Abelian surfaces with good reduction away from 2

Modular curves and Galois representations

Robin Visser Mathematics Institute University of Warwick

19 September 2023

Motivation

• Let K be a number field and S a finite set of places of K.

• Let K be a number field and S a finite set of places of K.

Theorem (Faltings 1983; conjectured by Mordell 1922)

Any smooth curve C/K of genus at least 2 has only finitely many K-rational points.

• Let K be a number field and S a finite set of places of K.

Theorem (Faltings 1983; conjectured by Mordell 1922)

Any smooth curve C/K of genus at least 2 has only finitely many K-rational points.

Theorem (Faltings 1983; conjectured by Shafarevich 1962)

Let $d \ge 1$ be a positive integer. Then there are only finitely many K-isomorphism classes of (p.p.) abelian varieties A/K of dimension d with good reduction outside S.

• Let K be a number field and S a finite set of places of K.

Theorem (Faltings 1983; conjectured by Mordell 1922)

Any smooth curve C/K of genus at least 2 has only finitely many K-rational points.

Theorem (Faltings 1983; conjectured by Shafarevich 1962)

Let $d \ge 1$ be a positive integer. Then there are only finitely many K-isomorphism classes of (p.p.) abelian varieties A/K of dimension d with good reduction outside S.

• However Faltings proof not fully effective!

Motivation

Conjecture (Effective Shafarevich)

There exists an effectively computable constant $c_{K,d,S}$ such that, for any dimension d abelian variety A/K with good reduction outside S, we have $h_F(A) \leq c_{K,d,S}$.

There exists an effectively computable constant $c_{K,d,S}$ such that, for any dimension d abelian variety A/K with good reduction outside S, we have $h_F(A) \leq c_{K,d,S}$.

Some cases for which we have effective algorithms:

• elliptic curves

There exists an effectively computable constant $c_{K,d,S}$ such that, for any dimension d abelian variety A/K with good reduction outside S, we have $h_F(A) \leq c_{K,d,S}$.

Some cases for which we have effective algorithms:

- elliptic curves
- hyperelliptic curves

There exists an effectively computable constant $c_{K,d,S}$ such that, for any dimension d abelian variety A/K with good reduction outside S, we have $h_F(A) \leq c_{K,d,S}$.

Some cases for which we have effective algorithms:

- elliptic curves
- hyperelliptic curves
- abelian varieties of GL₂-type

There exists an effectively computable constant $c_{K,d,S}$ such that, for any dimension d abelian variety A/K with good reduction outside S, we have $h_F(A) \leq c_{K,d,S}$.

Some cases for which we have effective algorithms:

- elliptic curves
- hyperelliptic curves
- abelian varieties of GL₂-type

What about d = 2, $K = \mathbb{Q}$, $S = \{2\}$?

Problem

Classify all abelian surfaces A/\mathbb{Q} with good reduction away from 2.

Problem

Classify all abelian surfaces A/\mathbb{Q} with good reduction away from 2.

• This seems very hard (at least for me)!

Problem

Classify all abelian surfaces A/\mathbb{Q} with good reduction away from 2.

• This seems very hard (at least for me)!

(Hopefully easier) subproblem

Classify all isogeny classes of abelian surfaces A/\mathbb{Q} with good reduction away from 2 and with full rational 2-torsion.

Let A/K be an abelian variety. Its L-function factors as an Euler product,

$$L(A/K, s) = \prod_{\mathfrak{p} \text{ prime}} L_{\mathfrak{p}}(A/K, N\mathfrak{p}^{-s}).$$

Let A/K be an abelian variety. Its L-function factors as an Euler product,

$$L(A/K, s) = \prod_{\mathfrak{p} \text{ prime}} L_{\mathfrak{p}}(A/K, N\mathfrak{p}^{-s}).$$

where, for primes \mathfrak{p} of good reduction, $L_{\mathfrak{p}}(A/K, T)$ is given by the characteristic polynomial of $\rho_{A,\ell}(\operatorname{Frob}_{\mathfrak{p}})$ where $\rho_{A,\ell}: \operatorname{Gal}(\overline{K}/K) \to \operatorname{Aut}_{\mathbb{Z}_{\ell}}(T_{\ell}(A)) \cong \operatorname{GL}_{2d}(\mathbb{Z}_{\ell}).$

