Wachspress Coordinates
University of Warwick

WACHSPRESS COORDINATES
A BRIDGE BETWEEN ALGEBRA, GEOMETRY AND COMBINATORICS

Martin Winter
University of Warwick

22. March, 2024
THE WACHSPRESS FAMILY

Iz mestiev matrix

Wachspress

coordinates
variety
ideal
map
point

spectral
center
coordinates

adjoint polynomial
adjoint hypersurface

positive geometries
Barycentric coordinates

\[x = \sum_{i} \alpha_i(x) p_i, \quad \alpha \in \Delta_n := \{\alpha \in [0, 1]^n \mid \alpha_1 + \cdots + \alpha_n = 1\}. \]
Barycentric coordinates for polytopes (??)

\[x = \sum_i \alpha_i(x) p_i, \quad \alpha \in \Delta_n := \{ \alpha \in [0, 1]^n \mid \alpha_1 + \cdots + \alpha_n = 1 \}. \]
Application: interpolation

\[\text{DATA}(x) = \sum_i \alpha_i(x) \text{DATA}(p_i) \]

▶ computer graphics
▶ finite element analysis
▶ ...

University of Warwick · Martin Winter
APPLICATION: IMAGE WARPING
Generalized barycentric coordinates (GBCs): \(\alpha : P \to \Delta_n \) satisfy

\[
\sum_i \alpha_i(x)p_i = x \quad \text{(linear precision)}
\]
Generalized barycentric coordinates (GBCs): $\alpha : P \rightarrow \Delta_n$ satisfy

$$\sum_i \alpha_i(x)p_i = x \quad \text{linear precision}$$

There are ...

- harmonic coordinates,
- mean value coordinates,
- ...
- Wachspress coordinates

(Wachspress, 1975; Warren, 1996)
The many faces of Wachspress coordinates
The many faces of Wachspress coordinates

WACHSPRESS COORDINATES AS RATIONAL GBCs

- There do not always exist polynomial GBCs. (Wachspress)
- Wachspress constructed rational GBCs:

\[\alpha_i(x) = \frac{p_i(x)}{q(x)} \]

where \(q(x) = \sum_i p_i(x) \) ... adjoint polynomial
The many faces of Wachspress coordinates

Wachspress coordinates as rational GBCs

- There do not always exist *polynomial* GBCs.
- Wachspress constructed *rational* GBCs:

\[
\alpha_i(x) = \frac{p_i(x)}{q(x)}
\]

where \(q(x) = \sum_i p_i(x)\) ... adjoint polynomial

Idea: if \(x \in \text{face}_k\) but \(p_i \not\in \text{face}_k\), then \(\alpha_i(x) = 0\):

\[
p_i(x) = \beta_i(x) \prod_{k: i \not\in \text{face}_k} H_k(x).
\]
The many faces of Wachspress coordinates

Wachspress coordinates as rational GBCs

- There do not always exist *polynomial* GBCs.
- Wachspress constructed *rational* GBCs:

\[\alpha_i(x) = \frac{p_i(x)}{q(x)} \]

where \(q(x) = \sum_i p_i(x) \ldots \) adjoint polynomial

Idea: if \(x \in \text{face}_k \) but \(p_i \not\in \text{face}_k \), then \(\alpha_i(x) = 0 \):

\[p_i(x) = \beta_i(x) \prod_{k: i \not\in \text{face}_k} H_k(x). \]

Theorem. *(Warren)*

The Wachspress coordinates are the unique rational GBCs of lowest possible degree.
\[\text{degree} = \#\text{facets} - \text{dim} \]
WACHSPRESS IN ALGEBRAIC GEOMETRY

- **Wachspress variety** \(V(P) := \text{im}(\alpha) \subseteq \Delta_n \)
- **Wachspress ideal** \(I(P) \)
- **adjoint hypersurface** ... vanishing set of adjoint polynomial
polar dual ... \(P^\circ := \{ x \in \mathbb{R}^d \mid \langle x, p_i \rangle \leq 1 \text{ for all } i \in V(G_P) \} \).

