

TECHNISCHE UNIVERSITÄT CHEMNITZ PhD Defense

Between Spectral Graph Theory and Polytope Theory Working group for Algorithmic and Discrete Mathematics

Spectral Realizations of Symmetric Graphs, Spectral Polytopes and Edge-Transitivity

Between Spectral Graph Theory and Polytope Theory

Martin Winter

Working group for Algorithmic and Discrete Mathematics

18. June, 2021

TECHNISCHE UNIVERSITÄT CHEMNITZ

DiscMath · 18. June, 2021 · Martin Winter

1 / 31

www.tu-chemnitz.de

Convex polytopes

Definition.

A (convex) polytope is the convex hull of finitely many points in \mathbb{R}^d .

Convex polytopes

Definition.

A (convex) polytope is the convex hull of finitely many points in \mathbb{R}^d .

Polytopes have

- vertices,
- edges,faces.
- intersection of P with a hyperplane

The edge-graph and the quest for reconstruction

Definition.

The **edge-graph** of P is the graph $G_P = (V, E)$ with

An Overview

- $V := \{1, ..., n\}$. (corresponding to the vertices $v_1, ..., v_n$ of P)
- $i, j \in V$ are adjacent in $G_P \iff \operatorname{conv}\{v_i, v_j\}$ is an edge of P

The edge-graph and the quest for reconstruction

Definition.

The **edge-graph** of P is the graph $G_P = (V, E)$ with

An Overview

- $V := \{1, ..., n\}$. (corresponding to the vertices $v_1, ..., v_n$ of P)
- $i, j \in V$ are adjacent in $G_P \iff \operatorname{conv}\{v_i, v_j\}$ is an edge of P

Note: the edge-graph of *P* carries very little information about the polytope.

Spec
$$(A(G_P)) = \{3^1, 1^3, (-1)^3, (-3)^1\}$$

 θ_2 -eigenvectors of $G_P \longrightarrow \theta_2$ -spectral realization v^{θ} of G_P

Questions

- For which polytopes does this work?
- Why have we used θ_2 ?

Questions

- For which polytopes does this work?
- Why have we used θ_2 ?

$$\longrightarrow$$
 Part I

Eigenpolytopes and spectral polytopes

Definition. (GODSIL, 1978)

The eigenpolytope of a graph G to eigenvalue $\theta \in \operatorname{Spec}(A(G))$ is

$$P_G(\theta) := \operatorname{conv}\{v_1^{\theta}, ..., v_n^{\theta}\}.$$

Eigenpolytopes and spectral polytopes

Definition. (GODSIL, 1978)

The eigenpolytope of a graph G to eigenvalue $\theta \in \operatorname{Spec}(A(G))$ is

$$P_G(\theta) := \operatorname{conv}\{v_1^{\theta}, ..., v_n^{\theta}\}.$$

A θ -spectral polytope is the eigenpolytope of its edge-graph.

Eigenpolytopes and spectral polytopes

Definition. (GODSIL, 1978)

The eigenpolytope of a graph G to eigenvalue $\theta \in \operatorname{Spec}(A(G))$ is

$$P_G(\theta) := \operatorname{conv}\{v_1^{\theta}, ..., v_n^{\theta}\}.$$

A θ -spectral polytope is the eigenpolytope of its edge-graph.

Literature:

• GODSIL, Graphs, Groups and Polytopes, 1978.

Definition. (GODSIL, 1978)

An Overview

The eigenpolytope of a graph G to eigenvalue $\theta \in \text{Spec}(A(G))$ is

$$P_G(\theta) := \operatorname{conv}\{v_1^{\theta}, ..., v_n^{\theta}\}.$$

A θ -spectral polytope is the eigenpolytope of its edge-graph.