Let A/K be an abelian variety. Its L-function factors as an Euler product,

$$L(A/K, s) = \prod_{\mathfrak{p} \text{ prime}} L_{\mathfrak{p}}(A/K, N\mathfrak{p}^{-s}).$$

where, for primes \mathfrak{p} of good reduction, $L_{\mathfrak{p}}(A/K, T)$ is given by the characteristic polynomial of $\rho_{A,\ell}(\operatorname{Frob}_{\mathfrak{p}})$ where $\rho_{A,\ell}: \operatorname{Gal}(\overline{K}/K) \to \operatorname{Aut}_{\mathbb{Z}_{\ell}}(T_{\ell}(A)) \cong \operatorname{GL}_{2d}(\mathbb{Z}_{\ell})$.

Theorem (Faltings–Serre)

Let A/K and B/K be two abelian varieties. If $L_{\mathfrak{p}}(A/K, T) = L_{\mathfrak{p}}(B/K, T)$ for some effectively computable finite set of primes \mathfrak{p} , then L(A/K, s) = L(B/K, s).

Let A/K be an abelian variety. Its L-function factors as an Euler product,

$$L(A/K, s) = \prod_{\mathfrak{p} \text{ prime}} L_{\mathfrak{p}}(A/K, N\mathfrak{p}^{-s}).$$

where, for primes \mathfrak{p} of good reduction, $L_{\mathfrak{p}}(A/K, T)$ is given by the characteristic polynomial of $\rho_{A,\ell}(\operatorname{Frob}_{\mathfrak{p}})$ where $\rho_{A,\ell}: \operatorname{Gal}(\overline{K}/K) \to \operatorname{Aut}_{\mathbb{Z}_{\ell}}(T_{\ell}(A)) \cong \operatorname{GL}_{2d}(\mathbb{Z}_{\ell}).$

Theorem (Faltings–Serre)

Let A/K and B/K be two abelian varieties. If $L_{\mathfrak{p}}(A/K, T) = L_{\mathfrak{p}}(B/K, T)$ for some effectively computable finite set of primes \mathfrak{p} , then L(A/K, s) = L(B/K, s).

Theorem (Faltings–Serre–Livné)

Let A/\mathbb{Q} and B/\mathbb{Q} be two abelian varieties with good reduction away from 2 and with full rational 2-torsion. Then if $L_p(A/\mathbb{Q}, T) = L_p(B/\mathbb{Q}, T)$ for each $p \in \{3, 5, 7\}$, then A and B are isogenous over \mathbb{Q} .

We brute force the possible Euler factors $L_p(A/\mathbb{Q}, T)$ for p = 3, 5, 7 !

• Use that $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$ embeds in $GL_4(\mathbb{Z}/2^n\mathbb{Z})$, for each $n \ge 1$.

- Use that $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$ embeds in $GL_4(\mathbb{Z}/2^n\mathbb{Z})$, for each $n \ge 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for L_p(A/Q, T) mod 2ⁿ.

- Use that $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$ embeds in $GL_4(\mathbb{Z}/2^n\mathbb{Z})$, for each $n \ge 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for L_p(A/Q, T) mod 2ⁿ.

n	$\mathbb{Q}(A[2^n])$	$Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$	$\#L_3(A/\mathbb{Q}, T)$	$\#L_5(A/\mathbb{Q}, T)$	$\#L_7(A/\mathbb{Q}, T)$
0	Q	<i>C</i> ₁	63	129	207

- Use that $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$ embeds in $GL_4(\mathbb{Z}/2^n\mathbb{Z})$, for each $n \ge 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for L_p(A/Q, T) mod 2ⁿ.

n	$\mathbb{Q}(A[2^n])$	$Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$	$\#L_3(A/\mathbb{Q}, T)$	$\#L_5(A/\mathbb{Q}, T)$	$\#L_7(A/\mathbb{Q}, T)$
0	\mathbb{Q}	C_1	63	129	207
1	\mathbb{Q}	C_1	17	35	53

- Use that $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$ embeds in $GL_4(\mathbb{Z}/2^n\mathbb{Z})$, for each $n \ge 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for L_p(A/Q, T) mod 2ⁿ.