\[\alpha_i := \frac{\text{vol}(F_i^\circ)}{\|p_i\| \text{vol}(P^\circ)} \]
The many faces of Wachspress coordinates

WACHSPRESS FROM CONE VOLUMES (Ju et al., 2005)

polar dual ... \(P^\circ := \{ x \in \mathbb{R}^d \mid \langle x, p_i \rangle \leq 1 \text{ for all } i \in V(G_P) \} \).

\[\alpha_i := \frac{\text{vol}(F_i^\circ)}{\| p_i \| \cdot \text{vol}(P^\circ)} \]

\[\sum_i \alpha_i p_i = \frac{1}{\text{vol}(P^\circ)} \cdot \sum_i \text{vol}(F_i^\circ) \frac{p_i}{\| p_i \|} = 0. \]

\[\sum_i \text{vol(face}_i \cdot \text{normal}_i = 0 \]
let μ_P be the uniform measure on a polytope $P^o \subset \mathbb{R}^d$.

compute its moments:

$$m_I := \int_{P^o} x^I \, dx = \int_{P^o} x_{i_1}^{i_1} \cdots x_{i_d}^{i_d} \, dx, \quad I = \{i_1 < \cdots i_d\} \in \mathbb{N}^d$$

compute the moment generating function:

$$\sum_{I \in \mathbb{N}^d} \frac{(\sum I + d)!}{I!} m_I t^I.$$

\[\implies \] this is a rational function whose numerator is the adjoint polynomial of P.

WACHSPRESS FROM ALGEBRAIC STATISTICS

(Kohn, Shapiro, Sturmfels; 2020)
WACHSPRESS FROM SPECTRAL GRAPH THEORY

$$\theta \in \text{Spec}(A) \implies u_1, \ldots, u_d \in \text{Eig}_\theta(A)$$

$$\implies \begin{bmatrix} u_1 & \cdots & u_d \end{bmatrix} = \begin{bmatrix} p_1 & & \\ & \ddots & \\ & & p_n \end{bmatrix} \in \mathbb{R}^{n \times d}$$

$$\text{Spec}(A) = \{ 3^1, \sqrt{5}^3, 1^5, 0^4, (-2)^4, (-\sqrt{5})^3 \}$$
The many faces of Wachspress coordinates

WACHSPRESS FROM SPECTRAL GRAPH THEORY

Theorem. (Izmestiev, 2010)

A polytope skeleton is a spectral embedding of the edge graph w.r.t. suitable edge and vertex weights.

weight matrix \(M \in \mathbb{R}^{n \times n} \) ... Izmestiev matrix of \(P \)

Applications:

- rigidity of polyhedral frameworks
- relations between polytopal symmetries and edge graph symmetries
- progress on the Hirsch conjecture

 (Narayanan, Shah, Srivastava; 2022)
Wachpress from spectral graph theory

Theorem. ([Izmestiev, 2010](#))

A polytope skeleton is a spectral embedding of the edge graph w.r.t. suitable edge and vertex weights.

weight matrix $M \in \mathbb{R}^{n \times n}$... **Izmestiev matrix** of P

Applications:

- rigidity of polyhedral frameworks
- relations between polytopal symmetries and edge graph symmetries
- progress on the Hirsch conjecture
 ([Narayanan, Shah, Srivastava; 2022](#))

$$\alpha_i := \sum_j M_{ij} \quad (W., 2023)$$
The many faces of Wachspress coordinates

Izmestiev’s Theorem

Theorem. *(Izmestiev, 2007)*

The Izmestiev matrix satisfies

(i) $M_{ij} > 0$ whenever $ij \in E$,

(ii) $M_{ij} = 0$ whenever $i \neq j$ and $ij \notin E$,

(iii) $\dim \ker(M) = d$,

(iv) $MX_P = 0$, where $X_P^\top = (p_1, \ldots, p_n) \in \mathbb{R}^{d \times n}$,

(v) M has a single positive eigenvalue of multiplicity 1. *(Lorentzian)*

Consequences:

- Defines a function $P \ni x \mapsto \theta_1(x) > 0$ Where are the extremal values?

