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® However Faltings proof not fully effective!
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Motivation

Conjecture (Effective Shafarevich)

There exists an effectively computable constant ck 4 s such that, for any dimension d
abelian variety A/K with good reduction outside S, we have hg(A) < ck ds.

Some cases for which we have effective algorithms:
e elliptic curves
® hyperelliptic curves

® abelian varieties of GL»-type

What about d =2, K =Q, S = {2}?
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Problem

Problem
Classify all abelian surfaces A/Q with good reduction away from 2.

® This seems very hard (at least for me)!

(Hopefully easier) subproblem

Classify all isogeny classes of abelian surfaces A/Q with good reduction away from 2 and
with full rational 2-torsion.
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Faltings—Serre—Livné method

Let A/K be an abelian variety. Its L-function factors as an Euler product,
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p prime

4/6



Faltings—Serre—Livné method

Let A/K be an abelian variety. Its L-function factors as an Euler product,

LA/K,s) = J] Le(A/K,Np~®).

p prime

where, for primes p of good reduction, L,(A/K, T) is given by the characteristic
polynomial of pa ¢(Froby,) where pa,: Gal(K/K) — Autz, (Ti(A)) = GLag(Zy).

4/6



Faltings—Serre—Livné method

Let A/K be an abelian variety. Its L-function factors as an Euler product,
LA/K,s) = J] Le(A/K,Np~®).
p prime

where, for primes p of good reduction, L,(A/K, T) is given by the characteristic
polynomial of pa ¢(Froby,) where pa,: Gal(K/K) — Autz, (Ti(A)) = GLag(Zy).

Theorem (Faltings—Serre)

Let A/K and B/K be two abelian varieties. If L,(A/K, T) = Ly,(B/K, T) for some
effectively computable finite set of primes p, then L(A/K,s) = L(B/K,s).

4/6



Faltings—Serre—Livné method

Let A/K be an abelian variety. Its L-function factors as an Euler product,
LA/K,s) = J] Le(A/K,Np~®).
p prime

where, for primes p of good reduction, L,(A/K, T) is given by the characteristic
polynomial of pa ¢(Froby,) where pa,: Gal(K/K) — Autz, (Ti(A)) = GLag(Zy).

Theorem (Faltings—Serre)

Let A/K and B/K be two abelian varieties. If L,(A/K, T) = Ly,(B/K, T) for some
effectively computable finite set of primes p, then L(A/K,s) = L(B/K,s).

Theorem (Faltings—Serre—Livné)

Let A/Q and B/Q be two abelian varieties with good reduction away from 2 and with full
rational 2-torsion. Then if L,(A/Q, T) = L,(B/Q, T) for each p € {3,5,7}, then A and
B are isogenous over Q.

4/6



Computations

We brute force the possible Euler factors L,(A/Q, T) for p=3,5,7 !
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Computations

We brute force the possible Euler factors L,(A/Q, T) for p=3,5,7 !
e Use that Gal(Q(A[2"])/Q) embeds in GL4(Z/2"Z), for each n > 1.
e Compute the characteristic polynomials for each matrix in the image of each
embedding. This gives a finite number of possibilities for L,(A/Q, T) mod 2".

n o QARY)  Gal(Q(A2"])/Q)  #Ls(A/Q,T) #Ls(A/Q, T) #L:(A/Q,T)
0 Q G 63 129 207

1 Q G 17 35 53

2 QG) G x G 6 12 16

3 Q(C6,V2) C2x G 2 5 6

4 ? G ”ngéﬁ 4C>: Ca, 1 4 2

5 ? (many) 1 3 1
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Results

Theorem

There are exactly 3 isogeny classes of abelian surfaces A/Q with good reduction away
from 2 which contain surfaces with full rational 2-torsion. These are given by E; x Eq,
E, x E;> and E> x E,, where E;, E> are the elliptic curves E; : y* = x3 — x and

E>:y? =x3 —4x.
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There are exactly 3 isogeny classes of abelian surfaces A/Q with good reduction away
from 2 which contain surfaces with full rational 2-torsion. These are given by E; x Eq,
E, x E;> and E> x E,, where E;, E> are the elliptic curves E; : y* = x3 — x and

E>:y? =x3 —4x.

Doing a similar (albeit much longer) computation also gives the following result:

Theorem

There are exactly 23 isogeny classes of abelian surfaces A/Q with good reduction away
from 2 which contain surfaces such that either A[2](Q) = (Z/27Z)* or A[2)(Q) = (Z/27Z)3.
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