E2/Q with good reduction away from 2, and
obtained a value of 2, 4 or 8 in every such case. Thus, by simply computing Richelot
and double Richelot isogenies (e.g. using Magma’s TwoPowerIsogenies function),

9Alternatively, since all elliptic curves E/Q with good reduction away from 2 have conductor
at most 256, we can apply a recent theorem of Cremona–Freitas [117, Theorem 1.3] stating that if
E1/Q and E2/Q are elliptic curves with conductors ≤ 500 000 and E1[p] ∼= E2[p] for some prime
p > 17, then E1 and E2 are Q-isogenous.

https://www.lmfdb.org/EllipticCurve/Q/32/a/
https://www.lmfdb.org/SatoTateGroup/1.2.B.2.1a
https://www.lmfdb.org/EllipticCurve/Q/64/a/
https://www.lmfdb.org/SatoTateGroup/1.2.B.2.1a
https://www.lmfdb.org/EllipticCurve/Q/128/a/
https://www.lmfdb.org/SatoTateGroup/1.2.A.1.1a
https://www.lmfdb.org/EllipticCurve/Q/128/b/
https://www.lmfdb.org/SatoTateGroup/1.2.A.1.1a
https://www.lmfdb.org/EllipticCurve/Q/128/c/
https://www.lmfdb.org/SatoTateGroup/1.2.A.1.1a
https://www.lmfdb.org/EllipticCurve/Q/128/d/
https://www.lmfdb.org/SatoTateGroup/1.2.A.1.1a
https://www.lmfdb.org/EllipticCurve/Q/256/a/
https://www.lmfdb.org/SatoTateGroup/1.2.B.2.1a
https://www.lmfdb.org/EllipticCurve/Q/256/b/
https://www.lmfdb.org/SatoTateGroup/1.2.B.2.1a
https://www.lmfdb.org/EllipticCurve/Q/256/c/
https://www.lmfdb.org/SatoTateGroup/1.2.B.2.1a
https://www.lmfdb.org/EllipticCurve/Q/256/d/
https://www.lmfdb.org/SatoTateGroup/1.2.B.2.1a
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we were able to find all smooth genus 2 curves C/Q which can be obtained by gluing
together two non-isogenous elliptic curves E1/Q and E2/Q with good reduction away
from 2.

In the case where E1/Q and E2/Q are two isogenous elliptic curves, it seems
to be not as trivial to determine all possible gluings between these curves. In these
cases, we explicitly computed all possible gluings along their 2-torsion (by an algo-
rithm of Howe-Leprévost-Poonen [211, Proposition 4]) and all possible gluings along
their 3-torsion (by an algorithm of Broker-Howe–Lauter–Stevenhagen [63, Algorithm
5.4]). We also ran some Magma code of Sijsling [378], based on a Magma package
developed by Hanselman-Schiavone-Sijsling [201]. This uses an analytic method to
glue elliptic curves along their n-torsion, and we ran this for all n ≤ 7. 10

A summary of the number of genus 2 curves C/Q we obtained in each of the
55 isogeny classes by gluing is given in Table 5.12.

We remark that Table 5.12 is not guaranteed to be complete. In other words,
given two elliptic curves E1/Q and E2/Q with good reduction away from 2, we
haven’t guaranteed that we have found all genus 2 curves C/Q such that Jac(C) is
isogenous to E1 × E2. We therefore pose the following problem:

Problem 5.10. Given two elliptic curves E1/Q and E2/Q, implement a practical
algorithm to compute all smooth genus 2 curves C/Q such that Jac(C) is isogenous
to E1 × E2.

In particular, this requires finding all n such that there exists an irreducible
Galois equivariant anti-symplectic isomorphism ψ : E1[n]

∼−→ E2[n]. It’s known that
there are only finitely many such n by Faltings’ theorem [153], and furthermore one
can in principle prove effective bounds on the possible values of n by the isogeny
estimates of Masser–Wüstholz [278] and Bost [53] (e.g. see Gaudron–Rémond [177,
Theorem 1.4] for an explicit such bound), however these bounds are unfortunately
far too large to be useful in practice.

In general, given a number field K and an abelian surface A/K, whilst the
results of [280, 53] prove there exists an effective algorithm to determine all abelian
surfaces B/K which are K-isogenous to A/K, practically doing so is still a highly
non-trivial problem. However, we do remark that practical algorithms have now
been implemented by van Bommel–Chidambaram–Costa–Kieffer [424] to compute

10There has been some recent work of Djukanović [133] on determining when a cyclic isogeny
between two elliptic curves E1/K and E2/K without CM induces an (n, n)-isogeny between E1×E2

and the Jacobian Jac(C) of a smooth genus 2 curve C/K. We checked that no such curves C/Q
exist via this construction for the four isogeny classes 128a × 128a, 128b × 128b, 128c × 128c, and
128d × 128d.
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Table 5.12: Table of all 55 isogeny classes of abelian surfaces A which split over Q,
i.e. where A is Q-isogenous to E1 × E2 for some two elliptic curves E1, E2 over Q
with good reduction outside 2. Each cell in the table gives the number of known
genus 2 curves C/Q whose Jacobian is isogenous to E1 × E2 (with the rows (resp.
columns) denoting the Cremona label of the isogeny class of E1 (resp. E2)).

32a 64a 128a 128b 128c 128d 256a 256b 256c 256d

32a 4 10 6 6 6 6 8 4 4 8

64a 4 6 6 6 6 8 4 4 8

128a 1 4 3 3 4 2 2 4

128b 1 3 3 4 2 2 4

128c 1 4 4 2 2 4

128d 1 4 2 2 4

256a 2 4 4 6

256b 0 4 4

256c 0 4

256d 2

the isogeny classes of principally polarised abelian surfaces A/Q whose geometric
endomorphism ring End(AQ) is Z, with some work in progress on extending this to
larger endomorphism rings.
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Chapter 6

List of abelian surfaces A/Q with
good reduction outside 2

In this chapter, we finally present all the results of the algorithms implemented
in the previous chapter using a combination of Magma [52] and Sage [342] code.
Details of similar computations on genus 2 curves are also given by Booker–Sijsling–
Sutherland–Voight–Yasaki [49]. This chapter is dedicated to all contributors of the
L-functions and modular forms database (LMFDB) [268]; indeed most of the com-
putations done in this chapter were inspired by the many arithmetic invariants com-
puted on the LMFDB. Performing all these computations gave us a small glimpse
into the immense amount of work and expertise that goes into maintaining such a
large database!

In total we found 512 distinct Q-isomorphism classes of genus 2 curves C/Q
whose Jacobian has good reduction away from 2. In addition to Smart’s list of 366
genus 2 curves with good reduction away 2, this also includes 146 additional curves
C/Q which have bad reduction at at least one odd prime. These were separated into
27 Q-isogeny classes, 67 Q-isomorphism classes, and 175 Q-isogeny classes.

A webpage with downloadable links to all curves and further data (both in
computer-readable and human-readable formats) can be found at:

https://warwick.ac.uk/fac/sci/maths/people/staff/visser/genus2/

6.1 Computational results and Statistics

6.1.1 Minimal Weierstrass model

For each curve C/Q, we calculated a minimal Weierstrass model for C using the
Magma function ReducedMinimalWeierstrassModel. This returns a globally min-

169

https://warwick.ac.uk/fac/sci/maths/people/staff/visser/genus2/
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imal integral model of C/Q which is reduced with respect to the action of SL2(Z)
using an algorithm of Michael Stoll. Most of the genus 2 curves (486 out of 512 )
had a globally minimal model which was also in the simplified form y2 = f(x); only
26 curves did not have such a model. The 26 curves which did not have an integral
model which is both simplified and minimal are indicated by a footnote next to the
shown simplified model in the main Table 6.21.

By factorising the discriminant ∆min of a minimal Weierstrass model, we
computed the set of primes p of bad reduction for the curve C. We found that the
first five odd primes 3, 5, 7, 11, and 13 all occurred as possible primes of almost good
reduction for C, as shown in Table 6.1. For all genus 2 curves C/Q found, if C/Q
has bad reduction at p, then it also has geometric bad reduction at p.

Table 6.1: Primes of (geometric) bad reduction for C/Q

Bad primes for C {2} {2, 3} {2, 5} {2, 7} {2, 13} {2, 3, 7} {2, 3, 11}

Num curves 366 78 28 24 8 4 4
Num Q classes 51 8 3 2 1 1 1

Furthermore, by factorising the polynomial f in a simplified model y2 =

f(x), we computed the field system for C/Q. We give a summary of the types
of field systems obtained in Table 6.2. Recall that K1,K2,K3 denotes the three
quadratic fields unramified away from 2, and L1, . . . , L7 denotes the seven quartic
fields unramified away from 2 (defined in Table 5.4). Our computations did not
found any genus 2 curve C/Q with full rational 2-torsion whose Jacobian has good
reduction away from 2. As noted in Theorem 103, if such a curve exists, it must
have bad reduction at some prime p ≥ 17.

Table 6.2: Possible types of field systems for our genus 2 curves C/Q

Field system [Q,Q,Q,Q,Ki] [Q,Q,Ki,Kj ] [Q,Q, Li] [Ki,Kj ,Kk] [Ki, Lj ]

Num curves 6 28 178 35 265

A full breakdown of all 48 possible unique field systems and the number of
genus 2 curves C/Q obtained for each field system is given in the appendix in Table
A.1.

The 29 genus 2 curves satisfying |∆min| ≤ 106 are also listed on the LMFDB
[268]. These are indicated in the table by the icon , with links to each of the
respective webpages of these curves on the LMFDB.

https://www.lmfdb.org/
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6.1.2 Automorphism group

It’s well-known that the automorphism group Aut(C) of any curve C is finite with
uniform bounds known in terms of the genus g (e.g. see Hurwitz [212]) In particular,
the possible automorphism groups for genus 2 curves C/Q have been fully classified
by Shaska and Völklein [371, Theorem 2].

The automorphism group over both Q and Q were computed for all our curves
using the default Magma functions AutomorphismGroup and GeometricAutomorphismGroup

respectively. For our curves, the possible automorphism groups Aut(C) over Q were
C2, C2×C2, C4, and D4, and the possible geometric automorphism groups Aut(CQ)

(over Q) were C2, C2 × C2, D4, and GL2(F3).1 The number of curves with given
automorphism group over Q and Q are given in Table 6.3 and Table 6.4 respectively.

Table 6.3: Automorphism groups for C over Q

Aut(C) C2 C2 × C2 C4 D4

Num curves 289 190 23 10

Table 6.4: Automorphism groups for C over Q

Aut(CQ) C2 C2 × C2 D4 GL2(F3)

Num curves 140 248 102 22
Num Q classes 35 24 7 1

Here Cn denotes the cyclic group of order n and Dn denotes the dihedral
group of order 2n.

6.1.3 Torsion subgroup

The torsion subgroup of Jac(C)(Q) was computed for all curves using the default
TorsionSubgroup Magma function, using p-adic methods by Stoll [394, Section 11].
Noting the possible field systems that a genus 2 curve C/Q whose Jacobian is good
outside 2 can have (see Table 5.5), we see there always exists at least one nontrivial
rational torsion point of order 2. In all tables ahead, we use the common shorthand
Z/N to mean the order N cyclic group Z/NZ.

Rather interestingly, all 512 genus 2 curves except for one, had torsion order
being a power of two. Statistics for the number of genus 2 curves with given torsion

1We note that in general genus 2 curves C/Q can have other automorphism groups than the
ones listed in our tables, e.g. the genus 2 curve C/Q : y2 = x5 − 5x3 − 5x2 − x [268, Genus 2 curve
2704.a.43264.1] has Aut(C) = C6 and Aut(CQ) = D6.

https://www.lmfdb.org/Genus2Curve/Q/2704/a/43264/1
https://www.lmfdb.org/Genus2Curve/Q/2704/a/43264/1
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subgroup are shown in Table 6.5.

Table 6.5: Torsion subgroup J(Q)tors of the Jacobian J of C/Q

Torsion subgroup Z/2× Z/10 Z/2× Z/2× Z/2 Z/2× Z/2 Z/2

Num curves 1 6 57 371

Torsion subgroup Z/2× Z/4 Z/4 Z/4× Z/4 Z/8

Num curves 4 59 1 13

We note that the subgroup of rational 2-torsion J(Q)[2] has order consistent
with the field systems given in Table 6.2.

The only genus 2 curve we found which had a rational point on the Jacobian
of odd order is the curve y2 + y = 2x5 − 3x4 + x3 + x2 − x [268, Genus 2 curve
256.a.512.1], which is in fact a model for the modular curve X1(16).

In contrast to Mazur’s theorem [286] in the elliptic curve case, in general
very little is known about the possible torsion subgroups A(Q)tors that can occur
for abelian surfaces A/Q; in particular no uniform bound on the order |A(Q)tors| is
known. Although we should mention one recent result of Laga-Schembri-Schnidman-
Voight [256] proving a classification of the possible groups A(Q)tors in the case where
End(AQ) is a maximal order in a division quarternion algebra over Q.

6.1.4 Conductor

The conductor N for the Jacobian Jac(C) of each curve C was rigorously computed
using the Dokchitser-Doris [139] Magma package. This successfully computed the
conductor almost all curves in the table, with the exception of the two curves y2 =

−x5 + 3x4 − 2x3 + 2x2 − x − 1 and y2 = −x5 − 3x4 − 2x3 − 2x2 − x + 1; here
Magma struggled to compute a regular model at 2 for these curves. However, we
did find curves whose Jacobians are isogenous to the above Jacobians, which allowed
for the conductor to be successfully be computed, so all results have been verified
unconditionally. The conductor was also double checked using the MCLF Sage
toolbox [341] by Rüth-Wewers, which computes the conductor exponent at 2 by
constructing a semistable model of C/Q at p = 2.

In particular, we furthermore computed the tame part nt and the wild part
nw of the conductor exponent at 2, where N = 2nt+nw . We found that, for all but
one isogeny classes we had nt = 4, the only exception being the unique conductor 28

isogeny class containing the curve y2 = (x − 1)(x + 1)(x2 − 2x − 1)(x2 + 1), which
had nt = 2 with corresponding Euler factor L2(T ) = 1 + 2T + 2T 2.

https://www.lmfdb.org/Genus2Curve/Q/256/a/512/1
https://www.lmfdb.org/Genus2Curve/Q/256/a/512/1
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As a third additional check, we furthermore verified for all curves found, that
the Hasse-Weil functional equation for L(C/Q, s) as given in (15), is numerically
satisfied to 100 bits of precision for the value of N obtained with the Dokchitser-
Doris algorithm. This was verified using the Sage implementation of Dokchitser’s
L-function calculator [135].

A summary of the number of genus 2 curves C/Q found (and the Q-isogeny
classes) with conductor N is given below in Table 6.6.

Table 6.6: Conductor N of the Jacobian Jac(C) for each curve C

Conductor 28 29 210 211 212 213 214 215 216 217 218 219 220

Num curves 2 0 4 10 33 62 65 72 68 64 38 40 54
Num isog classes 1 0 1 1 7 10 19 22 19 24 19 20 32

6.1.5 Mordell-Weil group and Rank

For the Jacobian J of each genus 2 curve C/Q, a set of generators for the Mordell-
Weil group J(Q), and in particular the rank r of Jac(C) over Q, was computed
using Magma’s MordellWeilGroupGenus2 function. One of the main approaches is
to compute the 2-Selmer group Sel(2)(J) of the Jacobian J , using an algorithm of
Stoll [395].

Table 6.7: Two-Selmer groups Sel(2)(J) of J = Jac(C)

Sel(2)(J) (Z/2Z) (Z/2Z)2 (Z/2Z)3 (Z/2Z)4

Num curves 158 250 101 3

By computing Sel(2)(J) and J(Q)[2], this gives an explicit upper bound on
the rank r of J(Q) given by r ≤ dimF2Sel(2)(J) − dimF2J(Q)[2]. In all cases, the
rank of J(Q) was shown to have an unconditional upper bound of 2, and could be
computed exactly for all but two of the curves.

We also computed the analytic rank using Dokcthiser’s L-function calculator
[135] in Sage, and confirmed this agreed with the bounds obtained in Magma. Where
the algebraic rank could not be unconditionally verified, we instead tabulated the
analytic rank, indicated with an asterisk in Table 6.21. We found only two such
curves, y2 = −(x2 + 1)(x4 + 8x3 + 18x2 − 8x + 1) of conductor 218 and y2 =

−(x2 + 1)(x4 + 4x3 + 10x2 − 4x + 1) of conductor 220. Both curves have analytic
rank 0, where its algebraic rank is at most 2.
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In summary, assuming the two curves above have rank 0, we found in total
269 curves (divided into 87 isogeny classes) of rank 0, 202 curves (divided into 67
isogeny classes) of rank 1, and 41 curves (divided into 21 isogeny classes) of rank 2.

6.1.6 Endomorphisms of the Jacobian

Recall that the F -endomorphism ring for an abelian variety A/K, denoted End(AF ),
is the set of homomorphisms φ : A → A defined over the field F , where F is
some extension of K. We also define the F -endomorphism algebra as the Q-algebra
End(AF ) ⊗Z Q; i.e. the Q-algebra spanned by End(AF ). Many open questions
remain regarding the possibilities for End(AF ). A famous conjecture of Coleman [67,
Conjecture C(e, g)] states that, for a fixed dimension d and degree e, there are only
finitely many possible rings O which are isomorphic to End(AK) for some dimension
d abelian variety A/K and a field extension L/K of a number field K of degree
at most e. Whilst it’s still unknown whether there are finitely many possibilities
for End(A), even for abelian surfaces A/Q, some progress has been made in certain
cases, e.g. see Murabayashi–Umegaki [302] for CM principally polarised abelian
surfaces or Fité–Guitart [163] for geometrically split abelian surfaces.

For each Jacobian J of each of our genus 2 cures C/Q, we were able to com-
pute the Q-endomorphism rings End(J), the Q-endomorphism algebras End(J)⊗Q,
and the real endomorphism algebras End(J) ⊗ R using Magma code developed by
Costa-Mascot-Sijsling-Voight [112]. Furthermore, the geometric endomorphism data
End(JQ), End(JQ)⊗Q, and End(JQ)⊗R was also computed using the same code.2

A summary of the endomorphism algebras End(J) ⊗ Q and End(JQ) ⊗ Q for the
Jacobian J = Jac(C) of our genus 2 curves are given in Table 6.8 and Table 6.9
respectively.

Table 6.8: Endomorphism algebra End(J)⊗Q of J = Jac(C)

End(J)⊗Q Q Q×Q M2(Q) K1 K2 K3

Num curves 248 200 16 29 3 16
Num isog classes 91 45 8 19 1 11

Here B6(Q) denotes the unique (non-split) quaternion algebra over Q of dis-
criminant 6. For example, one can take B6(Q) = (2, 3)Q; this is the unique asso-
ciative dimension 4 Q-algebra with Q-basis {1, i, j, k} such that i2 = 2, j2 = 3, and
ij = −ji = k.

2For the remainder of this chapter, all tensors are over Z.
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Table 6.9: Geometric endomorphism algebra End(JQ)⊗Q of J = Jac(C)

End(JQ)⊗Q Q Q×Q Q×K1 Q×K2 K1 ×K2 L5

Num curves 104 64 64 32 48 4
Num isog classes 44 24 16 8 8 2

End(JQ)⊗Q M2(Q) M2(K1) M2(K2) B6(Q)

Num curves 116 42 30 8
Num isog classes 49 10 12 2

The same code also allowed us to the compute the endomorphism field Jendo

for each Jacobian J . This is the unique minimal number field over which all geometric
endomorphisms of J are defined, i.e. the smallest field E such that End(JE) =

End(JQ). A total of 10 possible such minimal fields Jendo were computed, as shown
in Table 6.10.

Table 6.10: The endomorphism field Jendo of J = Jac(C); i.e. the smallest number
field over which all Q-endomorphisms of J are defined

Jendo Q K1 K2 K3 L1 L4 L5 M1 M2 M3

Num curves 108 88 52 64 102 16 4 2 48 28
Num isog classes 48 26 16 26 21 12 2 2 12 10

6.1.7 Sato-Tate group

For an abelian surface A/Q, the Sato-Tate group ST(A) is a compact Lie subgroup
contained in the unitary symplectic group USp(4). Such groups are related to the
distributed of the normalised Euler factors N(p)−2Lp(A/K,

√︁
N(p)T ) as N(p)→∞,

A full definition of ST(A) is given in [164, Section 2].
The possible Sato-Tate groups for abelian surfaces was classified by Fité–

Kedlaya–Rotger–Sutherland [164] and recently also for abelian threefolds by Fité–
Kedlaya–Sutherland [165, 166].

As remarked in [164, p. 1408], the identity component ST0(J) of the Sato-Tate
group ST(J) is in one-to-one correspondence with the real geometric endomorphism
algebra End(JQ) ⊗ R. By applying a classification by Albert (e.g. see [300, Sec
21. Theorem 2]) of finite rank division algebras over Q, together with results of
Shimura [373], it follows that there are six possibilities for End(JQ) ⊗ R, namely
R, R × R, C × R, C × C, M2(R), and M2(C). These correspond to the Sato-Tate
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identity components USp(4), SU(2)× SU(2),U(1)× SU(2),U(1)×U(1), SU(2), and
U(1) respectively.

Using the same code of Costa-Mascot-Sijsling-Voight [112], by computing the
real geometric endomorphism algebra End(JQ)⊗R, we can easily read off the identity
component ST0(J) of the Sato-Tate group ST(J), given below in Table 6.11.

Table 6.11: Identity component ST0(J) of the Sato-Tate group ST(J), and the
corresponding real geometric endomorphism algebra End(JQ)⊗ R

ST0(J) USp(4) SU(2)×SU(2) U(1)×SU(2) U(1)×U(1) SU(2) U(1)
End(JQ)⊗ R R R× R C× R C× C M2(R) M2(C)

Num curves 104 64 96 52 124 72
Num isog classes 44 24 24 10 51 22

We can easily read off from the endomorphism algebra which curves have
GL2-type. In total, there are 248 curves (divided amongst 76 Q-isogeny classes)
which are of GL2-type over Q and 64 such curves (divided amongst 24 Q-isogeny
classes) which are of GL2-type over Q. We also note that none of our curves have
GL2-type over both Q and Q.

Finally, using the table of the full Sato-Tate group given in Fité– Kedlaya–
Rotger–Sutherland [164, Table 8], we can compute the Sato-Tate group ST(J) by
computing the endomorphism algebras End(JK)⊗Q over all subfields K of Jendo.

In particular, we can almost always uniquely determined ST(J) from the data
of (Jendo, End(JQ)⊗Q, End(JQ)⊗Q). This uniquely determines ST(J) for all but
10 curves, for which this could only determine ST(J) as being either J(C2) or D2.
As remarked in [164, p. 1419], we can resolve this by computing the endomorphism
algebras End(JK1)⊗R, End(JK2)⊗R, and End(JK3)⊗R where K1,K2,K3 are the
three quadratic fields unramified away from 2. In all our cases, this was always some
permutation of C × C, H, and M2(R), thus uniquely determining ST(J) for these
curves as J(C2).

A summary of the number of genus 2 curves C/Q found for each of the 17
Sato-Tate groups obtained in our list is given below in Table 6.12.

6.1.8 Jacobian decomposition

We recall that, given any abelian variety A over a number field K, there exists a
unique set of K-simple abelian subvarieties B1, . . . , Bn (unique up to K-isogeny and
ordering) such that A is K-isogenous to B1 × · · · ×Bn; this is the classical Poincare
reducibility statement [300, p. 173]. By thus using the same code of Costa–Mascot–
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Table 6.12: Sato-Tate group ST(J) of the Jacobian J of C

ST(J) USp(4) N(SU(2)× SU(2)) N(U(1)× SU(2)) Fac Fa,b

Num curves 104 64 96 4 48
Num isog classes 44 24 24 2 8

ST(J) E1 E2 J(E1) E4 J(E2) J(E4)

Num curves 4 4 28 16 20 52
Num isog classes 4 2 14 12 5 14

ST(J) C2,1 J(C2) D2,1 J(C4) D4,1 D4,2

Num curves 12 10 24 2 4 20
Num isog classes 4 4 4 2 2 6

Sijsling–Voight [112], we computed the decomposition of the Jacobian Jac(C) up to
isogeny.

For each curve C, we either got than Jac(C) is Q-simple, or computed a
number field E of minimal degree such that Jac(C) splits over E. The minimal
degree of a splitting field is given in Table 6.13. We remark that, whilst deg(E) is
well-defined, the field E itself is not necessarily unique (unless of course E = Q).

Table 6.13: Minimal degree of a number field E such that Jac(C) splits over E

deg(E) 1 2 4 ∞

Num curves 216 100 76 120
Num isog classes 53 41 33 48

6.1.9 Isogenies

By a classical theorem of Serre (strong multiplicity one) and Faltings’ isogeny the-
orem [153], two abelian varieties A/K and B/K over some number field K are
isogenous if and only if the trace of Frobenius trρ1(Frobp) and trρ2(Frobp) are the
same over all but finitely primes p, where ρ1 and ρ2 denote the ℓ-adic representations
of A and B respectively. As discussed in Chapter 4, it was shown by Faltings and
Serre that it suffices to check an effective coimputable finite set of such primes p, thus
giving a effective criterion to determine whether two abelian varieties are isogenous.

By a theorem of Grenié [189, p. 617], two abelian surfaces A/Q with good
reduction away from 2, are isogenous if and only if the traces at the primes p ∈ {5, 7,
11, 13, 17, 19, 23, 31, 73, 137, 257, 337} coincide. Therefore, we were able to group
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together the isogeny classes by computing the number of points in the reduction # ˜︁Cp
of C, for all primes p in the above list. As an additional check, we also confirmed
that any two curves which were deemed isogenous by Grenié’s theorem also had their
trace coincide for all primes p < 10 000.

Whilst this proves which pairs of genus 2 curves C/Q have isogenous Jaco-
bians, it doesn’t explicitly construct an isogeny φ : Jac(C) → Jac(C ′) between any
pair of isogenous Jacobians. In order to actually compute such a map φ, we can
follow the same procedure as done in van Wamelen [426, 427] to explicitly construct
isogenies between pair of isogenous curves. In particular, this enables us to compute
the isogeny degree between pairs of isogenous Jacobians and construct a (partial)
isogeny graph (although it cannot guarantee complenetess of the isogeny graph).

The full details of such computations are given in van Wamelen [426, 427],
however we shall briefly outline the algorithm here: Given a curve C/Q, we computed
the big period matrix P ∈ M2,4(C) given as

P :=

⎛⎜⎜⎜⎜⎝
∫︂
B1

dx

y

∫︂
B2

dx

y

∫︂
A1

dx

y

∫︂
A2

dx

y∫︂
B1

xdx

y

∫︂
B2

xdx

y

∫︂
A1

xdx

y

∫︂
A2

xdx

y

⎞⎟⎟⎟⎟⎠
where A1, A2, B1, B2 is a symplectic basis for H1(C,Z). This can be computed in
Magma using the BigPeriodMatrix function.

Given two curves C1 and C2 with big period matrices P1 and P2, we can
numerically determine with Magma whether J(C1) is Q-isogenous to J(C2) (to suf-
ficiently high precision) by searching for a nonsingular 4 × 4 matrix M ∈ M4(Z)
and a 2 × 2 complex matrix α ∈ M2(C) such that αP1 = P2M ; this can easily be
accomplished with Magma’s IsIsogenous function.

However, to determine an explicit rational isogeny between J(C1) and J(C2),
we have to furthermore find such a matrix M ∈ M4(Z) such that α ∈ M2(Q) is ra-
tional. To do this, we use Magma’s AnalyticHomomorphisms function which returns
a Z-basis for the Z-module of all such matrices M ∈ M4(Z). By thus searching for
a suitable linear combination of these basis matrices, we hope to find a suitable ra-
tional α ∈ M2(Q); this can be done very efficiently using the built-in LLL algorithm
implemented in Magma.