- M has a unique strictly positive eigenvector $z \in \mathbb{R}_+^n$ (to θ_2):

 \Rightarrow defines GBC’s $P \ni x \mapsto z(x) =: \text{spectral coordinates}$
Pointed polytopes

\[:= \text{polytope } P \subset \mathbb{R}^d + \text{point } x_P \in \text{int}(P) \]

We can speak of
- *the* polar dual of a pointed polytope
- *the* Wachspress coordinates of a pointed polytope
- *the* Izmestiev matrix of a pointed polytope
- ...
The many faces of Wachspress coordinates

WACHSPRESS FROM VARIATION OF VOLUME

\[P^\circ(\mathbf{c}) := \{ x \in \mathbb{R}^d \mid \langle x, p_i \rangle \leq c_i \text{ for all } i \in V(G_P) \}. \]

where \(\mathbf{c} = (c_1, \ldots, c_n) \in \mathbb{R}^n. \)
The many faces of Wachspress coordinates

WACHSPRESS FROM VARIATION OF VOLUME

\[P^\circ(c) := \{ x \in \mathbb{R}^d \mid \langle x, p_i \rangle \leq c_i \text{ for all } i \in V(G_P) \} \]

where \(c = (c_1, \ldots, c_n) \in \mathbb{R}^n \). Expand \(\text{vol}(P^\circ(c)) \) at \(c = 1 \):

\[\text{vol}(P^\circ(c)) = \text{vol}(P^\circ) + \langle \tilde{\alpha}, c - 1 \rangle + \frac{1}{2}(c - 1)^\top \tilde{M}(c - 1) + \cdots \]
The many faces of Wachspress coordinates

WACHSPRESS FROM RIGIDITY THEORY

\[\omega : E \rightarrow \mathbb{R} \]

\[\forall i \in V : \sum_{j : ij \in E} \omega_{ij} (p_j - p_i) = 0 \]
The many faces of Wachspress coordinates

WACHSPRESS FROM RIGIDITY THEORY

\[
\text{stress } \omega : E \rightarrow \mathbb{R}
\]

\[
\forall i \in V: \sum_{j:i,j \in E} \omega_{ij}(p_j - p_i) = 0
\]

Lemma.

If \(P \) is simple, then its framework has a unique non-zero stress and

(i) **stresses on the radial bars** (i.e. \(\omega_{0i}, i \in V \)) are Wachspress coordinates

(ii) **stresses on the edge bars** (i.e. \(\omega_{ij}, i,j \in E \)) are Izmestiev matrix entries.
RIGIDITY AND RECONSTRUCTION
Application: rigidity and reconstruction

Theorem. (W., 2023)

A pointed polytope is uniquely determined (up to affine transformation) by its edge graph, edge lengths and Wachspress coordinates.

... across all dimensions and all combinatorial types!

Question: is there a relation to the log-Minkowski problem?
Application: Rigidity and Reconstruction

Conjecture

A pointed polytope P is uniquely determined (up to isometry) by its edge-graph, edge lengths and radii.

Implications:

- reconstruction of matroids from base exchange graph
- strengthening of Kirszbraun theorem
- symmetries of a polytope are encoded in edge lengths and radii.
- ...

Using the Izmestiev matrix one can verify the conjecture if... (W., 2023)
Application: Rigidity and Reconstruction

Conjecture

A pointed polytope P is uniquely determined (up to isometry) by its edge-graph, edge lengths and radii.

Implications:

- reconstruction of matroids from base exchange graph
- strengthening of Kirszbraun theorem
- symmetries of a polytope are encoded in edge lengths and radii.
- ...

Using the **Izmestiev matrix** one can verify the conjecture if...