Literature:

- ► GODSIL, Graphs, Groups and Polytopes, 1978.
- LICATA & POWERS, A Surprising Property of some Regular Polytopes, 1978.
- MOHRI, The θ_1 -Eigenpolytopes of the Hamming Graphs, 1997.
- ▶ GODSIL, Eigenpolytopes of Distance Regular Graphs, 1998.

Observations

If P is $\theta\text{-spectral},$ then

- ▶ rigidity: *P* is uniquely determined by its edge-graph.
- symmetry: P is as symmetric as its edge-graph.

Observations

If P is θ -spectral, then

- rigidity: P is uniquely determined by its edge-graph.
- symmetry: P is as symmetric as its edge-graph.

Regular polytopes are θ_2 -spectral: (LICATA & POWERS, 1986)

Observations

If P is θ -spectral, then

- rigidity: P is uniquely determined by its edge-graph.
- symmetry: P is as symmetric as its edge-graph.

Regular polytopes are θ_2 -spectral: (LICATA & POWERS, 1986)

Maybe every sufficiently symmetric polytope is spectral.

What is sufficient symmetry?

Regularity is sufficient: (LICATA & POWERS, 1986)

What is sufficient symmetry?

Regularity is sufficient: (LICATA & POWERS, 1986)

Vertex-transitivity is <u>not</u> sufficient: $Aut(P) := \{T \in O(\mathbb{R}^d) \mid TP = T\}$

The hope: edge-transitivity

The hope: edge-transitivity

Questions

- Which polytopes are edge-transitive?
- Are there many edge-transitive polytopes?
- Can they be classified?

The hope: edge-transitivity

Questions

- Which polytopes are edge-transitive?
- Are there many edge-transitive polytopes?
- Can they be classified?

 \longrightarrow Part II

Papers

An Overview

Published

- Vertex-Facets Assignments for Polytopes (with Thomas Jahn) Contributions to Algebra and Geometry
- Geometry and Topology of Symmetric Point Arrangements Linear Algebra and its Applications
- The Classification of Vertex-Transitive Zonotopes Discrete & Computational Geometry

Manuscripts

- The Edge-Transitive Polytopes that are not Vertex-Transitive
- Symmetric and Spectral Realizations of Highly Symmetric Graphs
- Eigenpolytopes, Spectral Polytopes and Edge-Transitivity

Part I<u>Spectrum and Symmetry</u>

The Izmestiev construction

(IZMESTIEV, 2008)

$$P^{\circ} := \{ x \in \mathbb{R}^d \mid \langle x, v_i \rangle \le 1 \text{ for all } i \in V \}.$$

The Izmestiev construction

(IZMESTIEV, 2008)

 $P^{\circ}(c) := \{ x \in \mathbb{R}^d \mid \langle x, v_i \rangle \le c_i \text{ for all } i \in V \}, \qquad c \in \mathbb{R}^n$

The Izmestiev construction

(IZMESTIEV, 2008)

$$\begin{split} P^{\circ}(c) &:= \{ x \in \mathbb{R}^d \mid \langle x, v_i \rangle \leq c_i \text{ for all } i \in V \}, \qquad c \in \mathbb{R}^n \\ &\longrightarrow P^{\circ}(1, ..., 1) = P^{\circ} \end{split}$$

The Izmestiev construction

(IZMESTIEV, 2008)

$$\begin{split} P^{\circ}(c) &:= \{ x \in \mathbb{R}^d \mid \langle x, v_i \rangle \leq c_i \text{ for all } i \in V \}, \qquad c \in \mathbb{R}^n \\ &\longrightarrow P^{\circ}(1, ..., 1) = P^{\circ} \end{split}$$

The Izmestiev construction

(IZMESTIEV, 2008)

$$\begin{split} P^{\circ}(c) &:= \{ x \in \mathbb{R}^d \mid \langle x, v_i \rangle \leq c_i \text{ for all } i \in V \}, \qquad c \in \mathbb{R}^n \\ &\longrightarrow P^{\circ}(1, ..., 1) = P^{\circ} \end{split}$$

Definition.