Doing this for each pair of genus 2 curves C1, C2, we successfully found an
explicit rational isogeny, where the degree of the isogeny can be read off from det(M)

(as noted in [426, p. 1688]). All computations were done to 1000 bits of precision.
As expected, almost all of the isogenies φ were of degree a power of 2, however some
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were of 3-power and 5-power degree.
Out of the total of 746 pairs of isogenous Jacobians, we found exactly 13 pairs

of isogenous Jacobians with an odd isogeny. Five of these had degree 32 and eight
had degree 52. We give a list of the odd-degree isogenous curves below in Table 6.14.

Table 6.14: Pairs of non-isomorphic curves (C1, C2) whose Jacobians are Q-isogenous
of odd degree.

N ST(J) C1 and C2 ∆min det(M)

28 E4
(x− 1)(x+ 1)(x2 − 2x− 1)(x2 + 1)

−(x− 1)(x+ 1)(x2 + 1)(239x2 + 2x− 239)

−29

−291312
52

212 E4
x(x2 − 2x− 1)(x2 + 1)

(5x+ 12)(12x− 5)(x2 + 1)(x2 + 2x− 1)

−219

−2191312
52

214 E4
2x(x2 + 1)(x2 + 2x− 1)

−2(5x+ 12)(12x− 5)(x2 + 1)(x2 + 2x− 1)

−229

−2291312
52

214 E4
2x(x2 − 2x− 1)(x2 + 1)

2(5x+ 12)(12x− 5)(x2 + 1)(x2 + 2x− 1)

−229

−2291312
52

216 D2,1
(x+ 44)(x4 − 16x3 − 164x2 + 1056x− 3388)

−(x+ 44)(x4 − 16x3 − 164x2 + 1056x− 3388)

−2393121112

−2393121112
32

218 J(E2)
x(x4 + 4x3 + 10x2 + 8x+ 2)

−x(x4 + 4x3 + 10x2 + 8x+ 2)

219

219
32

218 J(E2)
2x(x4 + 4x3 + 10x2 + 8x+ 2)

−2x(x4 + 4x3 + 10x2 + 8x+ 2)

229

229
32

218 J(E4)
−x(x4 + 2x2 + 2)

x(x4 − 478x2 + 57122)

219

2191312
52

218 J(E4)
−2x(x4 − 2x2 + 2)

2x(x4 + 478x2 + 57122)

229

2291312
52

218 J(E4)
−x(x4 − 2x2 + 2)

x(x4 + 478x2 + 57122)

219

2191312
52
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Table 6.14 (continued).

N ST(J) C1 and C2 ∆min det(M)

218 J(E4)
−2x(x4 + 2x2 + 2)

2x(x4 − 478x2 + 57122)

229

2291312
52

218 J(E2)
(x− 1)(x4 + 4x3 + 2x2 − 4x− 7)

−(x− 1)(x4 + 4x3 + 2x2 − 4x− 7)

−228

−228
32

218 J(E2)
x(x+ 1)(x4 + 4x2 − 4)

−(x− 1)x(x4 + 4x2 − 4)

−228

−228
32

For the 44 isogeny classes with trivial geometric endomorphism ring, we used
code by van Bommel–Chidambaram–Costa–Kieffer [424] to verify that our isogeny
classes were complete; i.e. any genus 2 curve C/Q whose Jacobian J satisfies
End(JQ) = Z and is isogenous to one of our 512 curves in Table 6.21 is guaran-
teed to also be listed in Table 6.21. For all pairs of curves within these classes, all
isogenies were 2-power isogenies.

Finally, we tabulate some statistics on the size of the isogeny classes found,
given in Table 6.15. We remark that, whilst many isogeny classes also contain
products of elliptic curves over Q and Weil restrictions of elliptic curves E/K over
quadratic fields K, these numbers only count the known Jacobians in each isogeny
class.

Table 6.15: Number of isogeny classes in Table 6.20 containing n known Jacobians.

#Jac(C) 1 2 3 4 6 8 10

Num isog classes 22 83 6 47 10 6 1

6.1.10 Rational points

For each genus 2 curve C/Q, we attempted to compute a provably complete list of
rational points in C(Q). This was done for all the rank 0 curves and some of the rank
1 curves using Stoll’s [396] implementation of Chabauty’s method combined with the
Mordell-Weil sieve in Magma. In summary, we were unable to prove completeness
of C(Q) for 50 out of the 512 curves; 9 of rank 1 and all 41 of rank 2. There were
also 187 curves which were not locally solvable everywhere, easily proving in these
cases that C(Q) = ∅.
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For curves where Chabauty’s method failed, we ran a brute force search for
rational points of height up to 107 using Magma’s default RationalPoints function.
The point with largest height found was P = (−20

21 ,
±64931

21 ) lying on the rank 2
curve C : y2 = x6 − 4x5 + 11x4 − 16x3 + 11x2 − 12x+ 1. It’s worth remarking that,
with the exception of ±P and the pair of points (− 4

17 ,±
13392
17 ) on the rank 2 curve

y2 = x6 + 4x5 − 40x4 + 32x3 + 8x2 − 32x, all other rational points found had height
less than 500, and so whilst we haven’t proven completeness of C(Q) in all cases, it’s
reasonable to conjecture that our list of rational points is probably complete.

We give a summary of the values of #C(Q) obtained in Table 6.16. We note
that the number of rational points #C(Q) is always even, as there are always an
even number of rational Weierstrass points for all our curves, given the possible field
systems that can occur, shown in Table 6.2.

Table 6.16: Number of known rational points #C(Q) found on C

#C(Q) 0 2 4 6 8 10 12

Num curves 208 201 75 17 6 3 2

We remark that we found two curves C/Q where no known rational points
were found, C/Q is everywhere locally soluble and Magma’s Chabauty method failed
to prove that C(Q) = ∅. In these cases, we computed the fake 2-Selmer set using
Magma’s TwoCoverDescent function. For all such curves, we found that the fake
2-Selmer set was empty, which proved that C(Q) = ∅, as noted by Bruin–Stoll [69].

It’s worth mentioning that for bielliptic genus 2 curves of the form C : y2 =

f(x2) where Jac(C) has rank 2, one can in principle apply the methods of Flynn–
Wetherell [168] to practically compute C(Q).

We’d conjecture that it should in principle be possible to provably compute
C(Q) for all remaining curves C/Q in our list, using a combination of either quadratic
Chabauty and/or elliptic Chabauty. We’ll leave this as an exercise for future work!

6.1.11 L-function and BSD invariants

We computed the analytic rank and leading coefficients of the L-function L(C/Q, s)
using Dokchitser’s L-function calculator [135].3 Recall that, by the potential mod-
ularity results of Boxer–Calegari–Gee–Pilloni [60], we have that the completed L-

3We also note some recent work in progress of Bober–Booker–Costa–Lee–Platt–Sutherland [44]
on an alternative motivic L-function calculator.
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function Λ(s) := N s/2ΓC(s)
2L(s) satisfies the functional equation

Λ(s) = εΛ(2− s)

for ε = (−1)r where r := ords=1 L(s) is the analytic rank of C. By computing a suf-
ficient number of Euler factors of L(C/Q, s), this allowed us to compute the leading
coefficient L(r)(C/Q, 1)/r! to arbitrary precision. In practice, all computations were
done to 100 bits of precision.

The Euler factors Lp(T ) at all primes p (including p = 2) were computed
using Magma for all curves, and in particular the Euler factors for primes p of bad
reduction for C was also doubled-checked via the functional equation. We remark
that all computed L-functions had L2(T ) = 1 as their Euler factor at 2, except for the
unique conductor 28 isogeny class, whose Euler factor at 2 was L2(T ) = 2T 2+2T+1.

The regulatorRC/Q was computed using the standard Magma function MordellWeilGroupGenus2

which computed a set of Mordell-Weil generators for J(Q). The Tamagawa num-
bers cp and the real period ΩC/Q was computed using Magma code by van Bommel
[423, 422]. Amongst all the invariants computed for our curves, this by far took the
longest amount of computation time, with several computations of ΩC/Q and c2 still
ongoing for some of the curves; in some rare cases this took almost 1 CPU-month to
compute. In many cases, Magma was unable to compute a regular model for some
of the primes p of bad reduction of C/Q, resulting in either the computation failing
or the real period ΩC/Q being off possibly by a power of p.

As the Jacobian of C/Q has good reduction at every odd prime, the Tam-
agawa product depends only the value c2. As with the real period, regular models
at p = 2, and thus c2, could not always be computed successfully. We remark that
in all cases where c2 could be computed, it was always a power of 2, between 1 and
16. We are unsure whether it can be shown if c2 is always a power of 2 for genus 2
curves C/Q whose Jacobian is good outside 2.4

Tate-Shafarevich group

We now recall the Tate-Shafarevich group XA/K , first introduced by Lang–Tate
[259] and Shafarevich [436]. Given an abelian variety A/K, it can defined as

XA/K := ker
(︂
H1(GK , A)→

∏︂
v∈ΣK

H1(GKv , AKv)
)︂

4This is not true for all genus 2 curves C/Q; for example the modular curve X1(18) which has
Weierstrass model y2 + (x3 + x+ 1)y = x5 + 2x4 + 2x3 + x2 has Tamagawa number c2 = 3.
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where GK denotes the absolute Galois group of K. Here the product is taken over
all (finite and infinite) places v of K. As remarked in [383, p. 333], one can view
non-trivial elements of XA/K as equivalence classes of homogeneous spaces for A/K
which have a Kv-rational point for every place v, but do not have a K-rational point.
5 It’s famously conjectured that XA/K is finite, however this is still open, even for
elliptic curves E/Q.6

Computing the Tate-Shafarevich group XA/K directly is usually far from
trivial. Rather, using our L-function computation, we compute the analytic order
of Sha Xan(J) for all curves as the order of XJ/Q predicted by the strong Birch–
Swinnerton-Dyer conjecture. This is computed as

Xan(C) :=
L(r)(C/Q, 1)

r!

|J(Q)tor|2

ΩC/Q ·RC/Q ·
∏︁
p cp

To compute Xan, we therefore need to compute all the following invariants:
the leading coefficient of the L-function L(r)(C/Q, 1), the regulator RC/Q, the torsion
subgroup J(Q)tors, the real period ΩC/Q, and the Tamagawa numbers cp. Whilst
L(r)(C/Q, 1), J(Q)tors, and RC/Q were all straightforward to compute for all our
curves, we were not able to successfully compute the real period and Tamagawa
numbers for many of our curves, as remarked above. In total, we were able to
exactly compute the real period ΩC/Q for 327 genus 2 curves (and could compute
ΩC/Q possibly up to powers of 2, 3, 5, 7 for a further 112 curves), and the Tamagawa
number c2 only for 306 genus 2 curves.

Given the above difficulties, we also undertook an unconditional computation
of the 2-rank of XJ/Q by computing the 2-Selmer group Sel(2)(J) and the rank of
J(Q). Indeed, via the following exact sequence (e.g. see [383, Theorem X.4.2])

0→ J(Q)/2J(Q)→ Sel(2)(J/Q)→XJ/Q[2]→ 0,

we can thus explicitly compute the 2-rank of XJ/Q as

dimF2XJ/Q[2] = dimF2Sel(2)(J/Q)− rankJ(Q)− dimF2J(Q)[2].

5It’s sometimes remarked that the Tate-Shafarevich group XJac(C)/K measures (in some sense)
the failure of C/K to satisfy the Hasse principle, however care should be taken here. There’s
no guarantee that |XJ/Q| can indicate whether the curve C/Q itself satisfies the Hasse principle;
indeed we do find many curves C/Q in our table for which the Hasse principle holds and where
|X|an > 1, and conversely find many curves C/Q which violate the Hasse principle and where
|X|an = 1. An excellent and far more detailed discussion of the relationship between XA/K and
the Hasse principle is given by Mazur [288].

6It has been shown that, for any positive integer d ≥ 1, there exist dimension d abelian varieties
A/Q such that |XA/Q[2]| is arbitrarily large [167].
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In the case where dimF2XJ/Q[2] = 0, this proves unconditionally that |XJ/Q| is odd,
thereby avoiding the need to compute the exact power of 2 dividing the Tamagawa
product. In the case where dimF2XJ/Q[2] ≥ 1, this gives only a lower bound for the
2-primary part of XJ/Q.

This gave us the unconditionally the 2-rank for X. For 412 curves, it was
rank 0, thus proving that |X| is odd (conditional only on the assumption that |X|
is finite). For 92 curves, it was rank 1; and for 5 curves it was rank 2.

We verified that this agreed with the computation of |XJ/Q| up to squares,
as predicted by Poonen–Stoll [324], who showed that the order of XJ/Q is either a
square or twice a square for Jacobians J of genus 2 curves over Q, assuming X is
finite.

In total, we have (unconditionally) 420 genus 2 curves where |X| is square,
and 92 curves where |X| is twice a square. Amongst the curves for which we were
able to deduce the analytic order |Xan|, it has the following distribution shown in
Table 6.17.

Table 6.17: Analytic order |Xan| of the Tate-Shafarevich group (for curves C/Q
where |Xan| could be computed)

Xan(C) 1 2 4 9 18 25 36 49 50 98 □ 2□ 4□

Num curves 294 49 3 23 10 9 1 6 1 3 133 33 2

6.1.12 Mod-ℓ Galois images

For a genus 2 curve C/Q and positive integer m, we recall the mod-m Galois repre-
sentation attached to the Jacobian J of C:

ρC,m : Gal(Q/Q)→ GSp4(Z/mZ)

By an theorem of Serre [365], if End(JQ) = Z, then the mod-ℓ representation ρC,ℓ

surjects onto GSp4(Z/ℓZ) for all but finitely many primes ℓ.
For each of our genus 2 curves C/Q, we were able to compute explicitly the

mod 2, mod 3 and mod 4 Galois images, i.e. ρC,m(Gal(Q/Q)) for m = 2, 3 and 4,
using Magma code by Shiva Chidambaram [95, 94]. 7

For the 104 curves with trivial geometric endomorphism ring, we also com-
puted the set of nonmaximal primes, i.e. the primes ℓ for which ρC,ℓ(Gal(Q/Q)) ̸=

7We note that one can compute the mod 2 image from the action of Gal(Q(J [2])/Q) on J [2],
which can be read off directly from the field system [M1,M2, . . . ,Mm] of C/Q, as presented in Table
A.1. These all agreed with the computations of Chidambaram [95].
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GSp4(Fℓ) using code by Banwait–Brumer–Kim–Klagsbrun–Mayle–Srinivasan–Vogt
[24] building on an algorithm by Dieulefait [131]. In all our cases where End(JQ) = Z,
the only such nonmaximal prime was ℓ = 2.

The distribution of mod 2 images is shown in Table 6.18. Here, we assign the
label Ni to each distinct image, where N denotes the order of Im(ρC,2) in GSp4(F2),
and i a letter which uniquely distinguishes that mod 2 image. A full description for
each of the mod 2 images is given in the appendix in Table B.1. For reference, we
note that the order of GSp4(F2) is 720 = 24 · 32 · 5.

Table 6.18: Image of the mod 2 Galois representation ρC,2 : Gal(Q/Q)→ GSp4(F2)

Mod 2 image 2a 2b 2c 4a 4b 4c 4d 4e

Num curves 2 6 9 12 4 19 15 64

Mod 2 image 4f 4g 8a 8b 8c 8d 8e

Num curves 29 32 68 50 102 60 40

Also using code of Chidambaram [94], we computed the mod 3 Galois image.
A total of 33 different conjugacy classes within GSp4(F3) were obtained. To save
space, we tabulate below in Table 6.19 just the index of Im(ρC,3) in GSp4(F3), and
give a detailed count of the number of genus 2 curves corresponding to each mod
3 image in the appendix in Table B.2. Here, we give a count of the number of
conjugacy classes in GSp4(F3) found with given index n and the number of genus
2 curves C/Q such that Im(ρC,3) has index n in GSp4(F3). For reference, we note
that the order of GSp4(F3) is 103 680 = 28 · 34 · 5.

Table 6.19: Index of the image of the mod 3 Galois representation ρC,3 : Gal(Q/Q)→
GSp4(F3)

[GSp4(F3) : Im(ρC,3)] 1 45 135 270 360 405 540

Num conj classes 1 1 2 2 1 1 3
Num curves 104 32 24 108 8 8 58

[GSp4(F3) : Im(ρC,3)] 1080 1296 1620 2160 3240 6480 12960

Num conj classes 3 1 3 1 6 6 2
Num curves 30 4 72 4 32 24 4
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6.2 List of Q-isogeny classes of abelian surfaces A/Q

We now present our table of all 234 known isogeny classes of abelian surfaces A/Q
with good reduction away from 2. These are ordered first by conductor N , and then
by the degree of a minimal splitting field for A/Q. There are eleven columns giving
the following information:

1. A positive integer from 1 to 234 uniquely identifying this isogeny class. A link
to the L-function page on the LMFDB [268] for the 111 degree 4 motivic weight
1 rational 2-power conductor L-functions on the LMFDB.

2. The isogeny decomposition of A over Q. We give a decomposition over the
smallest possible degree number field. Otherwise we say that A is Q-simple.
We use the LMFDB isogeny class labels for all elliptic curves E on the LMFDB
occurring as isogeny factors of A/Q; otherwise an asterisk indicates an elliptic
curve not on the LMFDB.

3. A list of minimal degree number fields over which A splits.8 This is empty if
A is Q-simple.

4. The conductor N of A/Q.

5. The rank of A(Q). If we were unable to unconditionally compute the rank, an
asterisk indicates that this is only the analytic rank. In all cases, the algebraic
rank is unconditionally at most 2.

6. The Q-endomorphism algebra End(AQ) ⊗ Q. A question mark indicates that
we were unable to compute this for a given isogeny class.

7. The geometric Q-endomorphism algebra End(AQ)⊗Q.

8. The endomorphism field Aendo; i.e. the minimal number field over which A

attains all its endomorphisms over Q.

9. The Sato-Tate group ST(A) of A/Q, with links to the corresponding LMFDB
pages. To save space, we adopt the same shorthand notation as given in Fité–
Kedlaya–Rotger–Sutherland [164, p. 1425], identifying G1,3 and G3,3 with the
Sato-Tate groups U(1)× SU(2) and SU× SU(2) respectively.

8To save space, we only give a complete list if A splits over Q or a quadratic field. Otherwise,
we give one example of a minimal degree splitting field, with three dots (. . . ) indicating this field
is not unique.
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10. The number of known genus 2 curves C/Q whose Jacobian Jac(C) is Q-
isogenous to A/Q.

11. The leading coefficient at s = 1 of the L-function L(A/Q, s) (given to 9 decimal
places).
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Table 6.20: A list of the 234 known isogeny classes of abelian surfaces A/Q with good reduction away from 2.

Label Isogeny decomposition Asplit N Rank End(AQ)⊗Q End(AQ)⊗Q Aendo ST(A) #Jac(C) L(r)(A, 1)/r!

1 (4.4.2048.1-1.1-a)2 L4 28 0 K1 M2(Q) L4 E4 2 0.134209147

2 32a × 32a Q 210 0 M2(Q) M2(K1) K1 C2,1 4 0.429699114

3 32a × 64a Q 211 0 Q×Q M2(K1) L1 D2,1 10 0.607686314

4 32a × 128a Q 212 1 Q×Q Q×K1 K1 N(G1,3) 6 0.571965202

5 32a × 128b Q 212 0 Q×Q Q×K1 K1 N(G1,3) 6 0.636724875

6 32a × 128c Q 212 0 Q×Q Q×K1 K1 N(G1,3) 6 0.900464954

7 32a × 128d Q 212 0 Q×Q Q×K1 K1 N(G1,3) 6 0.935487667

8 64a × 64a Q 212 0 M2(Q) M2(K1) K1 C2,1 4 0.859398227

9 ResK3/Q(2.2.8.1-64.1-a) K3 212 0 K1 M2(K2) L1 J(C2) 3 0.793124183

10 (4.4.2048.1-16.1-a)2 L4 212 0 K1 M2(Q) L4 E4 2 0.925318042

11 32a × 256a Q 213 1 Q×Q K1 ×K2 L1 Fa,b 8 0.792780319

12 32a × 256b Q 213 1 Q×Q M2(K1) M2 D4,2 4 0.87978529

13 32a × 256c Q 213 0 Q×Q M2(K1) M2 D4,2 4 1.022002486

14 32a × 256d Q 213 0 Q×Q K1 ×K2 L1 Fa,b 8 1.167569713

https://lmfdb.org/L/Genus2Curve/Q/256/a/
https://www.lmfdb.org/EllipticCurve/4.4.2048.1/1.1/a/
https://www.lmfdb.org/SatoTateGroup/1.4.E.4.1a
https://lmfdb.org/L/EllipticCurve/2.0.4.1/64.1/CMa/
https://lmfdb.org/EllipticCurve/Q/32/a/
https://lmfdb.org/EllipticCurve/Q/32/a/
https://www.lmfdb.org/SatoTateGroup/1.4.F.2.1c
https://lmfdb.org/L/EllipticCurve/2.0.8.1/32.1/a/
https://lmfdb.org/EllipticCurve/Q/32/a/
https://lmfdb.org/EllipticCurve/Q/64/a/
https://www.lmfdb.org/SatoTateGroup/1.4.F.4.2c
https://lmfdb.org/L/Genus2Curve/Q/4096/a/
https://lmfdb.org/EllipticCurve/Q/32/a/
https://lmfdb.org/EllipticCurve/Q/128/a/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/L/Genus2Curve/Q/4096/f/
https://lmfdb.org/EllipticCurve/Q/32/a/
https://lmfdb.org/EllipticCurve/Q/128/b/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/L/Genus2Curve/Q/4096/c/
https://lmfdb.org/EllipticCurve/Q/32/a/
https://lmfdb.org/EllipticCurve/Q/128/c/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/L/Genus2Curve/Q/4096/d/
https://lmfdb.org/EllipticCurve/Q/32/a/
https://lmfdb.org/EllipticCurve/Q/128/d/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/L/EllipticCurve/2.0.4.1/256.1/CMa/
https://lmfdb.org/EllipticCurve/Q/64/a/
https://lmfdb.org/EllipticCurve/Q/64/a/
https://www.lmfdb.org/SatoTateGroup/1.4.F.2.1c
https://lmfdb.org/L/Genus2Curve/Q/4096/b/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/64.1/a/
https://www.lmfdb.org/SatoTateGroup/1.4.F.4.2b
https://lmfdb.org/L/Genus2Curve/Q/4096/e/
https://www.lmfdb.org/EllipticCurve/4.4.2048.1/16.1/a/
https://www.lmfdb.org/SatoTateGroup/1.4.E.4.1a
https://lmfdb.org/EllipticCurve/Q/32/a/
https://lmfdb.org/EllipticCurve/Q/256/a/
https://www.lmfdb.org/SatoTateGroup/1.4.D.4.2a
https://lmfdb.org/EllipticCurve/Q/32/a/
https://lmfdb.org/EllipticCurve/Q/256/b/
https://www.lmfdb.org/SatoTateGroup/1.4.F.8.3c
https://lmfdb.org/EllipticCurve/Q/32/a/
https://lmfdb.org/EllipticCurve/Q/256/c/
https://www.lmfdb.org/SatoTateGroup/1.4.F.8.3c
https://lmfdb.org/EllipticCurve/Q/32/a/
https://lmfdb.org/EllipticCurve/Q/256/d/
https://www.lmfdb.org/SatoTateGroup/1.4.D.4.2a
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Table 6.20 (continued).

Label Isogeny decomposition Asplit N Rank End(AQ)⊗Q End(AQ)⊗Q Aendo ST(A) #Jac(C) L(r)(A, 1)/r!

15 64a × 128a Q 213 1 Q×Q Q×K1 K1 N(G1,3) 6 0.808880945

16 64a × 128b Q 213 0 Q×Q Q×K1 K1 N(G1,3) 6 0.900464954

17 64a × 128c Q 213 0 Q×Q Q×K1 K1 N(G1,3) 6 1.27344975

18 64a × 128d Q 213 0 Q×Q Q×K1 K1 N(G1,3) 6 1.322979347

19 ResK1/Q(2.0.4.1-512.1-a) K1,K3 213 0 Q M2(Q) L1 J(E2) 6 0.980190361

20 4.2.2048.1-32.1-a* × 4.2.2048.1-32.1-b* L2, . . . 213 0 Q M2(Q) M2 J(E4) 8 1.053463345

21 128a × 128a Q 214 2 M2(Q) M2(Q) Q E1 1 0.761333178

22 128a × 128b Q 214 1 Q×Q M2(Q) K2 J(E1) 4 0.847533681

23 128a × 128c Q 214 1 Q×Q M2(Q) K1 J(E1) 3 1.198593626

24 128a × 128d Q 214 1 Q×Q M2(Q) K3 J(E1) 3 1.245211766

25 128b × 128b Q 214 0 M2(Q) M2(Q) Q E1 1 0.943494072

26 128b × 128c Q 214 0 Q×Q M2(Q) K3 J(E1) 3 1.334302112

27 128b × 128d Q 214 0 Q×Q M2(Q) K1 J(E1) 3 1.386198503

28 128c × 128c Q 214 0 M2(Q) M2(Q) Q E1 1 1.886988143

29 128c × 128d Q 214 0 Q×Q M2(Q) K2 J(E1) 4 1.960380723

30 128d × 128d Q 214 0 M2(Q) M2(Q) Q E1 1 2.036627835

https://lmfdb.org/L/Genus2Curve/Q/8192/c/
https://lmfdb.org/EllipticCurve/Q/64/a/
https://lmfdb.org/EllipticCurve/Q/128/a/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/EllipticCurve/Q/64/a/
https://lmfdb.org/EllipticCurve/Q/128/b/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/L/Genus2Curve/Q/8192/d/
https://lmfdb.org/EllipticCurve/Q/64/a/
https://lmfdb.org/EllipticCurve/Q/128/c/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/EllipticCurve/Q/64/a/
https://lmfdb.org/EllipticCurve/Q/128/d/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/L/Genus2Curve/Q/8192/b/
https://www.lmfdb.org/EllipticCurve/2.0.4.1/512.1/a/
https://www.lmfdb.org/SatoTateGroup/1.4.E.4.2a
https://lmfdb.org/L/Genus2Curve/Q/8192/a/
https://www.lmfdb.org/SatoTateGroup/1.4.E.8.3a
https://lmfdb.org/EllipticCurve/Q/128/a/
https://lmfdb.org/EllipticCurve/Q/128/a/
https://www.lmfdb.org/SatoTateGroup/1.4.E.1.1a
https://lmfdb.org/L/EllipticCurve/2.0.8.1/256.1/a/
https://lmfdb.org/EllipticCurve/Q/128/a/
https://lmfdb.org/EllipticCurve/Q/128/b/
https://www.lmfdb.org/SatoTateGroup/1.4.E.2.1b
https://lmfdb.org/L/EllipticCurve/2.0.4.1/1024.1/a/
https://lmfdb.org/EllipticCurve/Q/128/a/
https://lmfdb.org/EllipticCurve/Q/128/c/
https://www.lmfdb.org/SatoTateGroup/1.4.E.2.1b
https://lmfdb.org/L/EllipticCurve/2.2.8.1/256.1/d/
https://lmfdb.org/EllipticCurve/Q/128/a/
https://lmfdb.org/EllipticCurve/Q/128/d/
https://www.lmfdb.org/SatoTateGroup/1.4.E.2.1b
https://lmfdb.org/EllipticCurve/Q/128/b/
https://lmfdb.org/EllipticCurve/Q/128/b/
https://www.lmfdb.org/SatoTateGroup/1.4.E.1.1a
https://lmfdb.org/L/EllipticCurve/2.2.8.1/256.1/b/
https://lmfdb.org/EllipticCurve/Q/128/b/
https://lmfdb.org/EllipticCurve/Q/128/c/
https://www.lmfdb.org/SatoTateGroup/1.4.E.2.1b
https://lmfdb.org/L/EllipticCurve/2.0.4.1/1024.1/b/
https://lmfdb.org/EllipticCurve/Q/128/b/
https://lmfdb.org/EllipticCurve/Q/128/d/
https://www.lmfdb.org/SatoTateGroup/1.4.E.2.1b
https://lmfdb.org/EllipticCurve/Q/128/c/
https://lmfdb.org/EllipticCurve/Q/128/c/
https://www.lmfdb.org/SatoTateGroup/1.4.E.1.1a
https://lmfdb.org/L/EllipticCurve/2.0.8.1/256.1/b/
https://lmfdb.org/EllipticCurve/Q/128/c/
https://lmfdb.org/EllipticCurve/Q/128/d/
https://www.lmfdb.org/SatoTateGroup/1.4.E.2.1b
https://lmfdb.org/EllipticCurve/Q/128/d/
https://lmfdb.org/EllipticCurve/Q/128/d/
https://www.lmfdb.org/SatoTateGroup/1.4.E.1.1a
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Table 6.20 (continued).

