Wachspress Coordinates University of Warwick

- Wachspress Coordinates -

A BRIDGE BETWEEN ALGEBRA, GEOMETRY AND COMBINATORICS

Martin Winter
University of Warwick

22. March, 2024

The Wachspress family

Barycentric coordinates

Barycentric coordinates for polytopes (??)

Application: interpolation

$$
\operatorname{DATA}(x)=\sum_{i} \alpha_{i}(x) \operatorname{DATA}\left(p_{i}\right)
$$

- computer graphics
- finite element analysis
- ...

APPLICATION: IMAGE WARPING

GEnERALIZED BARYCENTRIC COORDINATES

$$
\left.\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}_{\geq 0}^{n} \mid \alpha_{1}+\cdots+\alpha_{n}=1\right)\right\}
$$

Generalized barycentric coordinates (GBCs): $\alpha: P \rightarrow \Delta_{n}$ satisfy

$$
\sum_{i} \alpha_{i}(x) p_{i}=x \quad \text { (linear precision) }
$$

Generalized barycentric coordinates

$$
\left.\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}_{\geq 0}^{n} \mid \alpha_{1}+\cdots+\alpha_{n}=1\right)\right\}
$$

Generalized barycentric coordinates (GBCs): $\alpha: P \rightarrow \Delta_{n}$ satisfy

$$
\sum_{i} \alpha_{i}(x) p_{i}=x \quad \text { (linear precision) }
$$

There are ...

- harmonic coordinates,
- mean value coordinates,
- Wachspress coordinates
(Wachspress, 1975; Warren, 1996)

THE MANY FACES OF

 WACHSPRESS COORDINATES

Wachspress coordinates as rational GBCs

- There do not always exist polynomial GBCs.
- Wachspress constructed rational GBCs:

$$
\alpha_{i}(x)=\frac{\mathrm{p}_{i}(x)}{\mathrm{q}(x)} \quad \text { where } \mathrm{q}(x)=\sum_{i} \mathrm{p}_{i}(x) \ldots \text { adjoint polynomial }
$$

Wachspress coordinates as rational GBCs

- There do not always exist polynomial GBCs.
- Wachspress constructed rational GBCs:

$$
\alpha_{i}(x)=\frac{\mathrm{p}_{i}(x)}{\mathrm{q}(x)} \quad \text { where } \mathrm{q}(x)=\sum_{i} \mathrm{p}_{i}(x) \ldots \text { adjoint polynomial }
$$

Idea: if $x \in$ face $_{k}$ but $p_{i} \notin$ face $_{k}$, then $\alpha_{i}(x)=0$:

$$
\mathrm{p}_{i}(x)=\beta_{i}(x) \prod_{k: i \notin \mathrm{face}_{k}} H_{k}(x)
$$

Wachspress coordinates as rational GBCs

- There do not always exist polynomial GBCs.
- Wachspress constructed rational GBCs:

$$
\alpha_{i}(x)=\frac{\mathrm{p}_{i}(x)}{\mathrm{q}(x)} \quad \text { where } \mathrm{q}(x)=\sum_{i} \mathrm{p}_{i}(x) \ldots \text { adjoint polynomial }
$$

Idea: if $x \in$ face $_{k}$ but $p_{i} \notin$ face $_{k}$, then $\alpha_{i}(x)=0$:

$$
\mathrm{p}_{i}(x)=\beta_{i}(x) \prod_{k: i \notin \mathrm{face}_{k}} H_{k}(x)
$$

Theorem. (Warren)

The Wachspress coordinates are the unique rational GBCs of lowest possible degree. \quad degree $=\#$ facets - dim

Wachspress in algebraic geometry

- Wachspress variety $V(P):=\operatorname{im}(\alpha) \subseteq \Delta_{n}$
- Wachspress ideal $I(P)$
- adjoint hypersurface ... vanishing set of adjoint poynomial

WACHSPRESS FROM CONE VOLUMES

$$
\text { polar dual } \ldots P^{\circ}:=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, p_{i}\right\rangle \leq 1 \text { for all } i \in V\left(G_{P}\right)\right\}
$$

$$
\alpha_{i}:=\frac{\operatorname{vol}\left(F_{i}^{\circ}\right)}{\left\|p_{i}\right\| \operatorname{vol}\left(P^{\circ}\right)}
$$

