
Geometry of Curves and Surfaces

Weiyi Zhang

Mathematics Institute, University of Warwick

February 27, 2024



2



Contents

1 Curves 5

1.1 Course description . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 A bit preparation: Differentiation . . . . . . . . . . . . 6

1.2 Methods of describing a curve . . . . . . . . . . . . . . . . . . 8

1.2.1 Fixed coordinates . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Moving frames: parametrized curves . . . . . . . . . . 8

1.2.3 Intrinsic way(coordinate free) . . . . . . . . . . . . . . 9

1.3 Curves in Rn: Arclength Parametrization . . . . . . . . . . . 10

1.4 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Orthonormal frame: Frenet-Serret equations . . . . . . . . . . 15

1.6 Plane curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.7 More results for space curves . . . . . . . . . . . . . . . . . . 20

1.7.1 Taylor expansion of a curve . . . . . . . . . . . . . . . 20

1.7.2 Fundamental Theorem of the local theory of curves . . 21

1.8 Isoperimetric Inequality . . . . . . . . . . . . . . . . . . . . . 21

1.9 The Four Vertex Theorem . . . . . . . . . . . . . . . . . . . . 25

2 Surfaces in R3 29

2.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Compact surfaces . . . . . . . . . . . . . . . . . . . . . 32

2.1.2 Level sets . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 The First Fundamental Form . . . . . . . . . . . . . . . . . . 34

2.3 Length, Angle, Area . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Length: Isometry . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 Angle: conformal . . . . . . . . . . . . . . . . . . . . . 37

2.3.3 Area: equiareal . . . . . . . . . . . . . . . . . . . . . . 37

2.4 The Second Fundamental Form . . . . . . . . . . . . . . . . . 38

2.4.1 Normals and orientability . . . . . . . . . . . . . . . . 39

2.4.2 Gauss map and second fundamental form . . . . . . . 40

2.5 Curvatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.1 Definitions and first properties . . . . . . . . . . . . . 42

2.5.2 Calculation of Gaussian and mean curvatures . . . . . 45

2.5.3 Principal curvatures . . . . . . . . . . . . . . . . . . . 47

3



4 CONTENTS

2.6 Gauss’s Theorema Egregium . . . . . . . . . . . . . . . . . . 49
2.6.1 Gaussian curvature for special cases . . . . . . . . . . 52

2.7 Surfaces of constant Gaussian curvature . . . . . . . . . . . . 53
2.8 Parallel transport and covariant derivative . . . . . . . . . . . 56
2.9 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.9.1 General facts for geodesics . . . . . . . . . . . . . . . . 58
2.9.2 Geodesics on surfaces of revolution . . . . . . . . . . . 62
2.9.3 Geodesics and shortest paths . . . . . . . . . . . . . . 64
2.9.4 Geodesic coordinates . . . . . . . . . . . . . . . . . . . 65
2.9.5 Half plane model of hyperbolic plane . . . . . . . . . . 67

2.10 Gauss-Bonnet Theorem . . . . . . . . . . . . . . . . . . . . . 68
2.10.1 Geodesic polygons . . . . . . . . . . . . . . . . . . . . 70
2.10.2 Global Gauss-Bonnet . . . . . . . . . . . . . . . . . . 72

2.11 Vector fields and Euler number . . . . . . . . . . . . . . . . . 73



Chapter 1

Curves

1.1 Course description

Instructor: Weiyi Zhang

Email: weiyi.zhang@warwick.ac.uk

Webpage: http://homepages.warwick.ac.uk/staff/Weiyi.Zhang/

Lecture time:
Tuesday 12:05pm - 13:55pm MS.05
Thursday 11:05am - 11:55am MS.04

Support class:

Friday 12:05pm - 12:55pm B3.01

TA: Arjun Sobnack , Arjun.Sobnack@warwick.ac.uk

Reference books:

• John McCleary, “Geometry from a differentiable viewpoint”, CUP
1994.

• Dirk J. Struik, “Lectures on classical differential geometry”, Addison-
Wesley 1950

• Manfredo P. do Carmo, “Differential geometry of curves and surfaces”,
Prentice-Hall 1976

• Barrett O’Neill, “Elementary differential geometry”, Academic Press
1966

• Sebastian Montiel, Antonio Ros, “Curves and surfaces”, American
Mathematical Society 1998

• Alfred Gray, “Modern differential geometry of curves and surfaces”,
CRC Press 1993

• Course Notes, available on my webpage

5

http://homepages.warwick.ac.uk/staff/Weiyi.Zhang/


6 CHAPTER 1. CURVES

I also make use of the following two excellence course notes:

• Brian Bowditch, “Geometry of curves and surfaces”, University of
Warwick, available at

http://homepages.warwick.ac.uk/∼masgak/cas/course.html

• Nigel Hitchin, “The geometry of surfaces”, University of Oxford, avail-
able at:

http://people.maths.ox.ac.uk/∼hitchin/hitchinnotes/hitchinnotes.html

The following book has a lot of exercises with solutions available:

• Andrew Pressley, “Elementary Differential Geometry”, 2nd Ed, Springer.

Prerequisites: MA 263 Multivariable Calculus, MA260 Norms, Metrics
and Topologies.

Contents: This course is about the analysis of curves and surfaces in 2-
and 3-space using the tools of calculus and linear algebra. Emphasis will
be placed on developing intuitions and learning to use calculations to verify
and prove theorems We will cover

• local and global properties of curves: curvature, torsion, Frenet-Serret
equations, and some global theorems;

• local and global theory of surfaces: local parameters, curves on sur-
faces, geodesic and normal curvature, first and second fundamental
form, Gaussian and mean curvature, minimal surfaces, and Gauss-
Bonnet theorem etc..

1.1.1 A bit preparation: Differentiation

Definition 1.1.1. Let U be an open set in Rn, and f : U → R a continuous
function. The function f is smooth (or C∞ ) if it has derivatives of any
order.

Note that not all smooth functions are analytic. For example, the func-
tion

f(x) =

{
0, x ≤ 0

e−
1
x , x > 0

is a smooth function defined on R but is not analytic at x = 0. (Check this!)

Now let U be an open set in Rn and V be an open set in Rm. Let
f = (f1, · · · , fm) : U → V be a continuous map. We say f is smooth if each
component f i, 1 ≤ i ≤ m, is a smooth function.

http://homepages.warwick.ac.uk/~masgak/cas/course.html
http://people.maths.ox.ac.uk/~hitchin/hitchinnotes/hitchinnotes.html
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Definition 1.1.2. The differential of f , df , assigns to each point x ∈ U a
linear map dfx : Rn → Rm whose matrix is the Jacobian matrix of f at x,

dfx =


∂f1

∂x1
(x) · · · ∂f1

∂xn (x)
...

...
...

∂fm

∂x1
(x) · · · ∂fm

∂xn (x)

 .

Now, we are ready to introduce the notion of diffeomorphism.

Definition 1.1.3. A smooth map f : U → V is a diffeomorphism if f is
one-to-one and onto, and f−1 : V → U is also smooth.

Obviously

• If f : U → V is a diffeomorphism, so is f−1.

• If f : U → V and g : V →W are diffeomorphisms, so is g ◦ f .

As a consequence, we get

Theorem 1.1.4. If f : U → V is a diffeomorphism, then at each point
x ∈ U , the linear map dfx is an isomorphism. In particular, dimU = dimV .

Proof. Applying the chain rule to f−1 ◦ f = idU , and notice that the dif-
ferential of the identity map idU : U → U is the identity transformation
Id : Rn → Rn, we get

df−1
f(x) ◦ dfx = IdRn .

The same argument applies to f ◦ f−1, which yields

dfx ◦ df−1
f(x) = IdRm .

By basic linear algebra, we conclude that m = n and that dfx is an isomor-
phism.

The inverse of the previous theorem is not true. For example, we consider
the map

f : R2 \ {0} → R2 \ {0}, (x1, x2) 7→ ((x1)2 − (x2)2, 2x1x2).

Then at each point x ∈ R2 \ {0}, dfx is an isomorphism. However, f is not
invertible since f(x) = f(−x). (What is the map f if we identify R2 with
C?)

The inverse function theorem is a partial inverse of the previous theorem,
which claims that an isomorphism in the linear category implies a local
diffeomorphism in the differentiable category.

Theorem 1.1.5 (Inverse Function Theorem). Let U ⊂ Rn be an open set,
p ∈ U and f : U → Rn. If the Jacobian dfp is invertible at p, then there
exists a neighbourhood Up of p and a neighbourhood Vf(p) of f(p) such that

f |Up : Up → Vf(p)

is a diffeomorphism.
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1.2 Methods of describing a curve

There are different ways to describe a curve.

1.2.1 Fixed coordinates

Here, the coordinates could be chosen as Cartesian, polar and spherical
etc. (a). As a graph of explicitly given curves y = f(x).

Example 1.2.1. A parabola: y = x2; A spiral: r = θ.

(b). Implicitly given curves

A plane curve (i.e. a curve in R2) could be given as f(x, y) = 0; A space
curve (i.e. a curve in R3) could be given as f1(x, y, z) = 0, f2(x, y, z) = 0.

Example 1.2.2. A unit circle could be given as x2 + y2 = 1. It could also
be expressed as x2 + y2 + z2 = 1, z = 0.

1.2.2 Moving frames: parametrized curves

Definition 1.2.3. A parametrized curve in Rn is a map γ : I → Rn of an
open interval I = (a, b).

Example 1.2.4. Parabola: γ(t) = (t, t2), t ∈ (−∞,∞);

Circle: γ(t) = (a cos t, a sin t), −ε < t < 2π + ε, ε > 0;

Ellipse: γ(t) = (a cos t, b sin t), −ε < t < 2π + ε, ε > 0;

Helix: γ(t) = (a cos t, a sin t, bt), t ∈ (−∞,∞).

Why this description is called “moving frame” in the title? Roughly
speaking, for a plane curve, (tangent vector= γ̇(t), normal vector) forms
a coordinate, which changes as t varies. More precise explanation will be
given in next section.

Like us, we could orient the world using (Front, Left) system and take
ourselves as centres.
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Remark 1.2.5. 1. Parametrizations are not unique. Parabola γ(t) = (t, t2)
could also be parametrized as (t3, t6), (2t, 4t2) and other ways.

2. All parametrized curves studied in this course are smooth.
3. If the tangent vector of a parametrized curve is constant, the image

of the curve is part of a straight line. (proof: exercise)

1.2.3 Intrinsic way(coordinate free)

The previous ways both involve coordinates. They are thus called ex-
trinsic ways.

But for most cases, we only care the shapes of objects, but not the
locations. Such a description will be called intrinsic.

Example 1.2.6. Circle: set of points (on a plane) with given distance a to
a point.

Ellipse: Set of points such that the sum of the distances to two given
points are fixed.

P

f1 f2

f1P + f2P ≡ C

Similar definition for hyperbola and parabola.

Drawback: we do not have sufficient tools to further study our objects
from intrinsic viewpoints. That is the actual reason that there are no big
breakthrough for geometry from Archimedes to Newton.

Goal of this course: use extrinsic ways (mainly parametrized way) to
prove intrinsic results. Thus we could use tools we learnt in the last two
years: analysis, linear algebra, · · · .

However, there are some elegant results could be proved intrinsically!
The next example is from “geometry and imagination” by Hilbert and Cohn-
Vossen.

We want to prove the intersection of a cylinder and a plane is an ellipse
if the curve is closed. To achieve that, we use two identical balls with radii
equal to that of the cylinder. Then move them: one from top and the other
from bottom, until they hit the plane at F1 and F2. We claim these two
points are foci of the ellipse. Let A be any point on the intersection of
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the plane and the cylinder. Draw a vertical line through A such that it
intersects the top ball at P1 and the bottom ball at P2. Since AP1 and AF1

and two tangents of the same ball from the same point, they have equal
length. Similarly AP2 = AF2. But AP1 + AP2 is the distance between the
centres of the two balls, thus a constant. So AF1 +AF2 is a constant, which
proves our claim.

F2

F1

A

P1

P2

Exercise: prove similar results for a cone x2 + y2 = z2. (Similar ar-
guments, but now you have to deal with different cases: ellipse, parabola,
hyperbola and pair of straight lines.)

1.3 Curves in Rn: Arclength Parametrization

To use parametrization to study curves, we should start with building
moving frames. An orthonormal basis is usually easier to play with.

First component of the moving frame is the tangent direction γ̇(t). This
step works for any curve in Rn. So the first step to build an orthonormal
frame would be

||γ̇(t)|| ≡ 1

for some parametrization and for all t ∈ (α, β). These curves are called
unit-speed curves.

Idea: reparametrization or change variables.

Definition 1.3.1. A parametrized curve γ̃ : J → Rn is a reparametrization
of γ : I → Rn if there is a diffeomorphism φ : J → I such that γ̃(t̃) = γ◦φ(t̃)
for all t̃ ∈ J .
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The first obtacle to find unit-speed parametrization is γ̇(t) = 0 at some
point.

Definition 1.3.2. A point γ(t) is called a regular point if γ̇(t) 6= 0; otherwise
γ(t) is a singular point of γ. A curve is regular if all points are regular.

Example 1.3.3. γ : R → R2 given by γ(t) = (t3, t2), t ∈ R is not regular
since γ̇(0) = (0, 0).

x

y

Remark 1.3.4. Any reparametrization of a regular curve is regular (exercise
of Chain rule).

Then why is the next example?

Example 1.3.5. γ(t) = (t, t2) is regular, but another parametrization γ̃(t) =
(t3, t6) is not regular.

Answer: γ̃ is not a reparametrization of γ.
Reason: The bijection φ(t) = t3 is not a diffeomorphism (φ−1 is not smooth
at 0).

Later on, a curve is a parametrized smooth regular curve.
To find reparametrization s such that ||γ̃s(s)|| = 1, we only need ds

dt =
||γt(t)||. In other word,

s(t) =

∫ t

t0

||γt(t)||dt =

∫ t

t0

√
ẋ2

1(t) + · · ·+ ẋ2
n(t)dt.

Hence ||γ̃s|| = ||γt · dtds || = 1.
It need a proof that s is indeed a reparametrization for a regular curve.Only

thing need to verify is the following:

Proposition 1.3.6. If γ(t) is a regular curve, then s(t) is a diffeomorphism.

Proof. We first show that s is a smooth function of t.
ds
dt = f(ẋ2

1(t) + · · · + ẋ2
n(t)) if γ(t) = (x1(t), · · · , xn(t)) and f =

√
x.

Hence f (n)(x) = cnx
1
2
−n for some nonzero constant cn. Since γ̇ 6= 0, ds

dt is
smooth. Hence s is smooth.

The conclusion s is a diffeomorphism follows from IFT (inverse function
theorem) and the fact ds

dt 6= 0 by above calculation. Or more directly,every
monotone function has its inverse.
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Definition 1.3.7. We refer to s as arc length and to γ̃ as the arc-length
(or unit-speed) reparametrization of γ.

Remark 1.3.8. Let P = {α = t0 < t1 < · · · < tk = β be a partition of
(α, β), and l(γ,P) =

∑k
i=1 ||γ(ti)− γ(ti−1)||. Then

s(t) = sup{l(γ,P) : a partition P}.

α = t0

t1

t2
t3

The next lemma ends this section.

Lemma 1.3.9. Suppose
−−→
f(t) : I = (α, β) → Rn are differentiable. Then

||
−−→
f(t)|| = const if and only if

−−→
f(t) ·

−−→
f ′(t) = 0 for all t.

