# Abelian surfaces with good reduction away from 2 

Modular curves and Galois representations

Robin Visser<br>Mathematics Institute<br>University of Warwick

19 September 2023

## Motivation

- Let $K$ be a number field and $S$ a finite set of places of $K$.


## Motivation

- Let $K$ be a number field and $S$ a finite set of places of $K$.


## Theorem (Faltings 1983; conjectured by Mordell 1922)

Any smooth curve C/K of genus at least 2 has only finitely many K-rational points.

## Motivation

- Let $K$ be a number field and $S$ a finite set of places of $K$.


## Theorem (Faltings 1983; conjectured by Mordell 1922)

Any smooth curve C/K of genus at least 2 has only finitely many K-rational points.
Theorem (Faltings 1983; conjectured by Shafarevich 1962)
Let $d \geq 1$ be a positive integer. Then there are only finitely many K-isomorphism classes of (p.p.) abelian varieties $A / K$ of dimension $d$ with good reduction outside $S$.

## Motivation

- Let $K$ be a number field and $S$ a finite set of places of $K$.


## Theorem (Faltings 1983; conjectured by Mordell 1922)

Any smooth curve C/K of genus at least 2 has only finitely many K-rational points.

## Theorem (Faltings 1983; conjectured by Shafarevich 1962)

Let $d \geq 1$ be a positive integer. Then there are only finitely many K-isomorphism classes of (p.p.) abelian varieties $A / K$ of dimension $d$ with good reduction outside $S$.

- However Faltings proof not fully effective!


## Motivation

## Conjecture (Effective Shafarevich)

There exists an effectively computable constant $c_{K, d, S}$ such that, for any dimension $d$ abelian variety $A / K$ with good reduction outside $S$, we have $h_{F}(A) \leq c_{K, d, S}$.

## Motivation

## Conjecture (Effective Shafarevich)

There exists an effectively computable constant $c_{K, d, S}$ such that, for any dimension $d$ abelian variety $A / K$ with good reduction outside $S$, we have $h_{F}(A) \leq c_{K, d, S}$.

Some cases for which we have effective algorithms:

- elliptic curves


## Motivation

## Conjecture (Effective Shafarevich)

There exists an effectively computable constant $c_{K, d, S}$ such that, for any dimension $d$ abelian variety $A / K$ with good reduction outside $S$, we have $h_{F}(A) \leq c_{K, d, S}$.

Some cases for which we have effective algorithms:

- elliptic curves
- hyperelliptic curves


## Motivation

## Conjecture (Effective Shafarevich)

There exists an effectively computable constant $c_{K, d, S}$ such that, for any dimension $d$ abelian variety $A / K$ with good reduction outside $S$, we have $h_{F}(A) \leq c_{K, d, S}$.

Some cases for which we have effective algorithms:

- elliptic curves
- hyperelliptic curves
- abelian varieties of $\mathrm{GL}_{2}$-type


## Motivation

## Conjecture (Effective Shafarevich)

There exists an effectively computable constant $c_{K, d, S}$ such that, for any dimension $d$ abelian variety $A / K$ with good reduction outside $S$, we have $h_{F}(A) \leq c_{K, d, S}$.

Some cases for which we have effective algorithms:

- elliptic curves
- hyperelliptic curves
- abelian varieties of $\mathrm{GL}_{2}$-type

What about $d=2, K=\mathbb{Q}, S=\{2\}$ ?

## Problem

## Problem

Classify all abelian surfaces $A / \mathbb{Q}$ with good reduction away from 2.

## Problem

## Problem

Classify all abelian surfaces $A / \mathbb{Q}$ with good reduction away from 2.

- This seems very hard (at least for me)!


## Problem

## Problem

Classify all abelian surfaces $A / \mathbb{Q}$ with good reduction away from 2.

- This seems very hard (at least for me)!


## (Hopefully easier) subproblem

Classify all isogeny classes of abelian surfaces $A / \mathbb{Q}$ with good reduction away from 2 and with full rational 2-torsion.