The **Izmestiev matrix** is $M \in \mathbb{R}^{n \times n}$ with

$$M_{ij} := \frac{\partial^2 \operatorname{vol}(P^\circ(c))}{\partial c_i \partial c_j} \Big|_{c=(1,\dots,1)}$$

DiscMath · 18. June, 2021 · Martin Winter

www.tu-chemnitz.de

Theorem.

Let M be the Izmestiev matrix of $P. \ \mbox{If}$

- (i) M_{ii} is the same for all $i \in \{1, ..., n\}$ and
- (ii) M_{ij} is the same for all edges $ij \in E(G_P)$,

Theorem.

Let M be the Izmestiev matrix of P. If

- (i) M_{ii} is the same for all $i \in \{1,...,n\}$ and
- (ii) M_{ij} is the same for all edges $ij \in E(G_P)$,

$$\Leftrightarrow M = \alpha \operatorname{Id} + \beta A$$

Theorem.

Let M be the Izmestiev matrix of P. If

- (i) M_{ii} is the same for all $i \in \{1,...,n\}$ and
- (ii) M_{ij} is the same for all edges $ij \in E(G_P)$,

$$\Longleftrightarrow M = \alpha \operatorname{Id} + \beta A$$

$$M_{ij} := \frac{\partial^2 \operatorname{vol}(P^\circ(c))}{\partial c_i \, \partial c_j} \Big|_{c=(1,\dots,1)}$$

Theorem.

Let M be the Izmestiev matrix of P. If

- (i) M_{ii} is the same for all $i \in \{1,...,n\}$ and
- (ii) M_{ij} is the same for all edges $ij \in E(G_P)$,

$$\Longleftrightarrow M = \alpha \operatorname{Id} + \beta A$$

$$M_{ij} := \frac{\partial^2 \mathrm{vol}(P^\circ(c))}{\partial c_i \, \partial c_j} \Big|_{c=(1,...,1)} \stackrel{\downarrow}{=} -\frac{\mathrm{vol}(f_{ij}^\circ)}{\|v_i\| \|v_j\| \sin \triangleleft(v_i,v_j)}.$$

Theorem.

Let M be the Izmestiev matrix of P. If

- (i) M_{ii} is the same for all $i \in \{1, ..., n\}$ and
- (ii) M_{ij} is the same for all edges $ij \in E(G_P)$,

then P is θ_2 -spectral.

$$\Longleftrightarrow M = \alpha \operatorname{Id} + \beta A$$

$$M_{ij} := \frac{\partial^2 \operatorname{vol}(P^\circ(c))}{\partial c_i \, \partial c_j} \Big|_{c=(1,\dots,1)} \stackrel{\text{dual face to edge } ij}{=} -\frac{\operatorname{vol}(f_{ij}^\circ)}{\|v_i\| \|v_j\| \sin \triangleleft(v_i, v_j)}$$

Corollary.

If P is simultaneously vertex- and edge-transitive, then P is θ_2 -spectral.

Part II Edge-Transitive Polytopes

Edge-transitive polyhedra

Edge-transitive polyhedra

Edge-transitive polyhedra

Theorem. (GRÜNBAUM & SHEPHARD, 1987)

There are <u>nine</u> edge-transitive polyhedra.

DiscMath · 18. June, 2021 · Martin Winter 14 / 31

www.tu-chemnitz.de

Transitivity in polytopes

No serious consideration seems to have been given to polytopes in dimensions $d \ge 4$ about which transitivity of the symmetry group is assumed only for faces of suitably low dimensions, and regularity or some variant of it is required only for faces of dimensions $\le d - 2$.

- GRÜNBAUM (Convex Polytopes, 1967/2003)

Edge- but not vertex-transitive

Edge- but not vertex-transitive

Edge- but not vertex-transitive

Theorem.