Proof. The function
−−→
f(t) ·

−−→
f(t) is a constant if and only if

−−→
f(t) ·

−−→
f ′(t) +

−−→
f ′(t) ·

−−→
f(t) = 2

−−→
f(t) ·

−−→
f ′(t) = 0.

Corollary 1.3.10. If γ is unit-speed, then γ̈ is zero or perpendicular to the
tangent vector γ̇.

1.4 Curvature

From now on, let us focus on space curves, i.e. curves γ(t) : I → R3.
Curvature measures how far a curve is different from a straight line (how

far it bends from a straight line).
Recall a straight line has parametrized form γ(t) = t~a+~b. Here ~a is the

direction and ~b = γ(0).

t~a
~b

t~a+~b

It has vanishing higher derivatives. Its Taylor expansion

γ(t+ ∆t) = γ(t) + γ̇(t)∆t+ · · · = γ(t) + ~a ·∆t
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only has 2 terms.

For a general curve, using unit-speed parametrization,

γ(t+ ∆t) = γ(t) + γ̇(t)∆t+
1

2
γ̈(t)(∆t)2 +R(t)

with lim∆t→0
R(t)

(∆t)2
= 0. Since γ̈(t) ⊥ γ̇(t) when γ̈(t) is nonzero, ||γ̈(t)||

measures how far γ is deviated from its tangent line at γ(t).

1st definition of curvature: extrinsic one.

Definition 1.4.1. If γ is a unit-speed curve with parameter t, its curvature
κ(t) at γ(t) is defined to be ||γ̈(t)||.

2nd definition of curvature: more extrinsic.

Proposition 1.4.2. Let γ(t) be a regular curve. Then its curvature is

κ =
||γtt × γt||
||γt||3

,

where × is the vector (or cross) product.

Proof. γs = γt · dtds = γt
||γt|| , since ds

dt = ||γt||. The second derivative

γss = γtt · (
dt

ds
)2 + γt ·

d2t

ds2
=

γtt
||γt||2

− γt
γtt · γt
||γt||4

,

since

d2t

ds2
=

d

ds

1

||γt||
=

d
1

(γt · γt)
1
2

dt
· dt
ds

= (− 1

2(γt · γt)
3
2

· 2γt · γtt)
1

||γt||
= −γtt · γt

||γt||4
.

So

κ2 = ||γss||2 =
||γtt||2 · ||γt||2 − (γtt · γt)2

||γt||6
=
||γtt × γt||2

||γt||6

Thus κ = ||γtt×γt||
||γt||3 .

Here we make use of the relation

||~a||2 · ||~b||2 = (~a ·~b)2 + ||~a×~b||2

because

~a ·~b = ||~a|| · ||~b|| cos θ, ||~a×~b|| = ||~a|| · ||~b|| sin θ.
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Corollary 1.4.3. 1. If γ is a plane curve, i.e. γ(t) = (x(t), y(t)), then

κ =
|ÿẋ− ẍẏ|

(ẋ2 + ẏ2)
3
2

.

2. If γ is a graph y = f(x),

κ =
|f ′′(x)|

(1 + (f ′(x))2)
3
2

.

Example 1.4.4. 1. A curve is a (part of) straightline if and only if its
curvature is everywhere zero.

2. Look at a circle in R2: centred at (x0, y0) and of radius R.

A unit-speed parametrization is γ(t) = (x0 + R · cos t
R , y0 + R sin t

R).
We calculate γ̈(t) = (− 1

R cos t
R ,−

1
R sin t

R). Hence κ = ||γ̈(t)|| = 1
R .

So the curvature is larger when the radius is smaller.

In fact the centripetal force is proportional to the curvature, which re-
flects the relativity viewpoint that gravity is the curvature of the space.
On the other hand, it also explains that in 200m or 400m track races,
athletes do not like inside lanes 1-3, as these lanes are disadvantaged
by centrifugal force during the bend phase. For example, Usain Bolt’s
favourite was lane 6 for 200m.

3. Helix γ(θ) = (a cos θ, a sin θ, bθ), θ ∈ R.

γ̇(θ) = (−a sin θ, a cos θ, b), so ||γ̇(θ)|| =
√
a2 + b2.

γ̈ = (−a cos θ,−a sin θ, 0), γ̇ × γ̈ = (ab sin θ,−ab cos θ, a2). Hence

κ =
(a2b2 + a4)

1
2

(a2 + b2)
3
2

=
|a|

a2 + b2
.

When b = 0, this is a circle of radius |a|, and κ = 1
|a| (coincides with

previous calculation).

Intrinsic Viewpoint:
For circle, κ = 1

R = ∆θ
∆s , where ∆θ could be understood as the difference

of angles between tangent vectors at s and s+ ∆s.

P P1

∆θ

∆θ
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In general, it may not be true, since different ∆s give different values.
We assume γ(s) is a unit-speed curve. Let P = γ(s0) and P1 = γ(s1), then
∆s = |s1 − s0|. And ∆θ is the angle between tangent vectors γ̇(s0) and
γ̇(s1).

Theorem 1.4.5. κ(s0) = lim∆s→0
∆θ
∆s = limP1→P

∆θ
∆s .

Proof. ||γ̇(s0)|| = ||γ̇(s1)|| = 1 implies 2 sin ∆θ
2 = ||γ̇(s0)− γ̇(s1)||.

∆θ

γ̇(s0) γ̇(s1)

γ̇(s0)− γ̇(s1)

Thus

lim
∆s→0

∆θ

∆s
= lim

∆θ→0

∆θ

2 sin ∆θ
2

· lim
∆s→0

||γ̇(s0)− γ̇(s1)||
∆s

= ||γ̈(s0)|| = κ(s0).

1.5 Orthonormal frame: Frenet-Serret equations

Now, let γ(s) be a unit-speed curve in R3. We are ready to build or-
thonormal moving frame for it.

Denote t = γ̇(s) be the unit tangent vector.
If κ(s) 6= 0, by Corollary 1.3.10, γ̈(s) ⊥ γ̇(s). We define the principal

normal at γ(s) be

n(s) =
1

κ(s)
t′(s).

We have ||n|| = 1 and t · n = 0.
Finally, we define bi-normal vector

b(s) = t× n.

It is a unit vector perpendicular to both t and n.
To summarize: (t,n,b) is an orthonormal basis of R3 and it is right-

handed (i.e. b = t× n,n = b× t, t = n× b).
There are standard names for planes spanned by any two of them:

• osculating plane: by t and n;

• rectifying plane: by b and t;
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• normal plane: by n and b.

||b′(s)|| measures the rate of change of angles Θ between osculating
planes, which is the same as the changing of binormal vector as well. Similar
reasoning as in Theorem 1.4.5,

||b′(s)|| = lim
∆s→0

∆Θ

∆s
.

Notice

b′(s) = t′ × n + t× n′ = t× n′

since t′ × n = κn× n = 0. This implies b′ ⊥ t.
On the other hand, ||b|| = 1 implies b′ ⊥ b. Hence b′ ‖ n. We define

b′ = −τn.

Here τ is called torsion1 of the curve.

Remark 1.5.1. Please notice that since n(s) is defined only when κ(s) 6= 0,
τ(s) is so as well.

There is a formula of τ for an arbitrary parametrization as Proposition
1.4.2 for κ.

Proposition 1.5.2. Let γ(t) be a regular curve in R3 with κ(t) 6= 0, then

τ(t) =
(γ̇(t)× γ̈(t)) ·

...
γ (t)

||γ̇(t)× γ̈(t)||2

The proof is a tedious calculation and left as an exercise.

Example 1.5.3. Planar curve γ(t). There is a constant vector a such that
γ(t) · a is a constant. Without loss, we could assume the parametrization is
unit-speed. So t · a = 0 and n · a = 0. Hence t and n is perpendicular to a,
thus parallel to the plane. Finally, b = t× n is a unit vector orthogonal to
the plane and thus a constant vector. Hence τ = 0.

Example 1.5.4. Let γ(θ) = (a cos θ, a sin θ, bθ).

γ̇(θ) = (−a sin θ, a cos θ, b), γ̈(θ) = (−a cos θ,−a sin θ, 0),
...
γ (θ) = (a sin θ,−a cos θ, 0).

So γ̇(θ)× γ̈(θ) = (ab sin θ,−ab cos θ, a2) and

||γ̇ × γ̈||2 = a2(a2 + b2), (γ̇ × γ̈) ·
...
γ = a2b.

Hence, τ = b
a2+b2

.

1In some books, torsion is defined as −τ in our notation.
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Exercise: Use unit-speed parametrization to calculate the above example
again.

Let us come back to the unit-speed parametrization. We have n = b×t,
so

n′(s) = b′ × t + b× t′ = −τn× t + κb× n = −κt + τb.

To summarize, we have the following set of Frenet-Serret equations (when
κ(s) 6= 0!!): 

t′ = κn
n′ = −κt +τb
b′ = −τn

In other writing, t
n
b

′ =
 0 κ 0
−κ 0 τ
0 −τ 0

 ·
t

n
b


The matrix is skew-symmetric.
What if κ = 0 at some points? n is not well-defined at these points.

n
t

n

t

�0
line

But there is a way to resolve this issue for plane curves.
In summary, curvature measures how far the curve is from a line; torsion

measures how far it is from its osculating plane, or how far the curve is from
a plane curve.

1.6 Plane curves

The trick to resolve the issue mentioned in the last section for plane
curve is to define the signed unit normal ns as the unit vector obtained by
rotating t counter-clockwise π

2 .
The signed curvature κs is defined as

γ̈ = t′ = κsns.

The relation with curvature is κ = ||γ̈|| = |κs|.
Look at Figure 1.1 and 1.2. The intrinsic viewpoint of κs: change of

angle for tangent vectors. How to define the angle?
Let γ(s) = (x(s), y(s)) be a unit-speed plane curve. Let us first define

it locally. Let φ(s) ∈ (0, 2π) be the angle that t(s) makes with x-axis.
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tns

Figure 1.1: κs > 0, angle increases

ns t

Figure 1.2: κs < 0, angle decreases

So φ(s) = arctan y′(s)
x′(s) and (x′(s), y′(s)) = (cosφ(s), sinφ(s)). It is locally

well-defined.

γ̈ =
dt

ds
=
dφ

ds
(− sinφ, cosφ) =

dφ

ds
ns.

So

κs(s) =
dφ

ds
= x′y′′ − x′′y′.

Motivated by last calculation, we define it globally:

φ(s) =

∫ s

s0

κs(s)ds.

This is called the turning angle. Up to constant, it is just the previous
defined local version.

It is particularly interesting to study the total turning angle for a closed
curve.

Definition 1.6.1. A smooth curve γ : R → Rn is called a closed curve if
there is T 6= 0 such that γ(t+ T ) = γ(t) for all t ∈ R.

The minimal such T is called period. Later we may write γ : [0, T ]→ Rn
with γ(0) = γ(T ) to represent a closed curve.

A simple closed curve is a closed curve with no self-intersection, i.e if
|t1− t2| < T , then γ(t1) 6= γ(t2). A simple closed curve is also called Jordan
curve in some literature. We have the following intuitively clear but hard to
prove theorem.

Theorem 1.6.2 (Smooth Schoenflies). For any simple closed curve γ, there
is a diffeomorphism f : R2 → R2 sending the unit circle to γ.

Hence, we can define the interior (resp. exterior) of the Jordan curve γ
as the bounded (resp. unbounded) region with boundary γ.

For closed curves, the total signed curvature∫ T

0
κs(s)ds = φ(T )− φ(0) = 2πI,

where I is an integer called rotation index.
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Example 1.6.3. A counter clockwise circle has rotation index 1. A clock-
wise ellipse has rotation index −1.

What is the rotation index of figure 8?

Theorem 1.6.4 (Hopf’s Umlaufsatz). The rotation index of a simple closed
curve is ±1. (sign depends on the orientation)

This will be a corollary of Gauss-Bonnet theorem. But there is simple
proof which also motivates the proof of Gauss-Bonnet.

Proof. We denote γi = ÃiAi+1 as part of the curve γ. Assume the total
integral curvature of every arc γi is less than π, and no self-intersection for
the polygon A1 · · ·AnAn+1 with An+1 = A1.

A2

A1

An

On each γi, we choose Bi such that t(Bi) ‖ AiAi+1.

Ai+2

Ai+1

Ai

Bi+1
Biαi+1

Then by the local definition of turning angle∫
B̃iBi+1

κs(s)ds = φ(Bi+1)− φ(Bi) = π − αi+1.

So∫ T

0
κs(s)ds =

∫
γ
κsds =

n∑
i=1

∫
B̃iBi+1

κsds =
n∑
i=1

(π−αi+1) = nπ−
n∑
i=1

αi = 2π
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One could compare this result to

Theorem 1.6.5 (Fenchel). The total curvature of any closed space curve is
at least 2π, i.e

∫
κds ≥ 2π. The equality holds if and only if the curve is a

convex planar curve.

1.7 More results for space curves

We have shown a space curve is a straight line if and only if its curvature
is everywhere 0.

Proposition 1.7.1. A space curve with nowhere vanishing curvature is pla-
nar if and only if its torsion is everywhere 0.

Proof. Take unit-speed parametrization. We have shown the “only if” part.
On the other hand, if τ = 0, then b′ = 0 and so b is a constant vector.

By calculation
d

ds
(γ · b) = γ̇ · b = t · b = 0.

So γ · b is a constant C, which implies γ is contained in the plane (·) · b =
C.

Proposition 1.7.2. The only planar curves with non-zero constant curva-
ture are (part of) circles.

Proof. We have shown a circle of radius R has constant curvature κ = 1
R .

Now suppose a planar curve γ (thus τ = 0) has constant curvature κ.

d

ds
(γ(s) +

1

κ
n) = t +

1

κ
n′ = t− t +

τ

κ
b = 0.

Hence γ + 1
κn is a constant vector a. So ||γ − a|| = 1

κ . This is a circle with
centre a and radius 1

κ .

Especially, a space curve with constant κ and τ = 0 is a part of circle.

1.7.1 Taylor expansion of a curve

Frenet-Serret equations gives the local picture of space curves. Let us
look at the Taylor expansion of a space curve

γ(s) = γ(0) + sγ̇(0) +
s2

2
γ̈(0) +

s3

6

...
γ (0) +R

where lims→0
R
s3

= 0. We know

γ̇(0) = t(0), γ̈(0) = κ(0)n(0)
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and
...
γ = (κn)′(0) = κ′0n(0) + κ0(−κ0t(0) + τ0b(0)).

So

γ(s)−γ(0) = (s−κ
2
0

6
s3+· · · )t(0)+(

s2κ0

2
+
s3κ′0

6
+· · · )n(0)+(

1

6
κ0τ0s

3+· · · )b(0).

Here lims→0
···
s3

= 0.
See the local pictures in next page. Notice the sign of τ will affect the

projection in rectifying and normal planes, thus the whole local picture.

Exercise: Draw the local pictures when τ < 0.

1.7.2 Fundamental Theorem of the local theory of curves

Theorem 1.7.3. Given two smooth functions κ and τ with κ > 0 every-
where, there is a unit-speed curve in R3 whose curvature is κ and torsion is
τ . The curve is unique up to a rigid motion.

Here two curves are related by a rigid motion if γ̃ = A ◦ γ + c where A
is a orthogonal linear map of R3 with detA > 0 and c is a vector. In other
words, they are related by a composition of a translation and a rotation.

We omit the proof, which is an application of the existence and unique-
ness theorem of linear systems. The 2D version is problem 4 in Example
sheet 1.