Faltings-Serre-Livné method

## Faltings-Serre-Livné method

Let $A / K$ be an abelian variety. Its $L$-function factors as an Euler product,

$$
L(A / K, s)=\prod_{\mathfrak{p} \text { prime }} L_{\mathfrak{p}}\left(A / K, N \mathfrak{p}^{-s}\right) .
$$

## Faltings-Serre-Livné method

Let $A / K$ be an abelian variety. Its $L$-function factors as an Euler product,

$$
L(A / K, s)=\prod_{\mathfrak{p} \text { prime }} L_{\mathfrak{p}}\left(A / K, \mathrm{~Np}^{-s}\right)
$$

where, for primes $\mathfrak{p}$ of good reduction, $L_{\mathfrak{p}}(A / K, T)$ is given by the characteristic polynomial of $\rho_{A, \ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right)$ where $\rho_{A, \ell}: \operatorname{Gal}(\bar{K} / K) \rightarrow \operatorname{Aut}_{\mathbb{Z}_{\ell}}\left(T_{\ell}(A)\right) \cong \mathrm{GL}_{2 d}\left(\mathbb{Z}_{\ell}\right)$.

## Faltings-Serre-Livné method

Let $A / K$ be an abelian variety. Its $L$-function factors as an Euler product,

$$
L(A / K, s)=\prod_{\mathfrak{p} \text { prime }} L_{\mathfrak{p}}\left(A / K, \mathrm{~Np}^{-s}\right) .
$$

where, for primes $\mathfrak{p}$ of good reduction, $L_{\mathfrak{p}}(A / K, T)$ is given by the characteristic polynomial of $\rho_{A, \ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right)$ where $\rho_{A, \ell}: \operatorname{Gal}(\bar{K} / K) \rightarrow \operatorname{Aut}_{\mathbb{Z}_{\ell}}\left(T_{\ell}(A)\right) \cong \mathrm{GL}_{2 d}\left(\mathbb{Z}_{\ell}\right)$.

## Theorem (Faltings-Serre)

Let $A / K$ and $B / K$ be two abelian varieties. If $L_{p}(A / K, T)=L_{p}(B / K, T)$ for some effectively computable finite set of primes $\mathfrak{p}$, then $L(A / K, s)=L(B / K, s)$.

## Faltings-Serre-Livné method

Let $A / K$ be an abelian variety. Its $L$-function factors as an Euler product,

$$
L(A / K, s)=\prod_{\mathfrak{p} \text { prime }} L_{\mathfrak{p}}\left(A / K, \mathrm{~Np}^{-s}\right) .
$$

where, for primes $\mathfrak{p}$ of good reduction, $L_{\mathfrak{p}}(A / K, T)$ is given by the characteristic polynomial of $\rho_{A, \ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right)$ where $\rho_{A, \ell}: \operatorname{Gal}(\bar{K} / K) \rightarrow \operatorname{Aut}_{\mathbb{Z}_{\ell}}\left(T_{\ell}(A)\right) \cong \mathrm{GL}_{2 d}\left(\mathbb{Z}_{\ell}\right)$.

## Theorem (Faltings-Serre)

Let $A / K$ and $B / K$ be two abelian varieties. If $L_{\mathfrak{p}}(A / K, T)=L_{p}(B / K, T)$ for some effectively computable finite set of primes $\mathfrak{p}$, then $L(A / K, s)=L(B / K, s)$.

## Theorem (Faltings-Serre-Livné)

Let $A / \mathbb{Q}$ and $B / \mathbb{Q}$ be two abelian varieties with good reduction away from 2 and with full rational 2-torsion. Then if $L_{p}(A / \mathbb{Q}, T)=L_{p}(B / \mathbb{Q}, T)$ for each $p \in\{3,5,7\}$, then $A$ and $B$ are isogenous over $\mathbb{Q}$.

## Computations

We brute force the possible Euler factors $L_{p}(A / \mathbb{Q}, T)$ for $p=3,5,7$ !

## Computations

We brute force the possible Euler factors $L_{p}(A / \mathbb{Q}, T)$ for $p=3,5,7$ !

- Use that $\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ embeds in $\mathrm{GL}_{4}\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$, for each $n \geq 1$.