- P, Q centrally symmetric
- $P \approx Q$ (Hausdorff metric)
- $P \simeq Q$ (combinatorially equivalent)
The Wachspress map $\phi: P \rightarrow Q$

The Wachspress map $\phi: P \rightarrow Q$ maps

$$x \in P \quad \mapsto \quad \alpha(x) \in \Delta_n \quad \mapsto \quad \phi(x) := \sum_i \alpha_i(x)q_i \in Q$$

University of Warwick · Martin Winter 18 / 24
The Wachspress map $\phi: P \rightarrow Q$

The **Wachspress map** $\phi: P \rightarrow Q$ maps

$$x \in P \quad \longrightarrow \quad \alpha(x) \in \Delta_n \quad \longrightarrow \quad \phi(x) := \sum_{i} \alpha_i(x) q_i \in Q$$
The Wachspress Map \(\phi : P \to Q \)

The Wachspress map \(\phi : P \to Q \) maps

\[
x \in P \quad \mapsto \quad \alpha(x) \in \Delta_n \quad \mapsto \quad \phi(x) := \sum_i \alpha_i(x) q_i \in Q
\]

Question: Is there always a point \(x \in \text{int}(P) \) with \(\|\phi(x) - x_Q\| \leq \|x - x_P\| \)?
The Wachspress map $\phi: P \rightarrow Q$

The Wachspress map $\phi: P \rightarrow Q$ maps

$$x \in P \quad \mapsto \quad \alpha(x) \in \Delta_n \quad \mapsto \quad \phi(x) := \sum_i \alpha_i(x)q_i \in Q$$

Question: Is there always a point $x \in \text{int}(P)$ with $\|\phi(x) - x_Q\| \leq \|x - x_P\|$?
Understanding the variety is key
Injectivity of the Wachspress map

Wachspress map: \(x \in P \mapsto \alpha^P(x) \in \Delta_n \mapsto \sum_i \alpha_i^P(x) q_i \in Q \)

Conjecture. The Wachspress map is injective.
Injectivity of the Wachspress map

Conjecture.

The Wachspress map is injective.

- true in dimension $d = 2$.
- open in dimension $d \geq 3$.
- other commonly used GBCs are **not** injective!

Understanding injectivity $=$ understanding secant directions of $V(P)$
Wachspress ideals vs. Stanley-Reisner ideals

P ... **simplicial** polytope

Wachspress variety

\[V(P) \cap \partial \Delta_n \simeq \partial P \]
Understanding the Wachspress variety

Wachspress ideals vs. Stanley-Reisner ideals

\(P \ldots \textbf{simplicial} \text{ polytope} \)

Wachspress variety

\[V(P) \cap \partial \Delta_n \simeq \partial P \]
Understanding the Wachspress variety

Wachspress ideals vs. Stanley-Reisner ideals

P ... **simplicial** polytope

$$V(P) \cap \partial \Delta_n \cong \partial P$$

Observation:

- $I(P) = \langle f_1, f_2, \ldots \rangle$
- the monomials of f_i correspond to the non-faces of P.
Wachspress ideals vs. Stanley-Reisner ideals

Let P be a **simplicial** polytope.

The Wachspress variety can be described as:

$$V(P) \cap \partial \Delta_n \simeq \partial P$$

Observation:

- $I(P) = \langle f_1, f_2, \ldots \rangle$
- The monomials of f_i correspond to the non-faces of P.

Some relation:

Wachspress ideal \sim Stanley-Reisner ideal
Theorem. (Irving, Schenck, 2013)

For polygons ($d = 2$) holds

- the initial ideal of the Wachspress ideal (using graded lex order) is given by the Stanley-Reisner ideal.
- the Wachspress variety is
 - arithmetically Cohen-Macaulay,
 - of Castelnuovo-Mumford regularity two.

Question: How does this generalize to $d \geq 3$?
Deciding polytopality of simplicial spheres

\[S \subset \partial \Delta_n \quad \text{... d-dimensional simplicial sphere} \]

Task: find a variety \(V \subset \Delta_n \) so that ...

- \(V \cap \partial \Delta_n = S \).
 - \(I(V) \) is generated by polynomials using minimal non-faces.
- the graph of a rational function of degree \(m - d \).
- smooth inside of \(\Delta_n \).
- ...

If **No**, then \(S \) is **not** polytopal!
Thank you.

M. Winter, “Rigidity, Tensegrity and Reconstruction of Polytopes under Metric Constraints” (2023)