1.8 Isoperimetric Inequality

We prove the famous Isoperimetric inequality in this section. According
to legend, Isoperimetric inequality is originated from Queen Dido’s problem.
After the assassination of her husband by her brother, she fled to Tunis.
She aksed the local leader Yarb for as much as land as could be enclosed
by the hide of a bull. Mathematically, it is the question that how much
the area could be enclosed by a string along with the shore which could
be approximated by a straight line. The land she enclosed became city of
Carthage.

Our problem is a variation of this. How much is the largest possible area
that could be enclosed by a closed string of length L? In fact, if we know
how to solve it. Dido’s original problem could also be solved, as we can
double the area Queen Dido enclosed by reflection along the shore, which
reduced to our Isoperimetric inequality stated below.

Theorem 1.8.1. If a simple closed plane curve γ has length L and encloses
area A, then

L2 ≥ 4πA,

and the equality holds if and only if γ is a circle.
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n

b

t

local picture of a space curve when τ > 0

t

n

Osculating plane: (u, κ02 u
2 +

κ′0
6 u

3 + · · · )

t

b

Rectifying plane: (u, (κ0τ06 )u3 + · · · )

n

b

Normal plane: (u2, (
√

2τ0
3
√
κ0

)u3 + · · · )
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x

y

0

l1 l2

γ(0)
γ(s1)

Project the curve to a circle

Without loss, we could assume γ is unit-speed. So our simple closed
curve γ(s) = (x(s), y(s)) where s ∈ [0, L]. We first derive formulae for area
A.

Lemma 1.8.2. For any parametrization of the curve γ,

A = −
∫ L′

0
y(t)x′(t)dt =

∫ L′

0
x(t)y′(t)dt =

1

2

∫ L′

0
(x(t)y′(t)− y(t)x′(t))dt

Proof. It is a corollary of Green’s theorem:∫
int(γ)

(
∂g

∂x
− ∂f

∂y
)dxdy =

∫
γ
f(x, y)dx+ g(x, y)dy

The three formulae correspond to f = −y, g = 0; f = 0, g = x; and f =
−1

2y, g = 1
2x respectively.

Notice in the proof, we make use of smooth Schoenflies implicitly to talk
about the interior of a simple closed curve.

Now we prove the theorem. The idea is to “project” the curve to a circle.
We choose parallel lines l1 and l2 tangent and enclosing γ. Draw a circle α
tangent to both lines but does not meet γ. Let O be the centre of the circle.
Take γ(0) ∈ l1 and γ(s1) ∈ l2.

Assume the equation of α = (x(s), ȳ(s)). This parametrization is not
unit-speed nor regular in general.

A = A(γ) =

∫ L

0
xy′ds,A(α) = πR2 = −

∫ L

0
ȳx′ds
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Reuleaux triangle

So

A+ πR2 =

∫ L

0
(xy′ − ȳx′)ds

=

∫ L

0
(x, ȳ) · (y′,−x′)ds

≤
∫ L

0

√
x2 + ȳ2

√
(x′)2 + (y′)2ds

=LR

Hence

2
√
A
√
πR2 ≤ A+ πR2 ≤ LR.

Thus the isoperimetric inequality

L2 ≥ 4πA.

If the equality holds, A = πR2 and L = 2πR. Especially, R is indepen-
dent of the direction of l1, l2. Hence (x, ȳ) = R(y′,−x′). So x = Ry′. Rotate
li for 90 degrees, we have y for x and −x for y, so y = −Rx′. Thus

x2 + y2 = R2((x′)2 + (y′)2) = R2,

and γ is a circle.

Remark 1.8.3. R is independent of the direction does not ensure α is a
circle. We have curves of constant width which are not circle. A Reuleaux
triangle is the simplest example but only piecewise smooth. One can con-
struct smooth ones by move it outwards along the normal direction with a
fixed distance for example.

But actually smooth examples are ubiquitous: our 20p and 50p coins.

http://en.wikipedia.org/wiki/British_coin_Twenty_Pence
http://en.wikipedia.org/wiki/British_coin_Fifty_Pence
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t

ns

P

Convex curve. It has κs ≥ 0 if the parameter increases counter-clockwise
around its interior.

Non-convex curve

1.9 The Four Vertex Theorem

This is about a plane curve γ(t) = (x(t), y(t)), and its vertex:

Definition 1.9.1. A vertex of a plane curve γ(t) is a point where its signed
curvature κs has a critical point, i.e. where dκs

dt = 0.

Exercise: check the definition is independent of the parametrization.

Recall the definition of κs: Assume s is unit-speed parametrization then
t′ = κsns, where ns is a 90 degree rotation of t. The curvature κ = |κs|.

Definition 1.9.2. A simple closed plane curve γ is convex if it lies on one
side of its tangent line at each point.

Equivalent definitions:

• If the interior D is convex: if A ∈ D,B ∈ D, then the segment AB ⊂
D.

• If a simple closed curve has a non-negative signed curvature at each
of its points.

It is easy to see that the first is an equivalent definition. Leave as exercise.
To prove the second equivalence, we should use the relation with turning
angle and signed curvature. We do not provide the proof here. Instead we
mention the following result which is more general and implies one side of
the equivalence.
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ns

◦
P

γ2 γ2

γ1 γ1

U

Proposition 1.9.3. Let γ1 and γ2 tangent to each other at P , and the
signed curvature κ1 > κ2. Then there is a neighbourhood U of P in which
γ1 ∩ U is located in one side of γ2 ∩ U defined by ns.

Proof. We choose P at origin. And express γ1 and γ2 locally as graphs of
functions f1, f2. So f1(0) = f2(0) = 0 and f ′1(0) = f ′2(0). By the formula of
signed curvature in section 1.6, κs = x′y′′ − x′′y′ = f ′′ for graph of function
f . Hence by Taylor expansion f1(x)− f2(x) = x2

2 (κ1 − κ2) + o(x2) which is
greater than 0 in a neighbourhood of P = (0, 0). This finishes the proof.

Any simple closed curve has at least two vertices: maximum and mini-
mum of κs. Actually we have more

Theorem 1.9.4 (Four Vertex Theorem). Every convex simple closed curve
in R2 has at least four vertices.

Remark 1.9.5. The conclusion holds for simple closed curves, but we only
prove it for convex ones.

Suppose γ has fewer than 4 vertices. Then κs must have 2 or 3 critical
points. Under this circumstance, we have the following

Lemma 1.9.6. There is a straight line L that divides γ into 2 segments, in
one of which κ′s > 0 and in the other κ′s ≤ 0. (or possibly κ′s ≥ 0 and κ′s < 0
respectively)

Proof. Let the max/min points of κs be P and Q.
If P and Q are the only vertices, κ′s > 0 on one of the segments and

κ′s < 0 on the other. This is because a closed curve will keep the same value
of κs after one turn.

If there is one more vertex R. Then P,Q,R determined 3 segments in γ,
each of them κ′s > 0 or κ′s < 0. Then there are two adjacent ones on which
κ′s has the same sign.

Applying this lemma, we can show that it is impossible to have 2 or 3
critical points.
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Proof. (of the theorem) Let the equation of L be a ·x = c, where we choose
the unit vector a such that κ′s ≥ 0 precisely when a · γ(s) ≥ c. Then∫ T

0
κ′s(a · γ(s))ds =

∫ T

0
κ′s(a · γ(s)− c)ds > 0.

Integration by parts∫ T

0
κ′s(a · γ(s))ds =κs(a · γ(s))|T0 −

∫ T

0
κs(a · t(s))ds

=0 +

∫ T

0
a · n′s(s)ds

=a ·
∫ T

0
n′s(s)ds

=0

This is a contradiction!
Notice for the second equality. The first term is 0 because the curve is

simple closed. The second term is because of n′s = −κst. (t · ns = 0, so
t′ · ns + t · n′s = 0. Since t′ = κsns by definition, n′s = −κst)

Exercise: Find all the vertices for the ellipse γ(t) = (p cos t, q sin t) when
p 6= q.
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Chapter 2

Surfaces in R3

2.1 Definitions and Examples

First, we assume you know the definition of open sets and continuous
maps from Rn to Rm.

Definition 2.1.1. If f : X → Y is continuous and bijective, and if its
inverse map f−1 : Y → X is also continuous, then f is called a homeomor-
phism and X and Y are said to be homeomorphic.

Theorem 2.1.2 (Invariance of domain). If f : U ⊂ Rn → Rn is an injective
continuous map, then V = f(U) is open and f is a homeomorphism between
U and V .

Definition 2.1.3. A subset S ⊂ R3 is a regular surface if for each p ∈ S,
there exists a neighbourhood W ⊂ R3 and a map σ : U →W ∩ S of an open
set U ⊂ R2 onto W ∩ S ⊂ R3, such that

• σ is smooth

• σ is homeomorphism

• at all points (u, v) ∈ U , σu × σv 6= 0.

The mapping σ is called a (regular) parametrization or a chart. We will
call its image a coordinate patch. A collection of charts such that every point
of S is contained in a coordinate patch is called an atlas. The condition 3
above means σu and σv are linearly independent, or dσq : R2 → R3 is one
to one.

For any point of a regular surface S, there might be more than one
charts.

Proposition 2.1.4. Let σ : U → S, σ̃ : V → S be two charts of S such that
p ∈ σ(U) ∩ σ̃(V ) = W . Then the transition map h = σ−1 ◦ σ̃ : σ̃−1(W ) →
σ−1(W ) is a diffeomorphism.

29
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Proof is omitted. It is another application of Inverse Function Theorem.
The diffeomorphism h gives a reparametrization.

Definition 2.1.5. A reparametrization of surface is a composition σ ◦ f :
V → R3 where f : V → U is a diffeomorphism.

Since the Jacobian df is invertible, let f(x, y) = (u(x, y), v(x, y)), (σ◦f)x
and (σ ◦ f)y are linearly independent if and only if σu and σv are. So the
following is well defined.

Definition 2.1.6. The tangent plane TpS of a surface S at the point p is
the vector space spanned by σu(p) and σv(p).

S

TpS

p σv(p)
σu(p)

This space is independent of parametrization. One should think of the
origin of the vector space as the point p.

Definition 2.1.7. The unit vector

Nσ(u, v) =
σu × σv
||σu × σv||

is the standard normal to the surface at point p = σ(u, v).

Here are examples of parametrized surfaces. For the pictures of these,
look at Hichin’s notes.

Example:

1. A plane:

σ(u, v) = a + ub + vc

for constant vectors a,b, c and b× c 6= 0. The normal vector

N =
b× c

||b× c||

2. A cylinder:

σ(u, v) = (a cosu, a sinu, v), a > 0

N = (cosu, sinu, 0)

http://people.maths.ox.ac.uk/~hitchin/hitchinnotes/hitchinnotes.html


2.1. DEFINITIONS AND EXAMPLES 31

3. A cone (without cone point):

σ(u, v) = (au cos v, au sin v, u)

4. A helicoid:
σ(u, v) = (au cos v, au sin v, v)

5. A sphere (minus a half circle connecting poles) in spherical coordinates:
U = (−π

2 ,
π
2 )× (0, 2π).

σ(u, v) = (a cos v cosu, a sin v cosu, a sinu)

N = −1

a
σ

6. A torus

σ(u, v) = ((a+ b cosu) cos v, (a+ b cosu) sin v, b sinu),

a > b are constants.

7. A surface of revolution

σ(u, v) = (f(u) cos v, f(u) sin v, g(u))

is obtained by rotating a plane curve (called profile curve) γ(u) =
(f(u), 0, g(u)) around z-axis. We assume f(u) > 0 for all u. We have

σu = (fu cos v, fu sin v, gu), σv = (−f sin v, f cos v, 0).

So

σu × σv = (−fġ cos v,−fġ sin v, f ḟ), ||σu × σv||2 = f2(ḟ2 + ġ2) 6= 0

8. A generalized cylinder

σ(u, v) = γ(u) + va.

σu = γ̇, σv = a

σ is regular if γ is never tangent to the ruling a.

But usually, a surface has more than one patches. That is the reason
why we need more preparation of surfaces local theory than that of curves.
For curves, only one patch is enough since the topology is simpler. The
following example shows how a closed (i.e. compact without boundary)
surface is different from a closed curve, where we can use a periodic one
patch parametrization.
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Example 2.1.8. The unit sphere S2 = {(x, y, z) ∈ R3;x2 + y2 + z2 = 1} is
a regular surface. We let σ1 : U ⊂ R2 → R3.

σ1(x, y) = (x, y,
√

1− x2 − y2), (x, y) ∈ U = B1(0)

is a parametrization. Please check the 3 conditions (general statement is
Proposition 2.1.9).

Similarly σ2(x, y) = (x, y,−
√

1− x2 − y2), (x, y) ∈ U = B1(0) is also a
parametrization. And σ1(U) ∪ σ2(U) covers S2 minus equator z = 0.

With 4 more parametrizations

σ3(x, z) = (x,
√

1− x2 − z2, z)

σ4(x, z) = (x,−
√

1− x2 − z2, z)

σ5(y, z) = (
√

1− y2 − z2, y, z)

σ6(y, z) = (−
√

1− y2 − z2, y, z)

they cover S2. So S2 is a regular surface.

To check each σi is a parametrization, one could prove the following more
general result, whose proof is left as an exercise.

Proposition 2.1.9. If f : U ⊂ R2 → R is a smooth function in an open set
U of R2, then the graph of f , i.e. σ(x, y) = (x, y, f(x, y)) for (x, y) ∈ U is
a regular surface.

2.1.1 Compact surfaces

A subset X of R3 is compact if it is closed and bounded (i.e. X is
contained in some open ball).

Non-examples: A plane is not compact. The open disc {(x, y, z) ∈ R3|x2+
y2 < 1, z = 0} is not compact.

There are very few compact surfaces:

Example 2.1.10. Any sphere is compact. Let us consider the unit sphere
S2.

It is bounded because it is contained in the open ball D2(0).
To show S2 is closed, i.e. the complement is open: if ||p|| 6= 1, say

||p|| > 1. Let ε = ||p|| − 1, Dε(p) does not intersect S2. This is because if
q ∈ Dε(p), then ||q|| ≥ ||p|| − ||p− q|| > ||p|| − ε = 1.

Other examples are torus Σ1 = T 2, and surface of higher “genus” Σg≥2.

Theorem 2.1.11. For any g ≥ 0, Σg has an atlas such that it is a smooth
surface. Moreover, every compact surface is diffeomorphic to one of Σg.
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2.1.2 Level sets

There is another family of regular surfaces: the level sets. Suppose that
f : U ⊂ Rn → R is smooth. For each p ∈ U , we have Jacobian

dfp = ∇f(p) = (fx1 , fx2 , · · · , fxn)(p).

Definition 2.1.12. We say p ∈ U is a critical point if dfp = 0. Otherwise
it is regular.

The image f(p) of a critical point is called a critical value. t ∈ R is a
regular value if every point of the level set f−1(t) is regular.

The following shows the notions of regular surface and regular value
coincide in some sense.

Theorem 2.1.13. If f : U ⊂ R3 → R is a smooth function and t ∈ f(U) is
a regular value of f , then f−1(t) is a regular surface in R3.

Proof. Let p be a point of f−1(t). Without loss, we assume fz(p) 6= 0.
Define F : U ⊂ R3 → R3 by

F (x, y, z) = (x, y, f(x, y, z)).

Its Jacobian is

dFp =

 1 0 0
0 1 0
fx fy fz

 .

det(dFp) = fz 6= 0.