## Computations

We brute force the possible Euler factors $L_{p}(A / \mathbb{Q}, T)$ for $p=3,5,7$ !

- Use that $\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ embeds in $\mathrm{GL}_{4}\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$, for each $n \geq 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for $L_{p}(A / \mathbb{Q}, T) \bmod 2^{n}$.


## Computations

We brute force the possible Euler factors $L_{p}(A / \mathbb{Q}, T)$ for $p=3,5,7$ !

- Use that $\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ embeds in $\mathrm{GL}_{4}\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$, for each $n \geq 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for $L_{p}(A / \mathbb{Q}, T) \bmod 2^{n}$.

| $n$ | $\mathbb{Q}\left(A\left[2^{n}\right]\right)$ | $\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ | $\# L_{3}(A / \mathbb{Q}, T)$ | $\# L_{5}(A / \mathbb{Q}, T)$ | $\# L_{7}(A / \mathbb{Q}, T)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\mathbb{Q}$ | $C_{1}$ | 63 | 129 | 207 |

## Computations

We brute force the possible Euler factors $L_{p}(A / \mathbb{Q}, T)$ for $p=3,5,7$ !

- Use that $\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ embeds in $\mathrm{GL}_{4}\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$, for each $n \geq 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for $L_{p}(A / \mathbb{Q}, T) \bmod 2^{n}$.

| $n$ | $\mathbb{Q}\left(A\left[2^{n}\right]\right)$ | $\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ | $\# L_{3}(A / \mathbb{Q}, T)$ | $\# L_{5}(A / \mathbb{Q}, T)$ | $\# L_{7}(A / \mathbb{Q}, T)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\mathbb{Q}$ | $C_{1}$ | 63 | 129 | 207 |
| 1 | $\mathbb{Q}$ | $C_{1}$ | 17 | 35 | 53 |

## Computations

We brute force the possible Euler factors $L_{p}(A / \mathbb{Q}, T)$ for $p=3,5,7$ !

- Use that $\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ embeds in $\mathrm{GL}_{4}\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$, for each $n \geq 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for $L_{p}(A / \mathbb{Q}, T) \bmod 2^{n}$.

| $n$ | $\mathbb{Q}\left(A\left[2^{n}\right]\right)$ | $\mathrm{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ | $\# L_{3}(A / \mathbb{Q}, T)$ | $\# L_{5}(A / \mathbb{Q}, T)$ | $\# L_{7}(A / \mathbb{Q}, T)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\mathbb{Q}$ | $C_{1}$ | 63 | 129 | 207 |
| 1 | $\mathbb{Q}$ | $C_{1}$ | 17 | 35 | 53 |
| 2 | $\mathbb{Q}\left(\zeta_{8}\right)$ | $C_{2} \times C_{2}$ | 6 | 12 | 16 |

## Computations

We brute force the possible Euler factors $L_{p}(A / \mathbb{Q}, T)$ for $p=3,5,7$ !

- Use that $\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ embeds in $\mathrm{GL}_{4}\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$, for each $n \geq 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for $L_{p}(A / \mathbb{Q}, T) \bmod 2^{n}$.

| $n$ | $\mathbb{Q}\left(A\left[2^{n}\right]\right)$ | $\mathrm{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ | $\# L_{3}(A / \mathbb{Q}, T)$ | $\# L_{5}(A / \mathbb{Q}, T)$ | $\# L_{7}(A / \mathbb{Q}, T)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\mathbb{Q}$ | $C_{1}$ | 63 | 129 | 207 |
| 1 | $\mathbb{Q}$ | $C_{1}$ | 17 | 35 | 53 |
| 2 | $\mathbb{Q}\left(\zeta_{8}\right)$ | $C_{2} \times C_{2}$ | 6 | 12 | 16 |
| 3 | $\mathbb{Q}\left(\zeta_{16}, \sqrt[4]{2}\right)$ | $C_{2}^{2} \rtimes C_{4}$ | 2 | 5 | 6 |

## Computations

We brute force the possible Euler factors $L_{p}(A / \mathbb{Q}, T)$ for $p=3,5,7$ !

