PhD Defense
Between Spectral Graph Theory and Polytope Theory
Working group for Algorithmic and Discrete Mathematics

Spectral Realizations of Symmetric Graphs, Spectral

 Polytopes and Edge-TransitivityBetween Spectral Graph Theory and Polytope Theory
Martin Winter

Working group for Algorithmic and Discrete Mathematics
18. June, 2021

TECHNISCHE UNIVERSITÄT
CHEMNITZ

DiscMath • 18. June, 2021 • Martin Winter
$1 / 31$

An Overview

Convex polytopes

Definition.

A (convex) polytope is the convex hull of finitely many points in \mathbb{R}^{d}.

Convex polytopes

Definition.

A (convex) polytope is the convex hull of finitely many points in \mathbb{R}^{d}.
Polytopes have

- vertices,
- edges,
- faces.

The edge-graph and the quest for reconstruction

Definition.

The edge-graph of P is the graph $G_{P}=(V, E)$ with

- $V:=\{1, \ldots, n\}$. (corresponding to the vertices v_{1}, \ldots, v_{n} of P)
- $i, j \in V$ are adjacent in $G_{P} \Longleftrightarrow \operatorname{conv}\left\{v_{i}, v_{j}\right\}$ is an edge of P

The edge-graph and the quest for reconstruction

Definition.

The edge-graph of P is the graph $G_{P}=(V, E)$ with

- $V:=\{1, \ldots, n\}$. (corresponding to the vertices v_{1}, \ldots, v_{n} of P)
- $i, j \in V$ are adjacent in $G_{P} \Longleftrightarrow \operatorname{conv}\left\{v_{i}, v_{j}\right\}$ is an edge of P

Note: the edge-graph of P carries very little information about the polytope.

A curious (spectral) observation

A curious (spectral) observation

An Overview

A curious (spectral) observation

$$
\left[\begin{array}{llllllll}
0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right] \begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6 \\
& 7 \\
& 8
\end{aligned}
$$

An Overview

A curious (spectral) observation

An Overview

A curious (spectral) observation

$$
\underbrace{}_{A\left(G_{P}\right)}
$$

$$
\operatorname{Spec}\left(A\left(G_{P}\right)\right)=\left\{3^{1}, 1^{3},(-1)^{3},(-3)^{1}\right\}
$$

A curious (spectral) observation

$$
\underbrace{}_{A\left(G_{P}\right)}
$$

$$
\theta_{1}>\theta_{2}>\cdots>\theta_{m}
$$

$$
\operatorname{Spec}\left(A\left(G_{P}\right)\right)=\left\{3^{1}, 1^{3},(-1)^{3},(-3)^{1}\right\}
$$

A curious (spectral) observation

\(\left[\begin{array}{llllllll}0 \& 1 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0

1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 0

0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 0

1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 1

1 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1

0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0

0 \& 0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1

0 \& 0 \& 0 \& 1 \& 1 \& 0 \& 1 \& 0\end{array}\right]\)| 1 |
| :--- |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |

$$
A\left(G_{P}\right)
$$

$$
\theta_{1}>\theta_{2}>\cdots>\theta_{m}
$$

$$
\operatorname{Spec}\left(A\left(G_{P}\right)\right)=\left\{3^{1}, 1^{3},(-1)^{3},(-3)^{1}\right\}
$$

A curious (spectral) observation

$$
u_{1}=\left[\begin{array}{r}
1 \\
1 \\
1 \\
1 \\
-1 \\
-1 \\
-1 \\
-1
\end{array}\right], u_{2}=\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1 \\
1 \\
1 \\
-1 \\
-1
\end{array}\right], u_{3}=\left[\begin{array}{r}
-1 \\
1 \\
1 \\
-1 \\
-1 \\
1 \\
1 \\
-1
\end{array}\right]
$$

A curious (spectral) observation

$$
u_{1}=\left[\begin{array}{r}
1 \\
1 \\
1 \\
1 \\
-1 \\
-1 \\
-1 \\
-1
\end{array}\right], u_{2}=\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1 \\
1 \\
1 \\
-1 \\
-1
\end{array}\right], u_{3}=\left[\begin{array}{r}
-1 \\
1 \\
1 \\
-1 \\
-1 \\
1 \\
1 \\
-1
\end{array}\right] \quad \longrightarrow\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -1 & -1 \\
1 & -1 & 1 \\
-1 & 1 & 1 \\
-1 & 1 & -1 \\
-1 & -1 & -1 \\
-1 & -1 & 1
\end{array}\right]
$$