Thus by Inverse Function Theorem, we have a neighbourhood V ⊂ R3 of
p and W ⊂ R3 of F (p) such that F : V →W is invertible and F−1 : W → V
is smooth, i.e. F−1(u, v, w) = (u, v, g(u, v, w)) with (u, v, w) ∈ W and g
smooth. Especially g(u, v, t) = h(u, v) is smooth, where h takes value from
W ′ = {(u, v)|(u, v, t) ∈ W} ⊂ R2. Since F (f−1(t) ∩ V ) = {(u, v, t)} ∩W ,
the graph of h(u, v) is F−1(u, v, t) = f−1(t)∩V . Hence h : W ′ → f−1(t)∩V
is a parametrization containing p. Hence by Proposition 2.1.9 f−1(t) is a
regular surface.

Example 2.1.14. • f(x, y, z) = x2 + y2 + z2. ∇f = (2x, 2y, 2z). Thus
f−1(t) is an embedded surface for all t > 0. It is a sphere of radius t.

• f(x, y, z) = x2 + y2 − z2. ∇f = (2x, 2y,−2z). f−1(0) is a cone which
is singular at the origin. f−1(t) is a regular surface for t 6= 0. It is a
hyperboloid — 1-sheeted for t > 0 and 2-sheeted for t < 0.
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2.2 The First Fundamental Form

Choose a parametrization σ : U → R3 of S, such that p ∈ σ(U) and
σ(u0, v0) = p. A curve γ lies on S and passes through p when t = t0 if
γ(t) = σ(u(t), v(t)) with u(t0) = u0 and v(t0) = v0. By Inverse Function
Theorem, both u and v are smooth.

Since ||γ̇||2 =< γ̇, γ̇ >= Eu̇2 + 2Fu̇v̇ +Gv̇2, where

E = σu · σu, F = σu · σv, G = σv · σv,

the arc length of such a curve from t = a to t = b is∫ b

a
||γ̇(t)||dt =

∫ b

a

√
Eu̇2 + 2Fu̇v̇ +Gv̇2dt.

Definition 2.2.1. The first fundamental form of a surface in R3 is the
expression

I = Edu2 + 2Fdudv +Gdv2.

This is just the quadratic form

Q(v,v) = v · v

on the tangent plane written in terms of the basis σu and σv. (And we assume
the formal computations du(σu) = dv(σv) = 1, du(σv) = dv(σu) = 0.) So it
tells us how the surface S inherits the inner product of R3. It is represented
in this basis by the symmetric matrix(

E F
F G

)
.

It is clear that the first fundamental form only depends on S and p.
Especially, it does not depend on the parametrization. A reparametrization
σ̃ = σ ◦ f will change it to the same form Ēdx2 + 2F̄ dxdy + Ḡdy2 which is
identical to the one calculated from coordinate change

du = uxdx+ uydy, dv = vxdx+ vydy,

where f(x, y) = (u(x, y), v(x, y)). It helps us to make measurement (e.g.
Length of curves, angles, areas) on the surface directly, so we say a property
of S is intrinsic if it can be expressed in terms of the first fundamental form.

Example:

1. Plane σ(u, v) = a + ub + vc with b ⊥ c and

||b|| = ||c|| = 1.
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σu = b, σv = c, so

E = ||b||2 = 1, F = b · c = 0, G = ||c||2 = 1.

The first fundamental form is

I = du2 + dv2.

2. Surface of revolution

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)).

We could assume the profile curve γ(u) = (f(u), 0, g(u)) is unit-speed,
i.e. f2

u + g2
u = 1, and f > 0. We have

σu = (fu cos v, fu sin v, gu), σv = (−f sin v, f cos v, 0).

So
E = f2

u + g2
u = 1, F = 0, G = f2.

Hence
I = du2 + f(u)2dv2

The unit sphere S2 is a special case where u = θ, v = φ, f(θ) =
cos θ, g(θ) = sin θ. We have

I = dθ2 + cos2 θdφ2

3. Generalized cylinder σ(u, v) = γ(u) + va. We assume γ is unit-speed,
a is a unit vector, and γ̇ ⊥ a. Since σu = γ̇, σv = a,

I = du2 + dv2.

Exercise: Calculate the first fundamental form for all other examples in
previous section.

Observe that the first fundamental form of a generalized cylinder is the
same as that of a plane! This is not a coincidence. The reason is the
generalized cylinder is obtained from bending a piece of paper. Or it could
be cut through one of its ruling to a flat paper. This is called a local isometry.

2.3 Length, Angle, Area: Isometric, Conformal,
Equiareal

In this section, we explore several intrinsic properties.
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2.3.1 Length: Isometry

Definition 2.3.1. Two surfaces S1 and S2 are isometric if there is a dif-
feomorphism f : S1 → S2 which maps curves in S1 to curves in S2 of the
same length. The map f is called an isometry.

The map from a plane to a cylinder is not an isometry since it is not a
diffeomorphism. But indeed it has the second property. A smooth map like
this is called a local isometry. This suggests us to look at this definition for
a coordinate patch.

Theorem 2.3.2. The coordinate patches U1 and U2 are isometric if and
only if there exist parametrizations σ1 : V → R3 and σ2 : V → R3 with the
same first fundamental form, and σ1(V ) = U1, σ2(V ) = U2.

Proof. Suppose such parametrizations exist, then the identity map is an
isometry since the first fundamental form determines the length of curves.

Conversely, assume U1, U2 are isometric. And let the charts be σ1 : V1 →
R3 and σ2 : V2 → R3. So we could assume the diffeomorphism is realized by
f : V1 → V2. Then

σ2 ◦ f, σ1 : V1 → R3

are parametrizations from the same open set V = V1. So the fundamental
forms are defined using same coordinate (u, v) as

E1du
2 + 2F1dudv +G1dv

2, E2du
2 + 2F2dudv +G2dv

2.

We have∫
I

√
E1u̇2 + 2F1u̇v̇ +G1v̇2dt =

∫
I

√
E2u̇2 + 2F2u̇v̇ +G2v̇2dt

for all curves and all intervals. Take derivative, we have√
E1u̇2 + 2F1u̇v̇ +G1v̇2 =

√
E2u̇2 + 2F2u̇v̇ +G2v̇2

for all u(t) and v(t). Hence E1 = E2, F1 = F2, G1 = G2.
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2.3.2 Angle: conformal

One notices that the dot product inherited from R3 is also preserved un-
der isometry (and vice versa), since it is determined by the first fundamental
form:

v ·w =
1

2
(||v + w||2 − ||v||2 − ||w||2).

Hence, the angle is also an intrinsic invariant. Let us define it.

Look at two curves α, β on the surface S intersecting at t = 0. The angle
between them at t = 0 is given by

cos θ =
α̇ · β̇
||α̇||||β̇||

, 0 ≤ θ ≤ π.

Everything is expressed in terms of the coefficients of the first fundamental
form.

Definition 2.3.3. Two surfaces S1 and S2 are conformal if there is a dif-
feomorphism f which preserves the angle for any pair of curves.

Notice the invariance of the expression of cos θ if we scale the first fun-
damental form by a positive function λ2. Hence we have a similar charac-
terization as for isometry.

Theorem 2.3.4. The coordinate patches U1 and U2 are conformal if and
only if there exist parametrizations σ1 : V → R3 and σ2 : V → R3 with
σ1(V ) = U1, σ2(V ) = U2, and E2 = λ2E1, F2 = λ2F1, G2 = λ2G1 in V ,
where λ2 is a nowhere zero differentiable function in V .

We call them locally conformal. The most important property of con-
formal maps is the following.

Theorem 2.3.5. Any two regular surfaces are locally conformal.

To prove the theorem, we need to choose a special parametrization. For
a neighborhood of any point of a regular surface by Isothermal parametriza-
tion, in which the first fundamental form is λ2(u, v)(du2 + dv2).

2.3.3 Area: equiareal

Let us focus on a parametrized surface σ : U → R3. There are two
families of curves u = const and v = const. Fix (u0, v0) ∈ U , we have the
following picture.

The area of the “parallelogram” is

||σu∆u× σv∆v|| = ||σu × σv||∆u∆v.
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• σ(u0, v0)

σv∆v

σu∆u
u = u0

v = v0u = u0 + ∆u

v = v0 + ∆v

Local “parallelogram”

Definition 2.3.6. The area Aσ(R) of the part σ(R) of σ : U → R3 for
region R ⊂ U is

Aσ(R) =

∫
R
||σu × σv||dudv =

∫
R

√
EG− F 2dudv.

The second equality follows from

||σu × σv||2 = ||σu||2||σv||2 − (σu · σv)2 = EG− F 2.

As a corollary, we know the area of a surface patch is unchanged by reparametriza-
tion.

There is a characterization for equiareal map.

Theorem 2.3.7. A diffeomrphism f : U1 → U2 is equiareal, i.e. it takes
any region in S1 to a region of same area in S2, if and only if for any surface
patch σ on S1, the first fundamental forms of charts σ and f ◦ σ satisfy

E1G1 − F 2
1 = E2G2 − F 2

2 .

We summarize that being isometric is a stronger condition than being
conformal or equiareal.

2.4 The Second Fundamental Form

The first fundamental form describe the intrinsic geometry of a surface,
namely independent of the choice of its sitting in R3. The second funda-
mental form describes how the surface is bent in R3.
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Möbius band

2.4.1 Normals and orientability

A unit normal to surface S at p, up to sign, is a unit vector perpendicular
to TpS. Recall that we define standard unit normal for a parametrization
σ : U → R3 as

Nσ =
σu × σv
||σu × σv||

.

However, we do not always have a smooth choice of the unit normal
at any point of S. For instance, the Möbius band is such an example.
Intuitively, if we walk along the middle circle of it, after one turn, the normal
vector N will come back as −N. In other words, we cannot make a consistent
choice of a definite “side” on Möbius band. But apparently, Nσ is a smooth
choice on one surface patch. Actually, the reason of this phenomenon is Nσ

depends on the choice of patches.

Let σ̃ : Ũ → R3 be another. Then

σ̃ũ × σ̃ṽ = (
∂u

∂ũ

∂v

∂ṽ
− ∂u

∂ṽ

∂v

∂ũ
)σu × σv = det J(Φ)σu × σv,

where J(Φ) is the Jacobian of the transition map Φ = σ̃−1 ◦ σ. So Nσ̃ =
±Nσ. The sign is that of det J(Φ).

Definition 2.4.1. A surface S is orientable if we have a smooth choice of
unit normal at any point of S. Such a choice of unit normal vector field is
called an orientation of S.

A surface with a chosen orientation is called oriented.

Example 2.4.2. Every compact surface in R3 is orientable. This is because
every compact surface is diffeomorphic to one of Σg.

The next follows from the above discussion.
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Proposition 2.4.3. A surface S is orientable if there exists an atlas A of
S such that for transition map Φ between any two charts in A, we have
det J(Φ) > 0.

After on, without particular mentioning, our surface will be orientable.

2.4.2 Gauss map and second fundamental form

Let S ⊂ R3 be a surface with an orientation N, we have the Gauss map

G : S → S2, p 7→ Np,

where Np is the unit normal of S at p. The rate at which N varies across S
is measured by the derivative. It is denoted as DpG : TpS → TG(p)S

2. But
as planes in R3, TG(p)S

2 and TpS are parallel since both are perpendicular
to N. So we actually look at the Weingarten map

Wp,S = −DpG : TpS → TpS.

It is defined as the unique linear map determined by

W(σu) = −Nu,W(σv) = −Nv

for any parametrization σ.

Exercise: ProveW is independent of the choice of surface parametrization.

Parallel to the discussion of first fundamental form, we have

Definition 2.4.4. The second fundamental form of an oriented surface is
the expression

II = Ldu2 + 2Mdudv +Ndv2

where L = σuu ·N,M = σuv ·N, N = σvv ·N.

There is another expression. Note that σu ·N = 0, we have

(σu ·N)u = σuu ·N + σu ·Nu = 0

and similarly

σvu ·N + σv ·Nu = 0, σuv ·N + σu ·Nv = 0, σvv ·N + σv ·Nv = 0.

Hence we also have
L = −σu ·Nu

M = −σu ·Nv = −σv ·Nu

N = −σv ·Nv
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Hence the second fundamental form is the symmetric bilinear form

II(w) =Wp,S(w) ·w =<Wp,S(w),w > .

It is represented by (
L M
M N

)
.

in terms of basis σu and σv.
There is a third interpretation. Recall that the curvature of a curve

could be understand as t′ · n, or the second term of Taylor expansion of
γ(s). We could understand the second fundamental form in a similar way.
We look at Taylor expression

σ(u+∆u, v+∆v)−σ(u, v) = σu∆u+σv∆v+
1

2
(σuu(∆u)2+2σuv∆u∆v+σvv(∆v)2)+R

where lim∆u,∆v→0
R

(∆u)2+(∆v)2
= 0. Since σu ·N = σv ·N = 0,

(σ(u+ ∆u, v+ ∆v)− σ(u, v)) ·N =
1

2
(L(∆u)2 + 2M∆u∆v+N(∆v)2) +R′.

The fourth interpretation is more geometric: we take surface σ(u, v) and
push it inwards a distance t along its normal to get a family of surfaces

R(u, v, t) = σ(u, v)− tN(u, v).

We calculate the first fundamental form Edu2 + 2Fdudv+Gdv2 of R which
depends on t, then the derivative

1

2

∂

∂t
(Edu2 + 2Fdudv +Gdv2)|t=0 = Ldu2 + 2Mdudv +Ndv2

where Ldu2 + 2Mdudv + Ndv2 is the second fundamental form of σ. So
it describes how the first fundamental form varies along the unit normal
direction.

Example:

1. Plane σ(u, v) = a + ub + vc has σuu = σuv = σvv = 0. So the second
fundamental form vanishes.

2. Surface of revolution

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)).

We again assume f2
u + g2

u = 1 and f > 0. We have

σu = (fu cos v, fu sin v, gu), σv = (−f sin v, f cos v, 0).
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So
σu × σv = (−fgu cos v,−fgu sin v, ffu), ||σu × σv|| = f.

Hence
N = (−gu cos v,−gu sin v, fu),

σuu = (fuu cos v, fuu sin v, guu),

σuv = (−fu sin v, fu cos v, 0),

σvv = (−f cos v,−f sin v, 0).

So the second fundamental form

II = (fuguu − fuugu)du2 + fgudv
2.

There are two special cases:

(a) Unit sphere: u = θ, v = φ, f(θ) = cos θ, g(θ) = sin θ.

II = dθ2 + cos2 θdφ2

the same as its first fundamental form.

(b) Unit cylinder: f(u) = 1, g(u) = u. So

II = dv2.

This is different from that of a plane, although their first funda-
mental forms are the same.

These examples tells us second fundamental form is an extrinsic concept,
although it is not independent of the first fundamental form.

Exercise: Prove the converse of Example 1: If the second fundamental
form vanishes, it is part of a plane.

2.5 Curvatures

2.5.1 Definitions and first properties

The shape of a surface influences the curvature of curves on the surface.
Let γ(t) = σ(u(t), v(t)) be a unit-speed curve on an oriented surface S.

Hence γ̇ = u̇σu + v̇σv ∈ Tγ(t)S, which means γ̇ ⊥ N. So N, γ̇ and N× γ̇ is
a right handed orthonormal basis of R3. Since γ̈ ⊥ γ̇,

γ̈ = κnN + κgN× γ̇ (2.1)

Here κn is called the normal curvature and κg is called the geodesic curvature
of γ. Notice when σ is a plane and γ a plane curve, the geodesic curvature
is just the signed curvature κs.

On a general (non-oriented) surface, only magnitudes of κn and κg are
well defined.
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Proposition 2.5.1. 1. κn = γ̈ ·N, κg = γ̈ · (N× γ̇).

2. κ2 = κ2
n + κ2

g.