n	$\mathbb{Q}(A[2^n])$	$Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$	$\#L_3(A/\mathbb{Q}, T)$	$\#L_5(A/\mathbb{Q}, T)$	$\#L_7(A/\mathbb{Q},T)$
0	Q	<i>C</i> ₁	63	129	207
1	\mathbb{Q}	C_1	17	35	53
2	$\mathbb{Q}(\zeta_8)$	$C_2 imes C_2$	6	12	16

- Use that $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$ embeds in $GL_4(\mathbb{Z}/2^n\mathbb{Z})$, for each $n \ge 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for L_p(A/Q, T) mod 2ⁿ.

n	$\mathbb{Q}(A[2^n])$	$Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$	$\#L_3(A/\mathbb{Q}, T)$	$\#L_5(A/\mathbb{Q}, T)$	$\#L_7(A/\mathbb{Q}, T)$
0	\mathbb{Q}	<i>C</i> ₁	63	129	207
1	\mathbb{Q}	C_1	17	35	53
2	$\mathbb{Q}(\zeta_8)$	$C_2 \times C_2$	6	12	16
3	$\mathbb{Q}(\zeta_{16},\sqrt[4]{2})$	$C_2^2 \rtimes C_4$	2	5	6

- Use that $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$ embeds in $GL_4(\mathbb{Z}/2^n\mathbb{Z})$, for each $n \ge 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for L_p(A/Q, T) mod 2ⁿ.

n	$\mathbb{Q}(A[2^n])$	$Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$	$\#L_3(A/\mathbb{Q}, T)$	$\#L_5(A/\mathbb{Q}, T)$	$\#L_7(A/\mathbb{Q}, T)$
0	Q	<i>C</i> ₁	63	129	207
1	\mathbb{Q}	C_1	17	35	53
2	$\mathbb{Q}(\zeta_8)$	$C_2 \times C_2$	6	12	16
3	$\mathbb{Q}(\zeta_{16},\sqrt[4]{2})$	$C_2^2 \rtimes C_4$	2	5	6
4	?	$C_2^2 \rtimes C_8, \ D_4 \rtimes C_8, \\ C_2^2.C_4 \wr C_2$	1	4	2

- Use that $Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$ embeds in $GL_4(\mathbb{Z}/2^n\mathbb{Z})$, for each $n \ge 1$.
- Compute the characteristic polynomials for each matrix in the image of each embedding. This gives a finite number of possibilities for L_p(A/Q, T) mod 2ⁿ.

n	$\mathbb{Q}(A[2^n])$	$Gal(\mathbb{Q}(A[2^n])/\mathbb{Q})$	$\#L_3(A/\mathbb{Q},T)$	$\#L_5(A/\mathbb{Q},T)$	$\#L_7(A/\mathbb{Q},T)$
0	\mathbb{Q}	<i>C</i> ₁	63	129	207
1	\mathbb{Q}	C_1	17	35	53
2	$\mathbb{Q}(\zeta_8)$	$C_2 \times C_2$	6	12	16
3	$\mathbb{Q}(\zeta_{16},\sqrt[4]{2})$	$C_2^2 \rtimes C_4$	2	5	6
4	?	$C_2^2 \rtimes C_8, \ D_4 \rtimes C_8, \\ C_2^2.C_4 \wr C_2$	1	4	2
5	?	(many)	1	3	1

Theorem

There are exactly 3 isogeny classes of abelian surfaces A/\mathbb{Q} with good reduction away from 2 which contain surfaces with full rational 2-torsion. These are given by $E_1 \times E_1$, $E_1 \times E_2$ and $E_2 \times E_2$, where E_1 , E_2 are the elliptic curves $E_1 : y^2 = x^3 - x$ and $E_2 : y^2 = x^3 - 4x$.

Theorem

There are exactly 3 isogeny classes of abelian surfaces A/\mathbb{Q} with good reduction away from 2 which contain surfaces with full rational 2-torsion. These are given by $E_1 \times E_1$, $E_1 \times E_2$ and $E_2 \times E_2$, where E_1 , E_2 are the elliptic curves $E_1 : y^2 = x^3 - x$ and $E_2 : y^2 = x^3 - 4x$.

Doing a similar (albeit much longer) computation also gives the following result:

Theorem

There are exactly 23 isogeny classes of abelian surfaces A/\mathbb{Q} with good reduction away from 2 which contain surfaces such that either $A[2](\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^4$ or $A[2](\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^3$.