Label Isogeny decomposition Asplit N Rank End(AQ)⊗Q End(AQ)⊗Q Aendo ST(A) #Jac(C) L(r)(A, 1)/r!

31 64a × 256a Q 214 1 Q×Q K1 ×K2 L1 Fa,b 8 1.121160679

32 64a × 256b Q 214 1 Q×Q M2(K1) M2 D4,2 4 1.244204288

33 64a × 256c Q 214 0 Q×Q M2(K1) M2 D4,2 4 1.445329777

34 64a × 256d Q 214 0 Q×Q K1 ×K2 L1 Fa,b 8 1.651192923

35 ResK1/Q(2.0.4.1-1024.1-CMb) K1,K3 214 0 K1 M2(K1) L1 J(C2) 2 1.215372628

36 ResK2/Q(2.0.8.1-256.1-CMb) K2,K3 214 0 K2 M2(K2) L1 J(C2) 3 1.121646977

37 (4.4.2048.1-1.1-a)2 L4 214 0 K1 M2(Q) L4 E4 2 1.67761434

38 (4.4.2048.1-16.1-a)2 L4 214 0 K1 M2(Q) L4 E4 2 0.925318042

39 4.2.2048.1-32.1-a* × 4.2.2048.1-32.1-b* L2, . . . 214 0 Q M2(Q) M2 J(E4) 8 1.053463345

40 128a × 256a Q 215 2 Q×Q Q×K2 K2 N(G1,3) 4 1.055256435

41 128a × 256b Q 215 2 Q×Q Q×K1 K1 N(G1,3) 2 1.171067276

42 128a × 256c Q 215 1 Q×Q Q×K1 K1 N(G1,3) 2 1.360370175

43 128a × 256d Q 215 1 Q×Q Q×K2 K2 N(G1,3) 4 1.55413224

44 128b × 256a Q 215 1 Q×Q Q×K2 K2 N(G1,3) 4 1.17473584

45 128b × 256b Q 215 1 Q×Q Q×K1 K1 N(G1,3) 2 1.303659143

46 128b × 256c Q 215 0 Q×Q Q×K1 K1 N(G1,3) 2 1.514395503

47 128b × 256d Q 215 0 Q×Q Q×K2 K2 N(G1,3) 4 1.730095911

https://lmfdb.org/EllipticCurve/Q/64/a/
https://lmfdb.org/EllipticCurve/Q/256/a/
https://www.lmfdb.org/SatoTateGroup/1.4.D.4.2a
https://lmfdb.org/EllipticCurve/Q/64/a/
https://lmfdb.org/EllipticCurve/Q/256/b/
https://www.lmfdb.org/SatoTateGroup/1.4.F.8.3c
https://lmfdb.org/EllipticCurve/Q/64/a/
https://lmfdb.org/EllipticCurve/Q/256/c/
https://www.lmfdb.org/SatoTateGroup/1.4.F.8.3c
https://lmfdb.org/EllipticCurve/Q/64/a/
https://lmfdb.org/EllipticCurve/Q/256/d/
https://www.lmfdb.org/SatoTateGroup/1.4.D.4.2a
https://lmfdb.org/L/EllipticCurve/2.0.4.1/1024.1/CMb/
https://www.lmfdb.org/EllipticCurve/2.0.4.1/1024.1/CMb/
https://www.lmfdb.org/SatoTateGroup/1.4.F.4.2b
https://lmfdb.org/L/EllipticCurve/2.0.8.1/256.1/CMb/
https://www.lmfdb.org/EllipticCurve/2.0.8.1/256.1/CMb/
https://www.lmfdb.org/SatoTateGroup/1.4.F.4.2b
https://lmfdb.org/L/4/2e14/1.1/c1e2/0/7
https://www.lmfdb.org/EllipticCurve/4.4.2048.1/1.1/a/
https://www.lmfdb.org/SatoTateGroup/1.4.E.4.1a
https://lmfdb.org/L/4/2e14/1.1/c1e2/0/0
https://www.lmfdb.org/EllipticCurve/4.4.2048.1/16.1/a/
https://www.lmfdb.org/SatoTateGroup/1.4.E.4.1a
https://lmfdb.org/L/Genus2Curve/Q/16384/a/
https://www.lmfdb.org/SatoTateGroup/1.4.E.8.3a
https://lmfdb.org/EllipticCurve/Q/128/a/
https://lmfdb.org/EllipticCurve/Q/256/a/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/EllipticCurve/Q/128/a/
https://lmfdb.org/EllipticCurve/Q/256/b/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/EllipticCurve/Q/128/a/
https://lmfdb.org/EllipticCurve/Q/256/c/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/EllipticCurve/Q/128/a/
https://lmfdb.org/EllipticCurve/Q/256/d/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/EllipticCurve/Q/128/b/
https://lmfdb.org/EllipticCurve/Q/256/a/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/EllipticCurve/Q/128/b/
https://lmfdb.org/EllipticCurve/Q/256/b/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/EllipticCurve/Q/128/b/
https://lmfdb.org/EllipticCurve/Q/256/c/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/EllipticCurve/Q/128/b/
https://lmfdb.org/EllipticCurve/Q/256/d/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
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Table 6.20 (continued).

Label Isogeny decomposition Asplit N Rank End(AQ)⊗Q End(AQ)⊗Q Aendo ST(A) #Jac(C) L(r)(A, 1)/r!

48 128c × 256a Q 215 1 Q×Q Q×K2 K2 N(G1,3) 4 1.661327358

49 128c × 256b Q 215 1 Q×Q Q×K1 K1 N(G1,3) 2 1.843652441

50 128c × 256c Q 215 0 Q×Q Q×K1 K1 N(G1,3) 2 2.141678659

51 128c × 256d Q 215 0 Q×Q Q×K2 K2 N(G1,3) 4 2.446725101

52 128d × 256a Q 215 1 Q×Q Q×K2 K2 N(G1,3) 4 1.725943079

53 128d × 256b Q 215 1 Q×Q Q×K1 K1 N(G1,3) 2 1.91535952

54 128d × 256c Q 215 0 Q×Q Q×K1 K1 N(G1,3) 2 2.22497718

55 128d × 256d Q 215 0 Q×Q Q×K2 K2 N(G1,3) 4 2.541888108

56 ResK3/Q(2.2.8.1-512.1-a) K3 215 0 Q Q×Q K3 N(G3,3) 4 1.426909103

57 ResK3/Q(2.2.8.1-512.1-b) K3 215 0 Q Q×Q K3 N(G3,3) 4 1.544248813

58 ResK3/Q(2.2.8.1-512.1-e) K3 215 1 Q Q×Q K3 N(G3,3) 4 1.641881001

59 ResK3/Q(2.2.8.1-512.1-f) K3 215 0 Q Q×Q K3 N(G3,3) 4 1.169557754

60 4.0.512.1-4096.1-a* × 4.0.512.1-4096.1-b* L7, . . . 215 0 Q M2(Q) M3 J(E4) 4 1.924003071

61 4.0.512.1-4096.1-a* × 4.0.512.1-4096.1-b* L7, . . . 215 1 Q M2(Q) M3 J(E4) 4 1.338415595

62 256a × 256a Q 216 2 M2(Q) M2(K2) K2 C2,1 2 1.462652852

63 256a × 256b Q 216 2 Q×Q K1 ×K2 L1 Fa,b 4 1.623174078

64 256a × 256c Q 216 1 Q×Q K1 ×K2 L1 Fa,b 4 1.885559992

https://lmfdb.org/EllipticCurve/Q/128/c/
https://lmfdb.org/EllipticCurve/Q/256/a/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/EllipticCurve/Q/128/c/
https://lmfdb.org/EllipticCurve/Q/256/b/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/EllipticCurve/Q/128/c/
https://lmfdb.org/EllipticCurve/Q/256/c/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/EllipticCurve/Q/128/c/
https://lmfdb.org/EllipticCurve/Q/256/d/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/EllipticCurve/Q/128/d/
https://lmfdb.org/EllipticCurve/Q/256/a/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/EllipticCurve/Q/128/d/
https://lmfdb.org/EllipticCurve/Q/256/b/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/EllipticCurve/Q/128/d/
https://lmfdb.org/EllipticCurve/Q/256/c/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/EllipticCurve/Q/128/d/
https://lmfdb.org/EllipticCurve/Q/256/d/
https://www.lmfdb.org/SatoTateGroup/1.4.C.2.1a
https://lmfdb.org/L/EllipticCurve/2.2.8.1/512.1/a/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/512.1/a/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.2.8.1/512.1/b/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/512.1/b/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.2.8.1/512.1/e/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/512.1/e/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.2.8.1/512.1/f/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/512.1/f/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.E.8.3a
https://www.lmfdb.org/SatoTateGroup/1.4.E.8.3a
https://lmfdb.org/L/EllipticCurve/2.0.8.1/1024.1/CMa/
https://lmfdb.org/EllipticCurve/Q/256/a/
https://lmfdb.org/EllipticCurve/Q/256/a/
https://www.lmfdb.org/SatoTateGroup/1.4.F.2.1c
https://lmfdb.org/EllipticCurve/Q/256/a/
https://lmfdb.org/EllipticCurve/Q/256/b/
https://www.lmfdb.org/SatoTateGroup/1.4.D.4.2a
https://lmfdb.org/EllipticCurve/Q/256/a/
https://lmfdb.org/EllipticCurve/Q/256/c/
https://www.lmfdb.org/SatoTateGroup/1.4.D.4.2a
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Table 6.20 (continued).

Label Isogeny decomposition Asplit N Rank End(AQ)⊗Q End(AQ)⊗Q Aendo ST(A) #Jac(C) L(r)(A, 1)/r!

65 256a × 256d Q 216 1 Q×Q M2(K2) L1 D2,1 6 2.154126597

66 256b × 256b Q 216 2 M2(Q) M2(K1) K1 C2,1 0 1.801311967

67 256b × 256c Q 216 1 Q×Q M2(K1) L1 D2,1 4 2.092493852

68 256b × 256d Q 216 1 Q×Q K1 ×K2 L1 Fa,b 4 2.390534738

69 256c × 256c Q 216 0 M2(Q) M2(K1) K1 C2,1 0 2.430745257

70 256c × 256d Q 216 0 Q×Q K1 ×K2 L1 Fa,b 4 2.77696442

71 256d × 256d Q 216 0 M2(Q) M2(K2) K2 C2,1 2 3.172496734

72 ResK1/Q(2.0.4.1-4096.1-CMb) K1,K3 216 0 K1 M2(K1) L1 J(C2) 2 1.718796455

73 ResK1/Q(2.0.4.1-4096.1-b) K1,K3 216 0 K3 M2(K2) L1 D2,1 4 1.586248367

74 ResK2/Q(2.0.8.1-1024.1-a) K2,K3 216 0 Q M2(Q) L1 J(E2) 4 1.386198503

75 ResK3/Q(2.2.8.1-1024.1-a) K3 216 0 Q Q×Q K3 N(G3,3) 4 1.654004438

76 ResK3/Q(2.2.8.1-1024.1-b) K3 216 1 Q Q×Q K3 N(G3,3) 4 2.082145936

77 ResK3/Q(2.2.8.1-1024.1-e) K3 216 1 Q Q×Q K3 N(G3,3) 4 2.022823243

78 ResK3/Q(2.2.8.1-1024.1-h) K3 216 0 K1 M2(Q) K3 E2 2 0.943494072

79 ResK3/Q(2.2.8.1-1024.1-j) K3 216 0 K1 M2(Q) K3 E2 2 2.036627835

80 ResK3/Q(2.2.8.1-1024.1-l) K3 216 0 Q Q×Q K3 N(G3,3) 4 1.790018989

81 4.2.1024.1-4096.1-a* × 4.2.1024.1-4096.1-b* L6, . . . 216 0 Q M2(Q) M3 J(E4) 4 2.140426323

https://lmfdb.org/L/Genus2Curve/Q/65536/a/
https://lmfdb.org/EllipticCurve/Q/256/a/
https://lmfdb.org/EllipticCurve/Q/256/d/
https://www.lmfdb.org/SatoTateGroup/1.4.F.4.2c
https://lmfdb.org/L/EllipticCurve/2.0.4.1/4096.1/CMd/
https://lmfdb.org/EllipticCurve/Q/256/b/
https://lmfdb.org/EllipticCurve/Q/256/b/
https://www.lmfdb.org/SatoTateGroup/1.4.F.2.1c
https://lmfdb.org/L/EllipticCurve/2.0.8.1/1024.1/b/
https://lmfdb.org/EllipticCurve/Q/256/b/
https://lmfdb.org/EllipticCurve/Q/256/c/
https://www.lmfdb.org/SatoTateGroup/1.4.F.4.2c
https://lmfdb.org/EllipticCurve/Q/256/b/
https://lmfdb.org/EllipticCurve/Q/256/d/
https://www.lmfdb.org/SatoTateGroup/1.4.D.4.2a
https://lmfdb.org/L/EllipticCurve/2.0.4.1/4096.1/CMc/
https://lmfdb.org/EllipticCurve/Q/256/c/
https://lmfdb.org/EllipticCurve/Q/256/c/
https://www.lmfdb.org/SatoTateGroup/1.4.F.2.1c
https://lmfdb.org/EllipticCurve/Q/256/c/
https://lmfdb.org/EllipticCurve/Q/256/d/
https://www.lmfdb.org/SatoTateGroup/1.4.D.4.2a
https://lmfdb.org/L/EllipticCurve/2.0.8.1/1024.1/CMb/
https://lmfdb.org/EllipticCurve/Q/256/d/
https://lmfdb.org/EllipticCurve/Q/256/d/
https://www.lmfdb.org/SatoTateGroup/1.4.F.2.1c
https://lmfdb.org/L/EllipticCurve/2.0.4.1/4096.1/CMb/
https://www.lmfdb.org/EllipticCurve/2.0.4.1/4096.1/CMb/
https://www.lmfdb.org/SatoTateGroup/1.4.F.4.2b
https://lmfdb.org/L/EllipticCurve/2.0.4.1/4096.1/b/
https://www.lmfdb.org/EllipticCurve/2.0.4.1/4096.1/b/
https://www.lmfdb.org/SatoTateGroup/1.4.F.4.2c
https://lmfdb.org/L/EllipticCurve/2.0.8.1/1024.1/a/
https://www.lmfdb.org/EllipticCurve/2.0.8.1/1024.1/a/
https://www.lmfdb.org/SatoTateGroup/1.4.E.4.2a
https://lmfdb.org/L/EllipticCurve/2.2.8.1/1024.1/a/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/1024.1/a/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.2.8.1/1024.1/b/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/1024.1/b/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.2.8.1/1024.1/e/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/1024.1/e/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.2.8.1/1024.1/h/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/1024.1/h/
https://www.lmfdb.org/SatoTateGroup/1.4.E.2.1a
https://lmfdb.org/L/EllipticCurve/2.2.8.1/1024.1/j/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/1024.1/j/
https://www.lmfdb.org/SatoTateGroup/1.4.E.2.1a
https://lmfdb.org/L/EllipticCurve/2.2.8.1/1024.1/l/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/1024.1/l/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.E.8.3a
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Table 6.20 (continued).

Label Isogeny decomposition Asplit N Rank End(AQ)⊗Q End(AQ)⊗Q Aendo ST(A) #Jac(C) L(r)(A, 1)/r!

82 4.2.1024.1-4096.1-a* × 4.2.1024.1-4096.1-b* L6, . . . 216 1 Q M2(Q) M3 J(E4) 4 1.671844993

83 ResK1/Q(2.0.4.1-8192.1-a) K1 217 1 Q Q×Q K1 N(G3,3) 2 2.412692259

84 ResK1/Q(2.0.4.1-8192.1-b) K1 217 1 Q Q×Q K1 N(G3,3) 2 2.490536883

85 ResK1/Q(2.0.4.1-8192.1-e) K1 217 1 Q Q×Q K1 N(G3,3) 2 2.852066328

86 ResK1/Q(2.0.4.1-8192.1-f) K1 217 0 Q Q×Q K1 N(G3,3) 2 2.139949425

87 ResK2/Q(2.0.8.1-2048.1-a) K2 217 1 Q Q×Q K2 N(G3,3) 2 1.75451665

88 ResK2/Q(2.0.8.1-2048.1-b) K2 217 1 Q Q×Q K2 N(G3,3) 2 1.866988473

89 ResK2/Q(2.0.8.1-2048.1-e) K2 217 1 Q Q×Q K2 N(G3,3) 2 3.395306422

90 ResK2/Q(2.0.8.1-2048.1-f) K2 217 0 Q Q×Q K2 N(G3,3) 2 2.422379626

91 ResK3/Q(2.2.8.1-2048.1-a) K3 217 0 Q Q×Q K3 N(G3,3) 2 1.621149711

92 ResK3/Q(2.2.8.1-2048.1-b) K3 217 1 Q Q×Q K3 N(G3,3) 2 2.414964091

93 ResK3/Q(2.2.8.1-2048.1-c) K3 217 1 Q Q×Q K3 N(G3,3) 2 2.627281319

94 ResK3/Q(2.2.8.1-2048.1-d) K3 217 0 Q Q×Q K3 N(G3,3) 2 1.375597308

95 ResK3/Q(2.2.8.1-2048.1-e) K3 217 0 Q Q×Q K3 N(G3,3) 2 2.197291476

96 ResK3/Q(2.2.8.1-2048.1-f) K3 217 1 Q Q×Q K3 N(G3,3) 2 2.611031462

97 ResK3/Q(2.2.8.1-2048.1-g) K3 217 0 Q Q×Q K3 N(G3,3) 2 1.945388369

https://www.lmfdb.org/SatoTateGroup/1.4.E.8.3a
https://lmfdb.org/L/EllipticCurve/2.0.4.1/8192.1/a/
https://www.lmfdb.org/EllipticCurve/2.0.4.1/8192.1/a/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.0.4.1/8192.1/b/
https://www.lmfdb.org/EllipticCurve/2.0.4.1/8192.1/b/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.0.4.1/8192.1/e/
https://www.lmfdb.org/EllipticCurve/2.0.4.1/8192.1/e/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.0.4.1/8192.1/f/
https://www.lmfdb.org/EllipticCurve/2.0.4.1/8192.1/f/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.0.8.1/2048.1/a/
https://www.lmfdb.org/EllipticCurve/2.0.8.1/2048.1/a/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.0.8.1/2048.1/b/
https://www.lmfdb.org/EllipticCurve/2.0.8.1/2048.1/b/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.0.8.1/2048.1/e/
https://www.lmfdb.org/EllipticCurve/2.0.8.1/2048.1/e/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.0.8.1/2048.1/f/
https://www.lmfdb.org/EllipticCurve/2.0.8.1/2048.1/f/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.2.8.1/2048.1/a/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/2048.1/a/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.2.8.1/2048.1/b/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/2048.1/b/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.2.8.1/2048.1/c/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/2048.1/c/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.2.8.1/2048.1/d/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/2048.1/d/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.2.8.1/2048.1/e/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/2048.1/e/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.2.8.1/2048.1/f/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/2048.1/f/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/EllipticCurve/2.2.8.1/2048.1/g/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/2048.1/g/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
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Table 6.20 (continued).

Label Isogeny decomposition Asplit N Rank End(AQ)⊗Q End(AQ)⊗Q Aendo ST(A) #Jac(C) L(r)(A, 1)/r!

98 ResK3/Q(2.2.8.1-2048.1-h) K3 217 1 Q Q×Q K3 N(G3,3) 2 2.746768338

99 Q-simple 217 0 Q Q Q USp(4) 4 2.720237481

100 Q-simple 217 0 Q Q Q USp(4) 4 1.345773784

101 Q-simple 217 0 Q Q Q USp(4) 4 2.691547569

102 Q-simple 217 2 Q Q Q USp(4) 4 2.123919348

103 Q-simple 217 1 Q Q Q USp(4) 4 2.213176835

104 Q-simple 217 0 Q Q Q USp(4) 4 1.192999398

105 Q-simple 217 0 Q Q Q USp(4) 4 3.516318419

106 Q-simple 217 1 Q Q Q USp(4) 4 1.763521561

107 ResK1/Q(2.0.4.1-16384.1-CMc) K1 218 2 ? M2(K1) ? ? 0 3.142787775

108 ResK1/Q(2.0.4.1-16384.1-CMd) K1 218 0 ? M2(K1) ? ? 0 2.890659554

109 ResK1/Q(2.0.4.1-16384.1-CMf) K1 218 0 ? M2(K1) ? ? 0 2.044004973

110 ResK1/Q(2.0.4.1-16384.1-CMh) K1 218 0 ? M2(K1) ? ? 0 2.044004973

111 ResK1/Q(2.0.4.1-16384.1-a) K1 218 2 K3 M2(Q) K1 J(E1) 1 3.267072692

112 ResK1/Q(2.0.4.1-16384.1-b) K1 218 0 ? M2(Q) ? ? 0 1.924003071

113 ResK1/Q(2.0.4.1-16384.1-d) K1 218 0 K3 M2(Q) K1 J(E1) 1 2.720951237

https://lmfdb.org/L/EllipticCurve/2.2.8.1/2048.1/h/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/2048.1/h/
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/Genus2Curve/Q/131072/a/
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://lmfdb.org/L/Genus2Curve/Q/131072/b/
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://lmfdb.org/L/Genus2Curve/Q/131072/d/
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://lmfdb.org/L/Genus2Curve/Q/131072/c/
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://lmfdb.org/L/EllipticCurve/2.0.4.1/16384.1/CMc/
https://www.lmfdb.org/EllipticCurve/2.0.4.1/16384.1/CMc/
https://lmfdb.org/L/EllipticCurve/2.0.4.1/16384.1/CMd/
https://www.lmfdb.org/EllipticCurve/2.0.4.1/16384.1/CMd/
https://lmfdb.org/L/EllipticCurve/2.0.4.1/16384.1/CMf/
https://www.lmfdb.org/EllipticCurve/2.0.4.1/16384.1/CMf/
https://lmfdb.org/L/EllipticCurve/2.0.4.1/16384.1/CMh/
https://www.lmfdb.org/EllipticCurve/2.0.4.1/16384.1/CMh/
https://lmfdb.org/L/EllipticCurve/2.0.4.1/16384.1/a/
https://www.lmfdb.org/EllipticCurve/2.0.4.1/16384.1/a/
https://www.lmfdb.org/SatoTateGroup/1.4.E.2.1b
https://lmfdb.org/L/EllipticCurve/2.0.4.1/16384.1/b/
https://www.lmfdb.org/EllipticCurve/2.0.4.1/16384.1/b/
https://lmfdb.org/L/EllipticCurve/2.0.4.1/16384.1/d/
https://www.lmfdb.org/EllipticCurve/2.0.4.1/16384.1/d/
https://www.lmfdb.org/SatoTateGroup/1.4.E.2.1b
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Table 6.20 (continued).

Label Isogeny decomposition Asplit N Rank End(AQ)⊗Q End(AQ)⊗Q Aendo ST(A) #Jac(C) L(r)(A, 1)/r!

114 ResK3/Q(2.2.8.1-4096.1-a) K3 218 0 K3 M2(Q) K3 J(E1) 1 2.297820699

115 ResK3/Q(2.2.8.1-4096.1-b) K3 218 0 ? M2(Q) ? ? 0 0.812402299

116 ResK3/Q(2.2.8.1-4096.1-c) K3 218 0 ? M2(Q) ? ? 0 2.140426323

117 ResK3/Q(2.2.8.1-4096.1-d) K3 218 0 ? M2(Q) ? ? 0 1.513509967

118 ResK3/Q(2.2.8.1-4096.1-e) K3 218 1 ? M2(K1) ? ? 0 3.260382435

119 ResK3/Q(2.2.8.1-4096.1-f) K3 218 0 ? M2(K1) ? ? 0 1.718796455

120 ResK3/Q(2.2.8.1-4096.1-i) K3 218 2 K3 M2(Q) K3 J(E1) 1 3.433425964

121 ResK3/Q(2.2.8.1-4096.1-j) K3 218 0 ? M2(Q) ? ? 0 2.819677424

122 (4.0.256.1-1048576.1-a*)2 L1 218 1 Q M2(Q) L1 J(E2) 2 3.057022756

123 (4.2.1024.1-65536.1-a*)2 L6, . . . 218 0 K3 M2(K2) M3 D4,2 2 4.486587907

124 (4.2.1024.1-65536.1-a*)2 L6, . . . 218 2 K3 M2(K2) M3 D4,2 2 2.342106676

125 (4.4.2048.1-16384.1-a*)2 L4 218 2 K1 M2(Q) L4 E4 1 2.077318732

126 (4.4.2048.1-16384.1-a*)2 L4 218 0 K1 M2(Q) L4 E4 1 5.146086025

127 (4.4.2048.1-16384.1-b*)2 L4 218 0 K1 M2(Q) L4 E4 1 0.862624538

128 (4.4.2048.1-16384.1-b*)2 L4 218 0* K1 M2(Q) L4 E4 1 3.450498151

129 4.2.2048.1-16384.1-a* × 4.2.2048.1-16384.1-b* L2, . . . 218 1 Q M2(Q) M2 J(E4) 4 3.418554923

https://lmfdb.org/L/EllipticCurve/2.2.8.1/4096.1/a/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/4096.1/a/
https://www.lmfdb.org/SatoTateGroup/1.4.E.2.1b
https://lmfdb.org/L/EllipticCurve/2.2.8.1/4096.1/b/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/4096.1/b/
https://lmfdb.org/L/EllipticCurve/2.2.8.1/4096.1/c/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/4096.1/c/
https://lmfdb.org/L/EllipticCurve/2.2.8.1/4096.1/d/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/4096.1/d/
https://lmfdb.org/L/EllipticCurve/2.2.8.1/4096.1/e/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/4096.1/e/
https://lmfdb.org/L/EllipticCurve/2.2.8.1/4096.1/f/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/4096.1/f/
https://lmfdb.org/L/EllipticCurve/2.2.8.1/4096.1/i/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/4096.1/i/
https://www.lmfdb.org/SatoTateGroup/1.4.E.2.1b
https://lmfdb.org/L/EllipticCurve/2.2.8.1/4096.1/j/
https://www.lmfdb.org/EllipticCurve/2.2.8.1/4096.1/j/
https://lmfdb.org/L/Genus2Curve/Q/262144/a/
https://www.lmfdb.org/SatoTateGroup/1.4.E.4.2a
https://lmfdb.org/L/4/2e18/1.1/c1e2/0/14
https://www.lmfdb.org/SatoTateGroup/1.4.F.8.3c
https://lmfdb.org/L/4/2e18/1.1/c1e2/0/21
https://www.lmfdb.org/SatoTateGroup/1.4.F.8.3c
https://lmfdb.org/L/4/2e18/1.1/c1e2/0/17
https://www.lmfdb.org/SatoTateGroup/1.4.E.4.1a
https://lmfdb.org/L/4/2e18/1.1/c1e2/0/20
https://www.lmfdb.org/SatoTateGroup/1.4.E.4.1a
https://lmfdb.org/L/4/2e18/1.1/c1e2/0/1
https://www.lmfdb.org/SatoTateGroup/1.4.E.4.1a
https://lmfdb.org/L/4/2e18/1.1/c1e2/0/8
https://www.lmfdb.org/SatoTateGroup/1.4.E.4.1a
https://lmfdb.org/L/Genus2Curve/Q/262144/b/
https://www.lmfdb.org/SatoTateGroup/1.4.E.8.3a
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Table 6.20 (continued).