A curious (spectral) observation

$$
u_{1}=\left[\begin{array}{r}
1 \\
1 \\
1 \\
1 \\
-1 \\
-1 \\
-1 \\
-1
\end{array}\right], u_{2}=\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1 \\
1 \\
1 \\
-1 \\
-1
\end{array}\right], u_{3}=\left[\begin{array}{r}
-1 \\
1 \\
1 \\
-1 \\
-1 \\
1 \\
1 \\
-1
\end{array}\right] \quad\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -1 & -1 \\
1 & -1 & 1 \\
-1 & 1 & 1 \\
-1 & 1 & -1 \\
-1 & -1 & -1 \\
-1 & -1 & 1
\end{array}\right] \begin{gathered}
\leftarrow v_{1} \\
\leftarrow v_{2} \\
\leftarrow v_{3} \\
\leftarrow v_{4} \\
\leftarrow v_{5} \\
\leftarrow v_{6} \\
\leftarrow v_{7} \\
\leftarrow v_{8}
\end{gathered}
$$

A curious (spectral) observation

$$
u_{1}=\left[\begin{array}{r}
1 \\
1 \\
1 \\
1 \\
-1 \\
-1 \\
-1 \\
-1
\end{array}\right], u_{2}=\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1 \\
1 \\
1 \\
-1 \\
-1
\end{array}\right], u_{3}=\left[\begin{array}{r}
-1 \\
1 \\
1 \\
-1 \\
-1 \\
1 \\
1 \\
-1
\end{array}\right] \quad\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -1 & -1 \\
1 & -1 & 1 \\
-1 & 1 & 1 \\
-1 & 1 & -1 \\
-1 & -1 & -1 \\
-1 & -1 & 1
\end{array}\right] \begin{gathered}
\leftarrow v_{1} \\
\leftarrow v_{2} \\
\leftarrow v_{3} \\
\leftarrow v_{4} \\
\leftarrow v_{5} \\
\leftarrow v_{6} \\
\leftarrow v_{7} \\
\leftarrow v_{8}
\end{gathered}
$$

θ_{2}-eigenvectors of $G_{P} \quad \longrightarrow \quad \theta_{2}$-spectral realization v^{θ} of G_{P}

A curious (spectral) observation

A curious (spectral) observation

Questions

- For which polytopes does this work?
- Why have we used θ_{2} ?

A curious (spectral) observation

Questions

- For which polytopes does this work?
- Why have we used θ_{2} ?

Eigenpolytopes and spectral polytopes

Definition. (Godsil, 1978)

The eigenpolytope of a graph G to eigenvalue $\theta \in \operatorname{Spec}(A(G))$ is

$$
P_{G}(\theta):=\operatorname{conv}\left\{v_{1}^{\theta}, \ldots, v_{n}^{\theta}\right\} .
$$

Eigenpolytopes and spectral polytopes

Definition. (Godsil, 1978)

The eigenpolytope of a graph G to eigenvalue $\theta \in \operatorname{Spec}(A(G))$ is

$$
P_{G}(\theta):=\operatorname{conv}\left\{v_{1}^{\theta}, \ldots, v_{n}^{\theta}\right\} .
$$

A θ-spectral polytope is the eigenpolytope of its edge-graph.

Eigenpolytopes and spectral polytopes

Definition. (Godsil, 1978)

The eigenpolytope of a graph G to eigenvalue $\theta \in \operatorname{Spec}(A(G))$ is

$$
P_{G}(\theta):=\operatorname{conv}\left\{v_{1}^{\theta}, \ldots, v_{n}^{\theta}\right\} .
$$

A θ-spectral polytope is the eigenpolytope of its edge-graph.

Literature:

- Godsil, Graphs, Groups and Polytopes, 1978.

Eigenpolytopes and spectral polytopes

Definition. (Godsil, 1978)

The eigenpolytope of a graph G to eigenvalue $\theta \in \operatorname{Spec}(A(G))$ is

$$
P_{G}(\theta):=\operatorname{conv}\left\{v_{1}^{\theta}, \ldots, v_{n}^{\theta}\right\} .
$$

A θ-spectral polytope is the eigenpolytope of its edge-graph.