WACHSPRESS FROM CONE VOLUMES

polar dual $\ldots P^{\circ}:=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, p_{i}\right\rangle \leq 1\right.$ for all $\left.i \in V\left(G_{P}\right)\right\}$.

$$
\begin{aligned}
& \sum_{i} \operatorname{vol}\left(\text { face }_{i}\right) \cdot \text { normal }_{i}=0 \\
& \sum_{i} \alpha_{i} p_{i}=\frac{1}{\operatorname{vol}\left(P^{\circ}\right)} \cdot \sum_{i} \operatorname{vol}\left(F_{i}^{\circ}\right) \frac{p_{i}}{\left\|p_{i}\right\|} \stackrel{\downarrow}{=} 0 .
\end{aligned}
$$

WACHSPRESS FROM ALGEBRAIC STATISTICS

\checkmark let μ_{P} be the uniform measure on a polytope $P^{\circ} \subset \mathbb{R}^{d}$.

- compute its moments:

$$
m_{I}:=\int_{P^{\circ}} \boldsymbol{x}^{I} \mathrm{~d} \boldsymbol{x}=\int_{P^{\circ}} x_{1}^{i_{1}} \cdots x_{d}^{i_{d}} \mathrm{~d} \boldsymbol{x}, \quad I=\left\{i_{1}<\cdots i_{d}\right\} \in \mathbb{N}^{d}
$$

- compute the moment generating function:

$$
\sum_{I \in \mathbb{N}^{d}} \frac{\left(\sum I+d\right)!}{I!} m_{I} \boldsymbol{t}^{I}
$$

\Longrightarrow this is a rational function whose numerator is the adjoint polynomial of P.

Wachspress from spectral graph theory

$$
\theta \in \operatorname{Spec}(A) \Longrightarrow u_{1}, \ldots, u_{d} \in \operatorname{Eig}_{\theta}(A)
$$

$$
\Longrightarrow\left[\begin{array}{ccc}
\mid & & \mid \\
u_{1} & \cdots & u_{d} \\
\mid & & \mid
\end{array}\right]=\left[\begin{array}{c}
-p_{1} \\
\vdots \\
-p_{n}
\end{array}\right] \in \in \mathbb{R}^{n \times d}
$$

$$
\operatorname{Spec}(A)=\left\{3^{1}, \sqrt{5^{3}}, 1^{5}, 0^{4},(-2)^{4},(-\sqrt{5})^{3}\right\}
$$

WACHSPRESS FROM SPECTRAL GRAPH THEORY

Theorem. (Izmestiev, 2010)
A polytope skeleton is a spectral embedding of the edge graph w.r.t. suitable edge and vertex weights.
weight matrix $M \in \mathbb{R}^{n \times n} \ldots$ Izmestiev matrix of P

Applications:

- rigidity of polyhedral frameworks
- relations between polytopal symmetries and edge graph symmetries
- progress on the Hirsch conjecture
(Narayanan, Shah, Srivastava; 2022)

Wachspress from spectral graph Theory

Theorem. (Izmestiev, 2010)
A polytope skeleton is a spectral embedding of the edge graph w.r.t. suitable edge and vertex weights.
weight matrix $M \in \mathbb{R}^{n \times n} \ldots$ Izmestiev matrix of P

Applications:

- rigidity of polyhedral frameworks
- relations between polytopal symmetries and edge graph symmetries
- progress on the Hirsch conjecture
(Narayanan, Shah, Srivastava; 2022)

$$
\alpha_{i}:=\sum_{j} M_{i j} \quad(\mathrm{~W} ., 2023)
$$

Izmestiev's Theorem

Theorem. (Izmestiev, 2007)
The Izmestiev matrix satisfies
(i) $M_{i j}>0$ whenever $i j \in E$,
(ii) $M_{i j}=0$ whenever $i \neq j$ and $i j \notin E$,
(iii) $\operatorname{dim} \operatorname{ker}(M)=d$,
(iv) $M X_{P}=0$, where $X_{P}^{\top}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}^{d \times n}$,
(v) M has a single positive eigenvalue of multiplicity 1. (Lorentzian)

