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The setting: convex polytopes

P = conv{p1, ..., pn} ⊂ Rd

I always convex

I general dimension d ≥ 2

I general geometry & combinatorics (not only simple/simplicial/lattice/...)

I always of full dimension

I terminology: faces, vertices, edges, facets, ...

University of Warwick · Martin Winter 1 / 26



Combinatorics of polytopes

edge-graph ... GP :=
{

vertices and edges of P
}

skeleton ... embedding p : GP → Rd of the edge-graph

face lattice ... F(P ) :=
{

faces of P ordered by inclusion
}

or combinatorial type
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Wachspress objects

Wachspress objects

“A family of objects that appear as bridges between algebra, geometry and
combinatorics”

I Wachspress coordinates

I Wachspress variety

I Wachspress ideal

I Wachspress map

I adjoint polynomial

I adjoint hypersurface

I Izmestiev matrix

I ...
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Wachspress objects

Generalized barycentric coordinates

Generalized barycentric coordinates (GBCs): α : P →

{(α1, ..., αn) ∈ Rn≥0 | α1 + · · ·+ αn = 1)}
↓
∆n satisfy∑

i

αi(x)pi = x (linear precision)

There are ...

I harmonic coordinates,

I mean value coordinates,

I ...

I Wachspress coordinates (Wachspress 1975; Warren, 1996)

... have many non-trivially equivalent definitions
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Wachspress objects

The many faces of Wachspress coordinates

I. Unique rational GBCs of lowest possible degree (Warren, 2003)

αi(x) =
pi(x)

q(x)
where q(x) =

∑
i

pi(x) ... adjoint polynomial

I there are not always polynomial GBCs

I degree = #facets − d

I Wachspress variety

... V := im(α) ⊆ ∆n

I Wachspress ideal ... I(V )
∼= Stanley-Reisner ideal
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Wachspress objects

The many faces of Wachspress coordinates

II. Relative cone volumes (Ju et al., 2005)

polar dual ... P ◦ := {x ∈ Rd | 〈x, pi〉 ≤ 1 for all i ∈ V (GP )}.

αi =
vol(F ◦i )

‖pi‖ vol(P ◦)
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Wachspress objects

The many faces of Wachspress coordinates

III. From spectral embeddings of the edge-graph (W., 2023)

θ ∈ Spec(A) =⇒ u1, ..., ud ∈ Eigθ(A)

=⇒

 u1 · · · ud

 =

 p1

...
pn

 ∈ Rn×d

I A polytope skeleton is a

Colin de Verdière embedding

spectral embedding of the edge-graph w.r.t. some
weighted adjacency matrix M (Izmestiev, 2010)

αi :=
∑
j

Mij
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Wachspress objects

The many faces of Wachspress coordinates

IV. Via a variation of volume

P ◦(c) := {x ∈ Rd | 〈x, pi〉 ≤ ci for all i ∈ V (GP )}.

where c = (c1, ..., cn) ∈ Rn.

Expand vol(P ◦(c)) at c = 1:

vol(P ◦(c)) = vol(P ◦) + 〈α̃
↑

Wachspress
coordinates

, c− 1〉+ 1
2 (c− 1)>M̃

↑
Izmestiev
matrix

(c− 1) + · · ·
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Wachspress objects

Wachspress coordinates across disciplines

I adjoint polynomial q cuts out minimal
degree surface that passes through “external
non-faces”

I algebraic statistics
I moment varieties of polytopes
I Bayesian statistics

I intersection theory (computing Segre classes of monomial schemes)

I P with adjoint polynomial is a positive geometry (cf. the permutahedron
from theoretical physics)

I Has also been defined on polycons and smooth convex bodies

I Izmestiev matrix has been used
I to encode polytopal symmetries in colorings of the edge-gaph
I for progress on the Hirsch conjecture
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Reconstruction of polytopes
from partial data



Reconstruction of polytopes

Reconstruction of polytopes

“In how far is a polytope determined by partial combinatorial and geometric
data, up to isometry, affine transformation or combinatorial equivalence?”

I Does the edge-graph determine the combinatorics? No.

I Does combinatorics + edge-lengths determine the geometry? No.

University of Warwick · Martin Winter 10 / 26



Reconstruction of polytopes

Reconstruction of polytopes

“In how far is a polytope determined by partial combinatorial and geometric
data, up to isometry, affine transformation or combinatorial equivalence?”

I Does the edge-graph determine the combinatorics?

No.

I Does combinatorics + edge-lengths determine the geometry? No.

University of Warwick · Martin Winter 10 / 26



Reconstruction of polytopes

Reconstruction of polytopes

“In how far is a polytope determined by partial combinatorial and geometric
data, up to isometry, affine transformation or combinatorial equivalence?”

I Does the edge-graph determine the combinatorics? No.

I Does combinatorics + edge-lengths determine the geometry? No.