Literature:

- Godsil, Graphs, Groups and Polytopes, 1978.
- Licata \& Powers, A Surprising Property of some Regular Polytopes, 1978.
- Mohri, The θ_{1}-Eigenpolytopes of the Hamming Graphs, 1997.
- Godsil, Eigenpolytopes of Distance Regular Graphs, 1998.

Properties of spectral polytopes

Observations

If P is θ-spectral, then

- rigidity: P is uniquely determined by its edge-graph.
- symmetry: P is as symmetric as its edge-graph.

Properties of spectral polytopes

Observations

If P is θ-spectral, then
rigidity: P is uniquely determined by its edge-graph.

- symmetry: P is as symmetric as its edge-graph.

Regular polytopes are θ_{2}-spectral: (Licata \& Powers, 1986)

Properties of spectral polytopes

Observations

If P is θ-spectral, then
rigidity: P is uniquely determined by its edge-graph.

- symmetry: P is as symmetric as its edge-graph.

Regular polytopes are θ_{2}-spectral: (Licata \& Powers, 1986)

Maybe every sufficiently symmetric polytope is spectral.

What is sufficient symmetry?

Regularity is sufficient: (Licata \& Powers, 1986)

What is sufficient symmetry?

Regularity is sufficient: (Licata \& Powers, 1986)

Vertex-transitivity is not sufficient: $\operatorname{Aut}(P):=\left\{T \in O\left(\mathbb{R}^{d}\right) \mid T P=T\right\}$

An Overview
 The hope: edge-transitivity

The hope: edge-transitivity

Questions

- Which polytopes are edge-transitive?
- Are there many edge-transitive polytopes?
- Can they be classified?

The hope: edge-transitivity

Questions

- Which polytopes are edge-transitive?
- Are there many edge-transitive polytopes?
\longrightarrow Part II
- Can they be classified?

Papers

Published

- Vertex-Facets Assignments for Polytopes (with Thomas Jahn) Contributions to Algebra and Geometry
- Geometry and Topology of Symmetric Point Arrangements Linear Algebra and its Applications
- The Classification of Vertex-Transitive Zonotopes Discrete \& Computational Geometry

Manuscripts

- The Edge-Transitive Polytopes that are not Vertex-Transitive
- Symmetric and Spectral Realizations of Highly Symmetric Graphs
- Eigenpolytopes, Spectral Polytopes and Edge-Transitivity

Part I

Spectrum and Symmetry

The Izmestiev construction

$$
P^{\circ}:=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq 1 \text { for all } i \in V\right\}
$$

The Izmestiev construction

$$
P^{\circ}(c):=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq c_{i} \text { for all } i \in V\right\}, \quad c \in \mathbb{R}^{n}
$$

The Izmestiev construction

$$
\begin{aligned}
& P^{\circ}(c):=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq c_{i} \text { for all } i \in V\right\}, \quad c \in \mathbb{R}^{n} \\
& \longrightarrow P^{\circ}(1, \ldots, 1)=P^{\circ}
\end{aligned}
$$

The Izmestiev construction

$$
P^{\circ}(c):=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq c_{i} \text { for all } i \in V\right\}, \quad c \in \mathbb{R}^{n}
$$

$$
\longrightarrow P^{\circ}(1, \ldots, 1)=P^{\circ}
$$

The Izmestiev construction

$$
P^{\circ}(c):=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq c_{i} \text { for all } i \in V\right\}, \quad c \in \mathbb{R}^{n}
$$

$$
\longrightarrow P^{\circ}(1, \ldots, 1)=P^{\circ}
$$

Definition.

The Izmestiev matrix is $M \in \mathbb{R}^{n \times n}$ with

$$
M_{i j}:=\left.\frac{\partial^{2} \operatorname{vol}\left(P^{\circ}(c)\right)}{\partial c_{i} \partial c_{j}}\right|_{c=(1, \ldots, 1)} .
$$

A sufficient criterion for spectral polytopes

Theorem.

Let M be the Izmestiev matrix of P. If
(i) $M_{i i}$ is the same for all $i \in\{1, \ldots, n\}$ and
(ii) $M_{i j}$ is the same for all edges $i j \in E\left(G_{P}\right)$,
then P is θ_{2}-spectral.

A sufficient criterion for spectral polytopes

Theorem.

Let M be the Izmestiev matrix of P. If
(i) $M_{i i}$ is the same for all $i \in\{1, \ldots, n\}$ and
(ii) $M_{i j}$ is the same for all edges $i j \in E\left(G_{P}\right)$,

$$
\Longleftrightarrow M=\alpha \mathrm{Id}+\beta A
$$

then P is θ_{2}-spectral.