Label Isogeny decomposition Asplit N Rank End(AQ)⊗Q End(AQ)⊗Q Aendo ST(A) #Jac(C) L(r)(A, 1)/r!

130 4.2.2048.1-16384.1-a* × 4.2.2048.1-16384.1-b* L2, . . . 218 1 Q M2(Q) M2 J(E4) 4 2.675411424

131 Q-simple 218 1 Q B6(Q) L1 J(E2) 4 3.198680541

132 Q-simple 218 1 Q B6(Q) L1 J(E2) 4 3.187566868

133 Q-simple 218 2 Q Q Q USp(4) 2 2.608931632

134 Q-simple 218 1 Q Q Q USp(4) 2 4.344591613

135 Q-simple 218 1 Q Q Q USp(4) 2 2.787344584

136 Q-simple 218 0 Q Q Q USp(4) 2 2.661205084

137 ResK3/Q(2.2.8.1-8192.1-G*) K3 219 1 Q Q×Q K3 N(G3,3) 0 3.904270707

138 ResK3/Q(2.2.8.1-8192.1-H*) K3 219 1 Q Q×Q K3 N(G3,3) 0 3.798503809

139 ResK3/Q(2.2.8.1-8192.1-I*) K3 219 0 Q Q×Q K3 N(G3,3) 0 2.390466408

140 ResK3/Q(2.2.8.1-8192.1-J*) K3 219 0 Q Q×Q K3 N(G3,3) 0 0.93603293

141 ResK3/Q(2.2.8.1-8192.1-K*) K3 219 1 Q Q×Q K3 N(G3,3) 0 3.850801484

142 ResK3/Q(2.2.8.1-8192.1-L*) K3 219 0 Q Q×Q K3 N(G3,3) 0 1.549178897

143 ResK3/Q(2.2.8.1-8192.1-M*) K3 219 0* Q Q×Q K3 N(G3,3) 0 2.64750093

144 ResK3/Q(2.2.8.1-8192.1-N*) K3 219 1 Q Q×Q K3 N(G3,3) 0 3.24099914

145 ResK3/Q(2.2.8.1-8192.1-a*) K3 219 1 Q Q×Q K3 N(G3,3) 0 4.166533159

146 ResK3/Q(2.2.8.1-8192.1-b*) K3 219 1 Q Q×Q K3 N(G3,3) 0 3.990289603

https://lmfdb.org/L/Genus2Curve/Q/262144/c/
https://www.lmfdb.org/SatoTateGroup/1.4.E.8.3a
https://lmfdb.org/L/Genus2Curve/Q/262144/d/
https://www.lmfdb.org/SatoTateGroup/1.4.E.4.2a
https://www.lmfdb.org/SatoTateGroup/1.4.E.4.2a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
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Table 6.20 (continued).

Label Isogeny decomposition Asplit N Rank End(AQ)⊗Q End(AQ)⊗Q Aendo ST(A) #Jac(C) L(r)(A, 1)/r!

147 ResK3/Q(2.2.8.1-8192.1-c*) K3 219 1 Q Q×Q K3 N(G3,3) 0 3.703242657

148 ResK3/Q(2.2.8.1-8192.1-d*) K3 219 1 Q Q×Q K3 N(G3,3) 0 3.349469815

149 ResK3/Q(2.2.8.1-8192.1-e*) K3 219 0 Q Q×Q K3 N(G3,3) 0 2.30393918

150 ResK3/Q(2.2.8.1-8192.1-f*) K3 219 1 Q Q×Q K3 N(G3,3) 0 3.896395552

151 ResK3/Q(2.2.8.1-8192.1-g*) K3 219 0 Q Q×Q K3 N(G3,3) 0 1.92669986

152 ResK3/Q(2.2.8.1-8192.1-j*) K3 219 1 Q Q×Q K3 N(G3,3) 0 3.477943788

153 ResK3/Q(2.2.8.1-8192.1-q*) K3 219 1 Q Q×Q K3 N(G3,3) 0 3.195374002

154 ResK3/Q(2.2.8.1-8192.1-r*) K3 219 0 Q Q×Q K3 N(G3,3) 0 2.267253394

155 ResK3/Q(2.2.8.1-8192.1-s*) K3 219 0 Q Q×Q K3 N(G3,3) 0 2.971739467

156 ResK3/Q(2.2.8.1-8192.1-t*) K3 219 1 Q Q×Q K3 N(G3,3) 0 3.279011096

157 ResK3/Q(2.2.8.1-8192.1-u*) K3 219 1 Q Q×Q K3 N(G3,3) 0 3.922064359

158 ResK3/Q(2.2.8.1-8192.1-v*) K3 219 1 Q Q×Q K3 N(G3,3) 0 4.229358371

159 ResK3/Q(2.2.8.1-8192.1-w*) K3 219 0 Q Q×Q K3 N(G3,3) 0 2.797071252

160 ResK3/Q(2.2.8.1-8192.1-x*) K3 219 2 Q Q×Q K3 N(G3,3) 0 4.370886924

161 Q-simple 219 0 Q Q Q USp(4) 2 1.621349005

162 Q-simple 219 0 Q Q Q USp(4) 2 3.318517443

163 Q-simple 219 0 Q Q Q USp(4) 2 2.693566774

https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/Genus2Curve/Q/524288/d/
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://lmfdb.org/L/Genus2Curve/Q/524288/a/
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://lmfdb.org/L/Genus2Curve/Q/524288/b/
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
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Table 6.20 (continued).

Label Isogeny decomposition Asplit N Rank End(AQ)⊗Q End(AQ)⊗Q Aendo ST(A) #Jac(C) L(r)(A, 1)/r!

164 Q-simple 219 1 Q Q Q USp(4) 2 4.512884023

165 Q-simple 219 1 Q Q Q USp(4) 2 3.573158344

166 Q-simple 219 2 Q Q Q USp(4) 2 4.315945199

167 Q-simple 219 2 Q Q Q USp(4) 2 3.387000006

168 Q-simple 219 0 Q Q Q USp(4) 2 3.24269801

169 Q-simple 219 1 Q Q Q USp(4) 2 2.157707096

170 Q-simple 219 0 Q Q Q USp(4) 2 4.205476928

171 Q-simple 219 1 Q Q Q USp(4) 2 5.271861469

172 Q-simple 219 0 Q Q Q USp(4) 2 1.250448067

173 Q-simple 219 1 Q Q Q USp(4) 2 2.424547122

174 Q-simple 219 0 Q Q Q USp(4) 2 2.500896135

175 Q-simple 219 2 Q Q Q USp(4) 2 3.466411345

176 Q-simple 219 1 Q Q Q USp(4) 2 4.44025885

177 Q-simple 219 2 Q Q Q USp(4) 2 3.211994296

178 Q-simple 219 1 Q Q Q USp(4) 2 3.019496046

179 Q-simple 219 0 Q Q Q USp(4) 2 4.828713219

180 Q-simple 219 1 Q Q Q USp(4) 2 3.804854188

https://lmfdb.org/L/Genus2Curve/Q/524288/c/
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
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Table 6.20 (continued).

Label Isogeny decomposition Asplit N Rank End(AQ)⊗Q End(AQ)⊗Q Aendo ST(A) #Jac(C) L(r)(A, 1)/r!

181 ResK2/Q(2.0.8.1-16384.1-a) K2,K3 220 2 ? M2(K1) ? ? 0 5.855345308

182 ResK2/Q(2.0.8.1-16384.1-b) K2,K3 220 0 ? M2(K1) ? ? 0 2.044004973

183 ResK3/Q(2.2.8.1-16384.1-B*) K3 220 1 ? M2(Q) ? ? 0 4.735216952

184 ResK3/Q(2.2.8.1-16384.1-C*) K3 220 2 K3 M2(Q) K3 J(E1) 1 5.615558684

185 ResK3/Q(2.2.8.1-16384.1-E*) K3 220 0 K3 M2(Q) K3 J(E1) 1 2.617194648

186 ResK3/Q(2.2.8.1-16384.1-F*) K3 220 0 ? M2(Q) ? ? 0 3.35522868

187 ResK3/Q(2.2.8.1-16384.1-G*) K3 220 2 ? M2(Q) ? ? 0 5.185032858

188 ResK3/Q(2.2.8.1-16384.1-H*) K3 220 0 ? M2(Q) ? ? 0 2.10692669

189 ResK3/Q(2.2.8.1-16384.1-I*) K3 220 0* ? M2(Q) ? ? 0 3.450498151

190 ResK3/Q(2.2.8.1-16384.1-K*) K3 220 0 ? M2(Q) ? ? 0 1.48982215

191 ResK3/Q(2.2.8.1-16384.1-L*) K3 220 0 K3 M2(Q) K3 J(E1) 1 3.638832325

192 ResK3/Q(2.2.8.1-16384.1-N*) K3 220 0 K3 M2(Q) K3 J(E1) 1 0.60996766

193 ResK3/Q(2.2.8.1-16384.1-a*) K3 220 2 Q Q×Q K3 N(G3,3) 0 5.393798017

194 ResK3/Q(2.2.8.1-16384.1-b*) K3 220 0 Q Q×Q K3 N(G3,3) 0 2.765192056

195 ResK3/Q(2.2.8.1-16384.1-c*) K3 220 1 Q Q×Q K3 N(G3,3) 0 5.152174972

196 ResK3/Q(2.2.8.1-16384.1-d*) K3 220 0 Q Q×Q K3 N(G3,3) 0 3.020943646

197 ResK3/Q(2.2.8.1-16384.1-e*) K3 220 1 Q Q×Q K3 N(G3,3) 0 4.825209324

https://lmfdb.org/L/EllipticCurve/2.0.8.1/16384.1/a/
https://www.lmfdb.org/EllipticCurve/2.0.8.1/16384.1/a/
https://lmfdb.org/L/EllipticCurve/2.0.8.1/16384.1/b/
https://www.lmfdb.org/EllipticCurve/2.0.8.1/16384.1/b/
https://lmfdb.org/L/4/2e20/1.1/c1e2/0/16
https://www.lmfdb.org/SatoTateGroup/1.4.E.2.1b
https://lmfdb.org/L/4/2e20/1.1/c1e2/0/5
https://www.lmfdb.org/SatoTateGroup/1.4.E.2.1b
https://lmfdb.org/L/4/2e20/1.1/c1e2/0/8
https://lmfdb.org/L/4/2e20/1.1/c1e2/0/15
https://lmfdb.org/L/4/2e20/1.1/c1e2/0/9
https://lmfdb.org/L/4/2e20/1.1/c1e2/0/10
https://www.lmfdb.org/SatoTateGroup/1.4.E.2.1b
https://lmfdb.org/L/4/2e20/1.1/c1e2/0/0
https://www.lmfdb.org/SatoTateGroup/1.4.E.2.1b
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
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Table 6.20 (continued).

Label Isogeny decomposition Asplit N Rank End(AQ)⊗Q End(AQ)⊗Q Aendo ST(A) #Jac(C) L(r)(A, 1)/r!

198 ResK3/Q(2.2.8.1-16384.1-f*) K3 220 1 Q Q×Q K3 N(G3,3) 0 3.263371437

199 ResK3/Q(2.2.8.1-16384.1-g*) K3 220 0 Q Q×Q K3 N(G3,3) 0 1.955286054

200 ResK3/Q(2.2.8.1-16384.1-h*) K3 220 1 Q Q×Q K3 N(G3,3) 0 4.444648275

201 ResK3/Q(2.2.8.1-16384.1-q*) K3 220 1 ? M2(K1) ? ? 0 4.509133116

202 ResK3/Q(2.2.8.1-16384.1-s*) K3 220 1 ? M2(K1) ? ? 0 4.393484679

203 ResK3/Q(2.2.8.1-16384.1-u*) K3 220 0 ? M2(K1) ? ? 0 2.044004973

204 ResK3/Q(2.2.8.1-16384.1-v*) K3 220 0 ? M2(K1) ? ? 0 2.890659554

205 ResK3/Q(2.2.8.1-16384.1-y*) K3 220 1 ? M2(Q) ? ? 0 3.906253201

206 ResK3/Q(2.2.8.1-16384.1-z*) K3 220 0 ? M2(Q) ? ? 0 1.850636083

207 (4.2.2048.1-262144.1-c*)2 L2, . . . 220 1 Q M2(K2) M2 D4,1 2 4.711863357

208 (4.4.2048.1-262144.1-a*)2 L4 220 0 K1 M2(Q) L4 E4 1 1.624804598

209 (4.4.2048.1-262144.1-a*)2 L4 220 0* K1 M2(Q) L4 E4 1 3.249609196

210 (4.4.2048.1-262144.1-b*)2 L4 220 2 K1 M2(K2) M1 J(C4) 1 3.457413594

211 (4.4.2048.1-262144.1-b*)2 L4 220 0 K1 M2(K2) M1 J(C4) 1 4.486587907

212 (4.4.2048.1-262144.1-c*)2 L4 220 2 K1 M2(Q) L4 E4 1 3.828014111

213 (4.4.2048.1-262144.1-c*)2 L4 220 0 K1 M2(Q) L4 E4 1 5.639354847

214 4.0.2048.1-262144.1-a* × 4.0.2048.1-262144.1-b* L3, . . . 220 1 Q M2(K2) M2 D4,1 2 4.192678169

https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
https://lmfdb.org/L/4/2e20/1.1/c1e2/0/2
https://lmfdb.org/L/4/2e20/1.1/c1e2/0/7
https://lmfdb.org/L/4/2e20/1.1/c1e2/0/3
https://www.lmfdb.org/SatoTateGroup/1.4.F.8.3a
https://lmfdb.org/L/4/2e20/1.1/c1e2/0/1
https://www.lmfdb.org/SatoTateGroup/1.4.E.4.1a
https://lmfdb.org/L/4/2e20/1.1/c1e2/0/11
https://www.lmfdb.org/SatoTateGroup/1.4.E.4.1a
https://lmfdb.org/L/4/2e20/1.1/c1e2/0/13
https://www.lmfdb.org/SatoTateGroup/1.4.F.8.2a
https://lmfdb.org/L/4/2e20/1.1/c1e2/0/6
https://www.lmfdb.org/SatoTateGroup/1.4.F.8.2a
https://lmfdb.org/L/4/2e20/1.1/c1e2/0/14
https://www.lmfdb.org/SatoTateGroup/1.4.E.4.1a
https://lmfdb.org/L/4/2e20/1.1/c1e2/0/12
https://www.lmfdb.org/SatoTateGroup/1.4.E.4.1a
https://www.lmfdb.org/SatoTateGroup/1.4.F.8.3a
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Table 6.20 (continued).

Label Isogeny decomposition Asplit N Rank End(AQ)⊗Q End(AQ)⊗Q Aendo ST(A) #Jac(C) L(r)(A, 1)/r!

215 4.2.1024.1-1048576.1-a* × 4.2.1024.1-1048576.1-b* L6, . . . 220 1 Q M2(Q) M3 J(E4) 2 6.432872755

216 4.2.1024.1-1048576.1-a* × 4.2.1024.1-1048576.1-b* L6, . . . 220 1 Q M2(Q) M3 J(E4) 2 2.8278417

217 4.2.1024.1-1048576.1-c* × 4.2.1024.1-1048576.1-d* L6, . . . 220 1 Q M2(Q) M3 J(E4) 2 2.094887677

218 4.2.1024.1-1048576.1-c* × 4.2.1024.1-1048576.1-d* L6, . . . 220 1 Q M2(Q) M3 J(E4) 2 8.422956632

219 4.2.2048.1-262144.1-a* × 4.2.2048.1-262144.1-b* L2, . . . 220 0 Q M2(Q) M2 J(E4) 2 3.027019935

220 4.2.2048.1-262144.1-a* × 4.2.2048.1-262144.1-b* L2, . . . 220 2 Q M2(Q) M2 J(E4) 2 4.857183713

221 Q-simple 220 1 Q Q Q USp(4) 2 3.437194136

222 Q-simple 220 1 Q L5 L5 Fac 2 5.110338886

223 Q-simple 220 1 Q Q Q USp(4) 2 6.583267814

224 Q-simple 220 2 Q Q Q USp(4) 2 3.181370747

225 Q-simple 220 1 Q Q Q USp(4) 2 4.858417663

226 Q-simple 220 0 Q Q Q USp(4) 2 2.847463254

227 Q-simple 220 1 Q L5 L5 Fac 2 3.58110746

228 Q-simple 220 2 Q Q Q USp(4) 2 4.375110587

229 Q-simple 220 0 Q Q Q USp(4) 2 4.126613658

230 Q-simple 220 1 Q Q Q USp(4) 2 4.052689859

231 Q-simple 220 0 Q Q Q USp(4) 2 2.179041063

https://www.lmfdb.org/SatoTateGroup/1.4.E.8.3a
https://www.lmfdb.org/SatoTateGroup/1.4.E.8.3a
https://www.lmfdb.org/SatoTateGroup/1.4.E.8.3a
https://www.lmfdb.org/SatoTateGroup/1.4.E.8.3a
https://www.lmfdb.org/SatoTateGroup/1.4.E.8.3a
https://www.lmfdb.org/SatoTateGroup/1.4.E.8.3a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.D.4.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.D.4.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
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Table 6.20 (continued).

Label Isogeny decomposition Asplit N Rank End(AQ)⊗Q End(AQ)⊗Q Aendo ST(A) #Jac(C) L(r)(A, 1)/r!

232 Q-simple 220 1 Q Q Q USp(4) 2 1.925720147

233 Q-simple 220 1 Q Q Q USp(4) 2 5.607070431

234 Q-simple 220 0 Q Q Q USp(4) 2 2.179041063

https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.A.1.1a
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6.3 List of genus 2 curves C/Q

We now finally arrive at the pièce de résistance of this chapter! In a similar spirit to
Smart’s [386] original list of 366 genus 2 curves C/Q with good reduction away from
2, we present our final table of all 512 known genus 2 curves C/Q whose Jacobian
has good reduction away from 2.

As with Table 6.20, we have ordered all curves by their conductor N and
are grouped together into each of their 175 Q-isogeny classes. Within each isogeny
class, the curves are ordered by absolute discriminant |∆min|. There are ten columns
giving the following information:

1. A number giving the unique label for the isogeny class of C/Q, which corre-
sponds to the label of the isogeny class given in Table 6.20.9

2. A polynomial f(x) giving a simplified Weierstrass model C : y2 = f(x), which
is also a minimal Weierstrass model wherever possible. If a globally minimal
and simplified Weierstrass model for C/Q does not exist, a footnote is given
with a globally minimal model. Links to the corresponding LMFDB [268] pages
are given for the 29 genus 2 curves C/Q where |∆min| ≤ 106.

3. The field system for C/Q.

4. The discriminant ∆min of a globally minimal Weierstrass model for C/Q.

5. A unique label corresponding to the Q-isomorphism class of C/Q, as given in
Table 6.22.

6. The conductor N of the Jacobian J = Jac(C).

7. The rank of J(Q). If we were unable to unconditionally compute the rank, an
asterisk indicates that this is only the analytic rank. In all cases, the algebraic
rank is unconditionally at most 2.

8. The torsion subgroup J(Q)tors of the Jacobian J (to save space, we adopt the
common shorthand Z/N to mean the order N cyclic group Z/NZ).

9. The number of rational points in C(Q). For curves where completeness has
not been proven, an asterisk indicates these are all the known points of height
up to 107. In the case where there are no known rational points, a subscript LS

indicates whether the curve is locally solvable everywhere (e.g. 0LS indicates
a curve which violates the Hasse principle).

9Using the digital version of this thesis, these numbers are all hyperlinked and will take you to
the corresponding isogeny class listed in Table 6.20.
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10. The automorphism group of C (over Q).
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Table 6.21: A list of 512 known genus 2 curves C/Q whose Jacobian has good reduction away from 2.

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

1 (x− 1)(x+ 1)(x2 − 2x− 1)(x2 + 1)a [Q,Q,K1,K3] −29 2a 28 0 Z/2× Z/10 6 C4

−(x− 1)(x+ 1)(x2 + 1)(239x2 + 2x− 239)b [Q,Q,K1,K3] −291312 26a 28 0 Z/2× Z/2 2 C4

2 −(2x− 1)(x2 − 2x+ 3)(x2 + 2) [Q,Q,K2,K2] 216312 6a 210 0 Z/2× Z/2 2 C2
2

−3(x2 − 2)(x2 + 1)(2x2 − 1) [K1,K3,K3] −216322 6a 210 0 Z/2× Z/2 0 D4

3(x2 − 2)(x2 + 1)(2x2 − 1) [K1,K3,K3] −216322 6a 210 0 Z/2× Z/4 0 D4

−2x(x4 − 14x2 + 81) [Q,Q, L1] 236312 6a 210 0 Z/4 2 C2
2

3 x(x+ 4)(2x− 1)(x2 + 2) [Q,Q,Q,Q,K2] −221312 6a 211 0 Z/2× Z/2× Z/2 4 C2
2

−x(x+ 4)(2x− 1)(x2 + 2) [Q,Q,Q,Q,K2] −221312 6a 211 0 Z/2× Z/2× Z/2 4 C2
2

3(x2 − 2)(x2 + 1)(x2 + 4) [K1,K1,K3] 221322 6a 211 0 Z/2× Z/2 0 C2
2

−3(x2 − 2)(x2 + 1)(x2 + 4) [K1,K1,K3] 221322 6a 211 0 Z/2× Z/4 0 C2
2

−(x2 − 2)(x2 + 2)(7x2 − 16x− 14) [K2,K3,K3] −251312 6a 211 0 Z/2× Z/2 0LS C2
2

(x2 − 2)(x2 + 2)(7x2 + 16x− 14) [K2,K3,K3] −251312 6a 211 0 Z/2× Z/4 0 C2
2

3(x2 − 2)(x4 + 68x2 + 4) [K3, L1] 251322 6a 211 0 Z/4 0 C2
2

aA globally minimal model for this curve is y2 + (x3 + x2 + x+ 1)y = −x5 − x4 − x3 − x2.
bA globally minimal model for this curve is y2 + (x3 + x2 + x+ 1)y = −60x6 − x5 + 59x4 − x3 + 59x2 − 60.

https://lmfdb.org/Genus2Curve/Q/256/a/512/1
https://lmfdb.org/Genus2Curve/Q/256/a/512/1
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

−3(x2 − 2)(x4 + 68x2 + 4) [K3, L1] 251322 6a 211 0 Z/4 0 C2
2

(3x2 + 2x+ 1)(x4 − 4x3 − 254x2 − 252x− 2047) [K2, L2] 2543121112 66a 211 0 Z/2 0LS C2

−(3x2 + 2x+ 1)(x4 − 4x3 − 254x2 − 252x− 2047) [K2, L2] 2543121112 66a 211 0 Z/4 0 C2

4 (x− 2)(x+ 2)(x4 − 4x2 − 4)c [Q,Q, L6] −216 2b 212 1 Z/8 6 C2
2

−(x2 − 2)(x4 − 2x2 + 2) [K3, L7] 224 2c 212 1 Z/8 6 C2
2

(x2 + 2)(x4 + 2x2 + 2) [K2, L7] −224 2c 212 1 Z/4 4 C2
2

(x2 + 1)(x4 − 4x2 − 4) [K1, L6] 226 2b 212 1 Z/2 2 C2
2

(x2 + 4)(x4 + 8x3 + 4x2 − 16x+ 28)d [K1, L6] 216512 10a 212 1 Z/4 4 C2
2

−(2x+ 1)(x4 + 4x3 − 14x2 − 4x+ 41) [Q,Q, L6] −226512 10a 212 1 Z/2 2 C2
2

5 (x− 2)(x+ 2)(x4 − 4x2 + 8)e [Q,Q, L7] 219 2c 212 0 Z/8 4 C2
2

−(x2 − 2)(x4 − 2x2 − 1) [K3, L6] −221 2b 212 0 Z/2 0 C2
2

(x2 + 2)(x4 + 2x2 − 1) [K2, L6] 221 2b 212 0 Z/4 2 C2
2

−2(x2 + 1)(x4 + 2x2 + 2) [K1, L7] −229 2c 212 0 Z/4 0 C2
2

−5(x2 + 2)(x4 + 14x2 − 1) [K2, L6] 221522 10a 212 0 Z/2 0 C2
2

cA globally minimal model for this curve is y2 + (x3)y = −2x4 + 3x2 + 4.
dA globally minimal model for this curve is y2 + (x3)y = 2x5 + 2x4 + 4x3 + 11x2 − 16x+ 28.
eA globally minimal model for this curve is y2 + (x3)y = −2x4 + 6x2 − 8.

https://lmfdb.org/Genus2Curve/Q/4096/a/65536/1
https://lmfdb.org/Genus2Curve/Q/4096/a/65536/1
https://lmfdb.org/Genus2Curve/Q/4096/f/524288/1
https://lmfdb.org/Genus2Curve/Q/4096/f/524288/1
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

5(x2 − 2)(x4 − 14x2 − 1) [K3, L6] −221522 10a 212 0 Z/8 0 C2
2

6 (x2 + 4)(x4 + 4x2 − 4)f [K1, L6] 216 2b 212 0 Z/4 2 C2
2

−(x2 + 2)(x4 + 2x2 + 2) [K2, L7] −224 2c 212 0 Z/8 0 C2
2

(x2 − 2)(x4 − 2x2 + 2) [K3, L7] 224 2c 212 0 Z/4 2 C2
2

−(x− 1)(x+ 1)(x4 + 4x2 − 4) [Q,Q, L6] −226 2b 212 0 Z/2 2 C2
2

(4x− 1)(4x4 − 20x2 + 16x+ 7)g [Q,Q, L6] −216512 10a 212 0 Z/8 2 C2
2

−(x2 + 1)(4x4 − 16x3 + 4x2 + 8x+ 7) [K1, L6] 226512 10a 212 0 Z/2 0LS C2
2

7 (x2 + 4)(x4 + 4x2 + 8)h [K1, L7] −219 2c 212 0 Z/8 2 C2
2

−(x2 + 2)(x4 + 2x2 − 1) [K2, L6] 221 2b 212 0 Z/2 0 C2
2

(x2 − 2)(x4 − 2x2 − 1) [K3, L6] −221 2b 212 0 Z/8 2 C2
2

2(x− 1)(x+ 1)(x4 − 2x2 + 2) [Q,Q, L7] 229 2c 212 0 Z/4 2 C2
2

−5(x2 − 2)(x4 − 14x2 − 1) [K3, L6] −221522 10a 212 0 Z/2 0 C2
2

5(x2 + 2)(x4 + 14x2 − 1) [K2, L6] 221522 10a 212 0 Z/4 0 C2
2

fA globally minimal model for this curve is y2 + (x3)y = 2x4 + 3x2 − 4.
gA globally minimal model for this curve is y2 + y = 4x5 − x4 − 20x3 + 21x2 + 3x− 2.
hA globally minimal model for this curve is y2 + (x3)y = 2x4 + 6x2 + 8.