An edge-transitive polytope in dimension $d \ge 4$ is vertex-transitive.

Theorem.

An edge-transitive polytope in dimension $d \ge 4$ is vertex-transitive.

Proof.

If \boldsymbol{P} is edge-transitive but not vertex-transitive, then

Theorem.

An edge-transitive polytope in dimension $d \ge 4$ is vertex-transitive.

Proof.

- If \boldsymbol{P} is edge-transitive but not vertex-transitive, then
 - (i) all edges of P are of the same length,

Theorem.

An edge-transitive polytope in dimension $d \ge 4$ is vertex-transitive.

Proof.

- If \boldsymbol{P} is edge-transitive but not vertex-transitive, then
 - (i) all edges of P are of the same length,
- (ii) P has an *edge-insphere*, and

Theorem.

An edge-transitive polytope in dimension $d \ge 4$ is vertex-transitive.

Proof.

If \boldsymbol{P} is edge-transitive but not vertex-transitive, then

- (i) all edges of P are of the same length,
- (ii) P has an edge-insphere, and
- (iii) the edge-graph G_P is *bipartite*.

Theorem.

An edge-transitive polytope in dimension $d \ge 4$ is vertex-transitive.

Proof.

- If \boldsymbol{P} is edge-transitive but not vertex-transitive, then
 - (i) all edges of P are of the same length,
- (ii) P has an *edge-insphere*, and
- (iii) the edge-graph G_P is *bipartite*.

Theorem.

An edge-transitive polytope in dimension $d \ge 4$ is vertex-transitive.

Proof.

Definition.

P is **bipartite** if

- (i) all edges of ${\cal P}$ are of the same length,
- (ii) P has an *edge-insphere*, and
- (iii) the edge-graph G_P is bipartite.

Theorem.

An edge-transitive polytope in dimension $d \ge 4$ is vertex-transitive.

Proof.

Definition.

P is **bipartite** if

- (i) all edges of ${\cal P}$ are of the same length,
- (ii) P has an *edge-insphere*, and
- (iii) the edge-graph G_P is *bipartite*.

Theorem.

If P is bipartite and of dimension $d \ge 4$ then it is a Γ -permutahedron,

DiscMath · 18. June, 2021 · Martin Winter

Theorem.

An edge-transitive polytope in dimension $d \ge 4$ is vertex-transitive.

Proof.

Definition.

P is **bipartite** if

- (i) all edges of ${\cal P}$ are of the same length,
- (ii) P has an *edge-insphere*, and
- (iii) the edge-graph G_P is *bipartite*.

Theorem.

If P is bipartite and of dimension $d \geq 4$ then it is a Γ -permutahedron, and therefore vertex-transitive.

An almost bipartite polyhedron

Vertex- and edge-transitive polytopes

Theorem.

If P is both vertex- and edge-transitive, then

- ▶ P is θ_2 -spectral.
- ▶ *P* is uniquely determined by its edge-graph (up to scale and orientation).
- P is as symmetric as its edge-graph.
- ▶ Aut(P) is irreducible. (Aut(P) fixes no non-trivial subspace)
- $\blacktriangleright \ P$ has edge-length ℓ and circumradius r with

$$\frac{\ell}{r} = \sqrt{2 - \frac{2\theta_2}{\deg(G_P)}}.$$

• the polar dual P° has dihedral angle α with

$$\cos(\alpha) = -\frac{\theta_2}{\deg(G_P)}.$$

Half-transitive polytopes

Corollary.

The edge-graph of a half-transitive polytope must be itself half-transitive.

Half-transitive polytopes

Corollary.

The edge-graph of a half-transitive polytope must be itself half-transitive.

Conjecture.

There are no half-transitive polytopes.

DiscMath · 18. June, 2021 · Martin Winter

Definition.