A sufficient criterion for spectral polytopes

Theorem.

Let M be the Izmestiev matrix of P. If
(i) $M_{i i}$ is the same for all $i \in\{1, \ldots, n\}$ and
(ii) $M_{i j}$ is the same for all edges $i j \in E\left(G_{P}\right)$,

$$
\Longleftrightarrow M=\alpha \mathrm{Id}+\beta A
$$

then P is θ_{2}-spectral.

$$
M_{i j}:=\left.\frac{\partial^{2} \operatorname{vol}\left(P^{\circ}(c)\right)}{\partial c_{i} \partial c_{j}}\right|_{c=(1, \ldots, 1)}
$$

A sufficient criterion for spectral polytopes

Theorem.

Let M be the Izmestiev matrix of P. If
(i) $M_{i i}$ is the same for all $i \in\{1, \ldots, n\}$ and
(ii) $M_{i j}$ is the same for all edges $i j \in E\left(G_{P}\right)$,

$$
\Longleftrightarrow M=\alpha \mathrm{Id}+\beta A
$$

then P is θ_{2}-spectral.

$$
M_{i j}:=\left.\frac{\partial^{2} \operatorname{vol}\left(P^{\circ}(c)\right)}{\partial c_{i} \partial c_{j}}\right|_{c=(1, \ldots, 1)} \stackrel{\downarrow}{=}-\frac{\text { if } i j \in E}{} \begin{gathered}
\text { dual face to edge } i j \\
\downarrow v_{i}\| \| v_{j} \| \sin \varangle\left(v_{i}, v_{j}\right)
\end{gathered}
$$

A sufficient criterion for spectral polytopes

Theorem.

Let M be the Izmestiev matrix of P. If
(i) $M_{i i}$ is the same for all $i \in\{1, \ldots, n\}$ and
(ii) $M_{i j}$ is the same for all edges $i j \in E\left(G_{P}\right)$,

$$
\Longleftrightarrow M=\alpha \mathrm{Id}+\beta A
$$

then P is θ_{2}-spectral.

$$
M_{i j}:=\left.\frac{\partial^{2} \operatorname{vol}\left(P^{\circ}(c)\right)}{\partial c_{i} \partial c_{j}}\right|_{c=(1, \ldots, 1)} \stackrel{\downarrow}{=}-\frac{\text { if } i j \in E}{} \begin{gathered}
\text { dual face to edge } i j \\
\downarrow v_{i}\| \| v_{j} \| \sin \varangle\left(v_{i}, v_{j}\right)
\end{gathered}
$$

Corollary.

If P is simultaneously vertex- and edge-transitive, then P is θ_{2}-spectral.

Part II
 Edge-Transitive Polytopes

Edge-transitive polyhedra

Edge-transitive polyhedra

Edge-transitive polyhedra

Theorem. (Grünbaum \& Shephard, 1987)
There are nine edge-transitive polyhedra.

Transitivity in polytopes

No serious consideration seems to have been given to polytopes in dimensions $d \geq 4$ about which transitivity of the symmetry group is assumed only for faces of suitably low dimensions, and regularity or some variant of it is required only for faces of dimensions $\leq d-2$.

- Grünbaum (Convex Polytopes, 1967/2003)

A hierarchy of edge-transitive polytopes

A hierarchy of edge-transitive polytopes

A hierarchy of edge-transitive polytopes

Edge- but not vertex-transitive

Edge- but not vertex-transitive

Edge- but not vertex-transitive

Edge-transitive but not vertex-transitive

Theorem.

An edge-transitive polytope in dimension $d \geq 4$ is vertex-transitive.

Edge-transitive but not vertex-transitive

Theorem.

An edge-transitive polytope in dimension $d \geq 4$ is vertex-transitive.
Proof.

If P is edge-transitive but not vertex-transitive, then

Edge-transitive but not vertex-transitive

Theorem.

An edge-transitive polytope in dimension $d \geq 4$ is vertex-transitive.
Proof.

If P is edge-transitive but not vertex-transitive, then
(i) all edges of P are of the same length,

Edge-transitive but not vertex-transitive

Theorem.

An edge-transitive polytope in dimension $d \geq 4$ is vertex-transitive.
Proof.

