Curves with few bad primes over cyclotomic \mathbb{Z}_{ℓ}-extensions

Conference for Young Number Theorists in Bonn

Robin Visser
(joint work with Samir Siksek)
Mathematics Institute
University of Warwick

11 September 2023

Motivation

- Let K be a number field and S a finite set of places of K.

Motivation

- Let K be a number field and S a finite set of places of K.

Theorem (Mordell 1922, Weil 1928)

For any abelian variety A / K, its K-rational points $A(K)$ are finitely generated.

Motivation

- Let K be a number field and S a finite set of places of K.

Theorem (Mordell 1922, Weil 1928)

For any abelian variety A / K, its K-rational points $A(K)$ are finitely generated.

Theorem (Siegel 1929, Mahler 1933)

Let $a, b \in K^{\times}$. There are only finitely many S-units x, y in K such that $a x+b y=1$.

Motivation

- Let K be a number field and S a finite set of places of K.

Theorem (Mordell 1922, Weil 1928)

For any abelian variety A / K, its K-rational points $A(K)$ are finitely generated.

Theorem (Siegel 1929, Mahler 1933)

Let $a, b \in K^{\times}$. There are only finitely many S-units x, y in K such that $a x+$ by $=1$.

Theorem (Faltings 1983; conjectured by Mordell 1922)

Any smooth curve C/K of genus at least 2 has only finitely many K-rational points.

Motivation

- Let K be a number field and S a finite set of places of K.

Theorem (Mordell 1922, Weil 1928)

For any abelian variety A / K, its K-rational points $A(K)$ are finitely generated.

Theorem (Siegel 1929, Mahler 1933)

Let $a, b \in K^{\times}$. There are only finitely many S-units x, y in K such that $a x+$ by $=1$.

Theorem (Faltings 1983; conjectured by Mordell 1922)

Any smooth curve C/K of genus at least 2 has only finitely many K-rational points.

Theorem (Faltings 1983; conjectured by Shafarevich 1962)

Let $d \geq 1$ be a positive integer. Then there are only finitely many K-isomorphism classes of (p.p.) abelian varieties A / K of dimension d with good reduction outside S.

Motivation

- What if K is "bigger" than a number field?

Motivation

- What if K is "bigger" than a number field?
\mathbb{Z}_{ℓ}-cyclotomic extension of K
Let K be a number field and ℓ a fixed prime. For each $n \geq 1$, let $\zeta_{\ell^{n}}$ be a primitive ℓ^{n}-th root of unity and let $\mathbb{Q}_{n, \ell}$ be the unique cyclic degree ℓ^{n} totally real subfield of $\mathbb{Q}\left(\zeta_{\ell^{n+2}}\right)$. Let $\mathbb{Q}_{\infty, \ell}=\cup_{n=1}^{\infty} \mathbb{Q}_{n, \ell}$. The \mathbb{Z}_{ℓ}-cyclotomic extension of K is the field $K \cdot \mathbb{Q}_{\infty, \ell}$.

Motivation

- What if K is "bigger" than a number field?

$\mathbb{Z}_{\ell^{-}}$-cyclotomic extension of K

Let K be a number field and ℓ a fixed prime. For each $n \geq 1$, let $\zeta_{\ell^{n}}$ be a primitive ℓ^{n}-th root of unity and let $\mathbb{Q}_{n, \ell}$ be the unique cyclic degree ℓ^{n} totally real subfield of $\mathbb{Q}\left(\zeta_{\ell^{n+2}}\right)$. Let $\mathbb{Q}_{\infty, \ell}=\cup_{n=1}^{\infty} \mathbb{Q}_{n, \ell}$. The \mathbb{Z}_{ℓ}-cyclotomic extension of K is the field $K \cdot \mathbb{Q}_{\infty, \ell}$.

- $\operatorname{Gal}\left(\mathbb{Q}_{n, \ell} / \mathbb{Q}\right) \cong \mathbb{Z} / \ell^{n} \mathbb{Z}$ and $\operatorname{Gal}\left(K_{\infty, \ell} / K\right) \cong \mathbb{Z}_{\ell}$.

Motivation

- What if K is "bigger" than a number field?

$\mathbb{Z}_{\ell^{-}}$-cyclotomic extension of K

Let K be a number field and ℓ a fixed prime. For each $n \geq 1$, let $\zeta_{\ell^{n}}$ be a primitive ℓ^{n}-th root of unity and let $\mathbb{Q}_{n, \ell}$ be the unique cyclic degree ℓ^{n} totally real subfield of $\mathbb{Q}\left(\zeta_{\ell^{n+2}}\right)$. Let $\mathbb{Q}_{\infty, \ell}=\cup_{n=1}^{\infty} \mathbb{Q}_{n, \ell}$. The \mathbb{Z}_{ℓ}-cyclotomic extension of K is the field $K \cdot \mathbb{Q}_{\infty, \ell}$.

- $\operatorname{Gal}\left(\mathbb{Q}_{n, \ell} / \mathbb{Q}\right) \cong \mathbb{Z} / \ell^{n} \mathbb{Z}$ and $\operatorname{Gal}\left(K_{\infty, \ell} / K\right) \cong \mathbb{Z}_{\ell}$.
- If $\ell=2$, then $\mathbb{Q}_{n, 2}=\mathbb{Q}\left(\zeta_{2^{n+2}}\right)^{+}=\mathbb{Q}\left(\zeta_{2^{n+2}}+\zeta_{2^{n+2}}^{-1}\right)$, so $\mathbb{Q}_{\infty, 2}=\bigcup_{n=1}^{\infty} \mathbb{Q}\left(\zeta_{2^{n}}\right)^{+}$.

Motivation

- What if K is "bigger" than a number field?

$\mathbb{Z}_{\ell^{-}}$-cyclotomic extension of K

Let K be a number field and ℓ a fixed prime. For each $n \geq 1$, let $\zeta_{\ell^{n}}$ be a primitive ℓ^{n}-th root of unity and let $\mathbb{Q}_{n, \ell}$ be the unique cyclic degree ℓ^{n} totally real subfield of $\mathbb{Q}\left(\zeta_{\ell^{n+2}}\right)$. Let $\mathbb{Q}_{\infty, \ell}=\cup_{n=1}^{\infty} \mathbb{Q}_{n, \ell}$. The \mathbb{Z}_{ℓ}-cyclotomic extension of K is the field $K \cdot \mathbb{Q}_{\infty, \ell}$.

- $\operatorname{Gal}\left(\mathbb{Q}_{n, \ell} / \mathbb{Q}\right) \cong \mathbb{Z} / \ell^{n} \mathbb{Z}$ and $\operatorname{Gal}\left(K_{\infty, \ell} / K\right) \cong \mathbb{Z}_{\ell}$.
- If $\ell=2$, then $\mathbb{Q}_{n, 2}=\mathbb{Q}\left(\zeta_{2^{n+2}}\right)^{+}=\mathbb{Q}\left(\zeta_{2^{n+2}}+\zeta_{2^{n+2}}^{-1}\right)$, so $\mathbb{Q}_{\infty, 2}=\bigcup_{n=1}^{\infty} \mathbb{Q}\left(\zeta_{2^{n}}\right)^{+}$.
- If $\ell=3$, then $\mathbb{Q}_{n, 3}=\mathbb{Q}\left(\zeta_{3^{n+1}}\right)^{+}=\mathbb{Q}\left(\zeta_{3^{n+1}}+\zeta_{3^{n+1}}^{-1}\right)$, so $\mathbb{Q}_{\infty, 3}=\bigcup_{n=1}^{\infty} \mathbb{Q}\left(\zeta_{3^{n}}\right)^{+}$.