https://lmfdb.org/Genus2Curve/Q/4096/c/65536/1
https://lmfdb.org/Genus2Curve/Q/4096/c/65536/1
https://lmfdb.org/Genus2Curve/Q/4096/d/524288/1
https://lmfdb.org/Genus2Curve/Q/4096/d/524288/1
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

8 −x(x4 − 14x2 + 81) [Q,Q, L1] 226312 6a 212 0 Z/4 2 C2
2

−2(2x− 1)(x2 − 2x+ 3)(x2 + 2) [Q,Q,K2,K2] 226312 6a 212 0 Z/2× Z/2 2 C2
2

−6(x2 − 2)(x2 + 1)(2x2 − 1) [K1,K3,K3] −226322 6a 212 0 Z/2× Z/2 0 D4

6(x2 − 2)(x2 + 1)(2x2 − 1) [K1,K3,K3] −226322 6a 212 0 Z/4× Z/4 0 D4

9 (x− 1)x(x+ 1)(x2 + 1) [Q,Q,Q,Q,K1] −216 2d 212 0 Z/2× Z/2× Z/2 4 C4

5(3x2 + 2x+ 1)(x4 + 28x3 − 30x2 + 36x− 31) [K2, L6] 251522 10b 212 0 Z/2 0 C2

−5(3x2 − 2x+ 1)(x4 − 28x3 − 30x2 − 36x− 31) [K2, L6] 251522 10b 212 0 Z/4 0 C2

10 x(x2 − 2x− 1)(x2 + 1) [Q,Q,K1,K3] −219 2a 212 0 Z/2× Z/2 2 C4

(5x+ 12)(12x− 5)(x2 + 1)(x2 + 2x− 1) [Q,Q,K1,K3] −2191312 26a 212 0 Z/2× Z/2 2 C4

11 −(x2 + 2)(2x4 + 4x2 + 1) [K2, L5] −222 2e 213 1 Z/2 0 C2
2

(x2 − 2)(2x4 − 4x2 + 1) [K3, L4] 222 2e 213 1 Z/4 4 C2
2

(x− 1)(x+ 1)(x4 − 8x2 + 8) [Q,Q, L4] 227 2e 213 1 Z/2 4 C2
2

(x2 + 1)(x4 + 8x2 + 8) [K1, L5] −227 2e 213 1 Z/4 2 C2
2

−(x2 − 2x− 1)(2x4 + 8x3 + 8x2 − 8x+ 7) [K3, L5] 222712 14a 213 1 Z/2 0 C2
2

−(2x− 1)(x4 − 8x2 + 32x+ 136) [Q,Q, L5] 227712 14a 213 1 Z/4 2 C2
2

https://lmfdb.org/Genus2Curve/Q/4096/b/65536/1
https://lmfdb.org/Genus2Curve/Q/4096/b/65536/1
https://lmfdb.org/Genus2Curve/Q/4096/e/524288/1
https://lmfdb.org/Genus2Curve/Q/4096/e/524288/1
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

−7(x2 + 2)(2x4 − 20x2 + 1) [K2, L4] −222722 14a 213 1 Z/4 0 C2
2

7(x2 + 1)(x4 − 40x2 + 8) [K1, L4] −227722 14a 213 1 Z/2 0 C2
2

12 −(x2 + 2)(x4 − 4x3 + 2x2 − 4x+ 7) [K2, L2] 222312 6b 213 1 Z/2 0 C2
2

(x2 + 2)(x4 − 4x3 + 2x2 − 4x+ 7) [K2, L2] 222312 6b 213 1 Z/4 4 C2
2

−3(x2 − 2)(2x4 − 8x2 − 1) [K3, L2] −222322 6b 213 1 Z/2 0 C2
2

3(x2 − 2)(2x4 − 8x2 − 1) [K3, L2] −222322 6b 213 1 Z/4 0 C2
2

13 −(2x+ 1)(x4 + 8x3 − 8x2 + 8) [Q,Q, L2] −227312 6b 213 0 Z/2 2 C2
2

−(2x− 1)(x4 − 8x3 − 8x2 + 8) [Q,Q, L2] −227312 6b 213 0 Z/4 2 C2
2

3(x2 + 1)(x4 − 16x2 − 8) [K1, L2] 227322 6b 213 0 Z/2 0 C2
2

−3(x2 + 1)(x4 − 16x2 − 8) [K1, L2] 227322 6b 213 0 Z/4 0 C2
2

14 −(x2 − 2)(2x4 − 4x2 + 1) [K3, L4] 222 2e 213 0 Z/2 0 C2
2

(x2 + 2)(2x4 + 4x2 + 1) [K2, L5] −222 2e 213 0 Z/4 0 C2
2

−(x2 + 1)(x4 + 8x2 + 8) [K1, L5] −227 2e 213 0 Z/2 0 C2
2

−(x− 1)(x+ 1)(x4 − 8x2 + 8) [Q,Q, L4] 227 2e 213 0 Z/4 2 C2
2

(x2 − 2x− 1)(2x4 + 8x3 + 8x2 − 8x+ 7) [K3, L5] 222712 14a 213 0 Z/4 0LS C2
2
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

(2x− 1)(x4 − 8x2 + 32x+ 136) [Q,Q, L5] 227712 14a 213 0 Z/2 2 C2
2

7(x2 + 2)(2x4 − 20x2 + 1) [K2, L4] −222722 14a 213 0 Z/2 0 C2
2

−7(x2 + 1)(x4 − 40x2 + 8) [K1, L4] −227722 14a 213 0 Z/4 0 C2
2

15 (x− 1)(x+ 1)(x4 − 2x2 + 2) [Q,Q, L7] 219 2c 213 1 Z/2 4 C2
2

(x2 + 1)(x4 + 2x2 + 2) [K1, L7] −219 2c 213 1 Z/2 2 C2
2

(x2 + 6x+ 1)(x4 + 4x3 − 2x2 + 4x+ 1)i [K3, L6] −221 2b 213 1 Z/4 6 C2
2

−(3x2 − 2x+ 3)(x4 + 4x3 − 2x2 + 4x+ 1)j [K2, L6] 221 2b 213 1 Z/2 2 C2
2

5(3x2 + 2x+ 3)(7x4 − 4x3 − 14x2 − 4x+ 7)k [K2, L6] 221522 10a 213 1 Z/4 0 C2
2

−5(x2 − 6x+ 1)(7x4 − 4x3 − 14x2 − 4x+ 7)l [K3, L6] −221522 10a 213 1 Z/2 0 C2
2

16 −2(x2 + 2)(x4 + 2x2 + 2) [K2, L7] −234 2c 213 0 Z/2 0 C2
2

2(x2 − 2)(x4 − 2x2 + 2) [K3, L7] 234 2c 213 0 Z/2 0 C2
2

−2(x− 1)(x+ 1)(x4 + 4x2 − 4) [Q,Q, L6] −236 2b 213 0 Z/2 2 C2
2

−2(x2 + 1)(x4 − 4x2 − 4) [K1, L6] 236 2b 213 0 Z/4 0 C2
2

iA globally minimal model for this curve is y2 + (x3 + x2 + x+ 1)y = 2x5 + 5x4 − 2x3 + 5x2 + 2x.
jA globally minimal model for this curve is y2 + (x3 + x2 + x+ 1)y = −x6 − 3x5 + 2x4 − 8x3 + 2x2 − 3x− 1.
kA globally minimal model for this curve is y2 + (x3 + x2 + x+ 1)y = 26x6 + 2x5 − 37x4 − 66x3 − 37x2 + 2x+ 26.
lA globally minimal model for this curve is y2 + (x3 + x2 + x+ 1)y = −9x6 + 57x5 − 22x4 − 96x3 − 22x2 + 57x− 9.

https://lmfdb.org/Genus2Curve/Q/8192/c/524288/2
https://lmfdb.org/Genus2Curve/Q/8192/c/524288/2
https://lmfdb.org/Genus2Curve/Q/8192/c/524288/1
https://lmfdb.org/Genus2Curve/Q/8192/c/524288/1
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

−2(2x− 1)(x4 − 4x3 − 14x2 + 4x+ 41) [Q,Q, L6] −236512 10a 213 0 Z/4 2 C2
2

−2(x2 + 1)(4x4 − 16x3 + 4x2 + 8x+ 7) [K1, L6] 236512 10a 213 0 Z/2 0LS C2
2

17 −(x2 + 1)(x4 + 2x2 + 2) [K1, L7] −219 2c 213 0 Z/2 0 C2
2

−(x− 1)(x+ 1)(x4 − 2x2 + 2) [Q,Q, L7] 219 2c 213 0 Z/2 2 C2
2

−2(x2 − 2)(x4 − 2x2 − 1) [K3, L6] −231 2b 213 0 Z/2 0LS C2
2

2(x2 + 2)(x4 + 2x2 − 1) [K2, L6] 231 2b 213 0 Z/4 0 C2
2

−10(x2 + 2)(x4 + 14x2 − 1) [K2, L6] 231522 10a 213 0 Z/2 0 C2
2

10(x2 − 2)(x4 − 14x2 − 1) [K3, L6] −231522 10a 213 0 Z/4 0 C2
2

18 −2(x2 − 2)(x4 − 2x2 + 2) [K3, L7] 234 2c 213 0 Z/2 0 C2
2

2(x2 + 2)(x4 + 2x2 + 2) [K2, L7] −234 2c 213 0 Z/2 0 C2
2

2(x− 1)(x+ 1)(x4 + 4x2 − 4) [Q,Q, L6] −236 2b 213 0 Z/4 2 C2
2

2(x2 + 1)(x4 − 4x2 − 4) [K1, L6] 236 2b 213 0 Z/2 0LS C2
2

2(2x− 1)(x4 − 4x3 − 14x2 + 4x+ 41) [Q,Q, L6] −236512 10a 213 0 Z/2 2 C2
2

2(x2 + 1)(4x4 − 16x3 + 4x2 + 8x+ 7) [K1, L6] 236512 10a 213 0 Z/4 0 C2
2

19 −(x− 1)x(x+ 1)(x2 − 2x− 1) [Q,Q,Q,Q,K3] 217 2f 213 0 Z/2× Z/2× Z/2 4 C2

https://lmfdb.org/Genus2Curve/Q/8192/d/524288/1
https://lmfdb.org/Genus2Curve/Q/8192/d/524288/1
https://lmfdb.org/Genus2Curve/Q/8192/d/524288/2
https://lmfdb.org/Genus2Curve/Q/8192/d/524288/2
https://lmfdb.org/Genus2Curve/Q/8192/b/131072/1
https://lmfdb.org/Genus2Curve/Q/8192/b/131072/1


Draft

D
raft

of
0:21

am
,W

ednesday,N
ovem

ber
13,2024

212

Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

x(x4 − 8x3 + 18x2 + 8x+ 1) [Q,Q, L7] 225 2g 213 0 Z/4 2 C2

2x(x4 − 8x3 + 18x2 + 8x+ 1) [Q,Q, L7] 235 2g 213 0 Z/2 2 C2

−(x2 − 2x− 1)(x2 − 2x+ 3)(3x2 + 2x+ 1) [K2,K2,K3] 247 2f 213 0 Z/2× Z/2 0 C2

−7(x2 + 2x+ 3)(31x4 − 100x3 + 30x2 + 36x− 1) [K2, L4] −252722 14b 213 0 Z/2 0 C2

7(x2 + 2x+ 3)(31x4 − 100x3 + 30x2 + 36x− 1) [K2, L4] −252722 14b 213 0 Z/4 0 C2

20 −(x− 1)x(x+ 1)(x2 − 2) [Q,Q,Q,Q,K3] 215 2h 213 0 Z/2× Z/2× Z/2 4 C2

x(x+ 4)(x4 − 12x2 + 16x− 4)m [Q,Q, L4] 217 2i 213 0 Z/8 4 C2

−2x(x2 + 1)(x2 + 2) [Q,Q,K1,K2] 225 2h 213 0 Z/2× Z/2 2 C2

−(2x− 3)(x4 + 4x3 − 6x2 − 4x+ 1) [Q,Q, L4] 227 2i 213 0 Z/2 2 C2

3(x2 − 2x− 1)(x2 − 2x+ 2)(x2 + 4x+ 2) [K1,K3,K3] −222322 6c 213 0 Z/2× Z/2 0 C2

−3(x2 − 4x+ 2)(x2 + 2x− 1)(x2 + 2x+ 2) [K1,K3,K3] −222322 6c 213 0 Z/2× Z/4 0 C2

21(x2 + 4x+ 8)(17x4 − 32x3 − 44x2 + 80x− 4)n [K1, L4] −217322722 42a 213 0 Z/4 0 C2

21(2x2 − 2x+ 1)(x4 + 40x3 + 44x2 − 64x− 68) [K1, L4] −227322722 42a 213 0 Z/2 0 C2

mA globally minimal model for this curve is y2 + (x3)y = x5 − 3x4 − 8x3 + 15x2 − 4x.
nA globally minimal model for this curve is y2 + (x3)y = 89x6 + 189x5 − 189x4 − 1848x3 − 189x2 + 3276x− 168.

https://lmfdb.org/Genus2Curve/Q/8192/a/32768/1
https://lmfdb.org/Genus2Curve/Q/8192/a/32768/1
https://lmfdb.org/Genus2Curve/Q/8192/a/131072/1
https://lmfdb.org/Genus2Curve/Q/8192/a/131072/1
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

21 (x2 + 1)(x4 + 1) [K1, L1] −222 2f 214 2 Z/2 8∗ D4

22 (x2 − 2x+ 2)(x2 − 2)(x2 + 2x+ 2) [K1,K1,K3] 237 2f 214 1 Z/2× Z/2 2 C2
2

(x2 − 4x+ 2)(x2 − 2)(x2 + 4x+ 2) [K3,K3,K3] 247 2f 214 1 Z/2× Z/2 2 C2
2

−(x− 1)(x4 + 40x3 + 20x2 + 16x+ 4) [Q,Q, L2] −231312 6d 214 1 Z/2 4 C2

2(x− 1)(x4 + 40x3 + 20x2 + 16x+ 4) [Q,Q, L2] −241312 6d 214 1 Z/2 2∗ C2

23 −x(x2 − 2x− 1)(x2 + 2x− 1) [Q,Q,K3,K3] 222 2f 214 1 Z/2× Z/2 4 C2
2

(x− 1)(x+ 1)(x4 + 1) [Q,Q, L1] 222 2f 214 1 Z/2 4 C2
2

−(x2 − 2x− 1)(x4 − 8x3 + 18x2 + 8x+ 1) [K3, L7] 240 2g 214 1 Z/2 2 C2

24 (x2 − 2x+ 2)(x2 + 2)(x2 + 2x+ 2) [K1,K1,K2] −237 2f 214 1 Z/2× Z/2 2 C2
2

(x2 + 2)(x4 + 12x2 + 4) [K2, L1] −247 2f 214 1 Z/2 2 C2
2

(x2 − 2x− 1)(x4 + 4x3 + 66x2 − 4x+ 577) [K3, L5] 252712 14b 214 1 Z/2 2 C2

25 −2(x2 + 1)(x4 + 1) [K1, L1] −232 2f 214 0 Z/2 0 D4

26 −(x2 − 2x+ 2)(x2 + 2)(x2 + 2x+ 2) [K1,K1,K2] −237 2f 214 0 Z/2× Z/2 0 C2
2
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

−(x2 + 2)(x4 + 12x2 + 4) [K2, L1] −247 2f 214 0 Z/2 0 C2
2

−(x2 − 2x− 1)(x4 + 4x3 + 66x2 − 4x+ 577) [K3, L5] 252712 14b 214 0 Z/2 0LS C2

27 −x(x4 + 6x2 + 1) [Q,Q, L1] 222 2f 214 0 Z/2 2 C2
2

−2x(x2 − 2x− 1)(x2 + 2x− 1) [Q,Q,K3,K3] 232 2f 214 0 Z/2× Z/2 2 C2
2

−(x2 + 2x− 1)(5x4 + 8x3 − 6x2 − 8x+ 5) [K3, L7] 240 2g 214 0 Z/4 0 C2

28 −(x2 + 1)(x4 + 1) [K1, L1] −222 2f 214 0 Z/2 0 D4

29 −(x2 − 2x+ 2)(x2 − 2)(x2 + 2x+ 2) [K1,K1,K3] 237 2f 214 0 Z/2× Z/2 0 C2
2

−(x2 − 4x+ 2)(x2 − 2)(x2 + 4x+ 2) [K3,K3,K3] 247 2f 214 0 Z/2× Z/2 0 C2
2

(x− 1)(x4 + 40x3 + 20x2 + 16x+ 4) [Q,Q, L2] −231312 6d 214 0 Z/2 2 C2

−2(x− 1)(x4 + 40x3 + 20x2 + 16x+ 4) [Q,Q, L2] −241312 6d 214 0 Z/2 2 C2

30 2(x2 + 1)(x4 + 1) [K1, L1] −232 2f 214 0 Z/2 0 D4

31 (x2 + 8)(x4 + 8x2 + 8)o [K2, L5] −222 2e 214 1 Z/4 4 C2
2

oA globally minimal model for this curve is y2 + (x3)y = 4x4 + 18x2 + 16.
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

−(x2 + 4)(x4 + 4x2 + 2) [K1, L5] −227 2e 214 1 Z/2 0 C2
2

(x− 2)(x+ 2)(x4 − 4x2 + 2) [Q,Q, L4] 227 2e 214 1 Z/8 4 C2
2

−2(x2 − 2)(2x4 − 4x2 + 1) [K3, L4] 232 2e 214 1 Z/2 2 C2
2

(x2 − 4x− 4)(x4 + 8x3 + 16x2 − 32x+ 56)p [K3, L5] 222712 14a 214 1 Z/4 4 C2
2

−(4x+ 1)(2x4 − 4x2 − 8x+ 17) [Q,Q, L5] 227712 14a 214 1 Z/2 2 C2
2

−7(x2 + 4)(x4 − 20x2 + 2) [K1, L4] −227722 14a 214 1 Z/8 0 C2
2

14(x2 + 2)(2x4 − 20x2 + 1) [K2, L4] −232722 14a 214 1 Z/2 0 C2
2

32 −x(x+ 4)(x4 − 4x2 + 8x+ 2) [Q,Q, L2] −227312 6b 214 1 Z/2 2 C2
2

(x− 4)x(x4 − 4x2 − 8x+ 2) [Q,Q, L2] −227312 6b 214 1 Z/4 6 C2
2

3(x2 + 4)(x4 + 8x2 − 2) [K1, L2] 227322 6b 214 1 Z/4 0 C2
2

−3(x2 + 4)(x4 + 8x2 − 2) [K1, L2] 227322 6b 214 1 Z/2 0 C2
2

33 −(3x2 + 4x+ 4)(x4 − 8x3 − 8x2 + 8)q [K2, L2] 222312 6b 214 0 Z/2 0 C2
2

2(x2 + 2)(x4 − 4x3 + 2x2 − 4x+ 7) [K2, L2] 232312 6b 214 0 Z/4 0 C2
2

−3(x2 − 8)(x4 − 16x2 − 8)r [K3, L2] −222322 6b 214 0 Z/2 0 C2
2

pA globally minimal model for this curve is y2 + (x3)y = x5 − 5x4 − 32x3 + 30x2 − 24x− 56.
qA globally minimal model for this curve is y2 + (x3)y = −x6 + 5x5 + 13x4 + 16x3 + 2x2 − 8x− 8.
rA globally minimal model for this curve is y2 + (x3)y = −x6 + 18x4 − 90x2 − 48.
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

6(x2 − 2)(2x4 − 8x2 − 1) [K3, L2] −232322 6b 214 0 Z/4 0 C2
2

34 (x2 − 8)(x4 − 8x2 + 8)s [K3, L4] 222 2e 214 0 Z/8 2 C2
2

(x2 + 4)(x4 + 4x2 + 2) [K1, L5] −227 2e 214 0 Z/4 2 C2
2

−(x− 2)(x+ 2)(x4 − 4x2 + 2) [Q,Q, L4] 227 2e 214 0 Z/2 2 C2
2

−2(x2 + 2)(2x4 + 4x2 + 1) [K2, L5] −232 2e 214 0 Z/2 0 C2
2

−(4x− 1)(2x4 − 4x2 + 8x+ 17) [Q,Q, L5] 227712 14a 214 0 Z/4 2 C2
2

−2(x2 + 2x− 1)(2x4 − 8x3 + 8x2 + 8x+ 7) [K3, L5] 232712 14a 214 0 Z/2 0LS C2
2

−7(x2 + 8)(x4 − 40x2 + 8)t [K2, L4] −222722 14a 214 0 Z/8 0 C2
2

7(x2 + 4)(x4 − 20x2 + 2) [K1, L4] −227722 14a 214 0 Z/2 0 C2
2

35 −3(x2 − 2x− 1)(x2 + 4x+ 5)(5x2 − 4x+ 1) [K1,K1,K3] 241322 6a 214 0 Z/2× Z/2 0 C2

3(x2 − 2x− 1)(17x4 + 4x3 + 34x2 − 4x+ 17) [K3, L1] 251322 6a 214 0 Z/2 0 C2

36 −x(x2 − 2x+ 2)(x2 + 2x+ 2) [Q,Q,K1,K1] 226 2d 214 0 Z/2× Z/2 2 C2

−5(x2 − 4x+ 2)(x4 + 32x3 + 60x2 + 64x+ 4) [K3, L6] −251522 10b 214 0 Z/4 0 C2

sA globally minimal model for this curve is y2 + (x3)y = −4x4 + 18x2 − 16.
tA globally minimal model for this curve is y2 + (x3)y = −2x6 + 56x4 + 546x2 − 112.
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

5(x2 − 4x+ 2)(x4 + 32x3 + 60x2 + 64x+ 4) [K3, L6] −251522 10b 214 0 Z/2 0 C2

37 2x(x2 + 1)(x2 + 2x− 1) [Q,Q,K1,K3] −229 2a 214 0 Z/2× Z/2 2 C4

−2(5x+ 12)(12x− 5)(x2 + 1)(x2 + 2x− 1) [Q,Q,K1,K3] −2291312 26a 214 0 Z/2× Z/2 2 C4

38 2x(x2 − 2x− 1)(x2 + 1) [Q,Q,K1,K3] −229 2a 214 0 Z/2× Z/2 2 C4

2(5x+ 12)(12x− 5)(x2 + 1)(x2 + 2x− 1) [Q,Q,K1,K3] −2291312 26a 214 0 Z/2× Z/2 2 C4

39 −x(x2 + 1)(x2 + 2) [Q,Q,K1,K2] 215 2h 214 0 Z/2× Z/2 2 C2

−2(x− 1)x(x+ 1)(x2 − 2) [Q,Q,Q,Q,K3] 225 2h 214 0 Z/2× Z/2× Z/2 4 C2

−2(2x− 3)(x4 + 4x3 − 6x2 − 4x+ 1) [Q,Q, L4] 237 2i 214 0 Z/2 2 C2

2(2x− 3)(x4 + 4x3 − 6x2 − 4x+ 1) [Q,Q, L4] 237 2i 214 0 Z/4 2 C2

6(x2 − 2x− 1)(x2 − 2x+ 2)(x2 + 4x+ 2) [K1,K3,K3] −232322 6c 214 0 Z/2× Z/2 0 C2

−6(x2 − 4x+ 2)(x2 + 2x− 1)(x2 + 2x+ 2) [K1,K3,K3] −232322 6c 214 0 Z/2× Z/2 0 C2

42(2x2 − 2x+ 1)(x4 + 40x3 + 44x2 − 64x− 68) [K1, L4] −237322722 42a 214 0 Z/2 0 C2

−42(2x2 − 2x+ 1)(x4 + 40x3 + 44x2 − 64x− 68) [K1, L4] −237322722 42a 214 0 Z/4 0 C2

https://lmfdb.org/Genus2Curve/Q/16384/a/32768/1
https://lmfdb.org/Genus2Curve/Q/16384/a/32768/1
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

40 (x2 + 4)(x4 − 8)u [K1, L2] 221 2j 215 2 Z/2 6∗ C2
2

(x2 − 2)(x4 − 2) [K3, L2] −226 2j 215 2 Z/2 12∗ C2
2

(x− 4)x(x4 + 8x3 − 8x2 + 8)v [Q,Q, L2] −221312 6e 215 2 Z/2 10∗ C2
2

(x2 + 2)(x4 − 4x2 − 8x+ 2) [K2, L2] 226312 6e 215 2 Z/2 8∗ C2
2

41 (x2 − 2)(x4 − 4x2 + 2) [K3, L4] 226 2k 215 2 Z/2 10∗ C2
2

(x2 + 2)(x4 + 4x2 + 2) [K2, L5] −226 2k 215 2 Z/2 8∗ C2
2

42 (x− 2)(x+ 2)(x4 − 8x2 + 8)w [Q,Q, L4] 221 2k 215 1 Z/2 4 C2
2

(x2 + 4)(x4 + 8x2 + 8)x [K1, L5] −221 2k 215 1 Z/2 2 C2
2

43 (x− 2)(x+ 2)(x4 − 8)y [Q,Q, L2] −221 2j 215 1 Z/2 4 C2
2

(x2 + 2)(x4 − 2) [K2, L2] 226 2j 215 1 Z/2 2 C2
2

−3(x2 + 4)(x4 − 16x2 − 8)z [K1, L2] 221322 6e 215 1 Z/2 0 C2
2

uA globally minimal model for this curve is y2 + (x3)y = x4 − 2x2 − 8.
vA globally minimal model for this curve is y2 + (x3)y = x5 − 10x4 + 8x3 + 2x2 − 8x.
wA globally minimal model for this curve is y2 + (x3)y = −3x4 + 10x2 − 8.
xA globally minimal model for this curve is y2 + (x3)y = 3x4 + 10x2 + 8.
yA globally minimal model for this curve is y2 + (x3)y = −x4 − 2x2 + 8.
zA globally minimal model for this curve is y2 + (x3)y = −x6 + 9x4 + 54x2 + 24.
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

−3(x2 − 2)(x4 + 8x2 − 2) [K3, L2] −226322 6e 215 1 Z/2 0 C2
2

44 (x2 + 1)(x4 − 2) [K1, L2] 221 2j 215 1 Z/2 2 C2
2

−2(x2 − 2)(x4 − 2) [K3, L2] −236 2j 215 1 Z/2 0 C2
2

−(2x+ 1)(x4 − 4x2 − 8x+ 2) [Q,Q, L2] −221312 6e 215 1 Z/2 2 C2
2

−2(x2 + 2)(x4 − 4x2 − 8x+ 2) [K2, L2] 236312 6e 215 1 Z/2 0 C2
2

45 −(x2 + 1)(x4 + 4x2 + 2) [K1, L5] −221 2k 215 1 Z/2 0 C2
2

(x− 1)(x+ 1)(x4 − 4x2 + 2) [Q,Q, L4] 221 2k 215 1 Z/2 4 C2
2

46 −2(x2 + 2)(x4 + 4x2 + 2) [K2, L5] −236 2k 215 0 Z/2 0 C2
2

−2(x2 − 2)(x4 − 4x2 + 2) [K3, L4] 236 2k 215 0 Z/2 0 C2
2

47 −(x− 1)(x+ 1)(x4 − 2) [Q,Q, L2] −221 2j 215 0 Z/2 2 C2
2

−2(x2 + 2)(x4 − 2) [K2, L2] 236 2j 215 0 Z/2 0 C2
2

−3(x2 + 1)(x4 + 8x2 − 2) [K1, L2] 221322 6e 215 0 Z/2 0 C2
2

6(x2 − 2)(x4 + 8x2 − 2) [K3, L2] −236322 6e 215 0 Z/2 0 C2
2
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