Consequences:

- Defines a function $P \ni x \mapsto \theta_{1}(x)>0$ Where are the extremal values?
- M has a unique strictly positive eigenvector $z \in \mathbb{R}_{+}^{n}$ (to θ_{2}):
\Longrightarrow defines GBC's $P \ni x \mapsto z(x)=$ spectral coordinates

Pointed polytopes

$:=$ polytope $P \subset \mathbb{R}^{d}+$ point $x_{P} \in \operatorname{int}(P)$

We can speak of

- the polar dual of a pointed polytope
- the Wachspress coordinates of a pointed polytope
- the Izmestiev matrix of a pointed polytope

WACHSPRESS FROM VARIATION OF VOLUME

$$
P^{\circ}(\mathbf{c}):=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, p_{i}\right\rangle \leq c_{i} \text { for all } i \in V\left(G_{P}\right)\right\}
$$

where $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{R}^{n}$.

WACHSPRESS FROM VARIATION OF VOLUME

$$
P^{\circ}(\mathbf{c}):=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, p_{i}\right\rangle \leq c_{i} \text { for all } i \in V\left(G_{P}\right)\right\}
$$

where $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{R}^{n}$. Expand $\operatorname{vol}\left(P^{\circ}(\mathbf{c})\right)$ at $\mathbf{c}=1$:

$$
\operatorname{vol}\left(P^{\circ}(\mathbf{c})\right)=\operatorname{vol}\left(P^{\circ}\right)+\langle\tilde{\alpha}, \mathbf{c}-\mathbf{1}\rangle+\frac{1}{2}(\mathbf{c}-\mathbf{1})^{\top} \tilde{M}(\mathbf{c}-\mathbf{1})+\cdots
$$

Wachspress
coordinates

Izmestiev
matrix

Wachspress from rigidity theory

$$
\begin{aligned}
& \text { stress } \ldots \boldsymbol{\omega}: E \rightarrow \mathbb{R} \\
& \forall i \in V: \quad \sum_{j: i j \in E} \omega_{i j}\left(p_{j}-p_{i}\right)=0
\end{aligned}
$$

WACHSPRESS FROM RIGIDITY THEORY

$$
\begin{aligned}
& \text { stress } \ldots \boldsymbol{\omega}: E \rightarrow \mathbb{R} \\
& \forall i \in V: \quad \sum_{j: i j \in E} \omega_{i j}\left(p_{j}-p_{i}\right)=0
\end{aligned}
$$

Lemma.

If P is simple, then its framework has a unique non-zero stress and
(i) stresses on the radial bars (i.e. $\omega_{0 i}, i \in V$) are Wachspress coordinates
(ii) stresses on the edge bars (i.e. $\omega_{i j}, i j \in E$) are Izmestiev matrix entries.

Rigidity And Reconstruction

Application: RIGIDITY AND RECONSTRUCTION

Theorem. (W., 2023)
A pointed polytope is uniquely determined (up to affine transformation) by its edge graph, edge lengths and Wachspress coordinates.
... across all dimensions and all combinatorial types!
Question: is there a relation to the log-Minkowski problem?

Application: RIGIDITY AND RECONSTRUCTION

Conjecture

A pointed polytope P is uniquely determined (up to isometry) by its edge-graph, edge lengths and radii.

Implications:

- reconstruction of matroids from base exchange graph
- strengthening of Kirszbraun theorem
- symmetries of a polytope are encoded in edge lengths and radii.

Application: RIGIDITY AND RECONSTRUCTION

Conjecture

A pointed polytope P is uniquely determined (up to isometry) by its edge-graph, edge lengths and radii.

Implications:

- reconstruction of matroids from base exchange graph
- strengthening of Kirszbraun theorem
- symmetries of a polytope are encoded in edge lengths and radii.
- ...

Using the Izmestiev matrix one can verify the conjecture if...