Motivation

Conjecture (Mazur 1972)
Let $A / K_{\infty, \ell}$ be an abelian variety. Then $A\left(K_{\infty, \ell}\right)$ is finitely generated.

Motivation

Conjecture (Mazur 1972)
Let $A / K_{\infty, \ell}$ be an abelian variety. Then $A\left(K_{\infty, \ell}\right)$ is finitely generated.

Conjecture (Parshin-Zarhin 2009)

Let $X / K_{\infty, \ell}$ be a curve of genus ≥ 2. Then $X\left(K_{\infty, \ell}\right)$ is finite.

Motivation

Conjecture (Mazur 1972)

Let $A / K_{\infty, \ell}$ be an abelian variety. Then $A\left(K_{\infty, \ell}\right)$ is finitely generated.

Conjecture (Parshin-Zarhin 2009)

Let $X / K_{\infty, \ell}$ be a curve of genus ≥ 2. Then $X\left(K_{\infty, \ell}\right)$ is finite.

Theorem (Zarhin 2010)

Let A, B be abelian varieties defined over $K_{\infty, \ell}$, and denote their respective ℓ-adic Tate modules by $T_{\ell}(A), T_{\ell}(B)$. Then the natural embedding

$$
\operatorname{Hom}_{K_{\infty, \ell}}(A, B) \otimes \mathbb{Z}_{\ell} \hookrightarrow \operatorname{Hom}_{G_{a l}\left(\overline{K_{\infty}, \ell} / K_{\infty, \ell}\right)}\left(T_{\ell}(A), T_{\ell}(B)\right)
$$

is a bijection.

Motivation

Conjecture (Mazur 1972)

Let $A / K_{\infty, \ell}$ be an abelian variety. Then $A\left(K_{\infty, \ell}\right)$ is finitely generated.

Conjecture (Parshin-Zarhin 2009)

Let $X / K_{\infty, \ell}$ be a curve of genus ≥ 2. Then $X\left(K_{\infty, \ell}\right)$ is finite.

Theorem (Zarhin 2010)

Let A, B be abelian varieties defined over $K_{\infty, \ell}$, and denote their respective ℓ-adic Tate modules by $T_{\ell}(A), T_{\ell}(B)$. Then the natural embedding

$$
\operatorname{Hom}_{K_{\infty, \ell}}(A, B) \otimes \mathbb{Z}_{\ell} \hookrightarrow \operatorname{Hom}_{G a l\left(\overline{K_{\infty}, \ell} / K_{\infty, \ell}\right)}\left(T_{\ell}(A), T_{\ell}(B)\right)
$$

is a bijection.

- What about Siegel-Mahler's theorem or the Shafarevich conjecture over $K_{\infty, \ell}$?

Cyclotomic polynomials

Cyclotomic polynomial

Let $m \geq 1$ and let ζ_{m} be a primitive m-th root of unity. The m-th cyclotomic polynomial $\Phi_{m}(X) \in \mathbb{Z}[X]$ is

$$
\Phi_{m}(X):=\prod_{\substack{1 \leq i \leq m \\(i, m)=1}}\left(X-\zeta_{m}^{i}\right)
$$

Cyclotomic polynomials

Cyclotomic polynomial

Let $m \geq 1$ and let ζ_{m} be a primitive m-th root of unity. The m-th cyclotomic polynomial $\Phi_{m}(X) \in \mathbb{Z}[X]$ is

$$
\Phi_{m}(X):=\prod_{\substack{1 \leq i \leq m \\(i, m)=1}}\left(X-\zeta_{m}^{i}\right)
$$

Properties:

- $X^{m}-1=\prod_{d \mid m} \Phi_{d}(X)$ and $\Phi_{m}(X)=\prod_{d \mid m}\left(X^{d}-1\right)^{\mu(m / d)}$.

Cyclotomic polynomials

Cyclotomic polynomial

Let $m \geq 1$ and let ζ_{m} be a primitive m-th root of unity. The m-th cyclotomic polynomial $\Phi_{m}(X) \in \mathbb{Z}[X]$ is

$$
\Phi_{m}(X):=\prod_{\substack{1 \leq i \leq m \\(i, m)=1}}\left(X-\zeta_{m}^{i}\right)
$$

Properties:

- $X^{m}-1=\prod_{d \mid m} \Phi_{d}(X)$ and $\Phi_{m}(X)=\prod_{d \mid m}\left(X^{d}-1\right)^{\mu(m / d)}$.
- For ℓ prime, $\Phi_{\ell^{n}}(X)=\sum_{i=0}^{\ell-1} X^{i \ell^{n-1}}$, thus $\Phi_{\ell^{n}}(1)=\ell$.

Cyclotomic polynomials

- Recall that $\mathbb{Q}\left(\zeta_{\ell^{n}}\right) / \mathbb{Q}$ is totally ramified above ℓ (and unramified above any $p \neq \ell$).
- Let v_{ℓ} be the unique prime in $\mathbb{Q}\left(\zeta_{\ell^{n}}\right)$ lying above ℓ.

Cyclotomic polynomials

- Recall that $\mathbb{Q}\left(\zeta_{\ell^{n}}\right) / \mathbb{Q}$ is totally ramified above ℓ (and unramified above any $p \neq \ell$).
- Let v_{ℓ} be the unique prime in $\mathbb{Q}\left(\zeta_{\ell^{n}}\right)$ lying above ℓ.

Lemma

Let ℓ be a prime and $n, m \geq 1$ such that $\ell^{n} \not \backslash m$. Then $\Phi_{m}\left(\zeta_{\ell^{n}}\right)$ is a $\left\{v_{\ell}\right\}$-unit in $\mathbb{Q}\left(\zeta_{\ell^{n}}\right)$.

Cyclotomic polynomials

- Recall that $\mathbb{Q}\left(\zeta_{\ell^{n}}\right) / \mathbb{Q}$ is totally ramified above ℓ (and unramified above any $p \neq \ell$).
- Let v_{ℓ} be the unique prime in $\mathbb{Q}\left(\zeta_{\ell^{n}}\right)$ lying above ℓ.

Lemma

Let ℓ be a prime and $n, m \geq 1$ such that $\ell^{n} \not \backslash m$. Then $\Phi_{m}\left(\zeta_{\ell^{n}}\right)$ is a $\left\{v_{\ell}\right\}$-unit in $\mathbb{Q}\left(\zeta_{\ell^{n}}\right)$.

