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Abstract

We give a streamlined derivation of the main techinical lemma of a paper by Winter using
the language of equilibrium stresses.

1 Introduction

Recently a number of rigidity results for the one-skeleton of a convex polytope coned from an interior
point have been proven by Winter [7]. One result says that the resulting tensegrity framework is
locally rigid. Another result says that the framework is globally rigid, when only allowing for
new configurations that arise as the one-skeleton of a (combinatorially equivalent) polytope (in
particular the “faces” must remain flat). All of these results follow through a central (technical)
Lemma 4.3 in [7]. In what follows we will call this “the coned-polytope lemma”. The proof given
for this lemma is somewhat involved and perhaps ad-hoc. In this note, we give a streamlined proof
of the coned-polytope lemma and describe it using the standard notion of equilibrium stresses from
rigidity theory.

In terms of techniques, the results in [7] rely on a result of Izmestiev [4] that generalizes a three-
dimensional result of Lovász [6]. This result associates a special n-by-n matrix M to a convex
polytope P (with n vertices) in Rd that contains the origin in its interior. Among other things, M
has a single negative eigenvalue. In this note, we add an extra row and column to M to obtain
(n + 1)-by-(n + 1) matrix Ω with a single negative eigenvalue. By construction, this matrix will
be a stress matrix for the framework of the coned polytope. This stress matrix is then used in our
exploration of the coned-polytope lemma.
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2 Definitions

Here we quickly review the basic rigidity definitions that we will be needing. The key reference
is [1].

Definition 2.1. A configuration p of n points in Rd is an ordered set of n points, pi ∈ Rd.

Definition 2.2. A tensegrity framework (G,p) in Rd is a configuration p of n points Rd, and a
labeled graph G on n vertices. The edges of G are labeled as “cables”, “struts” and “bars”. We
denote by (Ḡ,p) the associated bar framework, where all of the labels in G are changed to be “bars”.

Definition 2.3. We say that a tensgrity framewok (G,q) is dominated by (G,p) if the struts only
get larger going from p to q, the cables only get shorter going from p to q and the bar lenghts
remain the same.
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The following definition will not be used but is given for context.

Definition 2.4. A tensegrity framework (G,p) is (locally) rigid if for every configuration q of n
points in Rd that is sufficiently close to p1 and such that q is not congruent to p, we have the
property that the Euclidean lengths of the cables are not decreased, the lengths of the struts are not
increased and the lengths of the bars are not changed.

Definition 2.5. Let (G,p) be a tensegrity with n vertices. An (equilibrium) stress matrix Ω of
(G,p) is an n-by-n symmetric matrix with the following properties. Ωij = 0 when i ̸= j and ij
is not an edge of G. We have Ωp = 0, where we think of p as an n-by-d matrix. We also have
Ω1 = 0, where 1 is a vector of all ones.

The stress is called strictly proper if Ωij < 0 when ij is a cable and Ωij > 0 when ij is a strut.

Definition 2.6. Let Ω be an n-by-n symmetric matrix with Ω1 = 0. Let x be a vector in Rn. We
define the associated stress energy as

Es(x) := xtΩx

This can be expanded out as

Es(x) =
∑
i<j

−Ωij(xi − xj)
2

If q is a configuration of n points in Rd, thought of as an n-by-d matrix, we define

Es(q) := tr(qtΩq) =
∑
i<j

−Ωij ||qi − qj ||2

3 Izmestiev Stress

Let P ⊂ Rd be a convex polytope with n vertices, with a full affine span and with the origin in its
interior. Let p be its vertex configuration and let G be the graph of its one-skeleton. Izmestiev [4]
constructs an n-by-n symmetric matrix M , that we call the Izmestiev matrix , with the following
properties:

(i) Mij = 0 when i ̸= j and ij is not an edge of G.

(ii) Mij < 0 when ij is an edge of G.

(iii) Mp = 0, where we think of p as an n-by-d matrix.

(iv) M has rank n− d.

(v) M has exactly one negative eigenvalue.

Our goal is to use M to construct an equilibrium stress Ω for the framework (G∗, p̂) obtained
by coning the one-skeleton of P over the origin. Let αt := −1tM and b := −

∑
i αi = 1tM1. The

αi are also known as the (unnormalized) Wachspress coordinates of the origin with respect to P [7],
and so each is greater than 0, and b is negative. We define the (n+ 1)-by-(n+ 1) matrix in block
form as follows:

1Formally, there exists an ϵ so that for every q within this distance to p, the property holds.
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Ω :=

(
M α
αt b

)
The added row/column are linearly dependent on M , and thus the rank of Ω is also n− d, and its
nullity is d + 1. Since M has one negative eigenvalue, and Ω just has an extra 0 eigenvalue, from
the eigenvalue interlacing theorem, Ω must also have exactly one negative eigenvalue.