- P, Q centrally symmetric
- $P \approx Q$ (Hausdorff metric)
- $P \simeq Q$ (combinatorially equivalent)

The Wachspress map $\phi: P \rightarrow Q$

The Wachspress map $\phi: P \rightarrow Q$ maps

$$
x \in P \quad \longmapsto \quad \alpha(x) \in \Delta_{n} \longmapsto \phi(x):=\sum_{i} \alpha_{i}(x) q_{i} \in Q
$$

The Wachspress map $\phi: P \rightarrow Q$

The Wachspress map $\phi: P \rightarrow Q$ maps

$$
x \in P \quad \longmapsto \quad \alpha(x) \in \Delta_{n} \longmapsto \phi(x):=\sum_{i} \alpha_{i}(x) q_{i} \in Q
$$

The Wachspress map $\phi: P \rightarrow Q$

The Wachspress map $\phi: P \rightarrow Q$ maps

$$
x \in P \quad \longmapsto \quad \alpha(x) \in \Delta_{n} \longmapsto \phi(x):=\sum_{i} \alpha_{i}(x) q_{i} \in Q
$$

Question: Is there always a point $x \in \operatorname{int}(P)$ with $\left\|\phi(x)-x_{Q}\right\| \leq\left\|x-x_{P}\right\|$?

The Wachspress map $\phi: P \rightarrow Q$

The Wachspress map $\phi: P \rightarrow Q$ maps

$$
x \in P \quad \longmapsto \quad \alpha(x) \in \Delta_{n} \longmapsto \phi(x):=\sum_{i} \alpha_{i}(x) q_{i} \in Q
$$

Question: Is there always a point $x \in \operatorname{int}(P)$ with $\left\|\phi(x)-x_{Q}\right\| \leq\left\|x-x_{P}\right\|$?

UNDERSTANDING THE VARIETY IS KEY

Injectivity of The Wachspress map

Wachspress map: $\quad x \in P \longmapsto \alpha^{P}(x) \in \Delta_{n} \longmapsto \sum_{i} \alpha_{i}^{P}(x) q_{i} \in Q$

Conjecture.

The Wachspress map is injective.

InJectivity of The Wachspress map

Conjecture.

The Wachspress map is injective.

- true in dimension $d=2$.
- open in dimension $d \geq 3$.
- other commonly used GBCs are not injective!
- Understanding injectivity $=$ understanding secant directions of $V(P)$

Wachspress ideals vs. Stanley-Reisner ideals

P ... simplicial polytope

Wachspress ideals vs. Stanley-Reisner ideals

P ... simplicial polytope

Wachspress ideals vs. Stanley-Reisner ideals

P ... simplicial polytope
Wachspress variety

$$
V(P) \cap \partial \Delta_{n} \simeq \partial P
$$

Observation:

- $I(P)=\left\langle f_{1}, f_{2}, \ldots\right\rangle$
- the monomials of f_{i} correspond to the non-faces of P.

Wachspress ideals vs. STANLEY-REISNER IDEALS

P ... simplicial polytope

$$
V(P) \cap \partial \Delta_{n} \simeq \partial P
$$

Observation:

- $I(P)=\left\langle f_{1}, f_{2}, \ldots\right\rangle$
- the monomials of f_{i} correspond to the non-faces of P.

some relation
Wachspress \downarrow Stanley-Reisner ideal \sim ideal

Wachspress ideals vs. Stanley-Reisner ideals

Theorem. (Irving, Schenck, 2013)
For polygons $(d=2)$ holds

- the initial ideal of the Wachspress ideal (using graded lex order) is given by the Stanley-Reisner ideal.
- the Wachspress variety is
- arithmetically Cohen-Macaulay,
- of Castelnuovo-Mumford regularity two.

Question: How does this generalize to $d \geq 3$?

DECIDING POLYTOPALITY OF SIMPLICIAL SPHERES

\rightarrow NP hard! in NP?
$S \subset \partial \Delta_{n} \ldots d$-dimensional simplicial sphere
Task: find a variety $V \subset \Delta_{n}$ so that \ldots

- $V \cap \partial \Delta_{n}=S$.
$\rightarrow I(V)$ is generated by polynomials using minimal non-faces.
- the graph of a rational function of degree $m-d$.
- smooth inside of Δ_{n}.

If No, then S is not polytopal!

Thank you.

M. Winter, "Rigidity, Tensegrity and Reconstruction of Polytopes under Metric Constraints" (2023)