Let $\Gamma \subseteq \operatorname{GL}(\mathbb{R}^d)$ be a matrix group and $x \in \mathbb{R}^d$. The orbit polytope $\operatorname{Orb}(\Gamma, x)$ is

 $\operatorname{Orb}(\Gamma, x) := \operatorname{conv}\{Tx \mid T \in \Gamma\}.$

Definition.

Let $\Gamma \subseteq \operatorname{GL}(\mathbb{R}^d)$ be a matrix group and $x \in \mathbb{R}^d$. The orbit polytope $\operatorname{Orb}(\Gamma, x)$ is

 $\operatorname{Orb}(\Gamma, x) := \operatorname{conv}\{Tx \mid T \in \Gamma\}.$

A Wythoffian polytope is the orbit polytope of a finite reflection group.

Definition.

Let $\Gamma \subseteq \operatorname{GL}(\mathbb{R}^d)$ be a matrix group and $x \in \mathbb{R}^d$. The orbit polytope $\operatorname{Orb}(\Gamma, x)$ is

 $\operatorname{Orb}(\Gamma, x) := \operatorname{conv}\{Tx \mid T \in \Gamma\}.$

A Wythoffian polytope is the orbit polytope of a finite reflection group.

Definition.

Let $\Gamma \subseteq \operatorname{GL}(\mathbb{R}^d)$ be a matrix group and $x \in \mathbb{R}^d$. The orbit polytope $\operatorname{Orb}(\Gamma, x)$ is

 $Orb(\Gamma, x) := conv\{Tx \mid T \in \Gamma\}.$

A Wythoffian polytope is the orbit polytope of a finite reflection group.

Definition.

A Coxeter-Dynkin diagram is called **transitive** if its symmetry group acts transitively on the ringed nodes.

Definition.

A Coxeter-Dynkin diagram is called **transitive** if its symmetry group acts transitively on the ringed nodes.

Definition.

A Coxeter-Dynkin diagram is called **transitive** if its symmetry group acts transitively on the ringed nodes.

Definition.

A Coxeter-Dynkin diagram is called **transitive** if its symmetry group acts transitively on the ringed nodes.

Conjecture.

A Wythoffian polytope is arc-transitive if and only if its Coxeter-Dynkin diagrams is transitive.

Definition.

A Coxeter-Dynkin diagram is called **transitive** if its symmetry group acts transitively on the ringed nodes.

Conjecture.

A Wythoffian polytope is arc-transitive if and only if its Coxeter-Dynkin diagrams is transitive.

Wythoffian polytope = orbit polytope of reflection group

Wythoffian polytope = orbit polytope of reflection group

Definition.

- $T \in O(\mathbb{R}^d)$ is a reflection if $Spec(T) = \{(-1)^1, 1^{d-1}\}.$
- A reflection group is a matrix group generated by reflections.

Wythoffian polytope = orbit polytope of reflection group

Definition.

- ▶ $T \in O(\mathbb{R}^d)$ is a *k*-reflection if $Spec(T) = \{(-1)^k, 1^{d-k}\}.$
- ► A *k*-reflection group is a matrix group generated by *k*-reflections.

Wythoffian polytope = orbit polytope of reflection group

Definition.

- $T \in O(\mathbb{R}^d)$ is a k-reflection if $Spec(T) = \{(-1)^k, 1^{d-k}\}.$
- ► A *k*-reflection group is a matrix group generated by *k*-reflections.

Theorem.

Every arc-transitive polytope is an orbit polytope of a k-reflection group.

Wythoffian polytope = orbit polytope of reflection group

Definition.

- $T \in O(\mathbb{R}^d)$ is a k-reflection if $Spec(T) = \{(-1)^k, 1^{d-k}\}.$
- ► A *k*-reflection group is a matrix group generated by *k*-reflections.

Theorem.

Every arc-transitive polytope is an orbit polytope of a k-reflection group.

Caveat: *k*-reflection groups are not well understood and rather general.

Wythoffian polytope = orbit polytope of reflection group

Definition.