3. κn = κ cosψ, κg = κ sinψ, where κ is the curvature of γ and ψ is the
angle between N and n of γ.

Proof. The first is obtained by multiplying N and N × γ̇ respectively to
(2.1).

The second is by multiplying γ̈ to it.

For the last notice γ̈ = κn. Comparing the coefficients of (2.1) and

κn = κ cosψN + κ sinψN× γ̇

gives us the equalities.

Proposition 2.5.2. If γ is a unit-speed curve on S,

κn = II(γ̇).

In other words, for γ(t) = σ(u(t), v(t)),

κn = Lu̇2 + 2Mu̇v̇ +Nv̇2

Proof. Since N · γ̇ = 0, N · γ̈ = −Ṅ · γ̇. So

κn = N · γ̈ = −Ṅ · γ̇ =<W(γ̇), γ̇ >= II(γ̇).

So κn only depends on the point p and the tangent vector γ̇(p), but not
the curve γ.

Theorem 2.5.3 (Meusnier’s Theorem). Let p ∈ S, v ∈ TpS a unit vector.
Let Πθ be the plane containing v and making angle θ 6= 0 with TpS. Suppose
Πθ intersects S in a curve with curvature κθ. Then κθ sin θ is independent
of θ.

Proof. Let γθ = Πθ ∩ S, and parametrize it by arc length.

Then at p, γ̇θ = ±v, so γ̈θ ⊥ v and ‖ Πθ since γθ is a plane curve. Thus
ψ = π

2 − θ and κθ sin θ = κn, independent of θ.

The Weingarten map is a linear map. It could be viewed as a symmetric
2×2 matrix after fixing basis, say σu, σv, since the second fundamental form
is a symmetric bilinear form. Its determinant and trace are two invariant
associate with it, which is independent of the choice of basis.
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Definition 2.5.4. Let Wp be the Weingarten map at p ∈ S. Then the
Gaussian curvature

K = det(Wp),

and mean curvature

H =
1

2
trace(Wp).

For a linear map/matrix, we also look at their eigenvalues and eigenvec-
tors. For W, the eigenvalues are real numbers since it is symmetric.

So at p ∈ S, there are κ1, κ2 and a basis {t1, t2} of TpS such that

W(t1) = κ1t1,W(t2) = κ2t2.

Moreover, if κ1 6= κ2, then< t1, t2 >= 0. We call κ1, κ2 principal curvatures,
and t1, t2 principal vectors. Points of the surface with κ1 = κ2 is called
umbilical points, where Wp is κ1 · I2×2 and every direction is a principal
direction.

Hence, for any points, there is an orthonormal basis of TpS consisting of
principal vectors. We also know that

H =
1

2
(κ1 + κ2),K = κ1 · κ2.

Theorem 2.5.5 (Euler’s Theorem). Let γ be a curve on an oriented surface
S, and let κ1, κ2 be the principal curvatures with principal vectors t1, t2.
Then the normal curvature of γ is

κn = κ1 cos2 θ + κ2 sin2 θ,

where θ is the angle from t1 to γ̇ in the orientation of TpS (which is denoted

as t̂1γ̇).

Proof. We assume {t1, t2} is an orthonormal basis and t̂1t2 = π
2 . So

γ̇ = cos θt1 + sin θt2.

Then

κn = II(γ̇) = cos2 θ · II(t1) + 2 sin θ cos θ <W(t1), t2 > + sin2 θ · II(t2).

Here, recall II(v) =<W(v),v >.

Finally, the conclusion follows since

<W(ti), tj >=< κiti, tj >=

{
κi i = j
0 i 6= j
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We want to remark that Meusnier’s Theorem and Euler’s Theorem are
most ancient results on the theory of surfaces.

Corollary 2.5.6. The principal curvatures at a point of a surface are max-
imum and minimum of the normal curvature of all curves on the surface
that pass through this point.

Proof. If κ1 ≥ κ2, then κ1 ≥ κn ≥ κ2.

2.5.2 Calculation of Gaussian and mean curvatures

Now we want to calculate Gaussian curvature K and mean curvature H
in terms of first and second fundamental forms. Let σ(u, v) be a chart, and

I = Edu2 + 2Fdudv +Gdv2, II = Ldu2 + 2Mdudv +Ndv2.

We denote

FI =

(
E F
F G

)
,FII =

(
L M
M N

)
.

Proposition 2.5.7. Let σ be a parametrization. Then the matrix Wp with
respect to the basis {σu, σv} of TpS is FIIF−1

I = (F−1
I FII)T .

Proof. We know that W(σu) = −Nu,W(σv) = −Nv. So the matrix of W is(
a b
c d

)
.

where

−Nu = aσu + bσv,−Nv = cσu + dσv.

Paring each with σu, σv, we have

L = aE + bF,M = aF + bG,M = cE + dF,N = cF + dG,

i.e.

FII =

(
a b
c d

)
FI

Corollary 2.5.8.

H =
LG− 2MF +NE

2(EG− F 2)
,K =

LN −M2

EG− F 2
.
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Proof.

K = det(F−1
I FII) =

detFII
detFI

=
LN −M2

EG− F 2
.

F−1
I FII =

1

EG− F 2

(
G −F
−F E

)(
L M
M N

)
=

1

EG− F 2

(
LG−MF MG−NF
ME − LF NE −MF

)
So

H =
1

2
trace(F−1

I FII) =
LG− 2MF +NE

2(EG− F 2)
.

Example 2.5.9. Surface of revolution

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)).

We again assume f2
u + g2

u = 1 and f > 0.

I = du2 + f2dv2, II = (fuguu − fuugu)du2 + fgudv
2.

Hence

K =
(fuguu − fuugu)fgu

f2
.

Taking derivative on f2
u + g2

u = 1, we have

fufuu + guguu = 0.

So

(fuguu − fuugu)gu = −fuu(f2
u + g2

u) = −fuu,

and

K = −fuuf
f2

= −fuu
f
.

Especially, for a unit sphere u = θ, v = φ, f(θ) = cos θ, g(θ) = sin θ. We
thus have K = 1.

Gauss uses another way to define K, roughly speaking it is the ratio of
the area changed under Gaussian map G, or

lim
R→p

Area(G(R))

AreaR
.

Next theorem makes it precisely.
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Theorem 2.5.10. Let σ : U → R3 be a parametrization, with (u0, v0) ∈ U .
Let Rδ = {(u, v) ∈ R2|(u− u0)2 + (v − v0)2 ≤ δ2}. Then

lim
δ→0

AN(Rδ)

Aσ(Rδ)
= |K|,

where K is the Gaussian at σ(u0, v0).

Proof. Recall that

AN(Rδ)

Aσ(Rδ)
=

∫
Rδ
||Nu ×Nv||dudv∫

Rδ
||σu × σv||dudv

.

Nu ×Nv =(aσu + bσv)× (cσu + dσv)

=(ad− bc)σu × σv
= det(F−1

I FII)σu × σv
=Kσu × σv

So we could choose δ small, such that |K(u, v)−K(u0, v0)| < ε if (u, v) ∈ Rδ.
So

|K(u0, v0)| − ε < AN(Rδ)

Aσ(Rδ)
< |K(u0, v0)|+ ε.

This finishes the proof.

2.5.3 Principal curvatures

Let us come back to principal curvatures. They are the roots κ of
det(F−1

I FII − κI) = 0, which is

det(FII − κFI) = 0.

t = ξσu + ησv is a principal vector if

(FII − κFI)
(
ξ
η

)
=

(
0
0

)
.

Example 2.5.11. For unit sphere

I = II = dθ2 + cos2 θdφ2.

So principal curvatures are repeated roots κ = 1 and thus every tangent
vector is principal, every point is umbilical.

Example 2.5.12. For cylinder

σ(u, v) = (cos v, sin v, u).

I = du2 + dv2, II = dv2.
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Principal curvatures are solutions of

det

(
0− κ 0

0 1− κ

)
= 0.

So κ = 0, 1, and no point is umbilical.
The principal vector

t1 = σu = (0, 0, 1), t2 = σv = (− sin v, cos v, 0).

Proposition 2.5.13. Let S be a connected surface of which every point is
umbilical. Then S is an open subset of a plane or a sphere.

Proof. For every tangent vector t, W(t) = κt where κ is the principal
curvature. Since W(σu) = −Nu,W(σv) = −Nv, then

Nu = −κσu,Nv = −κσv.

Hence by taking derivatives,

κvσu = κuσv.

Since σu and σv are linearly independent, κu = κv = 0. Thus κ ≡ C.
If κ = 0, N is constant. Then (N · σ)u = (N · σ)v = 0, so N · σ ≡ C.

Thus σ(U) is an open subset of the plane P ·N ≡ C.
If κ 6= 0, N = −κσ + a. Hence

||σ − 1

κ
a||2 = || − 1

κ
N||2 =

1

κ2
.

So σ(U) is an open subset of the sphere with centre κ−1a and radius |κ|−1.
To complete the proof, notice that each patch is contained in a plane or

a sphere. But if the images of two patches intersect, they must clearly be
part of the same plane or same sphere. So complete the proof.

Principal curvature at p ∈ S provides the information about shape. We
choose the coordinates as following: p is the origin, TpS is the xy-plane in
R3, principal vectors t1 = (1, 0, 0) and t2 = (0, 1, 0) and N = (0, 0, 1). We
could always choose such a coordinate up to an isometry, i.e. rotation and
translation, of R3.

Let σ be a parametrization with σ(0, 0) = 0 (point p). The tangent plane
is {(x, y, 0)} = sσu(0, 0) + tσv(0, 0). Taylor expansion gives us

σ(s, t) = σ(0, 0)+sσu(0, 0)+tσv(0, 0)+
1

2
(s2σuu(0, 0)+2stσuv(0, 0)+t2σvv(0, 0))+· · ·

If x, y (hence s, t) are small, we have σ(s, t) ≈ (x, y, z) where

z ≈ 1

2
(s2σuu(0, 0) + 2stσuv(0, 0) + t2σvv(0, 0)) ·N =

1

2
(Ls2 + 2Mst+Nt2).
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Since

W(t) = xW(t1) + yW(t2) = κ1xt1 + κ2yt2 = (κ1x, κ2y, 0)

for t = (x, y, 0), hence

Ls2 + 2Mst+Nt2 =<W(t), t >= κ1x
2 + κ2y

2.

So near p, S is approximated by z = 1
2(κ1x

2 + κ2y
2).

There are 4 cases of local behaviour:

1. Elliptic if Kp > 0, so z = 1
2(κ1x

2 + κ2y
2) is an elliptic paraboloid.

2. Hyperbolic if Kp < 0, it is a hyperbolic paraboloid.

3. Parabolic if one of κ1, κ2 is zero, and the other is non-zero. It is a
parabolic cylinder.

4. Planar if both κ1 = κ2 = 0 (or Wp ≡ 0). We need higher derivatives
to know the shape.

2.6 Gauss’s Theorema Egregium

Since the definitions of curvatures involve the second fundamental form,
they are usually not intrinsic. But actually Gaussian curvature K is an
intrinsic invariant.

Theorem 2.6.1 (Gauss’s Theorema Egregium). The Gaussian curvature
K of a surface is invariant of the first fundamental form.

In this section, we prove it by detailed calculations.
For regular surface S, and a chart σ : U → S, σu, σv,N would be a basis.

We express σuu, σuv, σvv by

σuu = Γ1
11σu + Γ2

11σv + L1 ·N (2.2)

σuv = Γ1
12σu + Γ2

12σv + L2 ·N (2.3)

σvv = Γ1
22σu + Γ2

22σv + L3 ·N (2.4)

Here Γkij are called Christoffel symbols.
First, by taking dot product with N, L1 = L,L2 = M,L3 = N .
Next, we claim Γkij only depends on the first fundamental form. More

precisely,

Γ1
11 =

GEu − 2FFu + FEv
2(EG− F 2)

,Γ2
11 =

2EFu − EEv − FEu
2(EG− F 2)

Γ1
12 =

GEv − FGu
2(EG− F 2)

,Γ2
12 =

EGu − FEv
2(EG− F 2)

Γ1
22 =

2GFv −GGu − FGv
2(EG− F 2)

,Γ2
22 =

EGv − 2FFv + FGu
2(EG− F 2)

(2.5)
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They are determined by following set of equations

(2.2) · σu : Γ1
11 · E + Γ2

11 · F = σuu · σu = 1
2Eu

(2.2) · σv : Γ1
11 · F + Γ2

11 ·G = σuu · σv = (σu · σv)u − σu · σuv = Fu − 1
2Ev

(2.3) · σu : Γ1
12 · E + Γ2

12 · F = σuv · σu = 1
2Ev

(2.3) · σv : Γ1
12 · F + Γ2

12 ·G = σuv · σv = 1
2Gu

(2.4) · σu : Γ1
22 · E + Γ2

22 · F = σvv · σu = Fv − 1
2Gu

(2.4) · σv : Γ1
22 · F + Γ2

22 ·G = σvv · σv = 1
2Gv

Finally, recall that we have determined

Nu = a11σu + a21σv

Nv = a12σu + a22σv

in Proposition 2.5.7, where

(aij)2×2 = −F−1
I FII = − 1

EG− F 2

(
LG−MF MG−NF
ME − LF NE −MF

)
.

Especially K = LN−M2

EG−F 2 .
Now Gauss’s Theorema Egregium follows from any of the following equa-

tions.

Proposition 2.6.2 (Gauss equations).

EK =(Γ2
11)v − (Γ2

12)u + Γ1
11Γ2

12 + Γ2
11Γ2

22 − Γ1
12Γ2

11 − (Γ2
12)2

FK =(Γ1
12)u − (Γ1

11)v + Γ2
12Γ1

12 − Γ2
11Γ1

22

=(Γ2
12)v − (Γ2

22)u + Γ1
12Γ2

12 − Γ1
22Γ2

11

GK =(Γ1
22)u − (Γ1

12)v + Γ1
22Γ1

11 + Γ2
22Γ1

12 − (Γ1
12)2 − Γ2

12Γ1
22

Proof. For first “FK”: (σuu)v = (σuv)u. Then

(Γ1
11σu + Γ2

11σv + LN)v = (Γ1
12σu + Γ2

12σv +MN)u,

which is

((Γ1
11)v − (Γ1

12)u)σu + ((Γ2
11)v − (Γ2

12)u)σv + (Lv −Mu)N

=Γ1
12σuu + (Γ2

12 − Γ1
11)σuv − Γ2

11σvv − LNv +MNu

=Γ1
12(Γ1

11σu + Γ2
11σv + LN) + (Γ2

12 − Γ1
11)(Γ1

12σu + Γ2
12σv +MN)

− Γ2
11(Γ1

22σu + Γ2
22σv +NN)− L(a12σu + a22σv) +M(a11σu + a21σv)

Comparing the coefficients of σu:

(Γ1
11)v − (Γ1

12)u = Γ2
12Γ1

12 − Γ2
11Γ1

22 − La12 +Ma11

where a11 = MF−LG
EG−F 2 , a12 = NF−MG

EG−F 2 .
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Hence

La12 −Ma11 =
1

EG− F 2
(L(NF −MG)−M(MF − LG))

=
F (LN −M2)

EG− F 2
= FK

This completes the proof of first “FK”.

For the others:

“EK”: equating coefficients of σv in (σuu)v = (σuv)u.

Second ‘FK”: equating coefficients of σu in (σuv)v = (σvv)u.

“GK”: equating coefficients of σv in (σuv)v = (σvv)u.