University of Warwick · Martin Winter 10 / 26



Reconstruction of polytopes

Reconstruction of polytopes

“In how far is a polytope determined by partial combinatorial and geometric
data, up to isometry, affine transformation or combinatorial equivalence?”

I Does the edge-graph determine the combinatorics? No.

I Does combinatorics + edge-lengths determine the geometry?

No.

University of Warwick · Martin Winter 10 / 26



Reconstruction of polytopes

Reconstruction of polytopes

“In how far is a polytope determined by partial combinatorial and geometric
data, up to isometry, affine transformation or combinatorial equivalence?”

I Does the edge-graph determine the combinatorics? No.

I Does combinatorics + edge-lengths determine the geometry? No.

University of Warwick · Martin Winter 10 / 26



Reconstruction of polytopes

Flexible polytopes
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Reconstruction of polytopes

Two opposing effects ...

Simple polytopes:

I combinatorics can be reconstructed (Blind & Mani; Kalai)

I geometry cannot be reconstructed

Simplicial polytopes:

I geometry can be reconstructed, once combinatorics is known (Cauchy)

I combinatorics cannot always be reconstructed (e.g. cyclic polytopes)

... what additional data is needed to permit a reconstruction?
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Reconstruction of
pointed polytopes

“Rigidity, Tensegrity and Reconstruction of Polytopes under Metric Constraints”
(arXiv:2302.14194, accepted at IMRN)



Rigidity of pointed polytopes

Pointed polytopes
:= polytope P ⊂ Rd + point xP ∈ Rd

radius

Conjecture. (W., 2023)

A pointed polytope P with xP ∈ int(P ) is uniquely determined (up to isometry)
by its edge-graph, edge lengths and radii.

implies e.g. reconstruction of matroids from base exchange graph
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Rigidity of pointed polytopes

Point in the interior is necessary ...

Conjecture. (W., 2023)

A pointed polytope P with xP ∈ int(P ) is uniquely determined (up to isometry)
by its edge-graph, edge lengths and radii.
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Rigidity of pointed polytopes

Tensegrity version

Conjecture. (W., 2023)

If P ⊂ Rd and Q ⊂ Re are pointed polytopes with the same edge-graph and

(i) xQ ∈ int(Q)

(ii) edges in Q are at most as long as in P ,

(iii) radii in Q are at least as large as in P ,

then P and Q are isometric.

“A polytope cannot become larger if all its edges become shorter.”
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Rigidity of pointed polytopes

Conjecture holds in special cases (W., 2023)

The conjecture holds in the following cases:

I. Q is a small perturbation of P

I one can replace Q by a graph embedding q : GP → Rd
∼= locally rigid as a framework

II. P and Q are centrally symmetric

I one can replace Q by a centrally symmetric graph embedding q : GP → Re
∼= universally rigid as a centrally symmetric framework

III. P and Q are combinatorially equivalent

I in particular true for polytope of dimension d ≤ 3
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Rigidity of pointed polytopes

Conjecture holds in special cases (W., 2023)

The conjecture holds in the following cases:

I. Q is a small perturbation of P

I one can replace Q by a graph embedding q : GP → Rd
∼= locally rigid as a framework

II. P and Q are centrally symmetric

I one can replace Q by a centrally symmetric graph embedding q : GP → Re
∼= universally rigid as a centrally symmetric framework

III. P and Q are combinatorially equivalent

I in particular true for polytope of dimension d ≤ 3

University of Warwick · Martin Winter 16 / 26



Rigidity of pointed polytopes

Conjecture holds in special cases (W., 2023)

The conjecture holds in the following cases:

I. Q is a small perturbation of P

I one can replace Q by a graph embedding q : GP → Rd
∼= locally rigid as a framework

II. P and Q are centrally symmetric

I one can replace Q by a centrally symmetric graph embedding q : GP → Re
∼= universally rigid as a centrally symmetric framework

III. P and Q are combinatorially equivalent

I in particular true for polytope of dimension d ≤ 3

University of Warwick · Martin Winter 16 / 26



Rigidity of pointed polytopes

General graph embedding version is false
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Rigidity of pointed polytopes

Warmup: simplices

P,Q ⊂ Rd simplices,

(i) 0 ∈ int(Q),

=⇒ 0 =
∑
i αiqi ... convex combination

(ii) edges in Q are at most as long as in P .

(iii) radii in Q are at least as large as in P .

Proof. ∑
i

αi‖pi‖2 =
∥∥∥∑

i

αipi

∥∥∥2

+ 1
2

∑
i,j

αiαj‖pi − pj‖2

(iii) (i) (ii)∑
i

αi‖qi‖2 =
∥∥∥∑

i

αiqi

∥∥∥2

+ 1
2

∑
i,j

αiαj‖qi − qj‖2

Therefore P ' Q. �
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Rigidity of pointed polytopes

Expansion of polytopes

Fix α ∈ ∆n := {(α1, ..., αn) ∈ Rn≥0 | α1 + · · ·+ αn = 1}

α-expansion: ‖P‖2α := 1
2

∑
i,j

αiαj‖pi − pj‖2

“If edges shrink, then the expansion decreases

, if α is chosen suitably.”