Proof:

- Let $m=k \ell^{t}$ where $\ell \nmid k$. Note $\Phi_{m}\left(\zeta_{\ell^{n}}\right)$ divides $\zeta_{\ell^{n}}^{m}-1=\zeta_{\ell^{n-t}}^{k}-1$.

Cyclotomic polynomials

- Recall that $\mathbb{Q}\left(\zeta_{\ell^{n}}\right) / \mathbb{Q}$ is totally ramified above ℓ (and unramified above any $p \neq \ell$).
- Let v_{ℓ} be the unique prime in $\mathbb{Q}\left(\zeta_{\ell^{n}}\right)$ lying above ℓ.

Lemma

Let ℓ be a prime and $n, m \geq 1$ such that $\ell^{n} \not \backslash m$. Then $\Phi_{m}\left(\zeta_{\ell^{n}}\right)$ is a $\left\{v_{\ell}\right\}$-unit in $\mathbb{Q}\left(\zeta_{\ell^{n}}\right)$.

Proof:

- Let $m=k \ell^{t}$ where $\ell \nmid k$. Note $\Phi_{m}\left(\zeta_{\ell^{n}}\right)$ divides $\zeta_{\ell^{n}}^{m}-1=\zeta_{\ell^{n-t}}^{k}-1$.
- By definition, $\zeta_{\ell^{n-t}}^{k}-1$ divides $\Phi_{\ell^{n-t}}(1)=\ell$, thus $\Phi_{m}\left(\zeta_{\ell^{n}}\right)$ is a $\left\{v_{\ell}\right\}$-unit.

Cyclotomic polynomials

- Recall that $\mathbb{Q}\left(\zeta_{\ell^{n}}\right) / \mathbb{Q}$ is totally ramified above ℓ (and unramified above any $p \neq \ell$).
- Let v_{ℓ} be the unique prime in $\mathbb{Q}\left(\zeta_{\ell^{n}}\right)$ lying above ℓ.

Lemma

Let ℓ be a prime and $n, m \geq 1$ such that $\ell^{n} \chi m$. Then $\Phi_{m}\left(\zeta_{\ell^{n}}\right)$ is a $\left\{v_{\ell}\right\}$-unit in $\mathbb{Q}\left(\zeta_{\ell^{n}}\right)$.

Proof:

- Let $m=k \ell^{t}$ where $\ell \nmid k$. Note $\Phi_{m}\left(\zeta_{\ell^{n}}\right)$ divides $\zeta_{\ell^{n}}^{m}-1=\zeta_{\ell^{n-t}}^{k}-1$.
- By definition, $\zeta_{\ell^{n-t}}^{k}-1$ divides $\Phi_{\ell^{n-t}}(1)=\ell$, thus $\Phi_{m}\left(\zeta_{\ell^{n}}\right)$ is a $\left\{v_{\ell}\right\}$-unit.

Corollary (the "cyclotomic $\left\{v_{\ell}\right\}$-unit generator")

Let $F(X):=X^{m} \Phi_{m_{1}}(X) \Phi_{m_{2}}(X) \cdots \Phi_{m_{k}}(X)$ for some integers $m \geq 0, m_{1}, \ldots, m_{k} \geq 1$. Then $F\left(\zeta_{\ell^{n}}\right)$ is a $\left\{v_{\ell}\right\}$-unit, for sufficiently large n.

S-unit equations

Problem (Siegel-Mahler for $\mathbb{Q}_{\infty, \ell}$)

For some fixed integer $k \in \mathbb{Z}$, can we find infinitely many $\left\{v_{\ell}\right\}$-units $\varepsilon, \delta \in \mathbb{Q}_{\infty, \ell}$ such that $\varepsilon+\delta=k$?

S-unit equations

Problem (Siegel-Mahler for $\mathbb{Q}_{\infty, \ell}$)

For some fixed integer $k \in \mathbb{Z}$, can we find infinitely many $\left\{v_{\ell}\right\}$-units $\varepsilon, \delta \in \mathbb{Q}_{\infty, \ell}$ such that $\varepsilon+\delta=k$?

Idea: Use cyclotomic polynomials as a machine to generate infinitely many $\left\{v_{\ell}\right\}$-units!

S-unit equations

Problem (Siegel-Mahler for $\mathbb{Q}_{\infty, \ell}$)

For some fixed integer $k \in \mathbb{Z}$, can we find infinitely many $\left\{v_{\ell}\right\}$-units $\varepsilon, \delta \in \mathbb{Q}_{\infty, \ell}$ such that $\varepsilon+\delta=k$?

Idea: Use cyclotomic polynomials as a machine to generate infinitely many $\left\{v_{\ell}\right\}$-units! l.e. search for cyclotomic relations of the form

$$
X^{a_{0}} \Phi_{a_{1}}(X) \Phi_{a_{2}}(X) \cdots \Phi_{a_{r}}(X)-X^{b_{0}} \Phi_{b_{1}}(X) \Phi_{b_{2}}(X) \cdots \Phi_{b_{s}}(X)=k X^{c_{0}} \Phi_{c_{1}}(X) \Phi_{c_{2}}(X) \cdots \Phi_{c_{t}}(X)
$$

for some nonnegative integers $a_{i}, b_{i}, c_{i} \geq 0$.

S-unit equations

Problem (Siegel-Mahler for $\mathbb{Q}_{\infty, \ell}$)

For some fixed integer $k \in \mathbb{Z}$, can we find infinitely many $\left\{v_{\ell}\right\}$-units $\varepsilon, \delta \in \mathbb{Q}_{\infty, \ell}$ such that $\varepsilon+\delta=k$?

Idea: Use cyclotomic polynomials as a machine to generate infinitely many $\left\{v_{\ell}\right\}$-units! l.e. search for cyclotomic relations of the form

$$
X^{a_{0}} \Phi_{a_{1}}(X) \Phi_{a_{2}}(X) \cdots \Phi_{a_{r}}(X)-X^{b_{0}} \Phi_{b_{1}}(X) \Phi_{b_{2}}(X) \cdots \Phi_{b_{s}}(X)=k X^{c_{0}} \Phi_{c_{1}}(X) \Phi_{c_{2}}(X) \cdots \Phi_{c_{t}}(X)
$$

for some nonnegative integers $a_{i}, b_{i}, c_{i} \geq 0$. Then, for each $n \geq 1$ we can define

$$
\varepsilon_{n}:=\frac{X^{a_{0}} \Phi_{a_{1}}\left(\zeta_{\ell^{n}}\right) \Phi_{a_{2}}\left(\zeta_{\ell^{n}}\right) \cdots \Phi_{a_{r}}\left(\zeta_{\ell^{n}}\right)}{X^{c_{0}} \Phi_{c_{1}}\left(\zeta_{\ell^{n}}\right) \Phi_{c_{2}}\left(\zeta_{\ell^{n}}\right) \cdots \Phi_{c_{t}}\left(\zeta_{\ell^{n}}\right)}, \quad \delta_{n}:=-\frac{X^{b_{0}} \Phi_{b_{1}}\left(\zeta_{\ell^{n}}\right) \Phi_{b_{2}}\left(\zeta_{\ell^{n}}\right) \cdots \Phi_{b_{s}}\left(\zeta_{\ell^{n}}\right)}{X^{c_{0}} \Phi_{c_{1}}\left(\zeta_{\ell^{n}}\right) \Phi_{c_{2}}\left(\zeta_{\ell^{n}}\right) \cdots \Phi_{c_{t}}\left(\zeta_{\ell^{n}}\right)},
$$

where $\varepsilon_{n}, \delta_{n}$ are $\left\{v_{\ell}\right\}$-units in $\mathbb{Q}\left(\zeta_{\ell^{n}}\right)$ such that $\varepsilon_{n}+\delta_{n}=k$ (for sufficiently large n).