Let c be placed at the origin and let p̄ = [p, c] be the configuration of n+1 points in Rd. Then,
since c = 0 we have Ωp̄ = 0. By our definition of α and b, we have Ω1 = 0. Let us label the edges
of G∗ from the polytope as cables and the coned edges as struts. We see that Ω is a strictly proper
equilibrium stress for (G∗, p̄). We call this an Izmestiev stress.

Finally we note that the space of stresses for a framework does not change under translation
in Rd. Thus we can start with P as any convex polytope with n vertices and a full affine span in
Rd and with c any point in the interior of P . We can create its associated coned tensegrity, and it
must have an Izmestiev stress.

4 One Negative Eigenvalue

Rigidity analysis is often based on positivity of some quadratic energy. Our stress matrix Ω has
one negative eigenvalue that we need to work around. Our main tool for doing this is the following
lemma.

Lemma 4.1. Let Ω be an (n+ 1)-by-(n+ 1) real symmetric matrix. Assume the following:

(i) Ω has exactly one negative eigenvalue.

(ii) Ωn+1,n+1 < 0.

If x̂ ∈ Rn+1 has the property that the (n+ 1)st entry of Ωx̂ equals 0, then x̂tΩx̂ ≥ 0.

Proof. Let e be the (n+1)st indicator vector. By assumption etΩe < 0, so the vector, e is in the
negative cone of Ω. Meanwhile, since the last entry of Ωx̂ equals 0, we have etΩx̂ = 0, i.e., x̂ is Ω-
orthogonal to e. Together, since Ω has only a single negative eigenvalue, this implies x̂tΩx̂ ≥ 0.

Similar ideas to Lemma 4.1 are used in [5].

5 Energy Zoo

Starting with an Izmestiev stress Ω we decompose its stress energy in a way which will lead to a
streamlined path towards the coned-polytope lemma (see Section 6).

Assume an Izmestiev stress Ω for (G∗, p̄), with p̄ = [p; c] the framework of the one skeleton of
a convex polytope P , coned over the point c. We assume the stress is normalized to be of the form

Ω =

(
M α
αt −1

)
Let Es be the stress energy associated with Ω. Let q̂ = [q;qn+1] be a configuration of n + 1

points. Then we have

Es(q̂) =
∑
i<j

−Mij ||qi − qj ||2 −
∑
i

αi||qi − qn+1||2

=: Ex(q)− Ei(q̂)
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Definition 5.1. Ex is called the external energy and Ei is called the internal energy.

Definition 5.2. Given a configuration q of n points we define its α-center as qα :=
∑

i αiqi.

Note that since Ω is an equilibrium stress for p̄, in particular the last row of Ωp̄ equals 0, and
so we see that p̄ = [p;pα].

Lemma 5.3. Given a framework (G∗, q̂) we can write

Ei(q̂) =
∑
i<j

αiαj ||qi − qj ||2 + ||qα − qn+1||2

=: Eα(q) + Ec(q̂)

Proof. This is a calculation in [7, Equation 2.1] (it relies on our normalization for Ω).

Definition 5.4. Eα is called the α-energy and Ec is called the cone energy.

Now we can re-parenthesize as follows

Es(q̂) = Ex(q)− (Eα(q) + Ec(q̂))

= (Ex(q)− Eα(q))− Ec(q̂)

=: Ep(q)− Ec(q̂)

Definition 5.5. Ep is called the polytope energy.

Note that all energies are invariant to translation on q̂. External, internal, α, and cone energies
are non-negative. Only Es and Ec depend on the cone placement. The main point here is that we
have decomposed Es as the difference of two energies, where the first energy does not depend on
the (n+ 1)st point and the second energy has a particular simple form.

The payoff of this decomposition in the case of an Izemestiev stress is the following lemma:

Lemma 5.6. Ep is positive semi-definite (PSD). Its kernel consists of the affine images of p.

Recall that p is the conguration of the vertices of P used, along with the cone point c, to define
Ω and thus Ep.

Proof. Let q be any configuration of n points. Let q̃ be the configuration of n+ 1 points with its
first n points in agreement with q, and its (n+ 1)st point at qα. By this choice for qn+1, we have
Ec(q̃) = 0 and so Es(q̃) = Ep(q). Meanwhile each of the d spatial coordinates of q̃ satisfies the
assumption of Lemma 4.1 and so Es(q̃) ≥ 0. Thus Ep(q) ≥ 0.

Next we characterize its kernel. Suppose that q is an affine image of p, namely for all i,
qi = Api + t where A is a d-by-d matrix and t ∈ Rd. Then qα = Apα + t. Defining q̃ := [q,qα]
we see that q̃ is an affine image of p̄ = [p;pα]. Meanwhile since Ω is an equilibrium stress for p̄ we
have Es(p̄) = 0. As an affine transform, we also have Es(q̃) = 0. Meanwhile Es(q̃) = Ep(q). Since
Ep is PSD, q must be in its kernel.