48 −(x2 + 2)(x4 − 2) [K2, L2] 226 2j 215 1 Z/2 2 C2
2

−2(x− 1)(x+ 1)(x4 − 2) [Q,Q, L2] −231 2j 215 1 Z/2 2 C2
2

3(x2 − 2)(x4 + 8x2 − 2) [K3, L2] −226322 6e 215 1 Z/2 0 C2
2

−6(x2 + 1)(x4 + 8x2 − 2) [K1, L2] 231322 6e 215 1 Z/2 0 C2
2

49 −(x2 + 2)(x4 + 4x2 + 2) [K2, L5] −226 2k 215 1 Z/2 0 C2
2

−(x2 − 2)(x4 − 4x2 + 2) [K3, L4] 226 2k 215 1 Z/2 2 C2
2

50 −2(x2 + 1)(x4 + 4x2 + 2) [K1, L5] −231 2k 215 0 Z/2 0 C2
2

2(x− 1)(x+ 1)(x4 − 4x2 + 2) [Q,Q, L4] 231 2k 215 0 Z/2 2 C2
2

51 −(x2 − 2)(x4 − 2) [K3, L2] −226 2j 215 0 Z/2 0 C2
2

2(x2 + 1)(x4 − 2) [K1, L2] 231 2j 215 0 Z/2 0 C2
2

−(x2 + 2)(x4 − 4x2 − 8x+ 2) [K2, L2] 226312 6e 215 0 Z/2 0 C2
2

−2(2x+ 1)(x4 − 4x2 − 8x+ 2) [Q,Q, L2] −231312 6e 215 0 Z/2 2 C2
2

52 (x− 1)(x+ 1)(x4 − 2) [Q,Q, L2] −221 2j 215 1 Z/2 4 C2
2

2(x2 + 2)(x4 − 2) [K2, L2] 236 2j 215 1 Z/2 0 C2
2
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

3(x2 + 1)(x4 + 8x2 − 2) [K1, L2] 221322 6e 215 1 Z/2 0 C2
2

−6(x2 − 2)(x4 + 8x2 − 2) [K3, L2] −236322 6e 215 1 Z/2 0 C2
2

53 (x2 + 1)(x4 + 4x2 + 2) [K1, L5] −221 2k 215 1 Z/2 2 C2
2

−(x− 1)(x+ 1)(x4 − 4x2 + 2) [Q,Q, L4] 221 2k 215 1 Z/2 2 C2
2

54 2(x2 + 2)(x4 + 4x2 + 2) [K2, L5] −236 2k 215 0 Z/2 0 C2
2

2(x2 − 2)(x4 − 4x2 + 2) [K3, L4] 236 2k 215 0 Z/2 0 C2
2

55 −(x2 + 1)(x4 − 2) [K1, L2] 221 2j 215 0 Z/2 0 C2
2

2(x2 − 2)(x4 − 2) [K3, L2] −236 2j 215 0 Z/2 0 C2
2

(2x+ 1)(x4 − 4x2 − 8x+ 2) [Q,Q, L2] −221312 6e 215 0 Z/2 2 C2
2

2(x2 + 2)(x4 − 4x2 − 8x+ 2) [K2, L2] 236312 6e 215 0 Z/2 0 C2
2

56 (x+ 1)(x2 − 2x− 1)(x2 + 1) [Q,Q,K1,K3] −223 2l 215 0 Z/2× Z/2 2 C2

−(x2 + 1)(x4 + 4x3 − 6x2 + 12x− 7) [K1, L6] 242 2m 215 0 Z/4 0 C2

−(x2 − 2x− 1)(x4 − 12x3 + 18x2 + 44x+ 17) [K3, L4] 250 2n 215 0 Z/4 0LS C2
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

−(2x2 + 1)(4x4 − 4x2 + 32x− 31) [K2, L2] 250312 6f 215 0 Z/2 0 C2

57 x(x2 − 2x+ 2)(x2 + 2) [Q,Q,K1,K2] 223 2l 215 0 Z/2× Z/2 2 C2

−x(x4 − 8x3 + 12x2 − 16x+ 4) [Q,Q, L6] −232 2m 215 0 Z/4 2 C2

(x2 + 2)(7x4 − 16x3 + 36x2 − 32x+ 28) [K2, L5] −250 2n 215 0 Z/2 0 C2

3(x2 + 4x+ 2)(x4 − 16x3 − 4x2 − 32x+ 4) [K3, L2] −250322 6f 215 0 Z/2 0 C2

58 (x− 1)(x2 + 1)(x2 + 2x− 1) [Q,Q,K1,K3] −223 2l 215 1 Z/2× Z/2 4 C2

(x2 + 1)(x4 + 4x3 − 6x2 + 12x− 7) [K1, L6] 242 2m 215 1 Z/2 2 C2

(x2 − 2x− 1)(x4 − 12x3 + 18x2 + 44x+ 17) [K3, L4] 250 2n 215 1 Z/2 2 C2

(2x2 + 1)(4x4 − 4x2 − 32x− 31) [K2, L2] 250312 6f 215 1 Z/2 2 C2

59 −x(x2 − 2x+ 2)(x2 + 2) [Q,Q,K1,K2] 223 2l 215 0 Z/2× Z/2 2 C2

x(x4 − 8x3 + 12x2 − 16x+ 4) [Q,Q, L6] −232 2m 215 0 Z/2 2 C2

−(x2 + 2)(7x4 + 16x3 + 36x2 + 32x+ 28) [K2, L5] −250 2n 215 0 Z/2 0 C2

−3(x2 − 4x+ 2)(x4 + 16x3 − 4x2 + 32x+ 4) [K3, L2] −250322 6f 215 0 Z/4 0 C2

60 −(x− 1)(x2 − 2x− 1)(x2 + 1) [Q,Q,K1,K3] −223 2o 215 0 Z/2× Z/2 2 C2



Draft

D
raft

of
0:21

am
,W

ednesday,N
ovem

ber
13,2024

223

Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

(x− 1)(x4 + 8x3 + 4x2 − 16x+ 4) [Q,Q, L4] 229 2p 215 0 Z/4 2 C2

−2(x− 1)(x4 + 8x3 + 4x2 − 16x+ 4) [Q,Q, L4] 239 2p 215 0 Z/2 2 C2

−(x2 − 2x− 1)(x2 + 2x− 1)(x2 + 2x+ 3) [K2,K3,K3] −243 2o 215 0 Z/2× Z/2 0 C2

61 −(x+ 1)(x2 + 1)(x2 + 2x− 1) [Q,Q,K1,K3] −223 2o 215 1 Z/2× Z/2 4 C2

−(x− 1)(x4 + 8x3 + 4x2 − 16x+ 4) [Q,Q, L4] 229 2p 215 1 Z/2 4 C2

2(x− 1)(x4 + 8x3 + 4x2 − 16x+ 4) [Q,Q, L4] 239 2p 215 1 Z/4 4 C2

(x2 − 2x− 1)(x2 + 2x− 1)(x2 + 2x+ 3) [K2,K3,K3] −243 2o 215 1 Z/2× Z/2 2 C2

62 (x2 − 2x− 1)(x2 + 1)(x2 + 2x− 1) [K1,K3,K3] −236 2d 216 2 Z/2× Z/2 4∗ D4

(x2 − 2)(x4 + 12x2 + 4) [K3, L1] 251 2d 216 2 Z/2 2∗ C2
2

63 −(x2 + 1)(x4 − 2x2 − 1) [K1, L6] 224 2q 216 2 Z/2 6∗ C2
2

(x− 1)(x+ 1)(x4 + 2x2 − 1) [Q,Q, L6] −224 2q 216 2 Z/2 10∗ C2
2

−(x2 − 2)(x4 + 4x2 − 4) [K3, L6] −239 2q 216 2 Z/2 4∗ C2
2

(x2 + 2)(x4 − 4x2 − 4) [K2, L6] 239 2q 216 2 Z/2 2∗ C2
2

64 x(x4 − 4x3 − 2x2 − 4x+ 1) [Q,Q, L6] −224 2q 216 1 Z/2 2 C2
2
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

2(x2 + 1)(x4 − 2x2 − 1) [K1, L6] 234 2q 216 1 Z/2 0 C2
2

(x2 + 2)(x4 + 4x2 − 4) [K2, L6] 239 2q 216 1 Z/2 2 C2
2

(x2 − 2)(x4 − 4x2 − 4) [K3, L6] −239 2q 216 1 Z/2 2 C2
2

65 x(x4 + 1) [Q,Q, L1] 216 2d 216 1 Z/2 2 C2
2

−2x(x4 + 1) [Q,Q, L1] 226 2d 216 1 Z/2 4 C2
2

−(x2 − 4x+ 2)(x2 + 2)(x2 + 4x+ 2) [K2,K3,K3] −251 2d 216 1 Z/2× Z/2 0 C2
2

(x2 − 4x+ 2)(x2 + 2)(x2 + 4x+ 2) [K2,K3,K3] −251 2d 216 1 Z/2× Z/2 2 C2
2

(2x2 − 2x+ 1)(4x4 − 16x3 − 12x2 − 8x− 47) [K1, L6] 246512 10b 216 1 Z/2 2 C2

−(2x2 − 2x+ 1)(4x4 − 16x3 − 12x2 − 8x− 47) [K1, L6] 246512 10b 216 1 Z/2 0 C2

67 −x(2x2 − 8x+ 9)(2x2 + 8x+ 9) [Q,Q,K2,K2] 236312 6a 216 1 Z/2× Z/2 2∗ C2

−x(4x4 + 28x2 + 81) [Q,Q, L1] 236312 6a 216 1 Z/2 2∗ C2

(x+ 44)(x4 − 16x3 − 164x2 + 1056x− 3388) [Q,Q, L2] −2393121112 66a 216 1 Z/2 2∗ C2

−(x+ 44)(x4 − 16x3 − 164x2 + 1056x− 3388) [Q,Q, L2] −2393121112 66a 216 1 Z/4 2∗ C2

68 −(x− 1)(x+ 1)(x4 + 2x2 − 1) [Q,Q, L6] −224 2q 216 1 Z/2 2 C2
2

(x2 + 1)(x4 − 2x2 − 1) [K1, L6] 224 2q 216 1 Z/2 2 C2
2

https://lmfdb.org/Genus2Curve/Q/65536/a/65536/1
https://lmfdb.org/Genus2Curve/Q/65536/a/65536/1
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

−(x2 + 2)(x4 − 4x2 − 4) [K2, L6] 239 2q 216 1 Z/2 0 C2
2

(x2 − 2)(x4 + 4x2 − 4) [K3, L6] −239 2q 216 1 Z/2 2 C2
2

70 x(x4 + 4x3 − 2x2 + 4x+ 1) [Q,Q, L6] −224 2q 216 0 Z/2 2 C2
2

−2(x2 + 1)(x4 − 2x2 − 1) [K1, L6] 234 2q 216 0 Z/2 0 C2
2

−(x2 − 2)(x4 − 4x2 − 4) [K3, L6] −239 2q 216 0 Z/2 0LS C2
2

−(x2 + 2)(x4 + 4x2 − 4) [K2, L6] 239 2q 216 0 Z/2 0 C2
2

71 −(x2 − 2x− 1)(x2 + 1)(x2 + 2x− 1) [K1,K3,K3] −236 2d 216 0 Z/2× Z/2 0 D4

−(x2 − 2)(x4 + 12x2 + 4) [K3, L1] 251 2d 216 0 Z/2 0 C2
2

72 −3(x2 − 6x+ 7)(x2 + 1)(7x2 + 6x+ 1) [K1,K3,K3] −246322 6a 216 0 Z/2× Z/2 0 C4

3(x2 + 1)(x2 + 6x+ 7)(7x2 − 6x+ 1) [K1,K3,K3] −246322 6a 216 0 Z/2× Z/2 0 C4

73 x(x2 − 2)(x2 + 2) [Q,Q,K2,K3] −226 2d 216 0 Z/2× Z/2 2 C2

(x2 − 2x− 1)(x2 + 2x+ 3)(3x2 − 2x+ 1) [K2,K2,K3] 251 2d 216 0 Z/2× Z/2 0 C2

(x− 3)(4x4 + 16x3 − 12x2 + 8x− 47) [Q,Q, L6] −236512 10b 216 0 Z/2 2 C2
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

−(x− 3)(4x4 + 16x3 − 12x2 + 8x− 47) [Q,Q, L6] −236512 10b 216 0 Z/2 2 C2

74 −x(x2 − 4x+ 2)(x2 + 4x+ 2) [Q,Q,K3,K3] 232 2f 216 0 Z/2× Z/2 2 C2

−x(x4 + 12x2 + 4) [Q,Q, L1] 232 2f 216 0 Z/2 2 C2

−7(x2 + 2x+ 2)(x4 + 32x3 − 132x2 + 64x+ 4) [K1, L4] −247722 14b 216 0 Z/4 0 C2

7(x2 − 2x+ 2)(x4 − 32x3 − 132x2 − 64x+ 4) [K1, L4] −247722 14b 216 0 Z/2 0 C2

75 −(x2 − 2x+ 3)(x2 + 1)(x2 + 2x− 1) [K1,K2,K3] 238 2l 216 0 Z/2× Z/2 0 C2

−(x2 + 1)(7x4 + 12x3 + 30x2 + 20x+ 23) [K1, L5] −245 2n 216 0 Z/2 0 C2

−(x2 + 2x− 1)(x4 + 4x3 − 6x2 + 12x− 7) [K3, L6] −247 2m 216 0 Z/2 0LS C2

−(x+ 1)(4x4 − 16x3 + 20x2 − 40x+ 1) [Q,Q, L2] −235312 6f 216 0 Z/2 2 C2

76 x(x2 − 4x+ 2)(x2 + 2) [Q,Q,K2,K3] −228 2l 216 1 Z/2× Z/2 4 C2

−x(x4 − 16x3 + 60x2 − 32x+ 4) [Q,Q, L4] 235 2n 216 1 Z/4 2 C2

(x2 + 2)(x4 − 8x3 + 12x2 − 16x+ 4) [K2, L6] 247 2m 216 1 Z/2 2 C2

−3(x2 + 2x+ 2)(x4 + 16x3 − 4x2 + 32x+ 4) [K1, L2] 245322 6f 216 1 Z/4 0 C2

77 (x2 − 2x+ 3)(x2 + 1)(x2 + 2x− 1) [K1,K2,K3] 238 2l 216 1 Z/2× Z/2 2 C2



Draft

D
raft

of
0:21

am
,W

ednesday,N
ovem

ber
13,2024

227

Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

(x2 + 1)(7x4 − 12x3 + 30x2 − 20x+ 23) [K1, L5] −245 2n 216 1 Z/2 0 C2

(x2 + 2x− 1)(x4 + 4x3 − 6x2 + 12x− 7) [K3, L6] −247 2m 216 1 Z/2 2 C2

(x+ 1)(4x4 − 16x3 + 20x2 − 40x+ 1) [Q,Q, L2] −235312 6f 216 1 Z/2 4 C2

78 −(x2 − 2x+ 3)(x2 + 1)(3x2 + 2x+ 1) [K1,K2,K2] −242 2f 216 0 Z/2× Z/2 0 C4

(x− 3)(4x4 + 16x3 + 84x2 + 200x+ 289) [Q,Q, L5] 237712 14b 216 0 Z/2 2 C2

79 (x2 + 1)(x2 + 2x+ 3)(3x2 − 2x+ 1) [K1,K2,K2] −242 2f 216 0 Z/2× Z/2 0 C4

(x+ 3)(4x4 − 16x3 + 84x2 − 200x+ 289) [Q,Q, L5] 237712 14b 216 0 Z/2 2 C2

80 −x(x2 − 4x+ 2)(x2 + 2) [Q,Q,K2,K3] −228 2l 216 0 Z/2× Z/2 2 C2

x(x4 − 16x3 + 60x2 − 32x+ 4) [Q,Q, L4] 235 2n 216 0 Z/2 2 C2

−(x2 + 2)(x4 − 8x3 + 12x2 − 16x+ 4) [K2, L6] 247 2m 216 0 Z/2 0 C2

3(x2 − 2x+ 2)(x4 − 16x3 − 4x2 − 32x+ 4) [K1, L2] 245322 6f 216 0 Z/2 0 C2

81 −(x− 1)(x4 + 4x2 − 4) [Q,Q, L6] −224 2s 216 0 Z/2 2 C2

(x− 1)(x2 − 2x− 1)(x2 + 2x− 1) [Q,Q,K3,K3] 226 2r 216 0 Z/2× Z/2 2 C2

2(x− 1)(x4 + 4x2 − 4) [Q,Q, L6] −234 2s 216 0 Z/2 2 C2
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

−(x2 + 1)(x2 + 2x− 1)(x2 + 2x+ 3) [K1,K2,K3] 236 2r 216 0 Z/2× Z/2 0 C2

82 (x− 1)(x4 + 4x2 − 4) [Q,Q, L6] −224 2s 216 1 Z/2 4 C2

−(x− 1)(x2 − 2x− 1)(x2 + 2x− 1) [Q,Q,K3,K3] 226 2r 216 1 Z/2× Z/2 4 C2

−2(x− 1)(x4 + 4x2 − 4) [Q,Q, L6] −234 2s 216 1 Z/2 4 C2

(x2 + 1)(x2 + 2x− 1)(x2 + 2x+ 3) [K1,K2,K3] 236 2r 216 1 Z/2× Z/2 2 C2

83 −(x2 − 2x− 1)(x4 − 4x3 − 6x2 + 4x+ 1) [K3, L4] 240 2t 217 1 Z/2 2 C2

−(x2 − 2x− 1)(x4 − 4x3 + 10x2 + 4x+ 1) [K3, L3] 240 2u 217 1 Z/2 2 C2

84 x(x4 − 4x3 − 6x2 + 4x+ 1) [Q,Q, L4] 225 2t 217 1 Z/2 4 C2

2x(x4 + 4x3 + 10x2 − 4x+ 1) [Q,Q, L3] 235 2u 217 1 Z/2 4 C2

85 (x2 + 2x− 1)(x4 − 4x3 − 6x2 + 4x+ 1) [K3, L4] 240 2t 217 1 Z/2 2 C2

−(x2 − 2x− 1)(3x4 − 4x3 − 2x2 + 4x+ 3) [K3, L3] 240 2u 217 1 Z/2 0 C2

86 −x(x4 − 4x3 + 10x2 + 4x+ 1) [Q,Q, L3] 225 2u 217 0 Z/2 2 C2
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

−2x(x4 + 4x3 − 6x2 − 4x+ 1) [Q,Q, L4] 235 2t 217 0 Z/2 2 C2

87 x(x4 + 8x3 + 4x2 − 16x+ 4) [Q,Q, L4] 233 2w 217 1 Z/2 4 C2

(x2 − 2)(x4 + 4x3 + 4x2 − 8x+ 4) [K3, L7] 244 2v 217 1 Z/2 2 C2

88 −x(x4 + 4x3 + 4x2 − 8x+ 4) [Q,Q, L7] 229 2v 217 1 Z/2 4 C2

(x2 − 2)(x4 + 8x3 + 4x2 − 16x+ 4) [K3, L4] 248 2w 217 1 Z/2 2 C2

89 x(x4 + 4x3 + 4x2 − 8x+ 4) [Q,Q, L7] 229 2v 217 1 Z/2 2 C2

−(x2 − 2)(x4 + 8x3 + 4x2 − 16x+ 4) [K3, L4] 248 2w 217 1 Z/2 2 C2

90 −x(x4 + 8x3 + 4x2 − 16x+ 4) [Q,Q, L4] 233 2w 217 0 Z/2 2 C2

−(x2 − 2)(x4 + 4x3 + 4x2 − 8x+ 4) [K3, L7] 244 2v 217 0 Z/2 0 C2

91 −x(x4 − 8x3 + 28x2 − 16x+ 4) [Q,Q, L3] 233 2y 217 0 Z/2 2 C2

−(x2 + 2)(x4 − 4x3 + 12x2 − 8x+ 4) [K2, L7] −244 2x 217 0 Z/2 0 C2

92 (x2 + 1)(3x4 + 4x3 + 14x2 + 12x+ 11) [K1, L3] −243 2y 217 1 Z/2 0 C2
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

(x2 + 2x− 1)(x4 + 6x2 − 8x+ 5) [K3, L7] 244 2x 217 1 Z/2 2 C2

93 (x2 + 1)(x4 + 6x2 − 8x+ 5) [K1, L7] −239 2x 217 1 Z/2 2 C2

(x2 − 2x− 1)(x4 − 4x3 + 10x2 + 20x+ 9) [K3, L3] 248 2y 217 1 Z/2 2 C2

94 −x(x4 − 4x3 + 12x2 − 8x+ 4) [Q,Q, L7] 229 2x 217 0 Z/2 2 C2

−(x2 + 2)(3x4 − 8x3 + 20x2 − 16x+ 12) [K2, L3] −248 2y 217 0 Z/2 0 C2

95 x(x4 − 4x3 + 12x2 − 8x+ 4) [Q,Q, L7] 229 2x 217 0 Z/2 2 C2

(x2 + 2)(3x4 + 8x3 + 20x2 + 16x+ 12) [K2, L3] −248 2y 217 0 Z/2 0LS C2

96 −(x2 + 1)(x4 + 6x2 − 8x+ 5) [K1, L7] −239 2x 217 1 Z/2 0 C2

−(x2 − 2x− 1)(x4 − 4x3 + 10x2 + 20x+ 9) [K3, L3] 248 2y 217 1 Z/2 2 C2

97 −(x2 + 1)(3x4 − 4x3 + 14x2 − 12x+ 11) [K1, L3] −243 2y 217 0 Z/2 0 C2

−(x2 + 2x− 1)(x4 + 6x2 − 8x+ 5) [K3, L7] 244 2x 217 0 Z/2 0 C2

98 x(x4 − 8x3 + 28x2 − 16x+ 4) [Q,Q, L3] 233 2y 217 1 Z/2 4 C2
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

(x2 + 2)(x4 − 4x3 + 12x2 − 8x+ 4) [K2, L7] −244 2x 217 1 Z/2 2 C2

99 −x(x4 + 4x3 + 4x2 + 1) [Q,Q, L7] 217 2z 217 0 Z/2 2 C2

−x(x4 + 4x3 − 2x2 − 12x+ 1) [Q,Q, L4] 225 2B 217 0 Z/2 2 C2

−2(x− 1)(x4 + 1) [Q,Q, L1] 228 2A 217 0 Z/2 2 C2

2(x2 + 1)(x4 + 4x3 + 6x2 + 4x+ 3) [K1, L3] −235 2C 217 0 Z/2 0 C2

100 x(x4 + 4x3 + 4x2 + 1) [Q,Q, L7] 217 2z 217 0 Z/2 2 C2

x(x4 + 4x3 − 2x2 − 12x+ 1) [Q,Q, L4] 225 2B 217 0 Z/2 2 C2

2(x− 1)(x4 + 1) [Q,Q, L1] 228 2A 217 0 Z/2 2 C2

−2(x2 + 1)(x4 + 4x3 + 6x2 + 4x+ 3) [K1, L3] −235 2C 217 0 Z/2 0 C2

101 −(x+ 1)(x4 + 1) [Q,Q, L1] 218 2A 217 0 Z/2 2 C2

−x(x+ 2)(x4 − 4x2 + 2) [Q,Q, L4] 225 2B 217 0 Z/2 2 C2

−(x2 + 1)(x4 + 4x3 + 6x2 + 4x+ 3) [K1, L3] −225 2C 217 0 Z/2 0 C2

2x(x4 + 4x3 + 4x2 + 1) [Q,Q, L7] 227 2z 217 0 Z/2 2 C2

102 −(x− 1)(x4 + 1) [Q,Q, L1] 218 2A 217 2 Z/2 6∗ C2

https://lmfdb.org/Genus2Curve/Q/131072/a/131072/1
https://lmfdb.org/Genus2Curve/Q/131072/a/131072/1
https://lmfdb.org/Genus2Curve/Q/131072/b/131072/1
https://lmfdb.org/Genus2Curve/Q/131072/b/131072/1
https://lmfdb.org/Genus2Curve/Q/131072/d/262144/1
https://lmfdb.org/Genus2Curve/Q/131072/d/262144/1
https://lmfdb.org/Genus2Curve/Q/131072/c/262144/1
https://lmfdb.org/Genus2Curve/Q/131072/c/262144/1
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

x(x+ 2)(x4 − 4x2 + 2) [Q,Q, L4] 225 2B 217 2 Z/2 12∗ C2

(x2 + 1)(x4 + 4x3 + 6x2 + 4x+ 3) [K1, L3] −225 2C 217 2 Z/2 6∗ C2

−2x(x4 + 4x3 + 4x2 + 1) [Q,Q, L7] 227 2z 217 2 Z/2 8∗ C2

103 (x− 1)(x4 − 4x3 − 14x2 + 4x+ 17) [Q,Q, L4] 233 2D 217 1 Z/2 2 C2

−(x2 + 2)(5x4 + 4x3 + 4x2 + 8x+ 4) [K2, L7] −244 2E 217 1 Z/2 0 C2

−(x2 − 2)(3x4 + 8x3 − 12x2 − 16x+ 44) [K3, L3] 254 2F 217 1 Z/2 0 C2

−(3x2 + 4x+ 2)(x4 + 12x2 + 4) [K2, L1] −257 2G 217 1 Z/2 0 C2

104 x(4x4 − 20x2 − 16x+ 1) [Q,Q, L4] 233 2D 217 0 Z/2 2 C2

−(x2 + 2x+ 3)(x4 − 2x2 − 8x+ 13) [K2, L7] −244 2E 217 0 Z/2 0 C2

(x2 − 2)(11x4 + 8x3 − 12x2 − 16x+ 12) [K3, L3] 254 2F 217 0 Z/2 0 C2

−(x2 + 2x+ 3)(x4 − 4x3 + 18x2 − 28x+ 17) [K2, L1] −257 2G 217 0 Z/2 0 C2

105 −(x− 1)(x4 − 4x3 − 14x2 + 4x+ 17) [Q,Q, L4] 233 2D 217 0 Z/2 2 C2

(x2 + 2)(5x4 + 4x3 + 4x2 + 8x+ 4) [K2, L7] −244 2E 217 0 Z/2 0 C2

(x2 − 2)(3x4 + 8x3 − 12x2 − 16x+ 44) [K3, L3] 254 2F 217 0 Z/2 0 C2
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

(3x2 + 4x+ 2)(x4 + 12x2 + 4) [K2, L1] −257 2G 217 0 Z/2 0LS C2

106 x(4x4 − 20x2 + 16x+ 1) [Q,Q, L4] 233 2D 217 1 Z/2 4 C2

(x2 + 2x+ 3)(x4 − 2x2 − 8x+ 13) [K2, L7] −244 2E 217 1 Z/2 2 C2

−(x2 − 2)(11x4 + 8x3 − 12x2 − 16x+ 12) [K3, L3] 254 2F 217 1 Z/2 0 C2

(x2 + 2x+ 3)(x4 − 4x3 + 18x2 − 28x+ 17) [K2, L1] −257 2G 217 1 Z/2 2 C2

111 −x(x4 + 4x2 − 4) [Q,Q, L6] −228 2o 218 2 Z/2 4∗ C2

113 −x(x4 − 4x2 − 4) [Q,Q, L6] −228 2o 218 0 Z/2 2 C2

114 −(x2 + 2)(x4 + 4x3 + 4x2 − 8x+ 4) [K2, L7] −246 2r 218 0 Z/2 0 C2

120 (x2 + 2)(x4 + 4x3 + 4x2 − 8x+ 4) [K2, L7] −246 2r 218 2 Z/2 4∗ C2

122 x(x4 + 2x2 − 1) [Q,Q, L6] −218 2o 218 1 Z/2 2 C2

2x(x4 + 2x2 − 1) [Q,Q, L6] −228 2o 218 1 Z/2 4 C2

https://lmfdb.org/Genus2Curve/Q/262144/a/262144/1
https://lmfdb.org/Genus2Curve/Q/262144/a/262144/1
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