If P is edge-transitive but not vertex-transitive, then
(i) all edges of P are of the same length,
(ii) P has an edge-insphere, and

Edge-transitive but not vertex-transitive

Theorem.

An edge-transitive polytope in dimension $d \geq 4$ is vertex-transitive.
Proof.

If P is edge-transitive but not vertex-transitive, then
(i) all edges of P are of the same length,
(ii) P has an edge-insphere, and
(iii) the edge-graph G_{P} is bipartite.

Edge-transitive but not vertex-transitive

Theorem.

An edge-transitive polytope in dimension $d \geq 4$ is vertex-transitive.
Proof.

If P is edge-transitive but not vertex-transitive, then
(i) all edges of P are of the same length,
(ii) P has an edge-insphere, and
(iii) the edge-graph G_{P} is bipartite.

Edge-transitive but not vertex-transitive

Theorem.

An edge-transitive polytope in dimension $d \geq 4$ is vertex-transitive.
Proof.

Definition.

P is bipartite if
(i) all edges of P are of the same length,
(ii) P has an edge-insphere, and
(iii) the edge-graph G_{P} is bipartite.

Edge-transitive but not vertex-transitive

Theorem.

An edge-transitive polytope in dimension $d \geq 4$ is vertex-transitive.
Proof.

Definition.

P is bipartite if
(i) all edges of P are of the same length,
(ii) P has an edge-insphere, and
(iii) the edge-graph G_{P} is bipartite.

Theorem.

If P is bipartite and of dimension $d \geq 4$ then it is a Γ-permutahedron,

Edge-transitive but not vertex-transitive

Theorem.

An edge-transitive polytope in dimension $d \geq 4$ is vertex-transitive.
Proof.

Definition.

P is bipartite if
(i) all edges of P are of the same length,
(ii) P has an edge-insphere, and
(iii) the edge-graph G_{P} is bipartite.

Theorem.

If P is bipartite and of dimension $d \geq 4$ then it is a Γ-permutahedron, and therefore vertex-transitive.

An almost bipartite polyhedron

A hierarchy of edge-transitive polytopes

A hierarchy of edge-transitive polytopes

A hierarchy of edge-transitive polytopes

Vertex- and edge-transitive polytopes

Theorem.

If P is both vertex- and edge-transitive, then

- P is θ_{2}-spectral.
- P is uniquely determined by its edge-graph (up to scale and orientation).
- P is as symmetric as its edge-graph.
- Aut (P) is irreducible. (Aut (P) fixes no non-trivial subspace)
- P has edge-length ℓ and circumradius r with

$$
\frac{\ell}{r}=\sqrt{2-\frac{2 \theta_{2}}{\operatorname{deg}\left(G_{P}\right)}}
$$

- the polar dual P° has dihedral angle α with

$$
\cos (\alpha)=-\frac{\theta_{2}}{\operatorname{deg}\left(G_{P}\right.}
$$

A hierarchy of edge-transitive polytopes

A hierarchy of edge-transitive polytopes

Half-transitive polytopes

Corollary.

The edge-graph of a half-transitive polytope must be itself half-transitive.

Half-transitive polytopes

Corollary.

The edge-graph of a half-transitive polytope must be itself half-transitive.

Conjecture.

There are no half-transitive polytopes.

A hierarchy of edge-transitive polytopes

Wythoffian polytopes

Definition.

Let $\Gamma \subseteq \mathrm{GL}\left(\mathbb{R}^{d}\right)$ be a matrix group and $x \in \mathbb{R}^{d}$. The orbit polytope $\operatorname{Orb}(\Gamma, x)$ is

$$
\operatorname{Orb}(\Gamma, x):=\operatorname{conv}\{T x \mid T \in \Gamma\}
$$

Wythoffian polytopes

Definition.

Let $\Gamma \subseteq \operatorname{GL}\left(\mathbb{R}^{d}\right)$ be a matrix group and $x \in \mathbb{R}^{d}$. The orbit polytope $\operatorname{Orb}(\Gamma, x)$ is

$$
\operatorname{Orb}(\Gamma, x):=\operatorname{conv}\{T x \mid T \in \Gamma\}
$$

A Wythoffian polytope is the orbit polytope of a finite reflection group.

Wythoffian polytopes

Definition.