Key theorem (W., 2023)

Let α be the Wachspress coordinates of some interior point of P . If edges in
q : GP → Re are not longer than in P , then

‖q‖α ≤ ‖P‖α,

with equivalence if and only if α 'affine P .
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Rigidity of pointed polytopes

Consequences

Corollary.

A pointed polytope is uniquely determined (up to affine transformations) by its
edge-graph, edge lengths and Wachspress coordinates.

A polytope can be reconstructed in polynomial time (via semidefinite program).
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Rigidity of pointed polytopes

Are we done ... ?

∑
i

αi‖pi‖2 =
∥∥∥∑

i

αipi

∥∥∥2

+ ‖P‖2α∑
i

αiqi
?
= 0 ≥ ≤ ≤∑

i

αi‖qi‖2 =
∥∥∥∑

i

αiqi

∥∥∥2

+ ‖Q‖2α

What is α?

I Wachspress coordinates of some point in P

... and at the same time ...

I convex coordinates of the special point in Q

Can we have this?
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Rigidity of pointed polytopes

The Wachspress map φ : P → Q

∑
i

αi‖pi‖2 =
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≥ ≤ ≤∑
i

αi‖qi‖2 =
∥∥∥∑

i

αiqi
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+ ‖Q‖2α

The Wachspress map φ : P → Q maps

x ∈ P 7−→ α(x) ∈ ∆n 7−→ φ(x) :=
∑
i

αi(x)qi ∈ Q

The remaining question: how to find x ∈ int(P ) with ‖x‖ ≥ ‖φ(x)‖?
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Rigidity of pointed polytopes

We can have it in special cases ...

Key lemma.

If P ⊂ Rd and q : GP → Re satisfy

(i) there is x ∈ int(P ) with ‖x‖ ≥ ‖φ(x)‖, (e.g. if φ(x) = 0)

(ii) edges in q are at most as long as in P ,

(iii) radii in q are at least as large as in P ,

then q is isometric the skeleton of P .

Resolved special cases:

I P and q centrally symmetric (φ(0) = 0)

I q a small perturbation of P ’s skeleton (0 ∈ Bε(0) ⊂ P −→ 0 ∈ φ(Bε(0)))
I P and Q combinatorially equivalent (φ : P → Q is surjective)
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Using Wachspress coordinates
and Izmestiev matrix



Wachspress coordinates and Izmestiev matrix

Recalling the statement

Key theorem (W., 2023)

Let α be the Wachspress coordinates of some interior point of P . If edges in
q : Gp → Re are not longer than in P , then

‖q‖α ≤ ‖P‖α.

“The skeleton of P has the maximal α-expansion among all embeddings of GP
whose edges are not longer than in P .”

max ‖q‖α
s.t. ‖qi − qj‖ ≤ ‖pi − pj‖, for all ij ∈ E

q1, ..., qn ∈ Rn
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Wachspress coordinates and Izmestiev matrix

Proof via semidefinite programming

max ‖q‖α
s.t. ‖qi − qj‖ ≤ ‖pi − pj‖, for all ij ∈ E

q1, ..., qn ∈ Rn

⇐
= by translation invariance

‖P‖2α =

max
∑
i αi‖qi‖2

s.t.
∑
i αiqi = 0

‖qi − qj‖ ≤ ‖pi − pj‖, for all ij ∈ E
q1, ..., qn ∈ Rn

⇐
= dual program

‖P‖2α =

min
∑
ij∈E wij‖pi − pj‖2

s.t. Lw − diag(α) + µαα> � 0
w ≥ 0, µ free
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Wachspress coordinates and Izmestiev matrix

Izmestiev’s theorem

Theorem. (Izmestiev, 2007)

The Izmestiev matrix satisfies

(i) Mij > 0 whenever ij ∈ E,

(ii) Mij = 0 whenever i 6= j and ij 6∈ E,

(iii) dim ker(M) = d,

(iv) MXP = 0, where X>P = (p1, ..., pn) ∈ Rd×n,

(v) M has a single positive eigenvalue of multiplicity 1.∑
ij∈E

Mij‖pi − pj‖2 = 1
2

∑
i,j

Mij‖pi − pj‖2

=
∑
i

(∑
j

Mij

)
‖pi‖2 −

∑
i,j

Mij〈pi, pj〉

=
∑
i

αi‖pi‖2 − tr(MXP︸ ︷︷ ︸
=0

X>P ) =
∑
i

αi‖pi‖2 = ‖P‖2α.
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Thank you.

“Rigidity, Tensegrity and Reconstruction of Polytopes under Metric Constraints”
(arXiv:2302.14194, accepted at IMRN)
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