123 −(x2 + 2x− 1)(x4 + 6x2 + 8x+ 5) [K3, L7] 246 2d 218 0 Z/2 0 C2

−(x2 + 2x− 1)(x4 − 4x3 − 6x2 − 12x− 7) [K3, L6] −251 2d 218 0 Z/2 0 C2

124 (x2 − 2x− 1)(x4 + 6x2 − 8x+ 5) [K3, L7] 246 2d 218 2 Z/2 4∗ C2

(x2 + 2x− 1)(x4 − 4x3 − 6x2 − 12x− 7) [K3, L6] −251 2d 218 2 Z/2 2∗ C2

125 (x2 + 1)(x4 − 8x3 + 18x2 + 8x+ 1) [K1, L7] −245 2h 218 2 Z/2 4∗ C4

126 (x2 + 1)(5x4 − 8x3 − 6x2 + 8x+ 5) [K1, L7] −245 2h 218 0 Z/2 0 C4

127 −(x2 + 1)(5x4 + 8x3 − 6x2 − 8x+ 5) [K1, L7] −245 2h 218 0 Z/2 0 C4

128 −(x2 + 1)(x4 + 8x3 + 18x2 − 8x+ 1) [K1, L7] −245 2h 218 0* Z/2 0 C4

129 −x(x4 + 2x2 + 2) [Q,Q, L7] 219 2a 218 1 Z/2 2 C2

−2x(x4 − 2x2 + 2) [Q,Q, L7] 229 2a 218 1 Z/2 4 C2

x(x4 − 478x2 + 57122) [Q,Q, L7] 2191312 26a 218 1 Z/2 2∗ C2

https://lmfdb.org/Genus2Curve/Q/262144/b/524288/1
https://lmfdb.org/Genus2Curve/Q/262144/b/524288/1
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

2x(x4 + 478x2 + 57122) [Q,Q, L7] 2291312 26a 218 1 Z/2 2∗ C2

130 −x(x4 − 2x2 + 2) [Q,Q, L7] 219 2a 218 1 Z/2 4 C2

−2x(x4 + 2x2 + 2) [Q,Q, L7] 229 2a 218 1 Z/2 2 C2

x(x4 + 478x2 + 57122) [Q,Q, L7] 2191312 26a 218 1 Z/2 2∗ C2

2x(x4 − 478x2 + 57122) [Q,Q, L7] 2291312 26a 218 1 Z/2 2∗ C2

131 x(x4 + 4x3 + 10x2 + 8x+ 2) [Q,Q, L7] 219 2H 218 1 Z/2 4 C2

−x(x4 + 4x3 + 10x2 + 8x+ 2) [Q,Q, L7] 219 2H 218 1 Z/2 4 C2

2x(x4 + 4x3 + 10x2 + 8x+ 2) [Q,Q, L7] 229 2H 218 1 Z/2 2 C2

−2x(x4 + 4x3 + 10x2 + 8x+ 2) [Q,Q, L7] 229 2H 218 1 Z/2 4 C2

132 (x− 1)(x4 + 4x3 + 2x2 − 4x− 7) [Q,Q, L6] −228 2I 218 1 Z/2 4 C2

−(x− 1)(x4 + 4x3 + 2x2 − 4x− 7) [Q,Q, L6] −228 2I 218 1 Z/2 2 C2

x(x+ 1)(x4 + 4x2 − 4) [Q,Q, L6] −228 2I 218 1 Z/2 4 C2

−(x− 1)x(x4 + 4x2 − 4) [Q,Q, L6] −228 2I 218 1 Z/2 2 C2

133 (x2 + 2x+ 3)(x4 + 6x2 − 8x+ 5) [K2, L7] −246 2J 218 2 Z/2 4∗ C2

https://lmfdb.org/Genus2Curve/Q/262144/c/524288/1
https://lmfdb.org/Genus2Curve/Q/262144/c/524288/1
https://lmfdb.org/Genus2Curve/Q/262144/d/524288/1
https://lmfdb.org/Genus2Curve/Q/262144/d/524288/1
https://lmfdb.org/Genus2Curve/Q/262144/d/524288/2
https://lmfdb.org/Genus2Curve/Q/262144/d/524288/2
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

(x2 − 2x− 1)(x4 + 8x3 + 22x2 + 16x+ 5) [K3, L7] 246 2K 218 2 Z/2 4∗ C2

134 (x2 + 2x+ 3)(5x4 + 8x3 + 6x2 + 1) [K2, L7] −246 2J 218 1 Z/2 0 C2

(x2 + 2x− 1)(x4 − 2x2 − 8x+ 13) [K3, L7] 246 2K 218 1 Z/2 2 C2

135 −(x2 + 2x+ 3)(5x4 + 8x3 + 6x2 + 1) [K2, L7] −246 2J 218 1 Z/2 0 C2

−(x2 + 2x− 1)(x4 − 2x2 − 8x+ 13) [K3, L7] 246 2K 218 1 Z/2 0 C2

136 −(x2 − 2x+ 3)(x4 + 6x2 + 8x+ 5) [K2, L7] −246 2J 218 0 Z/2 0 C2

−(x2 − 2x− 1)(x4 + 8x3 + 22x2 + 16x+ 5) [K3, L7] 246 2K 218 0 Z/2 0 C2

161 (x+ 1)(x4 − 2) [Q,Q, L2] −219 2L 219 0 Z/2 2 C2

−2(x− 1)(x4 − 2x2 − 1) [Q,Q, L6] −230 2M 219 0 Z/2 2 C2

162 (x− 1)(x4 − 2) [Q,Q, L2] −219 2L 219 0 Z/2 2 C2

2(x− 1)(x4 − 2x2 − 1) [Q,Q, L6] −230 2M 219 0 Z/2 2 C2

163 x(x4 + 4x3 + 2x2 − 4x− 1) [Q,Q, L4] 219 2N 219 0 Z/2 2 C2

https://lmfdb.org/Genus2Curve/Q/524288/d/524288/1
https://lmfdb.org/Genus2Curve/Q/524288/d/524288/1
https://lmfdb.org/Genus2Curve/Q/524288/a/524288/1
https://lmfdb.org/Genus2Curve/Q/524288/a/524288/1
https://lmfdb.org/Genus2Curve/Q/524288/b/524288/1
https://lmfdb.org/Genus2Curve/Q/524288/b/524288/1
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

2(x− 1)(x4 + 2x2 − 1) [Q,Q, L6] −230 2O 219 0 Z/2 2 C2

164 −x(x4 + 4x3 + 2x2 − 4x− 1) [Q,Q, L4] 219 2N 219 1 Z/2 2 C2

−2(x− 1)(x4 + 2x2 − 1) [Q,Q, L6] −230 2O 219 1 Z/2 4 C2

165 −(x− 1)(x4 + 2x2 − 1) [Q,Q, L6] −220 2O 219 1 Z/2 4 C2

−2x(x4 + 4x3 + 2x2 − 4x− 1) [Q,Q, L4] 229 2N 219 1 Z/2 4 C2

166 (x− 1)(x4 + 2x2 − 1) [Q,Q, L6] −220 2O 219 2 Z/2 6∗ C2

2x(x4 + 4x3 + 2x2 − 4x− 1) [Q,Q, L4] 229 2N 219 2 Z/2 6∗ C2

167 (x− 1)(x4 − 2x2 − 1) [Q,Q, L6] −220 2M 219 2 Z/2 6∗ C2

−2(x+ 1)(x4 − 2) [Q,Q, L2] −229 2L 219 2 Z/2 8∗ C2

168 −(x− 1)(x4 − 2x2 − 1) [Q,Q, L6] −220 2M 219 0 Z/2 2 C2

2(x+ 1)(x4 − 2) [Q,Q, L2] −229 2L 219 0 Z/2 2 C2

169 −(x+ 4)(x4 − 12x2 + 16x− 4) [Q,Q, L4] 229 2P 219 1 Z/2 4 C2

https://lmfdb.org/Genus2Curve/Q/524288/c/524288/1
https://lmfdb.org/Genus2Curve/Q/524288/c/524288/1
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

(2x2 − 2x+ 1)(4x4 + 32x3 + 76x2 + 32x− 41) [K1, L6] 240512 10c 219 1 Z/2 0 C2

170 −(x+ 1)(x4 − 4x3 − 6x2 + 4x+ 1) [Q,Q, L4] 229 2Q 219 0 Z/2 2 C2

−(x2 + 1)(x4 − 4x3 + 2x2 + 4x− 7) [K1, L6] 240 2R 219 0 Z/2 0 C2

171 −(x+ 2)(4x4 − 12x2 + 8x− 1) [Q,Q, L4] 229 2P 219 1 Z/2 2 C2

−(x2 + 2x+ 2)(23x4 − 24x3 − 52x2 + 80x− 28) [K1, L6] 240512 10c 219 1 Z/2 2 C2

172 (x+ 2)(4x4 − 12x2 + 8x− 1) [Q,Q, L4] 229 2P 219 0 Z/2 2 C2

(x2 − 2x+ 2)(23x4 + 24x3 − 52x2 − 80x− 28) [K1, L6] 240512 10c 219 0 Z/2 0 C2

173 −(x− 1)(x4 + 4x3 − 6x2 − 4x+ 1) [Q,Q, L4] 229 2Q 219 1 Z/2 4 C2

(x2 + 1)(x4 − 4x3 + 2x2 + 4x− 7) [K1, L6] 240 2R 219 1 Z/2 2 C2

174 (x+ 4)(x4 − 12x2 + 16x− 4) [Q,Q, L4] 229 2P 219 0 Z/2 2 C2

−(2x2 − 2x+ 1)(4x4 + 32x3 + 76x2 + 32x− 41) [K1, L6] 240512 10c 219 0 Z/2 0LS C2

175 (x+ 1)(x4 + 4x3 − 6x2 − 4x+ 1) [Q,Q, L4] 229 2Q 219 2 Z/2 6∗ C2
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

(x2 + 1)(x4 − 4x3 + 10x2 − 12x+ 1) [K1, L6] 240 2R 219 2 Z/2 6∗ C2

176 −(x+ 1)(x4 + 4x3 − 6x2 − 4x+ 1) [Q,Q, L4] 229 2Q 219 1 Z/2 2 C2

−(x2 + 1)(x4 − 4x3 + 10x2 − 12x+ 1) [K1, L6] 240 2R 219 1 Z/2 0 C2

177 −(x2 − 2x− 1)(x4 + 12x3 + 34x2 + 20x+ 1) [K3, L4] 252 2S 219 2 Z/2 4∗ C2

(x2 − 2x+ 3)(x4 − 4x3 − 6x2 − 12x− 7) [K2, L6] 253 2T 219 2 Z/2 2∗ C2

178 (x2 + 2x− 1)(x4 + 4x3 − 14x2 − 4x+ 17) [K3, L4] 252 2S 219 1 Z/2 2 C2

(x2 − 2x+ 3)(7x4 − 12x3 + 6x2 − 4x− 1) [K2, L6] 253 2T 219 1 Z/2 0 C2

179 −(x2 + 2x− 1)(x4 + 4x3 − 14x2 − 4x+ 17) [K3, L4] 252 2S 219 0 Z/2 0LS C2

−(x2 − 2x+ 3)(7x4 − 12x3 + 6x2 − 4x− 1) [K2, L6] 253 2T 219 0 Z/2 0LS C2

180 (x2 − 2x− 1)(x4 + 12x3 + 34x2 + 20x+ 1) [K3, L4] 252 2S 219 1 Z/2 2 C2

−(x2 + 2x+ 3)(x4 + 4x3 − 6x2 + 12x− 7) [K2, L6] 253 2T 219 1 Z/2 0 C2
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

184 (x2 + 2)(x4 − 8x3 + 4x2 + 16x+ 4) [K2, L4] −254 2a 220 2 Z/2 2∗ C2

185 −(x2 + 2)(x4 + 8x3 + 4x2 − 16x+ 4) [K2, L4] −254 2a 220 0 Z/2 0 C2

191 (x2 + 2)(3x4 + 16x3 + 12x2 − 32x+ 12) [K2, L3] −260 2h 220 0 Z/2 0 C2

192 −(x2 + 2)(3x4 + 16x3 + 12x2 − 32x+ 12) [K2, L3] −260 2h 220 0 Z/2 0 C2

207 −x(x4 + 2) [Q,Q, L3] 221 2d 220 1 Z/2 4 C2

−2x(x4 + 2) [Q,Q, L3] 231 2d 220 1 Z/2 2 C2

208 −(x2 + 1)(3x4 + 4x3 − 2x2 − 4x+ 3) [K1, L3] −241 2r 220 0 Z/2 0 C4

209 −(x2 + 1)(x4 + 4x3 + 10x2 − 4x+ 1) [K1, L3] −241 2r 220 0* Z/2 0 C4

210 (x2 + 1)(x4 − 4x3 − 6x2 + 4x+ 1) [K1, L4] −241 2d 220 2 Z/2 4∗ C4

211 −(x2 + 1)(x4 + 4x3 − 6x2 − 4x+ 1) [K1, L4] −241 2d 220 0 Z/2 0 C4
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

212 (x2 + 1)(x4 − 4x3 + 10x2 + 4x+ 1) [K1, L3] −241 2r 220 2 Z/2 4∗ C4

213 (x2 + 1)(3x4 − 4x3 − 2x2 + 4x+ 3) [K1, L3] −241 2r 220 0 Z/2 0 C4

214 x(x4 − 2) [Q,Q, L2] −221 2d 220 1 Z/2 4 C2

2x(x4 − 2) [Q,Q, L2] −231 2d 220 1 Z/2 2 C2

215 −(x2 − 2x− 1)(x4 + 4x3 + 10x2 − 20x+ 9) [K3, L3] 254 2a 220 1 Z/2 2 C2

−(x2 + 2x− 1)(3x4 + 4x3 + 14x2 + 12x+ 11) [K3, L3] 254 2a 220 1 Z/2 0 C2

216 (x2 − 2x− 1)(x4 + 4x3 + 10x2 − 20x+ 9) [K3, L3] 254 2a 220 1 Z/2 2 C2

(x2 + 2x− 1)(3x4 + 4x3 + 14x2 + 12x+ 11) [K3, L3] 254 2a 220 1 Z/2 0 C2

217 (x2 − 2x− 1)(x4 + 12x3 + 18x2 − 44x+ 17) [K3, L4] 260 2h 220 1 Z/2 2 C2

(x2 + 2x− 1)(7x4 + 12x3 + 30x2 + 20x+ 23) [K3, L5] 260 2h 220 1 Z/2 0LS C2

218 −(x2 − 2x− 1)(x4 + 12x3 + 18x2 − 44x+ 17) [K3, L4] 260 2h 220 1 Z/2 0 C2
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

−(x2 + 2x− 1)(7x4 + 12x3 + 30x2 + 20x+ 23) [K3, L5] 260 2h 220 1 Z/2 0 C2

219 −x(x4 + 4x2 + 2) [Q,Q, L5] 221 2r 220 0 Z/2 2 C2

−2x(x4 − 4x2 + 2) [Q,Q, L4] 231 2r 220 0 Z/2 2 C2

220 −x(x4 − 4x2 + 2) [Q,Q, L4] 221 2r 220 2 Z/2 6∗ C2

−2x(x4 + 4x2 + 2) [Q,Q, L5] 231 2r 220 2 Z/2 4∗ C2

221 (x− 1)(2x4 − 1) [Q,Q, L2] −221 2U 220 1 Z/2 4 C2

2x(2x4 + 8x3 + 8x2 − 1) [Q,Q, L4] 231 2V 220 1 Z/2 4 C2

222 −(x+ 1)(x4 − 4x3 + 2x2 + 4x− 1) [Q,Q, L4] 221 2W 220 1 Z/2 4 C2

−2(x+ 1)(x4 − 4x3 + 2x2 + 4x− 1) [Q,Q, L4] 231 2W 220 1 Z/2 2 C2

223 x(2x4 + 8x3 + 8x2 − 1) [Q,Q, L4] 221 2V 220 1 Z/2 4 C2

−2(x+ 1)(2x4 − 1) [Q,Q, L2] −231 2U 220 1 Z/2 2 C2

224 −(x+ 1)(x4 − 4x3 − 2x2 + 4x− 1) [Q,Q, L4] 221 2X 220 2 Z/2 8∗ C2
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

−2(x− 2)(2x4 + 8x3 − 4x2 + 1) [Q,Q, L2] −231312 6g 220 2 Z/2 6∗ C2

225 −(x− 1)(x4 + 4x3 − 2x2 − 4x− 1) [Q,Q, L4] 221 2X 220 1 Z/2 2 C2

2(x− 2)(2x4 + 8x3 − 4x2 + 1) [Q,Q, L2] −231312 6g 220 1 Z/2 4 C2

226 (x+ 1)(2x4 − 1) [Q,Q, L2] −221 2U 220 0 Z/2 2 C2

−2x(2x4 + 8x3 + 8x2 − 1) [Q,Q, L4] 231 2V 220 0 Z/2 2 C2

227 −(x− 1)(x4 + 4x3 + 2x2 − 4x− 1) [Q,Q, L4] 221 2W 220 1 Z/2 4 C2

2(x+ 1)(x4 − 4x3 + 2x2 + 4x− 1) [Q,Q, L4] 231 2W 220 1 Z/2 4 C2

228 −x(2x4 + 8x3 + 8x2 − 1) [Q,Q, L4] 221 2V 220 2 Z/2 6∗ C2

2(x+ 1)(2x4 − 1) [Q,Q, L2] −231 2U 220 2 Z/2 4∗ C2

229 −2(x+ 1)(x4 − 4x3 − 2x2 + 4x− 1) [Q,Q, L4] 231 2X 220 0 Z/2 2 C2

−(x− 2)(2x4 + 8x3 − 4x2 + 1) [Q,Q, L2] −221312 6g 220 0 Z/2 2 C2

230 2(x+ 1)(x4 − 4x3 − 2x2 + 4x− 1) [Q,Q, L4] 231 2X 220 1 Z/2 2 C2
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Table 6.21 (continued).

Isog Label Simplified Weierstrass equation Field system ∆min Q label N Rank J(Q)tors #C(Q) Aut(C)

(x− 2)(2x4 + 8x3 − 4x2 + 1) [Q,Q, L2] −221312 6g 220 1 Z/2 2 C2

231 −(2x2 − 1)(4x4 − 36x2 + 32x+ 17) [K3, L4] 260 2Y 220 0 Z/2 0LS C2

3(x2 − 6x+ 7)(x4 − 12x3 − 46x2 − 84x− 47) [K3, L2] −260322 6h 220 0 Z/2 0 C2

232 (x2 − 2x− 1)(x4 − 4x3 − 30x2 + 4x+ 97) [K3, L4] 260 2Y 220 1 Z/2 2 C2

−3(2x2 + 4x+ 1)(4x4 + 16x3 − 76x2 + 104x− 47) [K3, L2] −260322 6h 220 1 Z/2 0 C2

233 (2x2 − 1)(4x4 − 36x2 + 32x+ 17) [K3, L4] 260 2Y 220 1 Z/2 0LS C2

−3(x2 − 6x+ 7)(x4 − 12x3 − 46x2 − 84x− 47) [K3, L2] −260322 6h 220 1 Z/2 0 C2

234 −(x2 − 2x− 1)(x4 − 4x3 − 30x2 + 4x+ 97) [K3, L4] 260 2Y 220 0 Z/2 0LS C2

3(2x2 + 4x+ 1)(4x4 + 16x3 − 76x2 + 104x− 47) [K3, L2] −260322 6h 220 0 Z/2 0 C2
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6.4 List of Q-isomorphism classes of genus 2 curves

Finally, we present a table of the 67 Q-isomorphism classes found in the above list
of genus 2 curves C/Q. These are ordered first by the product of the primes of
geometric bad reduction, and then by the order in which they appear in Table 6.21.
There are seven columns giving the following information:

1. A label for the Q-isomorphism class given in the format Ni. Here, N is the prod-
uct of the geometric bad primes for C/Q, and i is a letter that distinguishes
this Q-isomorphism class amongst those with the same set of geometric bad
primes.

2. The G2-invariants, as defined in (1.15).

3. The set of geometric bad primes for C/Q.

4. The geometric automorphism group Aut(CQ).

5. The identity component ST0(J) of the Sato-Tate group ST(J) of the Jacobian
J of C/Q.

6. A checkmark indicating whether C/Q has GL2-type over Q.

7. Two numbers; the first indicating the number of genus 2 curves C/Q contained
in this Q-isomorphism class, and the second (in brackets) indicating the number
of Q-isogeny classes this Q-isomorphism hits.
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Table 6.22: The 67 known Q-isomorphism classes of genus 2 curves C/Q whose Jacobian has good reduction away from 2.

Q label G2-invariants (g1, g2, g3) Bad primes Aut(CQ) ST0(J) GL2/Q? #C/Q (isog)

2a
(︂
2·135, 133·59

22
,
−32·132

23

)︂
{2} D4 SU(2) 14 (10)

2b
(︁
29·310, −25·36·5·19, −27·34·113

)︁
{2} C2

2 U(1)× SU(2) 16 (8)

2c
(︁
211·35·75, 26·33·52·73·23, 28·32·73·23

)︁
{2} C2

2 U(1)× SU(2) 16 (8)

2d
(︁
24·55, 2·3·54, −53

)︁
{2} GL2(F3) U(1) 22 (12)

2e
(︁
213·35·115, 27·33·113·2689, 29·32·112·1087

)︁
{2} C2

2 U(1)×U(1) 16 (4)

2f
(︁
223, 214·3·5, 212

)︁
{2} D4 SU(2) 22 (14)

2g
(︁
210·475, 25·5·19·31·473, 28·7·472·137

)︁
{2} C2

2 SU(2) 4 (3)

2h
(︂675
25

,
3·673·353

28
,
−31·672

29

)︂
{2} D4 SU(2) 14 (10)

2i
(︁
28·595, 24·593·997, 23·7·592·127

)︁
{2} C2 SU(2) 4 (2)

2j
(︁
229, 217·3·43, −215

)︁
{2} C2

2 U(1)× SU(2) 16 (8)

2k
(︁
214·35·55, 28·33·53·577, 29·32·52·223

)︁
{2} C2

2 U(1)× SU(2) 16 (8)
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Table 6.22 (continued).

Q label G2-invariants (g1, g2, g3) Bad primes Aut(CQ) ST0(J) GL2/Q? #C/Q (isog)

2l
(︁
217, 211·3, −29

)︁
{2} C2

2 SU(2)× SU(2) ✓ 8 (8)

2m
(︁
223, 214·17, −212

)︁
{2} C2

2 SU(2)× SU(2) ✓ 8 (8)

2n
(︁
210·535, 25·47·533·79, 28·17·532·79

)︁
{2} C2

2 SU(2)× SU(2) ✓ 8 (8)

2o
(︁
27, 24·5, −23·3

)︁
{2} D4 SU(2) 8 (5)

2p
(︁
26·710, 24·76·367, 23·3·5·74·113

)︁
{2} C2 SU(2) 4 (2)

2q
(︁
211·35, 27·33, −27·32·5

)︁
{2} C2

2 U(1)×U(1) 16 (4)

2r
(︁
24·115, 2·113·23, −3·112

)︁
{2} D4 SU(2) 14 (10)

2s
(︁
216, 210·19, −28·3

)︁
{2} C2 SU(2) 4 (2)

2t
(︁
225, 215·31, 213

)︁
{2} C2

2 SU(2)× SU(2) ✓ 4 (4)

2u
(︁
215·75, 29·3·73·43, 29·72·47

)︁
{2} C2

2 SU(2)× SU(2) ✓ 4 (4)

2v
(︁
216·35, 210·33·52, 29·32·7

)︁
{2} C2

2 SU(2)× SU(2) ✓ 4 (4)

2w
(︁
212·310, 27·36·5·19, 28·34·17

)︁
{2} C2

2 SU(2)× SU(2) ✓ 4 (4)
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Table 6.22 (continued).

Q label G2-invariants (g1, g2, g3) Bad primes Aut(CQ) ST0(J) GL2/Q? #C/Q (isog)

2x
(︁
221, 213·7, 211

)︁
{2} C2

2 SU(2)× SU(2) ✓ 8 (8)

2y
(︁
212·115, 27·3·113·53, 28·72·112

)︁
{2} C2

2 SU(2)× SU(2) ✓ 8 (8)

2z
(︂
23·175, 7·174, 32·172·31

2

)︂
{2} C2 USp(4) 4 (4)

2A
(︂
22·55, 53·11

2
,
3·53

22

)︂
{2} C2 USp(4) 4 (4)

2B
(︁
210·135, 26·133·79, 25·3·132·17

)︁
{2} C2 USp(4) 4 (4)

2C
(︁
210·115, 26·113·37, 25·3·7·112

)︁
{2} C2 USp(4) 4 (4)

2D
(︁
217·55, 210·54·7, 28·3·52

)︁
{2} C2 USp(4) 4 (4)

2E
(︁
226, 216, 0

)︁
{2} C2 USp(4) 4 (4)

2F
(︂
2·975, 13·973·251

22
,
3·11·972·1151

23

)︂
{2} C2 USp(4) 4 (4)

2G
(︂115
22

,
−113·13

25
,
3·5·7·112

26

)︂
{2} C2 USp(4) 4 (4)

2H
(︂
2·35·75, 35·73·19

22
,
34·72·71

23

)︂
{2} C2 SU(2) 4 (1)
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Table 6.22 (continued).

Q label G2-invariants (g1, g2, g3) Bad primes Aut(CQ) ST0(J) GL2/Q? #C/Q (isog)

2I
(︁
− 27·35, 24·34, −23·33·13

)︁
{2} C2 SU(2) 4 (1)

2J
(︁
24·115, 2·3·5·113, 3·7·112

)︁
{2} C2 USp(4) 4 (4)

2K
(︁
24·135, 2·133·71, 5·132·31

)︁
{2} C2 USp(4) 4 (4)

2L
(︁
26·55, 23·53·17, −22·3·53

)︁
{2} C2 USp(4) 4 (4)

2M
(︁
− 25, 22, −2·3·5

)︁
{2} C2 USp(4) 4 (4)

2N
(︁
26·35·55, 23·34·53·19, 22·33·52·17

)︁
{2} C2 USp(4) 4 (4)

2O
(︁
25·35, 22·34·5, −2·33

)︁
{2} C2 USp(4) 4 (4)

2P
(︁
26·835, 23·3·833·631, 22·3·7·17·31·832

)︁
{2} C2 USp(4) 4 (4)

2Q
(︁
26·115, 23·3·7·113, 22·3·112

)︁
{2} C2 USp(4) 4 (4)

2R
(︁
25·55, −22·53, −2·53

)︁
{2} C2 USp(4) 4 (4)

2S
(︂
23·235, 11·13·233, 7·232·31

2

)︂
{2} C2 USp(4) 4 (4)

2T
(︂
22·115, 33·113

2
,
−3·5·112

22

)︂
{2} C2 USp(4) 4 (4)
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Table 6.22 (continued).