Going the other way, suppose that q is in the kernel of Ep. Letting q̃ := [q,qα], we have
Es(q̃) = 0. Using Lemma 4.1, we know that q̃ lies in a linear space on which Ω is PSD. Since
Es(q̃) = 0 it must be in the kernel of Ω. Thus q̃ is an affine image of p̄ and q is an affine image of
p.
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6 The Coned-Polytope Lemma

Using Lemma 5.6, we can now directly prove (a restated version of) the coned-polytope lemma.

Lemma 6.1. [7, Lemma 4.3] Let P be a convex polytope with vertex configuration p. Let p̄ := [p; c]
where c is in the interior of P . Let (G∗, p̄) be the framework of the coned skeleton of P . The
framework (G∗, p̄) gives rise to an Izmestiev stress Ω, various energies, Es, Ep and in particular
the vector α and the energy Ec.

Let p̂ = [p;pn+1] be a configuration with p as above and where pn+1 is any cone point. Let
q̂ = [q;qn+1] be any configuration.

Suppose that (G∗, q̂) is dominated by (G∗, p̂). And suppose that Ec(p̂) ≥ Ec(q̂). Then q̂ ∼= p̂.

Proof. Since Es(p̄) = 0 and c = pα, we have Es(p̄) = Ep(p) = 0.

Es(p̂) = Ep(p)− Ec(p̂)

= 0
≤ ≥ ≥

Es(q̂) = Ep(q)− Ec(q̂)

The first inequality comes from the assumed dominance. The second inequality uses the fact that
Ep is PSD (Lemma 5.6). The third inequality is explicitly assumed. Thus all of the inequalities are
equalities. Since Ep(q) = 0, q is an affine image of p (Lemma 5.6). Meanwhile, since Es(p̂) = Es(q̂)
and p̂ dominates q̂, we must have all of the lengths equal.

To finally conclude that p and q̂ are congruent, we need a statement about affine flexes that
we included in the appendix: using Lemma A.1, and the fact that P is a convex polytope with a
full affine span, we see that q̂ must be congruent to p̂.

The name of game in [7] is to flip this around: one starts with (G∗, p̂) with p̂ = [p;pn+1], a
framework of a convex polytope P coned over the point pn+1, and q̂, a framework of the same
graph that is dominated by p̂. Then one sees if one can find a point c inside of P , so that, (under
the resulting stress/energies/α, defined using the Izmestiev equilibrium stress for p̄ := [p; c]) we
have Ec(p̂) ≥ Ec(q̂). If this can be done, then the proposition can be applied to show congruence
of p̂ and q̂.

A Affine Flexes

Lemma A.1. Let (G,p) be a framework on n vertices in Rd. Let (G,q) be a framework with
qi = Lpi + t, where L is a d-by-d matrix and t ∈ Rd. Let (G∗, p̂) and (G∗, q̂) be the respective
frameworks, coned over the origin.

Suppose that (G∗, p̂) and (G∗, q̂) are equivalent but not congruent. Then the vertices and the
supporting lines of the edges of (G,p) lie on an (possibly) inhomogeoneous quadratic surface in Rd.

Moreover, such a (G,p) cannot have d vertices in general affine position, each with a neighbor-
hood in (G,p) with a full affine span. In particular it cannot be the skeleton of a convex polytope.

Proof. Let r̂ := (1/2)(p̂+ q̂) and r̂′ := (1/2)(p̂− q̂). Since (G∗, p̂) and (G∗, q̂) are equivalent, from
the averaging principle [2, Theorem 13], r̂′ is a infinitesimal flex for (G∗, r̂). For i ∈ [n], we have
r̂i = 1/2(pi + Lpi + t) and r̂′i = 1/2(pi − Lpi − t). At the cone, we have r̂n+1 = 0 and r̂′n+1 = 0.

Since r̂′ is a flex, just looking at the cone-edge flex condition, r̂i · r̂′i = 0, we get, after a
calculation, for i ∈ [n]

pt
i(I − LtL)pi − 2pt

iLt− ttt = 0
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This places the pi on a quadratic surface in Rd. (The equation would only be trivial when L is an
orthogonal matrix and t = 0, making (G∗, p̂) and (G∗, q̂) congruent.)

Looking at the flex condition on the edges ij in G, we get, after a calculation

etij(I − LtL)eij = 0

where eij := pi−pj . This gives us three points from each edge ij of G (the points pi and pj , along
with the point eij at infinity) on the quadric, and thus the supporting lines of the edges of (G,p)
are on the quadric [3, Lemma 2.5].

The last statment about affine spanning vertices is [3, Proposision 3.4].
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