S-unit equations

- A quick computer search yields the following relations:

S-unit equations

- A quick computer search yields the following relations:

$$
\begin{aligned}
\Phi_{2}(X)^{2}-\Phi_{3}(X) & =X \\
\Phi_{2}(X)^{2}-\Phi_{4}(X) & =2 X \\
\Phi_{2}(X)^{2}-\Phi_{6}(X) & =3 X \\
\Phi_{2}(X)^{2}-\Phi_{1}(X)^{2} & =4 X \\
\Phi_{2}(X)^{4}-\Phi_{10}(X) & =5 X \Phi_{3}(X) \\
\Phi_{2}^{2}(X) \Phi_{3}(X)-\Phi_{1}(X)^{2} \Phi_{6}(X) & =6 X \Phi_{4}(X) \\
\Phi_{7}(X)-\Phi_{1}(X)^{6} & =7 X \Phi_{6}(X)^{2} \\
\Phi_{2}(X)^{4}-\Phi_{1}(X)^{4} & =8 X \Phi_{4}(X) \\
\Phi_{2}(X)^{4} \Phi_{5}(X)-\Phi_{1}(X)^{4} \Phi_{10}(X) & =10 X \Phi_{4}(X)^{3} .
\end{aligned}
$$

S-unit equations

- A quick computer search yields the following relations:

$$
\begin{aligned}
\Phi_{2}(X)^{2}-\Phi_{3}(X) & =X \\
\Phi_{2}(X)^{2}-\Phi_{4}(X) & =2 X \\
\Phi_{2}(X)^{2}-\Phi_{6}(X) & =3 X \\
\Phi_{2}(X)^{2}-\Phi_{1}(X)^{2} & =4 X \\
\Phi_{2}(X)^{4}-\Phi_{10}(X) & =5 X \Phi_{3}(X) \\
\Phi_{2}^{2}(X) \Phi_{3}(X)-\Phi_{1}(X)^{2} \Phi_{6}(X) & =6 X \Phi_{4}(X) \\
\Phi_{7}(X)-\Phi_{1}(X)^{6} & =7 X \Phi_{6}(X)^{2} \\
\Phi_{2}(X)^{4}-\Phi_{1}(X)^{4} & =8 X \Phi_{4}(X) \\
\Phi_{2}(X)^{4} \Phi_{5}(X)-\Phi_{1}(X)^{4} \Phi_{10}(X) & =10 X \Phi_{4}(X)^{3}
\end{aligned}
$$

Question: Do there exist any cyclotomic relations for $k \notin\{1,2,3,4,5,6,7,8,10\}$?

S-unit equation over $\mathbb{Q}\left(\zeta_{\ell n}\right)^{+}$

Theorem (Siksek-V. 2023)

Let $\ell=2$ or 3 and let $S=\left\{v_{\ell}\right\}$ be the unique prime above ℓ in $\mathbb{Q}_{\infty, \ell}$. Then, for each $k \in\{1,2,3,4,5,6,7,8,10\}$, there are infinitely many solutions $\varepsilon, \delta \in \mathcal{O}\left(\mathbb{Q}_{\infty}, \ell, S\right)^{\times}$to the S-unit equation $\varepsilon+\delta=k$.

S-unit equation over $\mathbb{Q}\left(\zeta_{\ell n}\right)^{+}$

Theorem (Siksek-V. 2023)

Let $\ell=2$ or 3 and let $S=\left\{v_{\ell}\right\}$ be the unique prime above ℓ in $\mathbb{Q}_{\infty, \ell}$. Then, for each $k \in\{1,2,3,4,5,6,7,8,10\}$, there are infinitely many solutions $\varepsilon, \delta \in \mathcal{O}\left(\mathbb{Q}_{\infty}, \ell, S\right)^{\times}$to the S-unit equation $\varepsilon+\delta=k$.

Proof for $k=10$:

- For each $n \geq 1$, define $\varepsilon_{n}, \delta_{n} \in \mathbb{Q}\left(\zeta_{\ell^{n}}\right)$ as

$$
\varepsilon_{n}=\frac{\Phi_{2}\left(\zeta_{\ell^{n}}\right)^{4} \Phi_{5}\left(\zeta_{\ell^{n}}\right)}{\zeta_{\ell^{n}} \Phi_{4}\left(\zeta_{\ell^{n}}\right)^{3}}, \quad \delta_{n}=\frac{-\Phi_{1}\left(\zeta_{\ell^{n}}\right)^{4} \Phi_{10}\left(\zeta_{\ell^{n}}\right)}{\zeta_{\ell^{n}} \Phi_{4}\left(\zeta_{\ell^{n}}\right)^{3}} .
$$

noting that $\varepsilon_{n}, \delta_{n} \in \mathcal{O}\left(\mathbb{Q}\left(\zeta_{\ell^{n}}\right), S\right)^{\times}$and $\varepsilon_{n}+\delta_{n}=10$.

S-unit equation over $\mathbb{Q}\left(\zeta_{\ell n}\right)^{+}$

Theorem (Siksek-V. 2023)

Let $\ell=2$ or 3 and let $S=\left\{v_{\ell}\right\}$ be the unique prime above ℓ in $\mathbb{Q}_{\infty, \ell}$. Then, for each $k \in\{1,2,3,4,5,6,7,8,10\}$, there are infinitely many solutions $\varepsilon, \delta \in \mathcal{O}\left(\mathbb{Q}_{\infty}, \ell, S\right)^{\times}$to the S-unit equation $\varepsilon+\delta=k$.

Proof for $k=10$:

- For each $n \geq 1$, define $\varepsilon_{n}, \delta_{n} \in \mathbb{Q}\left(\zeta_{\ell^{n}}\right)$ as

$$
\varepsilon_{n}=\frac{\Phi_{2}\left(\zeta_{\ell^{n}}\right)^{4} \Phi_{5}\left(\zeta_{\ell^{n}}\right)}{\zeta_{\ell^{n}} \Phi_{4}\left(\zeta_{\ell^{n}}\right)^{3}}, \quad \delta_{n}=\frac{-\Phi_{1}\left(\zeta_{\ell^{n}}\right)^{4} \Phi_{10}\left(\zeta_{\ell^{n}}\right)}{\zeta_{\ell^{n}} \Phi_{4}\left(\zeta_{\ell^{n}}\right)^{3}}
$$

noting that $\varepsilon_{n}, \delta_{n} \in \mathcal{O}\left(\mathbb{Q}\left(\zeta_{\ell^{n}}\right), S\right)^{\times}$and $\varepsilon_{n}+\delta_{n}=10$.