- $T \in O(\mathbb{R}^d)$ is a k-reflection if $Spec(T) = \{(-1)^k, 1^{d-k}\}.$
- ► A *k*-reflection group is a matrix group generated by *k*-reflections.

Theorem.

Every arc-transitive polytope is an orbit polytope of a k-reflection group.

Caveat: *k*-reflection groups are not well understood and rather general.

Conjecture.

All arc-transitive polytopes are orbit polytopes to 1-reflection groups.

Other Results

Definition.

Other Results

A zonotope is a polytope with only centrally symmetric faces.

Classification of vertex-transitive zonotopes

Definition.

A zonotope is a polytope with only centrally symmetric faces.

Theorem.

If Z is a zonotope that is either

Other Results

- (i) vertex-transitive, or
- (ii) inscribed with all edges of the same length,

then Z is a Γ -permutahedron. (a generic orbit polytope of the reflection group Γ)

Rigidity of graph realizations

Rigidity of graph realizations

Rigidity of graph realizations

Theorem.

If v is a distance-transitive (and irreducible) graph realization, then

- ▶ v is a spectral realization
- ► v is rigid
- v is as symmetric as the graph.

Distance-transitivity

Definition.

A graph G is distance-transitive if for any two pair of vertices $i, j, \hat{i}, \hat{j} \in V$ with $\operatorname{dist}(i, j) = \operatorname{dist}(\hat{i}, \hat{j})$ exists a $\sigma \in \operatorname{Aut}(G)$ with $\sigma(i) = \hat{i}$ and $\sigma(j) = \hat{j}$.

Distance-transitive polytopes

Theorem. (based on a classification by GODSIL, 1997)

If $P \subset \mathbb{R}^d$ is distance-transitive, then P is one of the following:

- a regular polygon,
- the icosahedron,
- the dodecahedron,
- a crosspolytope,
- a hyper-simplex (this includes regular simplices),
- a demi-cube,
- a cartesian power of a simplex (this includes hypercubes),
- ▶ the 6-dimensional 2₂₁-polytope,
- ▶ the 7-dimensional 3₂₁-polytope.

Outlook

Many open questions

Questions

- Is the Izmestiev criterion characterizing spectral polytopes?
- Are there half-transitive or non-Wythoffian arc-transitive polytopes?
- Is my conjectured classification of edge-transitive polytopes complete?
- Can we classify k-face transitive polytopes?
- What are the inscribed zonotopes?

Capturing symmetries via colors

Theorem.

There is a coloring $\mathfrak{c} \colon V \cup E \to \mathfrak{C}$ of the edge-graph so that

$$\operatorname{Aut}(G_P^{\mathfrak{c}}) \cong \operatorname{Aut}_{\operatorname{GL}}(P).$$

DiscMath · 18. June, 2021 · Martin Winter 30

Theorem.

There is a coloring $\mathfrak{c} \colon V \cup E \to \mathfrak{C}$ of the edge-graph so that

$$\operatorname{Aut}(G_P^{\mathfrak{c}}) \cong \operatorname{Aut}_{\operatorname{GL}}(P).$$

Idea: use $\mathfrak{c}(i) = M_{ii}$ and $\mathfrak{c}(ij) = M_{ij}$. (where M is the Izmestiev matrix)

Algebraic criteria for symmetric rigidity

Question

Can a graph realization (or an arrangement of points) be deformed without loosing a prescribed set of symmetries $\Sigma \subseteq Sym(V)$?

Algebraic criteria for symmetric rigidity

Question

Can a graph realization (or an arrangement of points) be deformed without loosing a prescribed set of symmetries $\Sigma \subseteq Sym(V)$?

Theorem.

An arrangement is Σ -rigid if and only if its Bose-Mesner algebra is commutative.

DiscMath · 18. June, 2021 · Martin Winter 31 / 31

www.tu-chemnitz.de

Thank you.