- Use that $\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ embeds in $\mathrm{GL}_{4}\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$, for each $n \geq 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for $L_{p}(A / \mathbb{Q}, T) \bmod 2^{n}$.

| $n$ | $\mathbb{Q}\left(A\left[2^{n}\right]\right)$ | $\mathrm{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ | $\# L_{3}(A / \mathbb{Q}, T)$ | $\# L_{5}(A / \mathbb{Q}, T)$ | $\# L_{7}(A / \mathbb{Q}, T)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\mathbb{Q}$ | $C_{1}$ | 63 | 129 | 207 |
| 1 | $\mathbb{Q}$ | $C_{1}$ | 17 | 35 | 53 |
| 2 | $\mathbb{Q}\left(\zeta_{8}\right)$ | $C_{2} \times C_{2}$ | 6 | 12 | 16 |
| 3 | $\mathbb{Q}\left(\zeta_{16}, \sqrt[4]{2}\right)$ | $C_{2}^{2} \rtimes C_{4}$ | 2 | 5 | 6 |
| 4 | $?$ | $C_{2}^{2} \rtimes C_{8}, D_{4} \rtimes C_{8}$, | 1 | 4 | 2 |

## Computations

We brute force the possible Euler factors $L_{p}(A / \mathbb{Q}, T)$ for $p=3,5,7$ !

- Use that $\operatorname{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ embeds in $\mathrm{GL}_{4}\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$, for each $n \geq 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for $L_{p}(A / \mathbb{Q}, T) \bmod 2^{n}$.

| $n$ | $\mathbb{Q}\left(A\left[2^{n}\right]\right)$ | $\mathrm{Gal}\left(\mathbb{Q}\left(A\left[2^{n}\right]\right) / \mathbb{Q}\right)$ | $\# L_{3}(A / \mathbb{Q}, T)$ | $\# L_{5}(A / \mathbb{Q}, T)$ | $\# L_{7}(A / \mathbb{Q}, T)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\mathbb{Q}$ | $C_{1}$ | 63 | 129 | 207 |
| 1 | $\mathbb{Q}$ | $C_{1}$ | 17 | 35 | 53 |
| 2 | $\mathbb{Q}\left(\zeta_{8}\right)$ | $C_{2} \times C_{2}$ | 6 | 12 | 16 |
| 3 | $\mathbb{Q}\left(\zeta_{16}, \sqrt[4]{2}\right)$ | $C_{2}^{2} \rtimes C_{4}$ | 2 | 5 | 6 |
| 4 | $?$ | $C_{2}^{2} \rtimes C_{8}, D_{4} \rtimes C_{8}$, | 1 | 4 | 2 |
| 5 | $?$ | $C_{2}^{2} \cdot C_{4} \backslash C_{2}$ | (many) | 1 | 3 |

## Results

## Theorem

There are exactly 3 isogeny classes of abelian surfaces $A / \mathbb{Q}$ with good reduction away from 2 which contain surfaces with full rational 2-torsion. These are given by $E_{1} \times E_{1}$, $E_{1} \times E_{2}$ and $E_{2} \times E_{2}$, where $E_{1}, E_{2}$ are the elliptic curves $E_{1}: y^{2}=x^{3}-x$ and $E_{2}: y^{2}=x^{3}-4 x$.

## Results

## Theorem

There are exactly 3 isogeny classes of abelian surfaces $A / \mathbb{Q}$ with good reduction away from 2 which contain surfaces with full rational 2-torsion. These are given by $E_{1} \times E_{1}$, $E_{1} \times E_{2}$ and $E_{2} \times E_{2}$, where $E_{1}, E_{2}$ are the elliptic curves $E_{1}: y^{2}=x^{3}-x$ and $E_{2}: y^{2}=x^{3}-4 x$.

Doing a similar (albeit much longer) computation also gives the following result:

## Theorem

There are exactly 23 isogeny classes of abelian surfaces $A / \mathbb{Q}$ with good reduction away from 2 which contain surfaces such that either $A[2](\mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{4}$ or $A[2](\mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{3}$.