- As $\Phi_{m}(X)=X^{\varphi(m)} \Phi_{m}\left(X^{-1}\right)$, this implies $\varepsilon_{n}^{c}=\varepsilon_{n}$ and $\delta_{n}^{c}=\delta_{n}$, thus $\varepsilon_{n}, \delta_{n} \in \mathbb{Q}_{\infty, \ell}$.

S-unit equation over $\mathbb{Q}\left(\zeta_{\ell n}\right)^{+}$

Theorem (Siksek-V. 2023)

Let $\ell=2$ or 3 and let $S=\left\{v_{\ell}\right\}$ be the unique prime above ℓ in $\mathbb{Q}_{\infty, \ell}$. Then, for each $k \in\{1,2,3,4,5,6,7,8,10\}$, there are infinitely many solutions $\varepsilon, \delta \in \mathcal{O}\left(\mathbb{Q}_{\infty}, \ell, S\right)^{\times}$to the S-unit equation $\varepsilon+\delta=k$.

Proof for $k=10$:

- For each $n \geq 1$, define $\varepsilon_{n}, \delta_{n} \in \mathbb{Q}\left(\zeta_{\ell^{n}}\right)$ as

$$
\varepsilon_{n}=\frac{\Phi_{2}\left(\zeta_{\ell^{n}}\right)^{4} \Phi_{5}\left(\zeta_{\ell^{n}}\right)}{\zeta_{\ell^{n}} \Phi_{4}\left(\zeta_{\ell^{n}}\right)^{3}}, \quad \delta_{n}=\frac{-\Phi_{1}\left(\zeta_{\ell^{n}}\right)^{4} \Phi_{10}\left(\zeta_{\ell^{n}}\right)}{\zeta_{\ell^{n}} \Phi_{4}\left(\zeta_{\ell^{n}}\right)^{3}} .
$$

noting that $\varepsilon_{n}, \delta_{n} \in \mathcal{O}\left(\mathbb{Q}\left(\zeta_{\ell^{n}}\right), S\right)^{\times}$and $\varepsilon_{n}+\delta_{n}=10$.

- As $\Phi_{m}(X)=X^{\varphi(m)} \Phi_{m}\left(X^{-1}\right)$, this implies $\varepsilon_{n}^{c}=\varepsilon_{n}$ and $\delta_{n}^{c}=\delta_{n}$, thus $\varepsilon_{n}, \delta_{n} \in \mathbb{Q}_{\infty, \ell}$.
- Using a multiplicative basis for the cyclotomic units, one can show ε_{n} is not generated by $\left\{ \pm \zeta_{\ell^{n-1}}, 1-\zeta_{\ell^{n-1}}^{k}, 1 \leq k<\ell^{n-1}\right\}$, and so $\varepsilon_{m} \neq \varepsilon_{n}$ for any $m<n$.

S-unit equation over $\mathbb{Q}_{\infty, 5}$

- For each $n \geq 1$, let $G_{n}:=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{5^{n}}\right) / \mathbb{Q}_{n-1,5}\right)$. This is a cyclic group of order 4, generated by some $\sigma \in G_{n}$ where $\sigma\left(\zeta_{5^{n}}\right)=\zeta_{5^{n}}^{a}$ for some integer a.

S-unit equation over $\mathbb{Q}_{\infty, 5}$

- For each $n \geq 1$, let $G_{n}:=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{5^{n}}\right) / \mathbb{Q}_{n-1,5}\right)$. This is a cyclic group of order 4, generated by some $\sigma \in G_{n}$ where $\sigma\left(\zeta_{5^{n}}\right)=\zeta_{5^{n}}^{a}$ for some integer a.
- We want to now find cyclotomic relations in 4 variables $x_{1}, x_{2}, x_{3}, x_{4}$ which are invariant under the 4 cycle $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{2}, x_{3}, x_{4}, x_{1}\right)$.

S-unit equation over $\mathbb{Q}_{\infty, 5}$

- For each $n \geq 1$, let $G_{n}:=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{5^{n}}\right) / \mathbb{Q}_{n-1,5}\right)$. This is a cyclic group of order 4, generated by some $\sigma \in G_{n}$ where $\sigma\left(\zeta_{5^{n}}\right)=\zeta_{5^{n}}^{a}$ for some integer a.
- We want to now find cyclotomic relations in 4 variables $x_{1}, x_{2}, x_{3}, x_{4}$ which are invariant under the 4 cycle $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{2}, x_{3}, x_{4}, x_{1}\right)$.
- Thus, evaluating these at $\left(\zeta_{5^{n}}, \zeta_{5^{n}}^{a}, \zeta_{5^{n}}^{-1}, \zeta_{5^{n}}^{-a}\right)$ yields an $\left\{v_{5}\right\}$-unit in $\mathbb{Q}_{n-1,5}$.

S-unit equation over $\mathbb{Q}_{\infty, 5}$

- For each $n \geq 1$, let $G_{n}:=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{5^{n}}\right) / \mathbb{Q}_{n-1,5}\right)$. This is a cyclic group of order 4, generated by some $\sigma \in G_{n}$ where $\sigma\left(\zeta_{5^{n}}\right)=\zeta_{5^{n}}^{a}$ for some integer a.
- We want to now find cyclotomic relations in 4 variables $x_{1}, x_{2}, x_{3}, x_{4}$ which are invariant under the 4 cycle $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{2}, x_{3}, x_{4}, x_{1}\right)$.
- Thus, evaluating these at $\left(\zeta_{5^{n}}, \zeta_{5^{n}}^{a}, \zeta_{5^{n}}^{-1}, \zeta_{5^{n}}^{-a}\right)$ yields an $\left\{v_{5}\right\}$-unit in $\mathbb{Q}_{n-1,5}$.

$$
\begin{gathered}
x_{4} \Phi_{2}\left(\frac{x_{1} x_{2}^{2}}{x_{3} x_{4}^{2}}\right) \Phi_{2}\left(\frac{x_{1}^{2} x_{4}}{x_{2} x_{3}^{2}}\right)-x_{2} \Phi_{2}\left(\frac{x_{1}^{2} x_{2}}{x_{3}^{2} x_{4}}\right) \Phi_{2}\left(\frac{x_{1} x_{4}^{2}}{x_{2}^{2} x_{3}}\right)=x_{4} \Phi_{1}\left(\frac{x_{1}}{x_{3}}\right) \Phi_{1}\left(\frac{x_{2}}{x_{4}}\right) \Phi_{1}\left(\frac{x_{1} x_{2}}{x_{3} x_{4}}\right) \Phi_{1}\left(\frac{x_{1} x_{4}}{x_{2} x_{3}}\right) \\
x_{4} \Phi_{3}\left(\frac{x_{1}}{x_{3}}\right) \Phi_{3}\left(\frac{x_{2}}{x_{4}}\right)-x_{4} \Phi_{6}\left(\frac{x_{1}}{x_{3}}\right) \Phi_{6}\left(\frac{x_{2}}{x_{4}}\right)=2 x_{2} \Phi_{2}\left(\frac{x_{1} x_{4}}{x_{2} x_{3}}\right) \Phi_{2}\left(\frac{x_{1} x_{2}}{x_{3} x_{4}}\right) \\
x_{4} \Phi_{2}\left(\frac{x_{1}}{x_{3}}\right)^{2} \Phi_{2}\left(\frac{x_{2}}{x_{4}}\right)^{2}-x_{4} \Phi_{1}\left(\frac{x_{1}}{x_{3}}\right)^{2} \Phi_{1}\left(\frac{x_{2}}{x_{4}}\right)^{2}=4 x_{2} \Phi_{2}\left(\frac{x_{1} x_{2}}{x_{3} x_{4}}\right) \Phi_{2}\left(\frac{x_{1} x_{4}}{x_{2} x_{3}}\right)
\end{gathered}
$$

