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Motivation

• Let K be a number field and S a finite set of places of K .

Conjecture (Mordell 1922)

Any smooth curve C/K of genus at least 2 has only finitely many K -rational points.

Conjecture (Shafarevich 1962)

Let g ≥ 2 be a positive integer. Then there are only finitely many K -isomorphism classes
of smooth curves C/K of genus g with good reduction outside S .

Conjecture (Shafarevich 1962)

Let d ≥ 1 be a positive integer. Then there are only finitely many K -isomorphism classes
of (p.p.) abelian varieties A/K of dimension d with good reduction outside S .
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Motivation

Faltings proof not fully effective (can give weak bound on number of isogeny classes)!

Conjecture (Effective Shafarevich)

There exists an effectively computable constant cK ,d ,S such that, for any dimension d
abelian variety A/K with good reduction outside S , we have hF (A) ≤ cK ,d ,S .

Cases for which we have effective algorithms:

• elliptic curves (d = 1)

• abelian varieties of GL2-type (i.e. End(A)⊗Q contains a degree d number field)

• hyperelliptic curves

• K = Q and S = ∅

Even the case d = 2, K = Q, S = {2} is still an open problem!
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Abelian surfaces

Problem

Classify all abelian surfaces A/Q with good reduction away from 2.

If A/Q is a principally polarised abelian surface, then A is isomorphic to one of the
following three cases:

1. A ∼= Jac(C ) where C/Q is smooth genus 2 curve.

2. A ∼= E1 × E2 where E1,E2 are elliptic curves over Q.

3. A ∼= ResK/QE ; the Weil restriction of an elliptic curve E/K where K is a quadratic
number field.

Cases 2 and 3 can easily be dealt with. Case 1 seems to be hard (at least for me)!
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Genus 2 curves

Theorem (Smart 1997)

There are exactly 366 genus 2 curves C/Q with good reduction away from 2, divided
amongst 165 isogeny classes.

By taking Jac(C ), we have examples of abelian surfaces with good reduction outside 2.
But there are more! Examples of other curves C/Q where Jac(C ) good outside 2:

• C/Q : y2 = x5 − 14x3 + 81x has bad reduction at {2, 3}.
• C/Q : y2 = 2x5 − 9x4 − 24x3 + 22x2 + 78x − 41 has bad reduction at {2, 5}.
• C/Q : y2 = 2x5 + x4 − 16x3 − 72x2 + 240x + 136 has bad reduction at {2, 7}.
• C/Q : y2 = x5 + 478x3 + 57122x has bad reduction at {2, 13}.

So far, we’ve found 502 examples of genus 2 curves C/Q such that Jac(C ) is good
outside 2.
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Abelian surfaces

Conjecture

If C/Q is a smooth genus 2 curve such that Jac(C ) has good reduction away from 2,
then C has good reduction away from {2, 3, 5, 7, 13}.

From here on, we’ll focus on attempting to solve the (hopefully simpler) subproblem:

(Hopefully easier) subproblem

Classify all isogeny classes of abelian surfaces A/Q with good reduction away from 2 and
with full rational 2-torsion (i.e. Q(A[2]) = Q).
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Faltings-Serre

Let A/K be an abelian variety. Its L-function factors as an Euler product,

L(A/K , s) =
∏

p prime

Lp(A/K ,Np−s).

where, for primes p of good reduction, Lp(A/K ,T ) is given by the characteristic
polynomial of ρA,ℓ(Frobp) where ρA,ℓ : Gal(K/K ) → AutZℓ

(Tℓ(A)) ∼= GL2d(Zℓ).

Theorem (Faltings–Serre)

Let A/K and B/K be two abelian varieties. If Lp(A/K , s) = Lp(B/K , s) for some
effectively computable finite set of primes p, then L(A/K , s) = L(B/K , s).

Theorem (Faltings–Serre–Livné)

Let A/Q and B/Q be two abelian varieties with good reduction away from 2 and with full
rational 2-torsion. Then if Lp(A/Q, s) = Lp(B/Q, s) for each p ∈ {3, 5, 7}, then A and B
are isogenous over Q.
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Elliptic curves

To illustrate, let’s use the Faltings-Serre method to classify elliptic curves with good
reduction away from 2 and with full rational 2-torsion!

Theorem

Let E/Q be an elliptic curve with good reduction away from 2, and with full rational
2-torsion. Then E is isomorphic to either E1 : y

2 = x3 − x or E2 : y
2 = x3 − 4x .

Quick proof: Let E/Q be given by y2 = x(x − a)(x − b) for some distinct nonzero
a, b ∈ Z. Then a, b and a− b are all powers of 2. Can easily observe that
b ∈ {−a, a/2, 2a} and in every case, E is isomorphic to either E1 or E2.

Longer proof: Classify the possible Euler factors L3(E/Q,T ), L5(E/Q,T ), and
L7(E/Q,T ) and apply the Faltings–Serre–Livné criterion!
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Elliptic curves

Theorem

Let E/Q be an elliptic curve with good reduction away from 2 and with full 2-torsion.
Then Q(E [4]) = Q(ζ8) and Q(E [8]) = Q(ζ16,

4
√
2)

Proof: For any n ≥ 1, we note the following properties for Q(E [2n]):

• Q(E [2n]) is Galois and contains ζ2n .

• Q(E [2n]) is unramified outside 2.

• Q(E [2n]) is a compositum of quadratic extensions of Q(E [2n−1]).