Notice if we substitute Equations (2.5) of Christoffel symbols into the 4
equations, we have the same Gaussian curvature:

K =
−1

2
√
EG− F 2

((
Ev − Fu√
EG− F 2

)v−(
Fv −Gu√
EG− F 2

)u)

− 1

4(EG− F 2)2
· det

E Eu Ev
F Fu Fv
G Gu Gv


Abstractly, the Gaussian curvature has the following form

K = − 1

2(EG− F 2)
(Evv − 2Fuv +Guu) +R

where the remainder R is quadratic in the first derivatives of E,F,G.

What if we compare coefficients of N in both equations? We would have
the following

Proposition 2.6.3 (Codazzi-Mainardi Equations).

Lv −Mu = LΓ1
12 +M(Γ2

12 − Γ1
11)−NΓ2

11

Mv −Nu = LΓ1
22 +M(Γ2

22 − Γ1
12)−NΓ2

12

Proof. The first equation is obtained by comparing the coefficients of N in
(σuu)v = (σuv)u. The second is from (σuv)v = (σvv)u.

Along with Equations (2.5) of Christoffel symbols, Gauss and Codazzi-
Mainardi equations are the equations of the coefficients of the first and
second fundamental forms. They are called the compatible equations of sur-
faces. Actually, these are only relations of compatibility between the first
and the second fundamental forms by a theorem of Bonnet. This should be
compared with the fundamental theorem of curves Theorem 1.7.3.
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Theorem 2.6.4 (Bonnet). Let Edu2+2Fdudv+Gdv2 and Ldu2+2Mdudv+
Ndv2 be two arbitrary fundamental forms in an open set U ⊂ R2. And
E > 0, G > 0, EG − F 2 > 0. If the coefficients of these fundamental forms
satisfy the Gauss and Codazzi-Mainardi equations, then there is a unique,
up to a rigid motion of the space R3, surface σ : U → R3 for which these
forms are the first and the second fundamental forms, respectively.

2.6.1 Gaussian curvature for special cases

There are several specially cases we have most interests.

Corollary 2.6.5. Let the first fundamental form be Edu2 +2Fdudv+Gdv2.

1. If F = 0, then

K = − 1

2
√
EG

(
∂

∂u
(
Gu√
EG

) +
∂

∂v
(
Ev√
EG

)).

2. If E = 1, F = 0,

K = − 1√
G

∂2
√
G

∂u2
.

Proof. 1 implies 2 because K = − 1
2
√
G

∂
∂u( Gu√

G
) = − 1√

G
∂2
√
G

∂u2
.

To prove 1, we calculate the Christoffel symbols:

Γ1
11 =

Eu
2E

,Γ2
11 = −Ev

2G
,Γ1

12 =
Ev
2E

,Γ2
12 =

Gu
2G

,Γ1
22 = −Gu

2E
,Γ2

22 =
Gv
2G

.

So

EK = −(
Ev
2G

)v − (
Gu
2G

)u +
EuGu
4EG

− EvGv
4G2

+
E2
v

4EG
− G2

u

4G2
.

i.e.

−2K
√
EG =

Evv +Guu√
EG

− Ev(EGv + EvG)

2
√

(EG)3
− Gu(EuG+ EGu)

2
√

(EG)3

=
Evv√
EG
− 1

2

Ev(EG)v√
(EG)3

+
Guu√
EG
− 1

2

Gu(EG)u√
(EG)3

=(
Ev√
EG

)v + (
Gu√
EG

)u

Example 2.6.6. Surface of revolution

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)).

We again assume f2
u+g2

u = 1 and f > 0. We have E = 1, F = 0, G = f2(u).
So

K = − 1√
G

∂2
√
G

∂u2
= −fuu

f
.

This is the same as our previous calculation.
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2.7 Surfaces of constant Gaussian curvature

Let us look at surface of revolution

σ(u, v) = (f(u) cos v, f(u) sin v, g(u))

with f2
u + g2

u = 1 and f > 0. We have shown

K = −fuu
f
.

We want to look at these surfaces with constant Gaussian curvature. There
are three cases.

Before that, let us first summarize the effect of dilation

(x, y, z) 7→ (ax, ay, az), a 6= 0.

E, F,G are multiplied by a2; L,M,N are multiplied by a; H is multiplied
by a−1; K is multiplied by a−2. So the constant Gaussian curvatures are
reduced to the cases of K = 1, 0,−1.

1. K = 0 everywhere.

So fuu = 0 or f(u) = au + b. Since f2
u + g2

u = 1, we know |a| ≤ 1 and
gu = ±

√
1− a2. Hence

g(u) = ±
√

1− a2u+ C.

We could assume C = 0 by translating along z-axis, and the sign is + by
rotating degree π for the profile curve if necessary. Then we have the surface

σ(u, v) = (b cos v, sin v, 0) + u(a cos v, a sin v,
√

1− a2).

This is a ruled surface in the sense that this is a union of straight lines (the
v-curves v ≡ c gives straight lines).

2. K > 0 and K = − 1
R2 .

We have the differential equation

fuu +
f

R2
= 0.

So f(u) = a cos( uR + b). By reparametrization ũ = u+Rb, we could assume

b = 0 in the expression. Then g(u) =
∫ √

1− a2

R2 sin2 u
Rdu. If a = R, we

have f(u) = R cos u
R , g(u) = R sin u

R . It is a sphere of radius R.

3. K < 0. Up to a dilation of R3, we could assume K = −1.

We have fuu − f = 0 whose solutions are

f(u) = aeu + be−u.
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g(u) could be expressed in terms of elementary functions only if one of a or
b is zero. If b = 0, we could assume a = 1 by translation ũ = u + c. (It is
similar for a = 0.) In this case, f(u) = eu, and

g(u) =

∫ √
1− e2udu.

We must have u ≤ 0, so we assume sin θ = eu > 0.∫ √
1− e2udu =

∫
cos2 θ

sin θ
dθ = −

∫
cos2 θ

sin2 θ
d cos θ

= cos θ −
∫

1

1− cos2 θ
d cos θ

= cos θ − 1

2
ln(cos θ + 1) +

1

2
ln(1− cos θ)

= cos θ − 1

2
ln

(cos θ + 1)2

sin2 θ
= cos θ − ln(csc θ + cot θ)

=
√

1− e2u − ln(e−u +
√
e−2u − 1)

Recall that cosh−1(v) = ln(v +
√
v2 − 1), the profile curve in xz-plane is

z =
√

1− x2 − cosh−1(
1

x
).

This is the tractrix we met in Example Sheet 1. The condition u ≤ 0 read as
0 < x ≤ 1. This surface of revolution is called a pseudo-sphere. It is amusing
to calculate the Gaussian curvature in terms of principal curvatures. One
could calculate that the curvature of the tractrix is tan θ. Since n = N we
know Nu is parallel to σu which is one of the principal directions, and we
have κ1 = κn = κ cosψ = tan θ. For the circle, we know the radius is sin θ
thus the curvature is csc θ. But the angle between n and N is π − θ. So
κ2 = κn = κ cosψ = − cot θ. Thus K = κ1κ2 = −1.

Notice that in above calculation, the surface of constant curvatures are
more than one might expect. However locally, plane, sphere, pseudo-sphere
are the only possibilities.

Proposition 2.7.1. Any point of a surface of constant Gaussian curvature
is contained in a patch that is isometric to an open subset of a plane, a
sphere, or a pseudo-sphere.

We will prove this theorem in a later stage.
Notice a plane or a pseudo-sphere is not compact. For compact surface,

we have the following stronger result.

Theorem 2.7.2. Every connected compact surface whose Gaussian curva-
ture is constant is a sphere.
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The proof consists the following parts.

Proposition 2.7.3. Suppose S ⊂ R3 is a compact surface. Then there is a
point p ∈ S with K(p) > 0.

Proof. Because S is compact, the continuous function f(x) = ||x|| achieves
maximum at p ∈ S. Let f(p) = R. So any curve α ⊂ S at p which is the
intersection with a plane orthogonal to the tangent plane at p has curvature
at least 1

R (Proposition 1.9.3). So every normal curvature is no less than 1
R ,

and so K(p) ≥ 1
R2 > 0.

Proposition 2.7.4. Suppose p is not an umbilical point of S. Then there
is a “principal coordinate” near p, so that u-curves (v-curves respectively)
are lines of curvature with principal curvature κ1 (κ2 resp.). Especially,

I = Edu2 +Gdv2, II = Ldu2 +Ndv2.

Proof. We apply the fundamental theorem of ODE. If p is not umbilical,
we can choose a neighborhood of it such that all points are not umbilical.
In this neighborhood, principal curvatures are smooth functions κ1 = H +√
H2 −K,κ2 = H −

√
H2 −K. The principal vectors t1 of κ1 and t2 of

κ2 form well-defined vector fields X and Y near p, since p is not umbilical.
These are the direction fields of some ODE dx

dt = ti and the integral curves
are u-curves and v-curves.

For the fundamental forms, on a non-umbilical point, the principal vec-
tors t1 of κ1 and t2 of κ2 are orthogonal, so F = 0. Since tangent directions
of u-curves and v-curves are principal, M = 0.

Proposition 2.7.5. p is not umbilical and κ1(p) > κ2(p). Suppose κ1 has
a local maximum at p and κ2 has a local minimum at p. Then K(p) ≤ 0.

Proof. Choose principal coordinate, by switching u and v if necessary, we
could assume κ1 = L

E and κ2 = N
G . We know (κ1)v = (κ2)u = 0, so

Ev = − 2E

κ1 − κ2
(κ1)v = 0, Gu =

2G

κ1 − κ2
(κ2)u = 0.

The equality follows from an exercise in Example Sheet 4.
Under our coordinates,

K =− 1

2
√
EG

(
∂

∂u
(
Gu√
EG

) +
∂

∂v
(
Ev√
EG

))

=− 1

2EG
(Guu + Evv)

=− 1

2EG
(

2G

κ1 − κ2
(κ2)uu −

2E

κ1 − κ2
(κ1)vv)

Since κ1 is a local maximum at p, we know (κ1)vv ≤ 0. And κ2 is a local
minimum, so (κ2)uu ≥ 0. Hence K ≤ 0.
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Proof. (of the theorem 2.7.2) Since S is compact and K is constant, we
have K > 0 by Proposition 2.7.3. We assume κ1 ≥ κ2. By compactness, κ1

reaches maximum at some p ∈ S. Since K = κ1κ2 is a positive constant, κ2

reaches minimum at the same point p. By Proposition 2.7.5, p is umbilical,
i.e κ1(p) = κ2(p).

Then for any other point q ∈ S. we have

κ1(p) ≥ κ1(q) ≥ κ2(q) ≥ κ2(p) = κ1(p).

This implies κ1(q) = κ2(q), i.e. every point of S is umbilical. By Proposition
2.5.13, we know this is a sphere.

2.8 Parallel transport and covariant derivative

Running with constant velocity on the earth is actually not a constant
move in R3, since the directions keep changing. But it should be a constant
move in certain sense since that is what we feel as the runner. To achieve
this, we need to compare velocity at each tangent plane.

The velocity vectors form a tangent vector field along its trajectory, i.e
a curve γ on a surface S. Here, by a tangent vector field v along γ, we mean
a smooth map from the interval (a, b) to R3 such that v(t) ∈ Tγ(t)S for all
t ∈ (a, b).

Denote the rate of change of v in R3 by v̇. In our previous example, the
tangent vectors of a great circle on a sphere, v̇ is the normal direction. So,
we are interested in its tangent component

∇γv = v̇ − (v̇ ·N)N.

One can check that ∇γv ·N = 0. It is defined on any surface, orientable or
not, since this is unchanged if N is replaced by −N.

This ∇γv is called the covariant derivative of v along γ.

Definition 2.8.1. v is said to be parallel along γ if ∇γv = 0 at every point
of γ.

By definition, v is parallel along γ if and only if v̇ ⊥ Tγ(t)S.

Here is a local calculation of this condition.

Proposition 2.8.2. Let γ(t) = σ(u(t), v(t)) be a curve, and w(t) = α(t)σu+
β(t)σv be a tangent vector field along γ. Then w is parallel long γ if and
only if

α̇+ (Γ1
11u̇+ Γ1

12v̇)α+ (Γ1
12u̇+ Γ1

22v̇)β = 0

β̇ + (Γ2
11u̇+ Γ2

12v̇)α+ (Γ2
12u̇+ Γ2

22v̇)β = 0
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Proof.

ẇ =α̇σu + β̇σv + α(u̇σuu + v̇σuv) + β(u̇σuv + v̇σvv)

=α̇σu + β̇σv + αu̇(Γ1
11σu + Γ2

11σv + LN)

+ (αv̇ + βu̇)(Γ1
12σu + Γ2

12σv +MN) + βv̇(Γ1
22σu + Γ2

22σv +NN)

Hence
∇γw =(α̇+ (Γ1

11u̇+ Γ1
12v̇)α+ (Γ1

12u̇+ Γ1
22v̇)β)σu

+ (β̇ + (Γ2
11u̇+ Γ2

12v̇)α+ (Γ2
12u̇+ Γ2

22v̇)β)σv

And the result follows.

Examples:

1. When in the plane, E = G = 1, F = 0. So Γkij = 0. And ∇γv =

α̇σu + β̇σv is the usual vector derivative.

2. S is a unit sphere with latitude-longitude parametrization

σ(θ, φ) = (cosφ cos θ, sinφ cos θ, sin θ).

So
I = dθ2 + cos2 θdφ2

Γ1
11 = Γ2

11 = Γ2
22 = Γ1

12 = 0,Γ2
12 = − tan θ,Γ1

22 = sin θ cos θ.

Let the curve γ be a circle of latitude θ = θ0, i.e

γ(φ) = σ(θ0, φ),−π
2
< θ0 <

π

2
.

So the equations become

α̇ = −β sin θ0 cos θ0, β̇ = α tan θ0.

If θ0 = 0, α, β are constants. Especially, the tangent field σφ is parallel
along θ0 = 0.

If θ0 6= 0,
α̈+ α sin2 θ0 = 0,

so
α(φ) = A cos(φ sin θ0) +B sin(φ sin θ0),

β(φ) = A
sin(φ sin θ0)

cos θ0
−B cos(φ sin θ0)

cos θ0
.

We consider w(0) = σφ which is tangent to γ(0). Then α(0) =
0, β(0) = 1 and A = 0, B = − cos θ0. Hence

w(φ) = − cos θ0 sin(φ sin θ0)σθ + cos(φ sin θ0)σφ.

In general w(φ) is not the tangent vector σφ of γ.
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A natural question motivated from the previous example is: when the
tangent vector γ̇ is parallel along γ? Or when do we drive along a “straight”
road on a surface?

It is measured by the tangent component of the acceleration γ̈.

2.9 Geodesics

Definition 2.9.1. A curve γ on a surface S is called a geodesic if γ̈(t) is
zero or perpendicular to the tangent plane of surface at γ(t), i.e. parallel to
its unit normal.

By definition, γ is a geodesic if and only if γ̇ is parallel along γ, i.e. when
∇γ γ̇ = 0.

Proposition 2.9.2. Let w(t) and v(t) be parallel vector fields along γ :
I → S. Then w(t) · v(t) is constant, in particular, ||w(t)|| and ||v(t)|| are
constant, and the angle between them is constant.

Proof. We have d
dtw(t) · v(t) = ẇ(t) · v(t) + w(t) · v̇(t).

w(t) is parallel along γ means ẇ(t) ⊥ Tγ(t)S. So ẇ(t)·v(t) = 0. Similarly,
w(t) · v̇(t) = 0.

So w(t) · v(t) is a constant.

By taking v(t) = w(t) = γ̇(t), we have the following.

Corollary 2.9.3. Any geodesic has constant speed.