S-unit equation over $\mathbb{Q}_{\infty, 5}$

Theorem (Siksek-V. 2023)

Let $\ell=5$. Let $S=\left\{v_{5}\right\}$ be the unique prime above 5 in $\mathbb{Q}_{\infty, 5}$. For each $k \in\{1,2,4\}$, there are infinitely many solutions $\varepsilon, \delta \in \mathcal{O}\left(\mathbb{Q}_{\infty, \ell}, S\right)^{\times}$to the S-unit equation $\varepsilon+\delta=k$.

S-unit equation over $\mathbb{Q}_{\infty, 5}$

Theorem (Siksek-V. 2023)

Let $\ell=5$. Let $S=\left\{v_{5}\right\}$ be the unique prime above 5 in $\mathbb{Q}_{\infty, 5}$. For each $k \in\{1,2,4\}$, there are infinitely many solutions $\varepsilon, \delta \in \mathcal{O}\left(\mathbb{Q}_{\infty, \ell}, S\right)^{\times}$to the S-unit equation $\varepsilon+\delta=k$.

Proof for $k=4$:

- For each $n \geq 1$, define $\varepsilon_{n}, \delta_{n} \in \mathcal{O}\left(\mathbb{Q}\left(\zeta_{5^{n}}\right), S\right)^{\times}$as

$$
\varepsilon_{n}=\frac{\zeta_{5^{n}}^{-a} \Phi_{2}\left(\zeta_{5^{n}}^{2}\right)^{2} \Phi_{2}\left(\zeta_{5^{n}}^{-1-a}\right)^{2}}{\zeta_{5^{n}}^{a} \Phi_{2}\left(\zeta_{5^{n}}^{2+2 a}\right) \Phi_{2}\left(\zeta_{5^{n}}^{2-2 a}\right)}, \quad \delta_{n}=\frac{-\zeta_{5^{n}}^{-a} \Phi_{1}\left(\zeta_{5^{n}}^{2}\right)^{2} \Phi_{1}\left(\zeta_{5^{n}}^{-1-a}\right)^{2}}{\zeta_{5^{n}}^{a} \Phi_{2}\left(\zeta_{5^{n}}^{2+2 a}\right) \Phi_{2}\left(\zeta_{5^{n}}^{2-2 a}\right)}
$$

where we've substituted $x_{1}=\zeta_{5 n}, x_{2}=\zeta_{5^{n}}^{a}, x_{3}=\zeta_{5^{n}}^{-1}$ and $x_{4}=\zeta_{5^{n}}^{-a}$ into the third cyclotomic relation shown previously. Therefore, $\varepsilon_{n}+\delta_{n}=4$.

S-unit equation over $\mathbb{Q}_{\infty, 5}$

Theorem (Siksek-V. 2023)

Let $\ell=5$. Let $S=\left\{v_{5}\right\}$ be the unique prime above 5 in $\mathbb{Q}_{\infty, 5}$. For each $k \in\{1,2,4\}$, there are infinitely many solutions $\varepsilon, \delta \in \mathcal{O}\left(\mathbb{Q}_{\infty, \ell}, S\right)^{\times}$to the S-unit equation $\varepsilon+\delta=k$.

Proof for $k=4$:

- For each $n \geq 1$, define $\varepsilon_{n}, \delta_{n} \in \mathcal{O}\left(\mathbb{Q}\left(\zeta_{5^{n}}\right), S\right)^{\times}$as

$$
\varepsilon_{n}=\frac{\zeta_{5^{n}}^{-a} \Phi_{2}\left(\zeta_{5^{n}}^{2}\right)^{2} \Phi_{2}\left(\zeta_{5^{n}}^{-1-a}\right)^{2}}{\zeta_{5^{n}}^{a} \Phi_{2}\left(\zeta_{5^{n}}^{2+2 a}\right) \Phi_{2}\left(\zeta_{5^{n}}^{2-2 a}\right)}, \quad \delta_{n}=\frac{-\zeta_{5^{n}}^{-a} \Phi_{1}\left(\zeta_{5^{n}}^{2}\right)^{2} \Phi_{1}\left(\zeta_{5^{n}}^{-1-a}\right)^{2}}{\zeta_{5^{n}}^{a} \Phi_{2}\left(\zeta_{5^{n}}^{2+2 a}\right) \Phi_{2}\left(\zeta_{5^{n}}^{2-2 a}\right)}
$$

where we've substituted $x_{1}=\zeta_{5^{n}}, x_{2}=\zeta_{5^{n}}^{a}, x_{3}=\zeta_{5^{n}}^{-1}$ and $x_{4}=\zeta_{5^{n}}^{-a}$ into the third cyclotomic relation shown previously. Therefore, $\varepsilon_{n}+\delta_{n}=4$.

- As ε_{n} and δ_{n} fixed under the action of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{5^{n}}\right) / \mathbb{Q}_{n-1,5}\right)$, we have $\varepsilon_{n}, \delta_{n} \in \mathbb{Q}_{\infty, 5}$.

S-unit equation over $\mathbb{Q}_{\infty, 5}$

Theorem (Siksek-V. 2023)

Let $\ell=5$. Let $S=\left\{v_{5}\right\}$ be the unique prime above 5 in $\mathbb{Q}_{\infty, 5}$. For each $k \in\{1,2,4\}$, there are infinitely many solutions $\varepsilon, \delta \in \mathcal{O}\left(\mathbb{Q}_{\infty, \ell}, S\right)^{\times}$to the S-unit equation $\varepsilon+\delta=k$.