Q label G2-invariants (g1, g2, g3) Bad primes Aut(CQ) ST0(J) GL2/Q? #C/Q (isog)

2U
(︁
24·55, 2·53·23, −32·53

)︁
{2} C2 USp(4) 4 (4)

2V
(︁
24·195, 2·5·194, 3·192·31

)︁
{2} C2 USp(4) 4 (4)

2W
(︁
24·315, 2·310·61, 37·47

)︁
{2} C2 U(1)×U(1) 4 (2)

2X
(︁
24·315, 2·39·47, 36·5

)︁
{2} C2 USp(4) 4 (4)

2Y
(︂1395

25
,
1393·5171

28
,
17·23·79·1392

29

)︂
{2} C2 USp(4) 4 (4)

6a
(︂29·235

37
,
24·5·11·233·37

38
,
−28·232·89

310

)︂
{2, 3} D4 U(1) 22 (6)

6b
(︂−218·55

37
,
210·53·1549

38
,
−211·52·3673

310

)︂
{2, 3} C2

2 U(1) 16 (4)

6c
(︂−55·135

22·37
,
−53·134·829

25·38
,
−53·132·29·163·179

26·310
)︂

{2, 3} C2 SU(2) 4 (2)

6d
(︂−24·235

37
,
−26·233·239

38
,
−22·5·232·29·1451

310

)︂
{2, 3} C2 SU(2) 4 (2)

6e
(︂−219

37
,
211·13
38

,
−211·11·107

310

)︂
{2, 3} C2

2 U(1)× SU(2) 16 (8)
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Table 6.22 (continued).

Q label G2-invariants (g1, g2, g3) Bad primes Aut(CQ) ST0(J) GL2/Q? #C/Q (isog)

6f
(︂210·135

37
,
25·133·883

38
,
−28·132·281

310

)︂
{2, 3} C2

2 SU(2)× SU(2) ✓ 8 (8)

6g
(︂−24·415

37
,
−2·413·1789

38
,
−5·17·412·281

310

)︂
{2, 3} C2 USp(4) 4 (4)

6h
(︂−975
25·37

,
−11·973·1667

28·38
,
−972·113·45137

29·310
)︂

{2, 3} C2 USp(4) 4 (4)

10a
(︂−29·35·675

512
,
−25·33·23·673·383

512
,
−27·32·132·672·113

512

)︂
{2, 5} C2

2 U(1)× SU(2) 16 (8)

10b
(︂−29·295

512
,
24·293·61·67

512
,
−28·292·27529

512

)︂
{2, 5} C2

2 U(1) 8 (4)

10c
(︂25·135·1375

512
,
22·134·1373·193·443

512
,
2·7·132·89·1372·390821

512

)︂
{2, 5} C2 USp(4) 4 (4)

14a
(︂213·310·195

712
,
27·36·193·59·2339

712
,
−29·34·17·192·6337

712

)︂
{2, 7} C2

2 U(1)×U(1) 16 (4)

14b
(︂−28·1515

712
,
23·5·41·43·1513

712
,
−28·71·1512·2663

712

)︂
{2, 7} C2

2 SU(2) 8 (6)
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Table 6.22 (continued).

Q label G2-invariants (g1, g2, g3) Bad primes Aut(CQ) ST0(J) GL2/Q? #C/Q (isog)

26a
(︂2·115·415435

1312
,
113·47·28703·38699·415433

22·1312
,
−3·112·415432·76163

23·1312
)︂

{2, 13} D4 SU(2) 8 (6)

42a
(︂−28·22815

37·712
,
−24·353·22813·36151

38·712
,
−23·22812·3697·24726833

310·712
)︂

{2, 3, 7} C2 SU(2) 4 (2)

66a
(︂−26·195·6175

37·1112
,
−2·52·13·193·109·6173·11467

38·1112
,
−28·192·577·6172·2301569

310·1112
)︂
{2, 3, 11} C2

2 U(1) 4 (2)
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“Goodbye..? Oh no, please. Can’t we go back to page one and do it all over again? ”
- A.A. Milne, Winnie-the-Pooh
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Field systems of genus 2 curves

Here, we tabulate a full list of all 48 possible field systems, as defined in Definition 5.8,
of a genus 2 curve C : y2 = f(x) over Q whose Jacobian has good reduction away from
2. We recall that K1,K2,K3 denote the three quadratic fields unramified away from
2, namely Q(i),Q(

√
−2),Q(

√
2) respectively; L1, L2, . . . , L7 denote the seven quartic

fields unramified away from 2, namely Q( 4
√
−1), Q( 4

√
2), Q( 4

√
−2), Q(

√︁
2 +
√
2),

Q(
√︁
−2−

√
2), Q(

√︁
1 +
√
2), Q(

√︁
1 +
√
−1) respectively; and M1,M2,M3 denote

the three octic fields Q( 8
√
−1), Q(ζ8,

4
√
2), Q(

4
√︁
2
√
2− 3) respectively. These are also

defined in Tables 5.4 and 5.6 given in Chapter 5.

Table A.1: List of all 48 possible field systems [M1,M2, . . . ,Mm] of genus 2 curves
C : y2 = f(x) over Q whose Jacobian has good reduction away from 2. For each field
system, we give the corresponding field of 2-torsion Q(J [2]) and its Galois group. We
also give the number of rational 2-torsion points #J(Q)[2], the mod 2 Galois image
Im(ρC,2), and the number of known genus 2 curves C/Q with 2-power conductor
with this field system.

Field System Q(J [2]) Gal(Q(J [2])/Q) #J(Q)[2] Im(ρC,2) Num curves

[Q,Q,Q,Q,Q,Q] Q C1 16 {I} 0

[Q,Q,Q,Q,K1] K1 C2 8 2b 1

[Q,Q,Q,Q,K2] K2 C2 8 2b 2

[Q,Q,Q,Q,K3] K3 C2 8 2b 3

[Q,Q,K1,K1] K1 C2 4 2c 1

[Q,Q,K1,K2] L1 C2
2 4 4c 4

254
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Table A.1 (continued).

Field System Q(J [2]) Gal(Q(J [2])/Q) #J(Q)[2] Im(ρC,2) Num curves

[Q,Q,K1,K3] L1 C2
2 4 4c 12

[Q,Q,K2,K2] K2 C2 4 2c 3

[Q,Q,K2,K3] L1 C2
2 4 4c 3

[Q,Q,K3,K3] K3 C2 4 2c 5

[Q,Q, L1] L1 C2
2 2 4a 12

[Q,Q, L2] M2 D4 2 8c 34

[Q,Q, L3] M2 D4 2 8c 6

[Q,Q, L4] L4 C4 2 4e 56

[Q,Q, L5] L5 C4 2 4e 8

[Q,Q, L6] M3 D4 2 8c 36

[Q,Q, L7] M3 D4 2 8c 26

[K1,K1,K1] K1 C2 4 2a 0

[K1,K1,K2] L1 C2
2 4 4f 2

[K1,K1,K3] L1 C2
2 4 4f 5

[K1,K2,K2] L1 C2
2 4 4f 2

[K1,K2,K3] L1 C2
2 4 4b 4

[K1,K3,K3] L1 C2
2 4 4f 12

[K2,K2,K2] K2 C2 4 2a 0

[K2,K2,K3] L1 C2
2 4 4f 2

[K2,K3,K3] L1 C2
2 4 4f 6

[K3,K3,K3] K3 C2 4 2a 2

[K1, L1] L1 C2
2 2 4d 4
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Table A.1 (continued).

Field System Q(J [2]) Gal(Q(J [2])/Q) #J(Q)[2] Im(ρC,2) Num curves

[K1, L2] M2 D4 2 8d 14

[K1, L3] M2 D4 2 8d 10

[K1, L4] M1 C2 × C4 2 8e 12

[K1, L5] M1 C2 × C4 2 8e 10

[K1, L6] M3 D4 2 8a 24

[K1, L7] M3 D4 2 8b 10

[K2, L1] L1 C2
2 2 4d 6

[K2, L2] M2 D4 2 8a 16

[K2, L3] M2 D4 2 8b 4

[K2, L4] M1 C2 × C4 2 8e 8

[K2, L5] M1 C2 × C4 2 8e 10

[K2, L6] M3 D4 2 8d 20

[K2, L7] M3 D4 2 8d 16

[K3, L1] L1 C2
2 2 4d 5

[K3, L2] M2 D4 2 8b 18

[K3, L3] M2 D4 2 8a 12

[K3, L4] L4 C4 2 4g 24

[K3, L5] L5 C4 2 4g 8

[K3, L6] M3 D4 2 8b 18

[K3, L7] M3 D4 2 8a 16
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Mod-ℓ Galois images

B.1 Mod 2 Galois images

Table B.1: List of the 15 possible mod 2 Galois images Im(ρC,2) in GSp4(F2) for
our table of 512 genus 2 curves in Table 6.21. For each possible mod 2 image, we
give our label, the corresponding LMFDB label, and a description of Im(ρC,2) as an
abstract group. Here Cn denotes the cyclic group of order n and Dn denotes the
dihedral group of order 2n.

Label LMFDB label Order Group Matrix Generators Num curves

2a 2.360.3 2 C2

⎛⎜⎜⎜⎜⎝
1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ 2

2b 2.360.2 2 C2

⎛⎜⎜⎜⎜⎝
1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

⎞⎟⎟⎟⎟⎠ 6

2c 2.360.1 2 C2

⎛⎜⎜⎜⎜⎝
0 1 0 1

0 1 0 0

1 0 1 1

1 1 0 0

⎞⎟⎟⎟⎟⎠ 9

257

https://www.lmfdb.org/knowledge/show/gsp4.subgroup_data?label=2.360.3
https://www.lmfdb.org/knowledge/show/gsp4.subgroup_data?label=2.360.2
https://www.lmfdb.org/knowledge/show/gsp4.subgroup_data?label=2.360.1
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Table B.1 (continued).

Label LMFDB label Order Group Matrix Generators Num curves

4a 2.180.5 4 C2 × C2

⎛⎜⎜⎜⎜⎝
0 1 0 1

0 1 0 0

1 0 1 1

1 1 0 0

⎞⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎝
0 0 1 1

1 1 0 1

0 0 1 0

1 0 1 0

⎞⎟⎟⎟⎟⎠ 12

4b 2.180.6 4 C2 × C2

⎛⎜⎜⎜⎜⎝
1 0 1 0

1 1 1 1

0 0 1 0

0 0 1 1

⎞⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎝
0 0 0 1

0 1 1 0

0 0 1 0

1 0 0 0

⎞⎟⎟⎟⎟⎠ 4

4c 2.180.3 4 C2 × C2

⎛⎜⎜⎜⎜⎝
1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

⎞⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎝
1 0 1 1

1 0 0 1

1 1 0 0

1 1 1 1

⎞⎟⎟⎟⎟⎠ 19

4d 2.180.4 4 C2 × C2

⎛⎜⎜⎜⎜⎝
1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎝
0 1 1 1

1 0 1 1

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎟⎠ 15

4e 2.180.2 4 C4

⎛⎜⎜⎜⎜⎝
0 0 0 1

0 0 1 1

0 1 1 1

1 1 0 1

⎞⎟⎟⎟⎟⎠ 64

4f 2.180.7 4 C2 × C2

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎝
1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ 29

4g 2.180.1 4 C4

⎛⎜⎜⎜⎜⎝
0 0 1 0

1 0 1 0

1 0 1 1

0 1 0 1

⎞⎟⎟⎟⎟⎠ 32

https://www.lmfdb.org/knowledge/show/gsp4.subgroup_data?label=2.180.5
https://www.lmfdb.org/knowledge/show/gsp4.subgroup_data?label=2.180.6
https://www.lmfdb.org/knowledge/show/gsp4.subgroup_data?label=2.180.3
https://www.lmfdb.org/knowledge/show/gsp4.subgroup_data?label=2.180.4
https://www.lmfdb.org/knowledge/show/gsp4.subgroup_data?label=2.180.2
https://www.lmfdb.org/knowledge/show/gsp4.subgroup_data?label=2.180.7
https://www.lmfdb.org/knowledge/show/gsp4.subgroup_data?label=2.180.1
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Table B.1 (continued).

Label LMFDB label Order Group Matrix Generators Num curves

8a 2.90.2 8 D4

⎛⎜⎜⎜⎜⎝
0 1 1 0

0 1 1 1

1 1 1 1

1 1 0 0

⎞⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎝
0 1 1 1

1 0 1 1

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎟⎠ 68

8b 2.90.1 8 D4

⎛⎜⎜⎜⎜⎝
0 1 0 1

0 1 0 0

1 1 1 1

1 1 0 0

⎞⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎝
1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

⎞⎟⎟⎟⎟⎠ 50

8c 2.90.3 8 D4

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎝
1 0 1 1

0 1 0 1

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ 102

8d 2.90.4 8 D4

⎛⎜⎜⎜⎜⎝
0 1 1 0

0 0 0 1

1 0 0 1

0 1 0 0

⎞⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎝
1 0 1 0

1 1 1 1

0 0 1 0

0 0 1 1

⎞⎟⎟⎟⎟⎠ 60

8e 2.90.7 8 C2 × C4

⎛⎜⎜⎜⎜⎝
1 0 1 1

1 1 1 0

0 0 1 0

0 0 1 1

⎞⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ 40

B.2 Mod 3 Galois images

https://www.lmfdb.org/knowledge/show/gsp4.subgroup_data?label=2.90.2
https://www.lmfdb.org/knowledge/show/gsp4.subgroup_data?label=2.90.1
https://www.lmfdb.org/knowledge/show/gsp4.subgroup_data?label=2.90.3
https://www.lmfdb.org/knowledge/show/gsp4.subgroup_data?label=2.90.4
https://www.lmfdb.org/knowledge/show/gsp4.subgroup_data?label=2.90.7
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Table B.2: List of the 33 possible mod 3 Galois images Im(ρC,3) in GSp4(F3) for
our table of 512 genus 2 curves in Table 6.21. For each possible mod 3 image, we
give the label (as provided by Chidambaram [94]), and the GAP ID and (possibly
multiple) description(s) of Im(ρC,3) as an abstract group. As before, Cn denotes the
cyclic group of order n, Dn denotes the dihedral group of order 2n, and Qn denotes
the (generalised) quarternion group of order n.

Label GAP ID Group Matrix Generators Num curves

3.12960.8 ⟨8, 3⟩ D4

⎛⎜⎜⎜⎜⎝
1 1 1 1

0 2 1 1

1 2 1 2

2 1 0 2

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
2 0 1 2

0 2 1 1

2 2 1 0

1 2 0 1

⎞⎟⎟⎟⎟⎠ 2

3.12960.18 ⟨8, 3⟩ D4

⎛⎜⎜⎜⎜⎝
1 2 1 2

1 2 0 1

1 1 1 1

0 1 2 2

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
0 1 1 2

0 0 0 1

1 1 0 2

0 1 0 0

⎞⎟⎟⎟⎟⎠ 2

3.6480.9 ⟨16, 11⟩ C2 ×D4

⎛⎜⎜⎜⎝
2 1 1 0

2 1 0 2

2 0 1 1

0 1 2 2

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
2 0 0 1

0 2 0 0

0 1 1 0

0 0 0 1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1 1 0 0

0 2 0 0

0 0 2 1

0 0 0 1

⎞⎟⎟⎟⎠ 3

3.6480.17 ⟨16, 13⟩
C4 ◦D4,
D4 ⋊ C2

⎛⎜⎜⎜⎝
1 2 2 0

0 0 2 2

2 2 0 1

1 2 0 2

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
2 1 2 1

2 1 0 2

2 2 2 2

0 2 1 1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0 1 1 2

0 0 0 1

1 1 0 2

0 1 0 0

⎞⎟⎟⎟⎠ 1

3.6480.18 ⟨16, 13⟩
C4 ◦D4,
D4 ⋊ C2

⎛⎜⎜⎜⎝
2 1 2 1

2 1 0 2

2 2 2 2

0 2 1 1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
2 0 2 1

2 1 0 2

2 2 2 0

0 2 1 1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
2 0 1 1

0 2 1 1

2 1 1 0

1 2 0 1

⎞⎟⎟⎟⎠ 3

3.6480.22 ⟨16, 8⟩
SD16,

2-Sylow(GL2(F3))

⎛⎜⎜⎜⎜⎝
1 2 2 0

0 0 2 2

2 0 1 1

1 2 0 0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
2 0 0 1

0 2 0 0

0 1 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ 8

3.6480.28 ⟨16, 11⟩ C2 ×D4

⎛⎜⎜⎜⎝
2 2 0 1

0 1 0 0

0 2 2 1

0 0 0 1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
2 0 1 2

0 2 1 1

2 2 1 0

1 2 0 1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1 1 0 0

0 2 0 0

0 0 2 1

0 0 0 1

⎞⎟⎟⎟⎠ 6

https://beta.lmfdb.org/Groups/Abstract/8.3
https://beta.lmfdb.org/Groups/Abstract/8.3
https://beta.lmfdb.org/Groups/Abstract/16.11
https://beta.lmfdb.org/Groups/Abstract/16.13
https://beta.lmfdb.org/Groups/Abstract/16.13
https://beta.lmfdb.org/Groups/Abstract/16.8
https://beta.lmfdb.org/Groups/Abstract/16.11
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Table B.2 (continued).

Label GAP ID Group Matrix Generators Num curves

3.6480.29 ⟨16, 13⟩
C4 ◦D4,
D4 ⋊ C2

⎛⎜⎜⎜⎝
1 1 1 0

0 2 1 1

1 0 1 2

2 1 0 2

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0 1 1 2

0 0 0 1

1 1 0 2

0 1 0 0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
2 2 0 0

0 1 0 0

0 0 1 2

0 0 0 2

⎞⎟⎟⎟⎠ 3

3.3240.4 ⟨32, 44⟩
Q16 ⋊ C2,
C8.C

2
2

⎛⎜⎜⎜⎝
0 2 2 0

0 2 2 2

1 1 1 1

2 1 0 0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0 2 2 1

0 2 2 2

1 1 0 2

2 1 0 1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1 2 2 0

1 2 0 1

1 0 2 2

0 2 1 1

⎞⎟⎟⎟⎠ 2

3.3240.5 ⟨32, 42⟩
C4 ◦D8,
D8 ⋊ C2

⎛⎜⎜⎜⎝
0 1 1 0

0 1 1 1

1 0 0 2

2 1 0 1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1 2 1 2

1 2 0 1

1 1 1 1

0 1 2 2

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
2 0 0 0

0 2 0 0

2 2 1 0

1 2 0 1

⎞⎟⎟⎟⎠ 6

3.3240.7 ⟨32, 43⟩
C8 ⋊ C2

2 ,
D8 ⋊ C2,
Aut(D8)

⎛⎜⎜⎜⎝
0 1 1 2

0 0 0 1

1 1 0 2

0 1 0 0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1 2 1 2

0 0 1 1

2 2 2 2

1 2 0 0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
2 0 1 2

2 1 0 1

0 0 2 0

0 0 1 1

⎞⎟⎟⎟⎠ 4

3.3240.8 ⟨32, 40⟩
C2 × SD16,

2-Sylow(GL3(F3))

⎛⎜⎜⎜⎝
0 0 1 0

0 0 0 1

2 0 0 0

0 2 0 0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
2 0 1 2

0 2 2 1

2 2 1 0

2 2 0 1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0 1 1 1

2 0 2 2

2 1 0 1

2 1 2 0

⎞⎟⎟⎟⎠ 14

3.3240.12 ⟨32, 42⟩
C4 ◦D8,
D8 ⋊ C2

⎛⎜⎜⎜⎝
1 1 2 0

2 2 0 1

1 0 2 1

0 2 2 1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
2 1 0 1

1 2 1 0

0 1 1 1

1 0 1 1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0 2 0 0

2 0 0 0

0 0 0 2

0 0 2 0

⎞⎟⎟⎟⎠ 4

3.3240.21 ⟨32, 38⟩
C8 ◦D4,

OD16 ⋊ C2

⎛⎜⎜⎜⎝
0 1 1 1

1 2 0 2

1 0 1 1

1 2 1 0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0 2 2 1

1 0 2 1

1 1 0 2

2 2 1 0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0 0 0 1

0 0 2 0

0 1 0 0

2 0 0 0

⎞⎟⎟⎟⎠ 2

3.2160.36 ⟨48, 29⟩ GL2(F3)

⎛⎜⎜⎜⎜⎝
2 1 1 2

0 0 1 1

1 1 2 2

2 1 0 0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
0 0 0 1

0 2 2 0

0 2 0 0

1 0 0 2

⎞⎟⎟⎟⎟⎠ 4

https://beta.lmfdb.org/Groups/Abstract/16.13
https://beta.lmfdb.org/Groups/Abstract/32.44
https://beta.lmfdb.org/Groups/Abstract/32.42
https://beta.lmfdb.org/Groups/Abstract/32.43
https://beta.lmfdb.org/Groups/Abstract/32.40
https://beta.lmfdb.org/Groups/Abstract/32.42
https://beta.lmfdb.org/Groups/Abstract/32.38
https://beta.lmfdb.org/Groups/Abstract/48.29
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Table B.2 (continued).

Label GAP ID Group Matrix Generators Num curves

3.1620.8 ⟨64, 141⟩
Q8 ⋊D4,
C4 ⋊ SD16

⎛⎜⎜⎜⎝
2 1 1 2

1 1 1 1

0 0 2 2

0 0 2 1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0 2 2 0

1 0 0 2

1 0 0 1

0 1 2 0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0 1 2 0

2 0 0 2

1 0 0 2

0 1 1 0

⎞⎟⎟⎟⎠ 48

3.1620.12 ⟨64, 152⟩ C8.D4

⎛⎜⎜⎜⎝
0 0 2 0

0 0 0 2

1 0 0 0

0 1 0 0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0 2 0 0

0 0 0 1

1 0 0 0

0 0 1 0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0 2 2 2

2 1 0 1

2 0 2 2

2 1 2 0

⎞⎟⎟⎟⎠ 8

3.1620.13 ⟨64, 173⟩ C8 ⋊D4

⎛⎜⎜⎜⎝
0 1 1 2

2 2 0 1

2 0 1 2

2 2 1 0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0 0 1 0

0 0 0 1

2 0 0 0

0 2 0 0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1 1 2 0

1 1 0 2

2 0 1 2

0 2 2 1

⎞⎟⎟⎟⎠ 16

3.1296.1 ⟨80, 29⟩ C20.C4

⎛⎜⎜⎜⎜⎝
0 1 2 0

2 2 1 1

1 1 2 1

0 1 0 2

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
1 1 0 0

2 0 1 2

0 2 1 2

1 0 1 1

⎞⎟⎟⎟⎟⎠ 4

3.1080.7 ⟨96, 192⟩
C4 ◦GL2(F3),
GL2(F3)⋊ C2

⎛⎜⎜⎜⎜⎝
2 0 0 1

0 1 2 0

0 0 2 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
1 0 2 1

2 2 1 0

0 2 2 1

2 2 0 1

⎞⎟⎟⎟⎟⎠ 6

3.1080.13 ⟨96, 189⟩ C2 ×GL2(F3)

⎛⎜⎜⎜⎜⎝
1 2 1 0

1 1 2 0

2 0 2 2

2 0 1 2

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
1 2 2 1

1 1 1 1

1 1 2 2

1 2 1 2

⎞⎟⎟⎟⎟⎠ 20

3.1080.19 ⟨96, 192⟩
C4 ◦GL2(F3),
GL2(F3)⋊ C2

⎛⎜⎜⎜⎜⎝
0 0 2 1

1 1 1 1

1 1 0 0

1 2 1 2

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
2 2 1 0

2 2 0 1

1 0 2 1

0 1 1 2

⎞⎟⎟⎟⎟⎠ 4

3.540.4 ⟨192, 1485⟩
GL2(F3)⋊ C2

2 ,
D4.S4

⎛⎜⎜⎜⎝
0 0 0 1

0 0 1 0

0 2 0 0

2 0 0 0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1 2 0 0

2 2 0 0

0 0 2 2

0 0 2 1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
2 2 1 0

1 2 1 0

2 0 1 2

1 0 1 1

⎞⎟⎟⎟⎠ 10

https://beta.lmfdb.org/Groups/Abstract/64.141
https://beta.lmfdb.org/Groups/Abstract/64.152
https://beta.lmfdb.org/Groups/Abstract/64.173
https://beta.lmfdb.org/Groups/Abstract/80.29
https://beta.lmfdb.org/Groups/Abstract/96.192
https://beta.lmfdb.org/Groups/Abstract/96.189
https://beta.lmfdb.org/Groups/Abstract/96.192
https://beta.lmfdb.org/Groups/Abstract/192.1485
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Table B.2 (continued).

Label GAP ID Group Matrix Generators Num curves

3.540.10 ⟨192, 963⟩
CU2(F3),

GL2(F3)⋊ C4

⎛⎜⎜⎜⎜⎝
0 1 1 1

2 1 0 1

2 2 1 0

2 0 1 2

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
2 0 0 2

0 2 1 0

0 2 2 0

1 0 0 2

⎞⎟⎟⎟⎟⎠ 16

3.540.12 ⟨192, 952⟩
C4 ⋊ GL2(F3),
Q8 ⋊D12

⎛⎜⎜⎜⎜⎝
0 0 1 1

1 2 0 1

0 0 1 0

1 0 2 0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
1 1 0 0

1 1 2 1

2 0 0 0

2 1 1 0

⎞⎟⎟⎟⎟⎠ 32

3.405.1 ⟨256, 6671⟩ Q2
8 ⋊ C2

2

⎛⎜⎜⎜⎝
2 1 1 1

2 2 2 1

0 1 0 2

0 2 0 2

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0 0 2 0

0 0 0 1

2 0 0 0

0 1 0 0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1 0 1 1

0 1 1 1

2 1 2 0

1 2 0 2

⎞⎟⎟⎟⎠ 8

3.360.1 ⟨288, 875⟩ C4.SO+
4 (F2)

⎛⎜⎜⎜⎝
0 2 2 0

0 0 0 1

2 2 2 2

0 0 2 1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1 2 1 0

2 2 2 1

2 0 0 0

1 0 2 0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1 2 2 0

0 2 1 2

2 1 2 1

2 2 0 0

⎞⎟⎟⎟⎠ 8

3.270.1 ⟨384, 18045⟩ GL2(F3)⋊D4

⎛⎜⎜⎜⎝
1 0 0 1

0 1 0 0

0 1 1 0

2 0 0 0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1 0 2 1

0 1 1 2

1 1 2 0

1 1 0 2

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0 2 2 0

2 0 0 2

2 0 0 0

0 2 0 0

⎞⎟⎟⎟⎠ 44

3.270.4 ⟨384, 5676⟩ Q8 ⋊ GL2(F3)

⎛⎜⎜⎜⎜⎝
2 0 1 1

1 2 0 0

0 1 0 2

0 1 0 0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
0 0 1 2

2 2 0 0

1 1 2 2

1 2 2 1

⎞⎟⎟⎟⎟⎠ 64

3.135.1 ⟨768, 1086054⟩ Q2
8 ⋊D6

⎛⎜⎜⎜⎜⎝
2 0 1 2

2 2 1 0

2 0 2 2

1 2 1 0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
0 0 2 2

2 1 0 0

0 0 2 1

2 2 0 0

⎞⎟⎟⎟⎟⎠ 8

3.135.2 ⟨768, 1086054⟩ Q2
8 ⋊D6

⎛⎜⎜⎜⎜⎝
2 0 1 1

0 2 0 1

1 0 0 2

1 1 2 2

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
1 1 1 0

2 1 2 2

2 0 0 0

2 1 0 0

⎞⎟⎟⎟⎟⎠ 16

https://beta.lmfdb.org/Groups/Abstract/192.963
https://beta.lmfdb.org/Groups/Abstract/192.952
https://beta.lmfdb.org/Groups/Abstract/256.6671
https://beta.lmfdb.org/Groups/Abstract/288.875
https://beta.lmfdb.org/Groups/Abstract/384.18045
https://beta.lmfdb.org/Groups/Abstract/384.5676
https://beta.lmfdb.org/Groups/Abstract/768.1086054
https://beta.lmfdb.org/Groups/Abstract/768.1086054
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Table B.2 (continued).

Label GAP ID Group Matrix Generators Num curves

3.45.1 ⟨2304,−⟩ Q2
8.S

2
3

⎛⎜⎜⎜⎜⎝
0 0 2 1

1 1 1 0

1 1 1 2

0 2 1 1

⎞⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎝
2 1 0 1

0 1 2 2

1 0 1 0

0 2 1 2

⎞⎟⎟⎟⎟⎠ 32

1.1.1 ⟨103680,−⟩ GSp4(F3)

⎛⎜⎜⎜⎜⎝
1 0 1 0

1 0 0 0

0 1 0 1

0 2 0 0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
2 2 1 1

2 0 1 0

2 1 0 0

1 0 0 0

⎞⎟⎟⎟⎟⎠ 104
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