Let $\Gamma \subseteq \mathrm{GL}\left(\mathbb{R}^{d}\right)$ be a matrix group and $x \in \mathbb{R}^{d}$. The orbit polytope $\operatorname{Orb}(\Gamma, x)$ is

$$
\operatorname{Orb}(\Gamma, x):=\operatorname{conv}\{T x \mid T \in \Gamma\}
$$

A Wythoffian polytope is the orbit polytope of a finite reflection group.

Wythoffian polytopes

Definition.

Let $\Gamma \subseteq \mathrm{GL}\left(\mathbb{R}^{d}\right)$ be a matrix group and $x \in \mathbb{R}^{d}$. The orbit polytope $\operatorname{Orb}(\Gamma, x)$ is

$$
\operatorname{Orb}(\Gamma, x):=\operatorname{conv}\{T x \mid T \in \Gamma\}
$$

A Wythoffian polytope is the orbit polytope of a finite reflection group.

Wythoffian arc-transitive polytopes

Definition.

A Coxeter-Dynkin diagram is called transitive if its symmetry group acts transitively on the ringed nodes.

Wythoffian arc-transitive polytopes

Definition.

A Coxeter-Dynkin diagram is called transitive if its symmetry group acts transitively on the ringed nodes.

Wythoffian arc-transitive polytopes

Definition.

A Coxeter-Dynkin diagram is called transitive if its symmetry group acts transitively on the ringed nodes.

Wythoffian arc-transitive polytopes

Definition.

A Coxeter-Dynkin diagram is called transitive if its symmetry group acts transitively on the ringed nodes.

Conjecture.

A Wythoffian polytope is arc-transitive if and only if its Coxeter-Dynkin diagrams is transitive.

Wythoffian arc-transitive polytopes

Definition.

A Coxeter-Dynkin diagram is called transitive if its symmetry group acts transitively on the ringed nodes.

Conjecture.

A Wythoffian polytope is arc-transitive if and only if its Coxeter-Dynkin diagrams is transitive.

d	1	2	3	4	5	6	7	8	≥ 9
$\#$	1	∞	7	15	11	19	22	25	$2 d+1$

A hierarchy of edge-transitive polytopes

A hierarchy of edge-transitive polytopes

A hierarchy of edge-transitive polytopes

Non-Wythoffian polytopes

Wythoffian polytope $=$ orbit polytope of reflection group

Non-Wythoffian polytopes

Wythoffian polytope $=$ orbit polytope of reflection group

Definition.

- $T \in \mathrm{O}\left(\mathbb{R}^{d}\right)$ is a reflection if $\operatorname{Spec}(T)=\left\{(-1)^{1}, 1^{d-1}\right\}$.
- A reflection group is a matrix group generated by reflections.

Non-Wythoffian polytopes

Wythoffian polytope $=$ orbit polytope of reflection group

Definition.

- $T \in \mathrm{O}\left(\mathbb{R}^{d}\right)$ is a k-reflection if $\operatorname{Spec}(T)=\left\{(-1)^{k}, 1^{d-k}\right\}$.
- A k-reflection group is a matrix group generated by k-reflections.

Non-Wythoffian polytopes

Wythoffian polytope $=$ orbit polytope of reflection group

Definition.

- $T \in \mathrm{O}\left(\mathbb{R}^{d}\right)$ is a k-reflection if $\operatorname{Spec}(T)=\left\{(-1)^{k}, 1^{d-k}\right\}$.
- A k-reflection group is a matrix group generated by k-reflections.

Theorem.

Every arc-transitive polytope is an orbit polytope of a k-reflection group.

Non-Wythoffian polytopes

Wythoffian polytope $=$ orbit polytope of reflection group

Definition.

- $T \in \mathrm{O}\left(\mathbb{R}^{d}\right)$ is a k-reflection if $\operatorname{Spec}(T)=\left\{(-1)^{k}, 1^{d-k}\right\}$.
- A k-reflection group is a matrix group generated by k-reflections.

Theorem.

Every arc-transitive polytope is an orbit polytope of a k-reflection group.
Caveat: k-reflection groups are not well understood and rather general.

Non-Wythoffian polytopes

Wythoffian polytope $=$ orbit polytope of reflection group

Definition.

- $T \in \mathrm{O}\left(\mathbb{R}^{d}\right)$ is a k-reflection if $\operatorname{Spec}(T)=\left\{(-1)^{k}, 1^{d-k}\right\}$.
- A k-reflection group is a matrix group generated by k-reflections.

Theorem.