Proof for $k=4$:

- For each $n \geq 1$, define $\varepsilon_{n}, \delta_{n} \in \mathcal{O}\left(\mathbb{Q}\left(\zeta_{5^{n}}\right), S\right)^{\times}$as

$$
\varepsilon_{n}=\frac{\zeta_{5^{n}}^{-a} \Phi_{2}\left(\zeta_{5^{n}}^{2}\right)^{2} \Phi_{2}\left(\zeta_{5^{n}}^{-1-a}\right)^{2}}{\zeta_{5^{n}}^{a} \Phi_{2}\left(\zeta_{5^{n}}^{2+2 a}\right) \Phi_{2}\left(\zeta_{5^{n}}^{2-2 a}\right)}, \quad \delta_{n}=\frac{-\zeta_{5^{n}}^{-a} \Phi_{1}\left(\zeta_{5^{n}}^{2}\right)^{2} \Phi_{1}\left(\zeta_{5^{n}}^{-1-a}\right)^{2}}{\zeta_{5^{n}}^{a} \Phi_{2}\left(\zeta_{5^{n}}^{2+2 a}\right) \Phi_{2}\left(\zeta_{5^{n}}^{2-2 a}\right)}
$$

where we've substituted $x_{1}=\zeta_{5^{n}}, x_{2}=\zeta_{5^{n}}^{a}, x_{3}=\zeta_{5^{n}}^{-1}$ and $x_{4}=\zeta_{5^{n}}^{-a}$ into the third cyclotomic relation shown previously. Therefore, $\varepsilon_{n}+\delta_{n}=4$.

- As ε_{n} and δ_{n} fixed under the action of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{5^{n}}\right) / \mathbb{Q}_{n-1,5}\right)$, we have $\varepsilon_{n}, \delta_{n} \in \mathbb{Q}_{\infty, 5}$.
- A similar argument to the $\ell=2,3$ case shows that $\varepsilon_{m} \neq \varepsilon_{n}$ for any $m<n$.

Elliptic curves over $\mathbb{Q}_{\infty, \ell}$

Theorem (Siksek-V. 2023)

Let $\ell=2,3,5$ or 7 . Let $S=\left\{v_{2}, v_{\ell}\right\}$. Then there are infinitely many $\overline{\mathbb{Q}}$-isomorphism classes of elliptic curves defined over $\mathbb{Q}_{\infty, \ell}$ with good reduction away from S and with full 2 -torsion in $\mathbb{Q}_{\infty, \ell}$. Moreover, these elliptic curves form infinitely many distinct $\mathbb{Q}_{\infty, \ell}$-isogeny classes.

Elliptic curves over $\mathbb{Q}_{\infty, \ell}$

Theorem (Siksek-V. 2023)

Let $\ell=2,3,5$ or 7 . Let $S=\left\{v_{2}, v_{\ell}\right\}$. Then there are infinitely many $\overline{\mathbb{Q}}$-isomorphism classes of elliptic curves defined over $\mathbb{Q}_{\infty, \ell}$ with good reduction away from S and with full 2-torsion in $\mathbb{Q}_{\infty, \ell}$. Moreover, these elliptic curves form infinitely many distinct $\mathbb{Q}_{\infty, \ell}$-isogeny classes.

Proof:

- For each $n \geq 1$, we have S-units $\varepsilon_{n}, \delta_{n} \in \mathcal{O}\left(\mathbb{Q}_{\infty, \ell}, S\right)^{\times}$such that $\varepsilon_{n}+\delta_{n}=1$.

Elliptic curves over $\mathbb{Q}_{\infty, \ell}$

Theorem (Siksek-V. 2023)

Let $\ell=2,3,5$ or 7 . Let $S=\left\{v_{2}, v_{\ell}\right\}$. Then there are infinitely many $\overline{\mathbb{Q}}$-isomorphism classes of elliptic curves defined over $\mathbb{Q}_{\infty, \ell}$ with good reduction away from S and with full 2-torsion in $\mathbb{Q}_{\infty, \ell}$. Moreover, these elliptic curves form infinitely many distinct $\mathbb{Q}_{\infty, \ell}$-isogeny classes.

Proof:

- For each $n \geq 1$, we have S-units $\varepsilon_{n}, \delta_{n} \in \mathcal{O}\left(\mathbb{Q}_{\infty, \ell}, S\right)^{\times}$such that $\varepsilon_{n}+\delta_{n}=1$.
- We define the elliptic curve

$$
E_{n}: Y^{2}=X(X-1)\left(X-\varepsilon_{n}\right)
$$

Elliptic curves over $\mathbb{Q}_{\infty, \ell}$

Theorem (Siksek-V. 2023)

Let $\ell=2,3,5$ or 7 . Let $S=\left\{v_{2}, v_{\ell}\right\}$. Then there are infinitely many $\overline{\mathbb{Q}}$-isomorphism classes of elliptic curves defined over $\mathbb{Q}_{\infty, \ell}$ with good reduction away from S and with full 2-torsion in $\mathbb{Q}_{\infty, \ell}$. Moreover, these elliptic curves form infinitely many distinct $\mathbb{Q}_{\infty, \ell \text {-isogeny classes. }}$

Proof:

- For each $n \geq 1$, we have S-units $\varepsilon_{n}, \delta_{n} \in \mathcal{O}\left(\mathbb{Q}_{\infty, \ell}, S\right)^{\times}$such that $\varepsilon_{n}+\delta_{n}=1$.
- We define the elliptic curve

$$
E_{n}: Y^{2}=X(X-1)\left(X-\varepsilon_{n}\right)
$$

- This model has discriminant $\Delta=16 \varepsilon_{n}^{2}\left(1-\varepsilon_{n}\right)^{2}=16 \varepsilon_{n}^{2} \delta_{n}^{2}$, and thus has good reduction away from S.

Elliptic curves over $\mathbb{Q}_{\infty, \ell}$

Theorem (Siksek-V. 2023)

Let $\ell=2,3,5$ or 7 . Let $S=\left\{v_{2}, v_{\ell}\right\}$. Then there are infinitely many $\overline{\mathbb{Q}}$-isomorphism classes of elliptic curves defined over $\mathbb{Q}_{\infty, \ell}$ with good reduction away from S and with full 2-torsion in $\mathbb{Q}_{\infty, \ell}$. Moreover, these elliptic curves form infinitely many distinct $\mathbb{Q}_{\infty, \ell \text {-isogeny classes. }}$

Proof:

- For each $n \geq 1$, we have S-units $\varepsilon_{n}, \delta_{n} \in \mathcal{O}\left(\mathbb{Q}_{\infty, \ell}, S\right)^{\times}$such that $\varepsilon_{n}+\delta_{n}=1$.
- We define the elliptic curve

$$
E_{n}: Y^{2}=X(X-1)\left(X-\varepsilon_{n}\right)
$$

- This model has discriminant $\Delta=16 \varepsilon_{n}^{2}\left(1-\varepsilon_{n}\right)^{2}=16 \varepsilon_{n}^{2} \delta_{n}^{2}$, and thus has good reduction away from S.
- It's j-invariant is $256\left(\varepsilon_{n}^{2}-\varepsilon_{n}+1\right)^{3} / \varepsilon_{n}^{2}\left(1-\varepsilon_{n}\right)^{2}$, thus yielding infinitely many $\overline{\mathbb{Q}}$-isomorphism classes.

