1. Find out the Lie algebra $u(n)$ associated to the unitary group $U(n)$.

2. Find out the Lie algebra $\mathfrak{sp}(2n, \mathbb{R})$ of $\text{Sp}(2n, \mathbb{R})$.

3. (a) Prove the exponention map $\exp : \mathfrak{so}(2) \to \text{SO}(2)$ is surjective.

 (b) Prove the exponential map $\exp : \mathfrak{gl}(2, \mathbb{R}) \to \text{GL}_+(2, \mathbb{R})$ is not surjective.

 (c) Prove the exponential map $\exp : \mathfrak{sl}(2, \mathbb{R}) \to \text{SL}(2, \mathbb{R})$ is not surjective.

4. Let $H \subset \text{GL}(3, \mathbb{R})$ be the Heisenberg group, i.e. the group of all 3×3 upper triangular real matrices whose diagonal entries are 1.

 (a) Find the Lie algebra \mathfrak{h} of H.

 (b) Find the center $Z(H)$ of H, find its Lie algebra.

 (c) Prove the exponential map $\exp : \mathfrak{h} \to H$ is surjective.

5. Let \mathfrak{g} be a two dimensional Lie algebra. Prove either \mathfrak{g} is abelian, or there exists a basis $\{X, Y\}$ of \mathfrak{g} so that $[X, Y] = Y$. Can you find the simply connected Lie group with the latter Lie algebra?

6. Suppose H is a Lie subgroup of G. Show that the Lie algebra \mathfrak{h} is a Lie subalgebra of \mathfrak{g}.

7. Show that $g(\exp X)g^{-1} = \exp(Ad_g X)$.