• For each odd prime p in Q(E [2n]), the Weil inequality implies

22n ≤ |E (Fp)| ≤ Np+ 1 + 2
√

Np.

• Gal(Q(E [2n])/Q) is a subgroup of {M ∈ GL2(Z/2nZ) : M ≡ I (mod 2)}.
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Elliptic curves

Q

Q(i) Q(
√
2) Q(

√
−2)

Q(ζ8)

Q(E [4]) =

Figure: Field diagram of quadratic extensions of Q unramified away from 2, and their compositum.

9 / 15



Elliptic curves

Q

Q(i) Q(
√
2) Q(

√
−2)

Q(ζ8)

Q(E [4]) =

Figure: Field diagram of quadratic extensions of Q unramified away from 2, and their compositum.

9 / 15



Elliptic curves

Q

Q(i) Q(
√
2) Q(

√
−2)

Q(ζ8)

Q(E [4]) =

Figure: Field diagram of quadratic extensions of Q unramified away from 2, and their compositum.

9 / 15



Elliptic curves

Q

Q(i) Q(
√
2) Q(

√
−2)

Q(ζ8)

Q(E [4]) =

Figure: Field diagram of quadratic extensions of Q unramified away from 2, and their compositum.

9 / 15



Elliptic curves

Q

Q(i) Q(
√
2) Q(

√
−2)

Q(ζ8)Q(E [4]) =

Figure: Field diagram of quadratic extensions of Q unramified away from 2, and their compositum.

9 / 15



Elliptic curves
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Elliptic curves

Classifying E/Q good away from 2 with full rational 2-torsion:

• As Gal(Q(ζ16,
4
√
2) ∼= C 2

2 ⋊ C4, we compute all possible embeddings of C 2
2 ⋊ C4 into

{M ∈ GL2(Z/8Z) : M ≡ I (mod 2)}.
• Using that det(Frobp) = p, a brute force computer search yields

tr(Frob3) ≡ 0, tr(Frob5) ≡ 2 or −2, and tr(Frob7) ≡ 0 (mod 8).

• By the Hasse-Weil bound, this implies

tr(Frob3) = 0, tr(Frob5) = 2 or −2, and tr(Frob7) = 0.

• Using the Faltings–Serre–Livné criterion, this implies there are at most two isogeny
classes of elliptic curves E/Q good away from 2 with full rational 2-torsion.

• As E1, E2 not isogenous, there are exactly two such isogeny classes! Computing the
isogeny class over Q for both E1 and E2 gives the result!
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General algorithm
A “sometimes” effective algorithm to compute isogeny classes of dimension d abelian
varieties A/K with good reduction outside S :

1. Use the Faltings–Serre–Livné criterion to compute a finite set of primes T for which
{Lp(A/K ,T )}p∈T uniquely determines L(A/K , s).

2. For each p ∈ T , use the Weil inequalities to compute a finite set of possible L-factors
Lp(A/K ,T ).

3. For a suitable prime ℓ and sufficiently large n, compute the possible ℓn-torsion fields
K (A[ℓn]) and thus the possible embeddings Gal(K (A[ℓn])/K ) → GL2d(Z/ℓnZ).

4. Compute the possible characteristic polynomials (mod ℓn) to narrow down the
possibilities for Lp(A/K ,T ). For each remaining valid L-function L(A/K , s), search
for an abelian variety that has this L-function.

5. Hope that, for large enough n, the only remaining possible L-functions L(A/K , s)
correspond to explicit examples of abelian varieties already found!
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Abelian surfaces (revisited)
Let’s apply this to abelian surfaces:

n Q(A[2n]) Gal(Q(A[2n])/Q) #L3(A/Q, s) #L5(A/Q, s) #L7(A/Q, s)

0 Q C1 63 129 207

1 Q C1 17 35 53

2 Q(ζ8) C2 × C2 6 12 16

3 Q(ζ16,
4
√
2) C 2

2 ⋊ C4 2 5 6

4 (many)†
C 2
2 ⋊ C8, D4 ⋊ C8,

C 2
2 .C4 ≀ C2

1 4 2

5 (many) (many) 1 3 1

†One possibility is Q(α) with minimal polynomial x32−16x31+120x30−528x29+1356x28−1232x27−4768x26+
22128x25−41324x24+22672x23+73368x22−202720x21+227588x20−97728x19−7248x18−67344x17+130936x16+
60384x15−322288x14+308080x13−66076x12−103424x11+108920x10−58864x9+24084x8−6448x7+48x6+
368x5−116x4+64x3+8x2+1
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Abelian surfaces (revisited)
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n Q(A[2n]) Gal(Q(A[2n])/Q) #L3(A/Q, s) #L5(A/Q, s) #L7(A/Q, s)

0 Q C1 63 129 207
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√
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C 2
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Results

Theorem (V. 2023)

There are exactly 3 isogeny classes of abelian surfaces A/Q with good reduction away
from 2 which contain surfaces with full rational 2-torsion. These are given by E1 × E1,
E1 × E2 and E2 × E2, where E1, E2 are the elliptic curves E1 : y

2 = x3 − x and
E2 : y

2 = x3 − 4x .

Doing a similar (albeit more tedious) computation also gives the following result:

Theorem (V. 2023)

There are exactly 23 isogeny classes of abelian surfaces A/Q with good reduction away
from 2 which contain surfaces such that either A[2](Q) ∼= (Z/2Z)4 or A[2](Q) ∼= (Z/2Z)3.
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Thank you!
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