Every arc-transitive polytope is an orbit polytope of a k-reflection group.
Caveat: k-reflection groups are not well understood and rather general.

Conjecture.

All arc-transitive polytopes are orbit polytopes to 1-reflection groups.

A hierarchy of edge-transitive polytopes

A hierarchy of edge-transitive polytopes

Other Results

Classification of vertex-transitive zonotopes

Definition.

A zonotope is a polytope with only centrally symmetric faces.

Classification of vertex-transitive zonotopes

Definition.

A zonotope is a polytope with only centrally symmetric faces.

Theorem.

If Z is a zonotope that is either
(i) vertex-transitive, or
(ii) inscribed with all edges of the same length, then Z is a Γ-permutahedron. (a generic orbit polytope of the reflection group Γ)

Rigidity of graph realizations

Rigidity of graph realizations

Rigidity of graph realizations

Theorem.

If v is a distance-transitive (and irreducible) graph realization, then

- v is a spectral realization
- v is rigid
- v is as symmetric as the graph.

Distance-transitivity

Definition.

A graph G is distance-transitive if for any two pair of vertices $i, j, \hat{\imath}, \hat{\jmath} \in V$ with $\operatorname{dist}(i, j)=\operatorname{dist}(\hat{\imath}, \hat{\jmath})$ exists a $\sigma \in \operatorname{Aut}(G)$ with $\sigma(i)=\hat{\imath}$ and $\sigma(j)=\hat{\jmath}$.

Distance-transitive polytopes

Theorem. (based on a classification by GodSil, 1997)
If $P \subset \mathbb{R}^{d}$ is distance-transitive, then P is one of the following:

- a regular polygon,
- the icosahedron,
- the dodecahedron,
- a crosspolytope,
- a hyper-simplex (this includes regular simplices),
- a demi-cube,
- a cartesian power of a simplex (this includes hypercubes),
- the 6-dimensional 2_{21}-polytope,
- the 7-dimensional 3_{21}-polytope.

Outlook

Many open questions

Questions

- Is the Izmestiev criterion characterizing spectral polytopes?
- Are there half-transitive or non-Wythoffian arc-transitive polytopes?
- Is my conjectured classification of edge-transitive polytopes complete?
- Can we classify k-face transitive polytopes?
- What are the inscribed zonotopes?

Capturing symmetries via colors

Capturing symmetries via colors

Capturing symmetries via colors

$$
\left(G_{P}, \mathfrak{c}\right)=: G_{P}^{\mathfrak{c}}
$$

$$
\mathfrak{c}: V \cup E \rightarrow \mathfrak{C}
$$

Outlook

Capturing symmetries via colors

$$
\left(G_{P}, \mathfrak{c}\right)=: G_{P}^{\mathfrak{c}}
$$

$$
\mathfrak{c}: V \cup E \rightarrow \mathfrak{C}
$$

Theorem.

There is a coloring $\mathfrak{c}: V \cup E \rightarrow \mathfrak{C}$ of the edge-graph so that

$$
\operatorname{Aut}\left(G_{P}^{\mathfrak{c}}\right) \cong \operatorname{Aut}_{\mathrm{GL}}(P)
$$

Capturing symmetries via colors

$$
\left(G_{P}, \mathfrak{c}\right)=: G_{P}^{\mathfrak{c}}
$$

$$
\mathfrak{c}: V \cup E \rightarrow \mathfrak{C}
$$

Theorem.

There is a coloring $\mathfrak{c}: V \cup E \rightarrow \mathfrak{C}$ of the edge-graph so that

$$
\operatorname{Aut}\left(G_{P}^{\mathrm{c}}\right) \cong \operatorname{Aut}_{\mathrm{GL}}(P) .
$$

Idea: use $\mathfrak{c}(i)=M_{i i}$ and $\mathfrak{c}(i j)=M_{i j} . \quad$ (where M is the Izmestiev matrix)

Outlook

Algebraic criteria for symmetric rigidity

Question

Can a graph realization (or an arrangement of points) be deformed without loosing a prescribed set of symmetries $\Sigma \subseteq \operatorname{Sym}(V)$?

Algebraic criteria for symmetric rigidity

Question

Can a graph realization (or an arrangement of points) be deformed without loosing a prescribed set of symmetries $\Sigma \subseteq \operatorname{Sym}(V)$?

Theorem.

An arrangement is Σ-rigid if and only if its Bose-Mesner algebra is commutative.

Thank you.