Thus we could always choose unit-speed geodesic if we want, because if
||γ̇|| = λ, γ̃(t) = γ( tλ) does so.

Recall we have defined geodesic curvature κg = γ̈ · (N × γ̇) (if γ is
unit-speed), along with the normal curvature κn = γ̈ ·N. It gives another
equivalent definition of geodesic.

Proposition 2.9.4. A unit-speed curve on S is a geodesic if and only if
κg ≡ 0.

Proof. “⇒”: It is clear since N× γ̇ ∈ Tγ(t)S.

“⇐”: γ̈ ⊥ N× γ̇ since κg = 0; γ̈ ⊥ γ̇ since γ is unit-speed. So γ̈ ⊥ Tγ(t)S
or γ̈ ‖ N.

2.9.1 General facts for geodesics

Here comes several simple examples of geodesics.

Fact 1: Any part of straight line on a surface is a geodesic.

Proof. γ(t) = a + bt, so γ̈ = 0.
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Example 2.9.5. Lines in the plane; rulings of any ruled surface, such as
those of a cylinder or a cone.

Fact 2: Any normal section of a surface is a geodesic. Here a normal section
means the intersection C of S with a plane Π, such that Π ⊥ TpS for any
p ∈ C.

Proof. By Meusnier’s Theorem 2.5.3, κn = κθ sin θ = ±κ(C). So κg = 0
since κ2 = κ2

g + κ2
n.

Example 2.9.6. 1. All great circles on a sphere.

2. The intersection of a generalized cylinder with a plane which is per-
pendicular to the ruling.

Question 2.9.7. Do we have other geodesics on a sphere other than (part
of) great circles?

We need the following geodesic equations.

Theorem 2.9.8. A curve γ on a surface S is a geodesic if and only if for
γ(t) = σ(u(t), v(t)) and Iσ = Edu2 + 2Fdudv + Gdv2, the following two
equations hold

d

dt
(Eu̇+ F v̇) =

1

2
(Euu̇

2 + 2Fuu̇v̇ +Guv̇
2)

d

dt
(Fu̇+Gv̇) =

1

2
(Evu̇

2 + 2Fvu̇v̇ +Gvv̇
2)

There is another equivalent form.

Theorem 2.9.9. A curve γ on a surface S is a geodesic if and only if for
γ(t) = σ(u(t), v(t)), the following equations hold

ü+ Γ1
11u̇

2 + 2Γ1
12u̇v̇ + Γ1

22v̇
2 = 0

v̈ + Γ2
11u̇

2 + 2Γ2
12u̇v̇ + Γ2

22v̇
2 = 0

Proof. We have shown as Proposition 2.8.2 that w(t) = α(t)σu + β(t)σv is
parallel long γ if and only if

α̇+ (Γ1
11u̇+ Γ1

12v̇)α+ (Γ1
12u̇+ Γ1

22v̇)β = 0

β̇ + (Γ2
11u̇+ Γ2

12v̇)α+ (Γ2
12u̇+ Γ2

22v̇)β = 0

And by definition, γ is a geodesic if and only if γ̇ is parallel along γ. Since
γ̇ = u̇σu + v̇σv, we have the two equations in the theorem.

Now we prove Theorem 2.9.8 is equivalent to Theorem 2.9.9



60 CHAPTER 2. SURFACES IN R3

Proof. Two equations in Theorem 2.9.8 is equivalent to

Eü+ F v̈ +
1

2
Euu̇

2 + Evu̇v̇ + (Fv −
1

2
Gu)v̇2 = 0

Fü+Gv̈ + (Fu −
1

2
Ev)u̇

2 +Guu̇v̇ +
1

2
Gvv̇

2 = 0

Solve ü and v̈, we have the following set of equations which are equivalent
to the above two.

(EG−F 2)ü+
1

2
(EuG+FEv−2FFu)u̇2+(EvG−GuF )u̇v̇+(GFv−

1

2
GuG−

1

2
FGv)v̇

2 = 0

(EG−F 2)v̈+
1

2
(2EFu−EvE−EuF )u̇2+(GuE−EvF )u̇v̇+

1

2
(GvE−2FvF+GuF )v̇2 = 0

Comparing with (2.5), we know these are exactly the equations in Theorem
2.9.9.

Example 2.9.10. Let us determine all geodesics on S2. We have

σ(θ, φ) = (cos θ cosφ, cos θ sinφ, sin θ)

I = dθ2 + cos2 θdφ2

Assume γ(t) = σ(θ(t), φ(t)) is unit-speed, i.e.

θ̇2 + φ̇2 cos2 θ = 1

If γ is a geodesic, second equation in Theorem 2.9.8 tells us

d

dt
(φ̇ cos2 θ) = 0.

So φ̇ cos2 θ = Ω is a constant. If Ω = 0, φ̇ = 0 so φ is constant and γ is a
great circle passing through north and south poles.

If Ω 6= 0, by unit-speed condition

θ̇2 = 1− Ω2

cos2 θ
.

So along γ,

(
dθ

dφ
)2 =

θ̇2

φ̇2
= cos2 θ(Ω−2 cos2 θ − 1).

Hence

±(φ− φ0) =

∫
dθ

cos θ
√

Ω−2 cos2 θ − 1

=

∫
dθ

cos2 θ
· 1√

Ω−2 − 1− tan2 θ

= sin−1(
tan θ√
Ω−2 − 1

)
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So

tan θ =±
√

Ω−2 − 1 sin(φ− φ0)

=∓
√

Ω−2 − 1 sinφ0 cosφ±
√

Ω−2 − 1 cosφ0 sinφ

Hence γ(t) satisfies z = ax+by where a = ∓
√

Ω−2 − 1 sinφ0, b = ±
√

Ω−2 − 1 cosφ0.
In other words, γ(t) is the intersection of the sphere with a plane passing
through origin, i.e. a great circle.

Actually, the above example also follows from the following

Fact 3: There is a unique geodesic through any given point of a surface in
any given tangent direction.

More precisely,

Proposition 2.9.11. Let p ∈ S, t ∈ TpS with ||t|| = 1. Then there exists a
unique unit-speed geodesic γ on S which passes through p and tangent to t.

Proof. Let p = σ(a, b), t = cσu + dσv.

A unit-speed curve γ(t) = σ(u(t), v(t)) passes through p if u(t0) =
a, v(t0) = b; is tangent to t if u̇(t0) = c, v̇(t0) = d.

The geodesic equations in Theorem 2.9.9 read abstractly as{
ü = f(u, v, u̇, v̇)
v̈ = g(u, v, u̇, v̇)

where f, g are smooth.

So by existence and uniqueness theorem of ODE, for any initial value
problem u(t0) = a, v(t0) = b, u̇(t0) = c, v̇(t0) = d associated to the system,
there is a unique solution. This is the geodesic passing through p and tangent
to t.

Example 2.9.12. 1. Plane. There is a unique straight line passing through
any point with given slope y − y0 = k(x− x0).

2. Sphere. There is a unique great circle passing through any point and
tangent to any given direction at this point. It means starting from any
given place on the earth, choose a direction to go, there is a unique
route without turns.

Fact 4: Any local isometry f : S1 → S2 takes the geodesics of S1 to the
geodesics of S2.

Reason: For any surface patch σ of S1, σ and f ◦ σ have the same first
fundamental form. Notice geodesic equations only involve first fundamental
form. So if γ1(t) = σ(u(t), v(t)) is a geodesic on S1, γ2 = f ◦ σ(u(t), v(t)) is
a geodesic on S2.
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Example 2.9.13. Unit cylinder x2 + y2 = 1. It is obtained from the plane
by

(u, v) 7→ (cosu, sinu, v).

We have learnt that all straight lines on cylinder, i.e. those parallel to z-
axis, are geodesics. These correspond to the lines parallel to y-axis in the
plane.

We also know circles obtained by intersecting with plane z = c are
geodesics by Fact 2. These correspond to the lines parallel to x-axis on
the plane.

What else? Straight lines on the plane y = mx + c (if not parallel to
y-axis) is mapped to

γ(u) = (cosu, sinu,mu+ c)

on cylinder. These are helix we have studied in curve theory. By Fact 4,
they are geodesics.

These are all the geodesics since now for any point and any direction,
there is a unique such curve.

2.9.2 Geodesics on surfaces of revolution

We look at the surface of revolution

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)),

with f2
u + g2

u = 1 and f > 0. So

I = du2 + f2(u)dv2.

Hence two geodesic equations

d

dt
(Eu̇+ F v̇) =

1

2
(Euu̇

2 + 2Fuu̇v̇ +Guv̇
2)

d

dt
(Fu̇+Gv̇) =

1

2
(Evu̇

2 + 2Fvu̇v̇ +Gvv̇
2)

read as

(r1) : ü = f(u)
df

du
v̇2

(r2) :
d

dt
(f2(u)v̇) = 0

We may consider unit-speed geodesics, so we have

(r3) : u̇2 + f2(u)v̇2 = 1.

We have the followings:
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1. Every meridian v = v0 is a geodesic.

(r2) is obviously satisfied for v-curves. (r3) implies u̇ = ±1, so (r1)
holds as well.

2. A parallel u = u0 is a geodesic if and only if df
du = 0 when u = u0.

If u = u0, (r3) implies v̇ 6= 0 is a constant, so (r2) holds. (r1) holds
if and only if df

du = 0 at u = u0.

3. Let θ ∈ [0, π2 ] be the angle of a geodesic with a parallel that intersects
it, R be the radius of the parallel at the intersection. Then we have
Clairaut’s relation:

R cos θ = const.

Here (r2) implies f2v̇ = const. On the other hand,

cos θ =
< σv, σuu̇+ σvv̇ >

||σv||
= fv̇.

Since f = R, so R cos θ = const.

The converse is also true: If R cos θ is a constant and no point has
parallel tangent vector, then it is a geodesic.

4. (r2) + (r3)⇒ (r1) when v̇, u̇ 6= 0.

(r2)⇒ f2v̇ = C 6= 0. And (r3) becomes u̇2 +Cv̇ = 1. Take derivatives
for the above two equations, we have

v̈ = −
v̇ · 2f dfdu · u̇

f2
,

2u̇ü+ Cv̈ = 0.

So

2u̇ü = v̇2 · 2f df
du
· u̇.

This is just (r1).

5. Finally, we could solve the geodesic

(r3)× (
dt

dv
)2 : (

dt

dv
)2 = f2 + (

dt

dv
· du
dt

)2 = f2 + (
du

dv
)2.

Since (r2) implies f2 dv
dt = C, we have

f4

C2
− f2 = (

du

dv
)2.

So
du

dv
=

1

C
f
√
f2 − C2,

or

v = C

∫
1

f
· 1√

f2 − C2
du+ C ′.
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2.9.3 Geodesics and shortest paths

On a plane or a unit sphere, shortest paths are geodesics. But not every
geodesic is the shortest path.

A natural question is : for p, q ∈ S, is a shortest path between p and q
always a geodesic?

We need to compare with nearby curves. Assume γ(t) is a unit-speed
curve in a surface patch σ. Look at a family of curves γτ on σ with −δ <
τ < δ, such that

1. There exists ε > 0, such that γτ (t) is defined for t ∈ (−ε, ε) and all
τ ∈ (−δ, δ).

2. For some a, b, with −ε < a < b < ε, we have γτ (a) = p, γτ (b) = q for
all τ ∈ (−δ, δ).

3. The map from (−δ, δ)× (−ε, ε) into R3

(τ, t) 7→ γτ (t)

is smooth.

4. γ0 = γ.

Recall the length between p and q is

L(τ) =

∫ b

a
||γ̇τ ||dt.

Theorem 2.9.14. The unit speed curve γ is a geodesic if and only if
d
dτL(0) = 0 for all families of curves γτ with γ0 = γ.

Note that we cannot assume γτ be unit speed as well for τ 6= 0. Otherwise
L(τ) is fixed.

Let us sketch the proof of Theorem 2.9.14. First, if we call V (t) =
∂γτ

∂τ (t)|τ=0 the variational field and A(t) = ∇γ γ̇ the acceleration vector. By

computation, L′(0) = −
∫ b
a < A(t), V (t) > dt. It is then clear that when γ

is a geodesic, A(t) = ∇γ γ̇ = 0, which implies L′(0) = 0 for all families of
curves γτ .

For the other direction of implication, we choose the variational field
V (t) = f(t)A(t) where f ≥ 0 is a smooth function with f(a) = f(b) = 0,
and A(s) = ∇γ γ̇. Then the result follows from

L′(0) = −
∫ b

a
< A(t), V (t) > dt = −

∫ b

a
f(t)|A(t)|2dt.

If we assume L′(0) = 0 for all these families, we have A(t) = ∇γ γ̇ = 0 by
the arbitrary choice of f(t).
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Corollary 2.9.15. A shortest path is always a geodesic.

Proof. If γ is a shortest path, then L(τ) must have absolute minimum when
τ = 0. So d

dτL(τ) = 0 when τ = 0, which implies τ is a geodesic by above
theorem.

But the converse need not to be true. On a non-compact surface, there
might not exist shortest curve for a given pair of points. Think about R2\0
and p, q = (±1, 0). But for compact surfaces, there is always one shortest
curve.

2.9.4 Geodesic coordinates

Let p ∈ S, γ a unit speed geodesic with γ(0) = p. For any v, let γ̃v(u)
be a unit speed geodesic such that γ̃v(0) = γ(v) and perpendicular to γ at
γ(0). Define σ(u, v) = γ̃v(u).

Proposition 2.9.16. There is an open subset U ⊂ R2 containing (0, 0) such
that σ : U → R3 is a parametrization of S. Moreover,

Iσ = du2 +G(u, v)dv2,

where G is a smooth function with

G(0, v) = 1, Gu(0, v) = 0

whenever (0, v) ∈ U .

Proof. γ(v) = σ(0, v). σu(0, v) = d
du γ̃

v(u)|u=0, σv(0, v) = d
dvγ(v), and they

are perpendicular to each other.
So if σ(u, v) = (f, g, h), the Jacobianfu fv

gu gv
hu hv


has rank 2 at u = v = 0. Hence at least one of 2 × 2 block is invertible at
(0, 0), say (

fu fv
gu gv

)
By inverse function theorem, there is an open subset U of R2 such that the
map F (u, v) = (f(u, v), g(u, v)) is bijection from U to an open set F (U) ⊂
R2, and its inverse F (U) → U is also smooth (i.e F is a diffeomorphism
onto its image). So the matrix is invertible for all U and σu, σv are linearly
independent. So σ is a parametrization.

We calculate

E = ||σu||2 = || d
du
γ̃v(u)||2 = 1
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since γ̃v(u) is unit speed.
Also F |u=0 = 0 since σu(0, v) ⊥ σv(0, v). Apply the second equation in

Proposition 2.9.8

d

dt
(Fu̇+Gv̇) =

1

2
(Evu̇

2 + 2Fvu̇v̇ +Gvv̇
2)

to γ̃v, where v is a constant implies v̇ = 0, E = 1 implies Ev = 0 and t = u.
So we have Fu = 0, and hence F = 0 everywhere. All together,

Iσ = du2 +G(u, v)dv2.

G(0, v) = ||σv(0, v)||2 = ||dγ
dv
||2 = 1

since γ is unit-speed. Apply the first equation in Proposition 2.9.8

d

dt
(Eu̇+ F v̇) =

1

2
(Euu̇

2 + 2Fuu̇v̇ +Guv̇
2)

to γ(v) = γ̃v(0) = σ(0, v), where u = 0 implies u̇ = 0 and t = v. So
Gu(0, v) = 2Fv(0, v) = 0.