Hyperelliptic curves over $\mathbb{Q}_{\infty, \ell}$

Theorem (Siksek-V. 2023)
 Let $g \geq 2$ and let $\ell=3,5,7,11$ or 13 . Then there are infinitely many $\overline{\mathbb{Q}}$-isomorphism classes of genus g hyperelliptic curves over $\mathbb{Q}_{\infty, \ell}$ with good reduction away from $\left\{v_{2}, v_{\ell}\right\}$.

Hyperelliptic curves over $\mathbb{Q}_{\infty, \ell}$

Theorem (Siksek-V. 2023)

Let $g \geq 2$ and let $\ell=3,5,7,11$ or 13 . Then there are infinitely many $\overline{\mathbb{Q}}$-isomorphism classes of genus g hyperelliptic curves over $\mathbb{Q}_{\infty, \ell}$ with good reduction away from $\left\{v_{2}, v_{\ell}\right\}$. Proof (sketch):

- For $n \geq 1$, let $G_{n}=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{\ell^{n}}\right)^{+} / \mathbb{Q}_{n-1, \ell}\right)$; this is a cyclic subgroup of order $(\ell-1) / 2$.

Hyperelliptic curves over $\mathbb{Q}_{\infty, \ell}$

Theorem (Siksek-V. 2023)

Let $g \geq 2$ and let $\ell=3,5,7,11$ or 13 . Then there are infinitely many $\overline{\mathbb{Q}}$-isomorphism classes of genus g hyperelliptic curves over $\mathbb{Q}_{\infty, \ell}$ with good reduction away from $\left\{v_{2}, v_{\ell}\right\}$. Proof (sketch):

- For $n \geq 1$, let $G_{n}=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{\ell^{n}}\right)^{+} / \mathbb{Q}_{n-1, \ell}\right)$; this is a cyclic subgroup of order $(\ell-1) / 2$.
- Define the hyperelliptic curve

$$
D_{n}: Y^{2}=h(X) \cdot \prod_{j=1}^{k} \prod_{\sigma \in G_{n}}\left(X-\left(\zeta_{\ell^{n}}^{1+\ell^{n-1}(j-1)}+\zeta_{\ell^{n}}^{-1-\ell^{n-1}(j-1)}\right)^{\sigma}\right)
$$

where we choose some integer $k \geq 1$ and polynomial $h(X)$ dividing $X(X-1)(X+1)$ such that $\operatorname{deg}(h)+k(\ell-1) / 2 \in\{2 g+1,2 g+2\}$.

Hyperelliptic curves over $\mathbb{Q}_{\infty, \ell}$

Theorem (Siksek-V. 2023)

Let $g \geq 2$ and let $\ell=3,5,7,11$ or 13 . Then there are infinitely many $\overline{\mathbb{Q}}$-isomorphism classes of genus g hyperelliptic curves over $\mathbb{Q}_{\infty, \ell}$ with good reduction away from $\left\{v_{2}, v_{\ell}\right\}$. Proof (sketch):

- For $n \geq 1$, let $G_{n}=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{\ell^{n}}\right)^{+} / \mathbb{Q}_{n-1, \ell}\right)$; this is a cyclic subgroup of order $(\ell-1) / 2$.
- Define the hyperelliptic curve

$$
D_{n}: Y^{2}=h(X) \cdot \prod_{j=1}^{k} \prod_{\sigma \in G_{n}}\left(X-\left(\zeta_{\ell^{n}}^{1+\ell^{n-1}(j-1)}+\zeta_{\ell^{n}}^{-1-\ell^{n-1}(j-1)}\right)^{\sigma}\right)
$$

where we choose some integer $k \geq 1$ and polynomial $h(X)$ dividing $X(X-1)(X+1)$ such that $\operatorname{deg}(h)+k(\ell-1) / 2 \in\{2 g+1,2 g+2\}$.

- Use the identities $\alpha+\alpha^{-1}-\beta-\beta^{-1}=\alpha^{-1} \Phi_{1}\left(\frac{\alpha}{\beta}\right) \Phi_{1}(\alpha \beta), \alpha+\alpha^{-1}=\alpha^{-1} \Phi_{4}(\alpha)$, $\alpha+\alpha^{-1}+1=\alpha^{-1} \Phi_{3}(\alpha)$, and $\alpha+\alpha^{-1}-1=\alpha^{-1} \Phi_{6}(\alpha)$ to prove D_{n} has good reduction away from S.

Summary

Conjectures/Theorems

Tate conjecture

$$
\operatorname{Hom}_{G_{K}}\left(T_{\ell}(A), T_{\ell}(B)\right) \cong \operatorname{Hom}_{K}(A, B) \otimes \mathbb{Z}_{\ell}
$$

Mordell conjecture

$$
\operatorname{genus}(C) \geq 2 \Longrightarrow \# C(K)<\infty
$$

Mordell-Weil
($A(K)$ finitely generated)

Siegel-Mahler

 $\#\left\{x, y \in \mathcal{O}_{K, S}^{\times}: a x+b y=1\right\}<\infty$Shafarevich (curves)
$\#\{C / K$: genus $(C)=g \geq 2$, good outside $S\}<\infty$
Shafarevich (abelian varieties)
$\#\{A / K: \operatorname{dim}(C)=d$, good outside $S\}<\infty$

Summary

Conjectures/Theorems	K num field
Tate conjecture $\operatorname{Hom}_{G_{K}}\left(T_{\ell}(A), T_{\ell}(B)\right) \cong \operatorname{Hom}_{K}(A, B) \otimes \mathbb{Z}_{\ell}$	Yes
Mordell conjecture $\operatorname{genus}(C) \geq 2 \Longrightarrow \# C(K)<\infty$	Yes
Mordell-Weil ($A(K)$ finitely generated)	Yes
Siegel-Mahler $\#\left\{x, y \in \mathcal{O}_{K, S}^{\times}: a x+b y=1\right\}<\infty$	Yes
Shafarevich (curves) $\#\{C / K: \operatorname{genus}(C)=g \geq 2$, good outside $S\}<\infty$	Yes
Shafarevich (abelian varieties) $\#\{A / K: \operatorname{dim}(C)=d, \operatorname{good}$ outside $S\}<\infty$	Yes

Summary

Conjectures/Theorems	K num field	$K=\mathbb{Q}_{\infty, \ell}$
Tate conjecture $\operatorname{Hom}_{G_{K}}\left(T_{\ell}(A), T_{\ell}(B)\right) \cong \operatorname{Hom}_{K}(A, B) \otimes \mathbb{Z}_{\ell}$	Yes	Yes
Mordell conjecture $\operatorname{genus}(C) \geq 2 \Longrightarrow \# C(K)<\infty$	Yes	?
Mordell-Weil ($A(K)$ finitely generated)	Yes	?
Siegel-Mahler $\#\left\{x, y \in \mathcal{O}_{K, S}^{\times}: a x+b y=1\right\}<\infty$	Yes	No
Shafarevich (curves) $\#\{C / K: \operatorname{genus}(C)=g \geq 2, \text { good outside } S\}<\infty$	Yes	No
Shafarevich (abelian varieties) $\#\{A / K: \operatorname{dim}(C)=d$, good outside $S\}<\infty$	Yes	No

Danke schön!