Actually, we a partial converse statement: If I = du2 + g2(u, v)dv2, then
v = const = c is a geodesic. We could definitely apply geodesic equations
to check this fact. However, there is an alternative way. We could actually
prove that they are shortest path among all curves with γ(t1) = σ(a, c) and
γ(t2) = σ(b, c) with u(t1) = a, u(t2) = b.

L(γ) =

∫ t2

t1

√
u̇2 + g2v̇2dt ≥

∫ b

a
du = b− a.

An application of the geodesic coordinates is the following

Theorem 2.9.17. Any point of a surface of constant Gaussian curvature is
contained in a patch that is isometric to an open subset of a plane, a sphere
or a pseudosphere.

Proof. Only need to consider the cases K = −1, 0, 1. Take a geodesic patch
σ(u, v) with σ(0, 0) = p. Write g =

√
G, then

I = du2 + g2(u, v)dv2.

Since when E = 1 and F = 0, K = − 1√
G
∂2
√
G

∂u2
. So

∂2g

∂u2
+Kg = 0

with g(0, v) = 1, gu(0, v) = 0.
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1. K = 0. g(u, v) = α(v)u + β(v) and the initial conditions imply α =
0, β = 1, and

I = du2 + dv2.

So σ is isometric to an open subset of the plane.

2. K = 1. g(u, v) = α(v) cosu + β(v) sinu. Initial conditions imply
α = 1, β = 0, and

I = du2 + cos2 udv2,

the same as unit sphere. So σ is isometric to an open subset of S2.

3. K = −1. g(u, v) = α(v)e−u + β(v)eu. Initial condition tells us α =
1
2 = β. So

I = du2 + cosh2 udv2.

This indeed tell us for every surface with K = −1, including pseu-
dosphere, the geodesic coordinate has such first fundamental form.
Hence, all are local isometric to each other and especially to pseudo-
sphere.

Exercise: If we reparametrize the fundamental form I = du2 + cosh2 udv2

by V = ev tanhu,W = ev

coshu , then we have

I =
dV 2 + dW 2

W 2
.

2.9.5 Half plane model of hyperbolic plane

Let us look at the half-plane model H of pseudosphere. This means the
last parametrizaton appeared above:

IH =
dv2 + dw2

w2

where v takes any real value and w > 0. So it basically gives a metric on
the half space and K = −1.

Fact 1: Hyperbolic angles in H is the same as Euclidean angles.
This is because IH is conformal to the Euclidean metric I = dv2 + dw2.

Fact 2: Geodesics are half-lines orthogonal to w = 0 and the semi-circles
with centres on w = 0.

We show it by
Step 1: They are geodesics.
It is easy to see v ≡ C is a geodesic since it is a shortest path:

∫
dv2+dw2

w2 >∫
dw2

w2 .
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We show the circles (v − v0)2 + w2 = R2 are geodesics. We use polar
coordinates

v − v0 = r cos θ, w = r sin θ

Then

σr = σv ·
∂v

∂r
+ σw ·

∂w

∂r
= σv cos θ + σw sin θ,

σθ = −σvr sin θ + σwr cos θ.

So

||σr||2 =
1

w2
(cos2 θ + sin2 θ) =

1

r2 sin2 θ

σr · σθ = 0

||σθ||2 =
1

w2
r2 =

1

sin2 θ

Let θ̃ =
∫ θ

0
1

sin θdθ, r̃ = r, then

I = dθ̃2 +
1

r̃2 sin2 θ
dr̃2.

So r̃ ≡ R is a geodesic, which is (v − v0)2 + w2 = R2.
Step 2: They are all the geodesics.
This is because for any point, any direction, there is a unique circle with

centre at w = 0. (How to construct it?)

2.10 Gauss-Bonnet Theorem

Recall Hopf’s Umlaufsatz tells us for a simple closed curve in the plane∫
κsds = 2π.

Now we want to generalize it to a simple closed curve C in a surface S ⊂ R3.
We assume C is the boundary of a set ∆ ⊂ S which is homeomorphic to a
disc. Then we have

Theorem 2.10.1 (Local Gauss-Bonnet).∫
C
κgds = 2π −

∫
Y
KdA

The following proof is given by Donaldson.
Let us first introduce an algebraic lemma whose proof is left as an exer-

cise. Let P ⊂ R3 be a plane through the origin and N be a unit normal to
P . For x,y ∈ P , set

x ∧ y = (x× y) ·N.

Then
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Lemma 2.10.2. For any three vectors x,y, z ∈ P , we have

(x ∧ y)z + (y ∧ z)x + (z ∧ x)y = 0.

Now let us prove local Gauss-Bonnet.

Proof. We use polar coordinates (r, θ) in the plane. We suppose a local
parametrization σ of S maps the unit disc to ∆ and the unit circle to C.
For r ≤ 1 we let Cr be the closed curve σ(r, θ) in S. We set

I(r) =

∫
Cr

κgds.

Let ∆r be the image of the disc of radius r. We compute

d

dr
(I(r) +

∫
∆r

KdA).

We parametrize Cr by arc length and let t be the tangent to curve Cr and
N be the normal to S. Thus t ·N = 0 everywhere. Then

I(r) =

∫
Cr

κgds =

∫
Cr

(N×γ̇)·γ̈ds = −
∫
Cr

(ts×t)·Nds = −
∫ 2π

0
(tθ×t)·Ndθ.

Thus
dI

dr
= −

∫ 2π

0

∂

∂r
((tθ × t) ·N)dθ.

Now consider

S =
∂

∂r
((tθ × t) ·N)− ∂

∂θ
((tr × t) ·N)

Then

S = ((tθ×tr)·N+(tθr×t)·N+(tθ×t)·Nr)−((tr×tθ)·N+(trθ×t)·N+(tr×t)·Nθ)

which is
S = 2(tθ × tr) ·N + (tθ × t) ·Nr − (tr × t) ·Nθ.

Since t is a unit vector, so the vectors tr, tθ,N are orthogonal to it. Thus
the three vectors are on the same plane and

S =(tθ × t) ·Nr − (tr × t) ·Nθ

=tθ · (t×Nr)− tr · (t×Nθ)

=(tθ ·N)(t ∧Nr)− (tr ·N)(t ∧Nθ)

=t · ((t ∧Nθ)Nr − (t ∧Nr)Nθ)

=− t · ((Nθ ∧Nr)t)

=Nr ∧Nθ

=Kσr ∧ σθ
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This third equality is because of t,Nr,Nθ are orthogonal to N and thus
the cross products are parallel to it. The fourth is because of t · N = 0.
The fifth is because of the lemma. The last is because the calculation in
Theorem 2.5.10.

Hence
dI

dr
= −

∫ 2π

0
Kσr ∧ σθdθ.

Let E,F,G be the components of the first fundamental form in the r, θ
coordinates. Then

dI

dr
= −

∫ 2π

0
K
√
EG− F 2dθ.

But ∫
∆r

KdA =

∫ r

0

∫ 2π

0
K
√
EG− F 2dθdρ,

so
d

dr

∫
∆r

KdA =

∫ 2π

0
K
√
EG− F 2dθdρ.

Hence the two derivatives cancel and we conclude that

I(r) +

∫
∆r

KdA

is a constant, independent of r.

Finally, limr→0 I(r) = 2π since it approaches that of the plane over very
small regions. Hence the proof is complete.

2.10.1 Geodesic polygons

The geodesic polygons are regions formed by the intersection of geodesics.
For spheres, we know all geodesics are great circles; for plane, all geodesics
are straight lines; for hyperbolic plane, we also classify the geodesics. So
we see geodesic polygons are generalizations of polygons in a plane. How to
calculate the areas?

Now, let us digress on the version of local Gauss-Bonnet for piecewise
smooth curves. It γ is such a curve with Γi as each smooth component.
Let θi be the internal angle. Since locally, especially at the corners, the
κg approaches to signed curvature of the plane curve which measures the
turning angle. Hence the integration of geodesic curvature would read as∫

γ
κgds =

∑∫
Γi

κgds+
∑

(π − θj).

It could be proven rigorously by approximating γ by smooth curves.
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Now, let ∆ be a geodesic polygon, homeomorphic to the disc, whose
boundary is made up of smooth geodesics Γi meeting at corners. By local
Gauss-Bonnet, let θj be the internal angle at corner j, we have∫

∆
KdA =2π −

∑∫
Γi

κgds−
∑

(π − θj)

=2π − (nπ −
∑

θj)

=− (n− 2)π +
∑

θj

For sphere, K = 1, so

area(∆) =
∑

θj − (n− 2)π.

Especially, it implies angle sum of n-gon is greater than (n − 2)π. So for
example, a half unit sphere has area 2π. A triangle obtained by the 3 great
circles cut by x, y, z planes has area π

2 .
For pseudosphere, K = −1.

area(∆) = (n− 2)π −
∑

θj .

So the angle sum of n-gon is less than (n − 2)π. So especially any ideal
triangle in the hyperbolic plane (i.e. a triangle with all vertices on the
x-axis) has area π.

This circle of ideas applies to shortest path geodesics. First we define a
surface S is simply connected if any simple closed curve divides S into two
regions, one of them is homeomorphic to a disc.

Theorem 2.10.3. If S is a simply connected surface of K ≤ 0, then there
exists no more than one geodesics through any 2 points on S.

Proof. If there are two geodesics γ1 and γ2 pass through P,Q, then they
form a 2-gon since S is simply connected. Let α, β be the two angles at P
and Q. Apply local Gauss-Bonnet to this 2-gon,∫

KdA+ π − α+ π − β = 2π

which implies

α+ β =

∫
KdA ≤ 0

Hence α = β = 0, contradicting to the assumption that there are two
geodesics.

We have two immediate corollaries.

Corollary 2.10.4. If S is a simply connected surface of K ≤ 0, then

1. There are no closed geodesic on S.

2. Any arc of a geodesic on S is a shortest path.
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2.10.2 Global Gauss-Bonnet

A triangulation of a region R ⊂ S is a finite family of triangles Ti, i =
1, · · · , n, such that

1. ∪ni=1Ti = R.

2. If Ti ∩ Tj 6= ∅, then Ti ∩ Tj is either a common edge or a common
vertex.

Theorem 2.10.5. Every compact surface has a triangulation.

We denote

• V =total number of vertices;

• E =total number of edges;

• F =total number of faces (triangles).

Definition 2.10.6. The Euler numer χ of a triangulation is

χ = V − E + F.

Example 2.10.7. Tetrahedron, Octahedron and Icosahedron give triangu-
lations of a sphere. Actually, we could divide sphere into polygonal region
and make the same definitions of V,E, F, χ.

V E F χ
Tetrahedron 4 6 4 2
Octahedron 6 12 8 2
Icosahedron 12 30 20 2
Texahedron 8 12 6 2
Dodecahedron 20 30 12 2

Especially, we observe that χ = 2 in all the above examples.

Theorem 2.10.8 (Global Gauss-Bonnet). For any compact surface S and
any triangulation on it ∫

S
KdA = 2πχ(S)

Corollary 2.10.9. 1. χ(S) depends only on S and not on the choice of
the triangulations.

2.
∫
SKdA does not depend on the way surface is embedded in R3.

Recall the classification of compact surfaces: S2, T 2, · · · ,Σg, · · · Since
we only need one triangulation to determine the Euler number, we know
there is a triangulation of T 2 with V = 1, E = 3, F = 2, then χ(T 2) = 0.

For Σg, we use induction to claim
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Theorem 2.10.10. χ(Σg) = 2− 2g.

Proof. We prove it by induction.
We understand Σg+1 as the gluing of Σg and T 2 along a triangle in the

triangulations T ′ and T ′′ of Σg and T 2. It induces a triangulation of Σg+1.
So

V = V ′ + V ′′ − 3, E = E′ + E′′ − 3, F = F ′ − 1 + F ′′ − 1.

Hence
χ(Σg+1) =V − E + F

=χ(Σg) + χ(T 2)− 2

=2− 2g + 0− 2

=2− 2(g + 1)

Corollary 2.10.11.
∫

Σg
KdA = 4π(1− g)

Now, let us prove global Gauss-Bonnet theorem.

Proof. For any triangular region, we have∫
∆
KdA = 2π −

∑∫
Γi

κgds−
∑

(π − θj).

Add them, we have ∑
α

∫
∆α

KdA =

∫
S
KdA.

Let us look at each component. For
∑∫

Γi
κgds, each edge is shared by two

triangles which induce different orientations on the edge. So in the sum∑
α

∫
∆α

KdA, these terms add up to 0.
For the rest, 2π adds up to 2πF . The angle

∑
θj adds up to 2πV since

each vertex has degree 2π. And finally, −3π in the last component adds up
to

−3πF = −3π · 2E

3
= −2πE

We use 3F = 2E since each face has 3 edges and each edge is counted twice
in the sum.

Add all these up to 2π(F − E + V ) = 2πχ(S).

2.11 Vector fields and Euler number

On a regular surface S, let V be a smooth tangent vector field on S, i.e
V = α(u, v)σu + β(u, v)σv locally.

Definition 2.11.1. A point p ∈ S at which V = 0 is called a singular (or
stationary) point.
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Now we introduce the index of singular points. Take a surface patch
σ containing p, let γ be a simple closed (positively oriented) regular curve
with period l, which contains p as the unique singular point in its interior.
Let φ(t) be the angle from σu to V (t), so φ(l) − φ(0) = 2πj where j is an
integer. We call j the index of the singular point. We could write it in terms
of formula

j(p) =
1

2π

∫ l

0

dφ

dt
dt

Notice this j is finite and independent of γ and initial point γ(0).
Let us see several examples.

source: V (x, y) = (x, y), j = 1

sink: V (x, y) = (−x,−y), j = 1

center (vortex): V (x, y) = (y,−x), j = 1
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simple saddle: V (x, y) = (x,−y), j = −1

monkey saddle: j = −2

dipole: j = 2
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Theorem 2.11.2 (Poincaré-Hopf). Let V be a smooth vector field on a
compact surface S with finitely many singular points p1, · · · , pn, then∑

r

j(pr) = χ(S).

Since χ(S2) = 2, we have

Corollary 2.11.3 (Hairy-Ball theorem). Any tangent vector field on S2 has
singular point.

This means you cannot comb a hairy ball without cow-lick.

source

sink

j1 + j2 = 2

j1 + j2 = 2
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j = 2

No singularity

two simple saddles: j1 + j2 = −2

Now we prove Poincaré-Hopf theorem.

Proof. We prove our result in 2 steps.

1.
∑
j(pr) has the same value for all vector fields. Consider two vector

fields F and F ′.

Triangulate S, such that every 2-cell at most has one singularity of F or
F ′. Calculate (jF − jF ′)(p). Notice if p is not singular for F ′, jF ′(p) = 0.

(jF − jF ′) is 1
2π of the change in the difference of directions of F and F ′.

But for
∑

(jF − jF ′), every edge bounds two 2-cells, and will be calculated
twice in opposite signs. So

∑
(jF − jF ′) = 0 or

∑
jF =

∑
jF ′ .

2. Construct a special vector field and calculate the sum
∑

r j(pr).

So we do triangulation. For each triangle, introduce 4 additional points:
1 in the centre and 3 on each side. Add vectors such that the centre is a
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Add 4 points and subdivide triangles

vector fields in a new triangle

sink, each original vertex is a source and the ones on sides are saddle. We
could extend the vector into each small triangle. No other singularities other
than these. So now, each vertex of the original triangulation corresponds
to a source, which has index 1. Each face corresponds to a sink, which has
index 1 and each edge corresponds to a saddle, which has index −1. Hence∑

r

j(pr) = V + F − E = χ(S).
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